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ABSTRACT

The application of large language models (LLMs) in domain-specific contexts,
including finance, has expanded rapidly. Domain-specific LLMs are typically
evaluated based on their performance in various downstream tasks relevant to the
domain. In this work, we present a detailed analysis of fine-tuning LLMs for
such tasks. Somewhat counterintuitively, we find that in domain-specific cases,
fine-tuning exclusively on the target task is not always the most effective strat-
egy. Instead, multi-task fine-tuning - where models are trained on a cocktail of
related tasks - can significantly enhance performance. We demonstrate how this
approach enables a small model, such as Phi-3-Mini, to achieve state-of-the-art
results, even surpassing the much larger GPT-4-o model on financial benchmarks.
Our study involves a large-scale experiment, conducting over 200 training experi-
ments using several widely adopted LLMs as baselines, and empirically confirms
the benefits of multi-task fine-tuning. Additionally, we explore the use of gen-
eral instruction data as a form of regularization, suggesting that it helps minimize
performance degradation. We also investigate the inclusion of mathematical data,
finding improvements in numerical reasoning that transfer effectively to financial
tasks. Finally, we note that while fine-tuning for downstream tasks leads to tar-
geted improvements in task performance, it does not necessarily result in broader
gains in domain knowledge or complex domain reasoning abilities.

1 INTRODUCTION

Recently, the application of large language models (LLMs) in domain-specific contexts has seen
rapid growth, particularly in fields such as medicine (Singhal et al., 2023; Wu et al., 2024), law
(Huang et al., 2023), and finance (Cheng et al., 2023; Wu et al., 2023). As LLMs are increas-
ingly adopted across various domains, accurate evaluation of their domain-specific capabilities has
become more necessary. While many benchmarks exist to evaluate LLM performance, they are
typically designed for general purposes and not specifically for domain-specific evaluations.

A common method for assessing LLM performance within a domain is through downstream tasks
(Yang et al., 2024; Gu et al., 2021; Xie et al., 2024b). Such benchmarks emphasize well-defined,
highly specific tasks that seek to reflect real-world applications within the target domain. These
tasks are frequently framed as standard natural language processing (NLP) problems, such as text
classification, summarization, causal reasoning, arithmetic reasoning, and more. While each test
individually provides limited insight into domain-specific capabilities, when combined, they offer a
broader representation, facilitating a more comprehensive evaluation.

LLMs possess zero-shot capabilities (Kojima et al., 2022), allowing them to perform downstream
tasks without prior task-specific training. However, they sometimes struggle with these tasks due
to issues such as formatting, problem understanding, or reasoning failures. A common approach to
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Figure 1: A comparison of performance across financial tasks between GPT-4-o, the baseline Phi-3-
Mini model, and the best results achieved by multi-task fine-tuning of Phi-3-Mini.

improve their performance is to fine-tune the models directly on the downstream task, improving
performance on it directly (Zhou et al., 2023). Consequently, many benchmarks provide both train-
ing and test splits to facilitate fine-tuning and evaluation. Still, fine-tuning on a single task may not
fully optimize the model’s performance.

In this work, we investigated the impact of multi-task fine-tuning. Instead of fine-tuning the model
solely on the target downstream task, we fine-tune it on multiple related downstream tasks simulta-
neously. We conduct a massive ablation study to explore the interactions between various financial
tasks and datasets. In total, we conduct 220 training experiments to provide an in-depth evaluation
of different financial benchmarks and LLMs. Our empirical findings demonstrate that incorporat-
ing training data from multiple downstream tasks creates a cocktail effect, where the integration of
multiple datasets creates a synergistic improvement in model performance, even for a single task.

Beyond task-specific data, we explore the use of general instruction-following data during the fine-
tuning process and assess its impact, suggesting that it may play a regularization role. Since finan-
cial tasks often involve numerical reasoning, we also investigate the effect of incorporating general
mathematical data, particularly word problems, into the training mix.

We showcase the power of the multi-task fine-tuning approach by achieving state-of-the-art results
on well-established financial benchmarks. Notably, we improve the performance of the 3.8B model
Phi-3-Mini (Abdin et al., 2024), enabling it to surpass the much larger and more powerful GPT-4-o
model (OpenAI, 2024) in terms of benchmark accuracy, as can be seen in Fig. 1. More details are
provided in Section 4.3.

Finally, after thoroughly examining how different tasks interact, we evaluate the effect of multi-
task fine-tuning on extrapolation capabilities. To assess this, we test the models on domain-specific
benchmarks that were not included in the training process and analyze how fine-tuning impacts
performance. Our results suggest that training on downstream tasks alone may not lead to significant
improvements in domain knowledge or complex reasoning abilities.

2 MULTI-TASK FINE-TUNING

Given a set of downstream tasks that have been selected to assess a model’s capabilities in a target
domain, the challenge becomes finding the optimal way to fine-tune the model across these tasks to
maximize performance. In multi-task learning, the goal is to assess whether there exist synergies
among the tasks, allowing for leveraging shared information to enhance individual task performance.
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2.1 BACKGROUND

Multi-task learning is not a new concept (Caruana, 1997). The efficiency of this approach has been
demonstrated across various machine learning architectures in the past (Crawshaw, 2020). This is
also true for general domains in natural language processing (Aribandi et al., 2021; Aghajanyan
et al., 2021; Liu et al., 2019). More recent work has shown success with instruction tuning specifi-
cally (Wang et al., 2023b; Yue et al., 2023), as well as showing the impact of additional datasets. On
the other hand, the exact interactions between tasks are still understudied, especially in the domain-
specific case, and more specifically for finance. Past approaches to domain-specific adaptation, such
as Cheng et al. (2023), used broader domain data, removing the ability to observe the interactions
between the tasks themselves. While Wang et al. (2023a) use a task oriented approach in finance,
there is no measurement on the task level, or experimentation around adding general data.

2.2 PROBLEM FORMULATION

Let M be a pre-trained language model, and let D = {D1, D2, . . . , Dn} represent a set of n
datasets used for fine-tuning. The set D is partitioned into two subsets: domain-specific datasets
Ddomain = {D1, . . . , Dk}, which correspond to tasks T1, . . . , Tk, and general datasets Dgen =
{Dk+1, . . . , Dn}, which are not directly evaluated in the test tasks. Our goal is to determine what
is the optimal combination of datasets for fine-tuning M to maximize performance on a domain-
specific task.

The task-level objective for multi-task fine-tuning can be formalized as:

D∗
i = argmax

Di

(ETi
(MDi

)) (1)

where MDi
represents the model trained on Di ⊆ D, and ETi

represents the specific evaluation
metric for Ti.

The key questions we aim to address are:

1. Given D, is fine-tuning on the domain-specific dataset Di alone the most effective way to
improve performance on task Ti (i.e., does D∗

i = {Di})?

2. Can fine-tuning on general datasets Dj ∈ Dgen improve performance on the domain-
specific tasks T1, . . . , Tk?

2.3 METHODOLOGY

To investigate these questions, we employ a systematic empirical approach by fine-tuning the model
on different combinations of datasets. We use an incremental approach for fine-tuning the model,
starting from single-dataset fine-tuning to more complex mixtures. This methodology allows us to
isolate the impact of individual datasets as well as explore the interactions between datasets when
fine-tuned together. All fine-tuning steps use the base model M, and a standard uniform shuffling
of Di. An overview of our approach for n training datasets is shown in Fig. 2.

Figure 2: Overview of the methodology. The steps are:
(
n
0

)
→

(
n
1

)
→

(
n
2

)
→

(
n

n−1

)
→

(
n
n

)
.
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Table 1: Summary statistics of the datasets used for training.

Dataset #Samples Train #Samples Test Avg. #Tokens
Headline 10,000 20,547 14.8
FPB 3,876 970 30.3
FinNerCLS 5,000 3,502 62.3
FinQA 2,000 1,125 902.8
ConvFinQA 2,000 1,486 1,085.58
Twitter-Topics 2,500 4,117 41.9
Twitter-SA 5,000 2,388 25.6
Orca-Math 15,188 NA 313.5
Open-Orca 30,376 NA 340.5

Before fine-tuning, we evaluate the ’vanilla’ model in its pre-trained state. This step establishes the
baseline for all further comparisons, allowing us to quantify the relative changes in performance
when fine-tuning.

After the initial fine-tuning stage, we use a single dataset at a time. We use this step primarily to
understand the performance of standard single task finetuning. Additionally, this step enables us to
identify the number of samples required from each dataset for stable convergence of the training loss
(in less than three epochs).

To explore the interactions between datasets, we fine-tune the model on pairs of datasets. By training
on two datasets simultaneously, we aim to investigate the degree of influence each dataset has on
improving or impairing the model’s performance on another.

Next, to fully understand the impact each dataset has, we remove a single dataset at a time, and use
all other datasets for training. This step is crucial for understanding exactly how much a specific
dataset influences the overall results when added to a cocktail.

Finally, we fine-tune the model on the entire set of datasets simultaneously, completing the study.

3 DATASETS

As part of our study we selected a variety of datasets for training and evaluation. These datasets
represent central downstream NLP tasks from the financial domain, covering central benchmarks
from previous works (Wu et al., 2023; Cheng et al., 2023; Wang et al., 2023a). These tasks include
named entity recognition (NER), sentiment analysis, numerical reasoning, and other domain-specific
challenges. The datasets are categorized into two: training and evaluation datasets. The training set
includes two general datasets, as well as the training split of seven financial tasks. The evaluation
set includes the test split of the seven tasks and additional datasets aimed at testing broader financial
reasoning abilities. Descriptions of the datasets are below, a summary of their key properties can be
found in Table 1, and an example from each dataset can be found in Appendix E.

3.1 CORE FINANCIAL DATASETS

The following datasets are used both for fine-tuning and for evaluation:

• Headline: This dataset consists of financial news headlines, accompanied by binary ques-
tions. The dataset aims to represent how financial information is presented in news media,
and the primary purpose of the dataset is event detection in finance. This dataset is an adap-
tation of the original headline dataset (Sinha & Khandait, 2021) by FinGPT (Wang et al.,
2023a).

• FPB: The Financial PhraseBank (FPB) (Malo et al., 2014) dataset is widely used for senti-
ment analysis in the financial domain. It contains annotated financial phrases and sentences,
allowing the model to learn financial sentiment nuances.
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• FinNerCLS: This dataset, created by FinGPT (Wang et al., 2023a), frames named entity
recognition (NER) in finance as a classification task. This allows for more straightforward
evaluation, and greater similarity to other tasks. The dataset includes sentences, entities
from the sentence, and entity type labels.

• FinQA: FinQA (Chen et al., 2021) is a question-answering dataset that contains real-world
financial documents and requires models to extract and reason over financial data to pro-
vide accurate answers. It focuses on reading comprehension tasks in finance involving
numerical reasoning.

• ConvFinQA: The ConvFinQA dataset (Chen et al., 2022) extends FinQA by including
conversational aspects, making the question-answering process more complex. It tests the
model’s ability to handle multi-turn financial dialogues when extracting relevant informa-
tion from financial documents. For simplicity we use the BloombergGPT (Wu et al., 2023)
adaptation of the dataset.

• Twitter-Topics: This dataset consists of finance-related topics discussed on Twitter. Each
tweet needs to be classified in to one of 20 optional labels1.

• Twitter-SA: A dataset of financial-sentiment annotated tweets. Each tweet needs to be
classified as one of [’Bearish’, ’Bullish’, ’Neutral’]2.

3.2 GENERAL TRAINING DATASETS

Besides the financial datasets discussed earlier, we also use two non-financial training datasets.
The rationale for incorporating the first dataset is the proven benefit of instruction tuning in gen-
eral (Longpre et al., 2023). Additionally, since finance-related tasks often involve mathematical
reasoning, we include mathematical training data to improve the model’s performance in this area.
Neither of these datasets are incorporated during evaluation. The datasets are as follows:

• Open-Orca: Open-Orca (Lian et al., 2023) is an open source recreation of the
Orca (Mukherjee et al., 2023) dataset, containing diverse instructions spanning multiple
keys LLM ’skills’. The dataset was created by using GPT4 and GPT3.5 to augment the
FLAN collection (Longpre et al., 2023).

• Orca-Math: Orca-Math (Mitra et al., 2024) is a mathematical reasoning dataset that in-
cludes synthetic mathematical word problems. This dataset does not involve any domain-
specific financial knowledge, but rather is used to enhance mathematical reasoning abilities.

3.3 ADDITIONAL EVALUATION DATASETS

In addition to the core datasets outlined in Section 3.1, we also use FinanceBench (Islam et al.,
2023) and MMLU-Pro (Wang et al., 2024) for evaluation. The FinanceBench dataset includes pairs
of real-world questions about publicly traded companies, and information extracted from financial
documents for answering the questions. This dataset aims to represent real-world professional use
cases. MMLU-Pro contains multiple choice questions about various domains, requiring reasoning
and knowledge for answering. Each question includes 10 options, reducing the probability of guess-
ing correctly. We use only the business and economics subsets, as they are most applicable for
finance.

4 EVALUATION AND RESULTS

4.1 EXPERIMENT SETUP

To verify that there were no biases in the results towards a particular model, we selected three of the
currently top performing small models, namely Phi-3-Small3 (Abdin et al., 2024), Llama-3.1-8B-

1https://huggingface.co/datasets/zeroshot/twitter-financial-news-topic
2https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
3https://huggingface.co/microsoft/Phi-3-small-128k-instruct
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Instruct4 (Dubey et al., 2024), and Mistral-7B-Instruct-v0.35 (Jiang et al., 2023). Additionally, to
further demonstrate the effectiveness of multi-task fine-tuning, we chose a top performing miniature
model, Phi-3-Mini6 (Abdin et al., 2024). We opted for the instruct versions of each model.

All experiments were conducted using a single machine with 2 Nvidia H100 GPUs. All experiments
were done using full fine-tuning of all weights in the model. We experimented with various learning
rates, ranging from 3e−6 to 3e−5. We used three epochs for the smaller runs (

(
n
1

)
,
(
n
2

)
), and two

epochs for the rest. The longest single fine-tuning experiment took under three hours to run. This
choice of hyperparameters made sure that all training runs converged well, thus enabling a fair
comparison. Following the process described in Section 2.2 and using the nine datasets listed in
Section 3, we ended up with 55 unique training dataset mixes, resulting in 55 distinct training runs
for each of the four models - yielding a total of 220 different experiments.

4.2 METRICS

To properly interpret our results, we aggregate the experiments and present three main metrics for
each model and downstream task: single-task fine-tuning (FT), multi-task fine-tuning, and baseline
scores.

For single-task fine-tuning, we evaluate the model on the test split of a specific task after being
trained exclusively on the training split of that task. Using the notation from Section 2.2, the single-
task score for the i-th dataset is defined as:

Single-task Score := ETi
(Di) (2)

For multi-task fine-tuning, we consider all multi-task experiments where one of the training datasets
is the relevant dataset for the target task, combined with other datasets. The multi-task score is
computed as:

Multi-task Score := max
Di

(ETi (MDi)) = ETi

(
MD∗

i

)
(3)

The baseline score represents the performance of the pre-trained model on the test split of the down-
stream task, without any fine-tuning. It is defined as:

Baseline Score := ETi
(M) (4)

Numerical Evaluations: FinQA and ConvFinQA require evaluating numerical exact match (EM)
for scoring. To prevent issues stemming from rounding errors, or scale representations, we used
a heuristic relaxation of exact match. We say that x is numerically same to y if for some small
ϵ, y ± ϵ = xn, n ∈ {10−6, 10−3, 10−2, 100, 102, 103, 106}. While not exhaustive, these are very
common scales in finance (millions vs thousands vs billions, dollars vs cents, basis points, etc.).

Classification: To evaluate classification tasks we used standard (binary) accuracy scores.

Open-End Evaluation: Unlike the other datasets, FinanceBench contains open-end question. To
properly score model responses, we used LLM-as-a-Judge (Zheng et al., 2023) for evaluation.
Specifically, we used GPT-4-o as the LLM, and use the prompt in Appendix A. We consider only a
strict match as correct (i.e. a score of 2), and normalize by dividing by two.

4.3 MAIN RESULTS

The Cocktail Effect: In Table 2, we present a comparison for the three LLMs using the metrics
discussed above. A visualization of these results is provided in Fig. 3. It is clear that fine-tuning,
whether single-task or multi-task, significantly improves performance compared to the baseline.
Both fine-tuning approaches outperform the baseline across the vast majority of benchmarks, with

4https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
5https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
6https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
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Table 2: Full experiment results for single-task and multi-task fine-tuning, aggregated across all
experiments for three LLMs. Baseline results from the original models are provided for reference.
The multi-task fine-tuning result represents the best performance across multi-task combinations.
Margins of error are included for reference (α = 0.01).

Phi3-Small Mistral-7B-Instruct-v0.3 Llama-3.1-8B-Instruct
Baseline Single-task Multi-task Baseline Single-task Multi-task Baseline Single-task Multi-task

Headline 0.67±0.009 0.67±0.009 0.96±0.004 0.69±0.008 0.67±0.009 0.95±0.004 0.53±0.009 0.67±0.009 0.95±0.004
FPB 0.48±0.041 0.86±0.029 0.89±0.026 0.78±0.034 0.67±0.039 0.89±0.026 0.76±0.035 0.82±0.032 0.89±0.026
FinNerCLS 0.71±0.02 0.96±0.009 0.98±0.006 0.66±0.021 0.97±0.007 0.98±0.006 0.54±0.022 0.97±0.007 0.99±0.004
FinQA 0.47±0.038 0.44±0.038 0.53±0.038 0.46±0.038 0.39±0.038 0.47±0.038 0.66±0.036 0.61±0.038 0.62±0.037
ConvFinQA 0.65±0.032 0.73±0.03 0.81±0.026 0.70±0.031 0.72±0.03 0.81±0.026 0.77±0.028 0.83±0.025 0.85±0.024
TwitterTopics 0.41±0.02 0.87±0.014 0.88±0.013 0.48±0.02 0.85±0.014 0.88±0.013 0.52±0.02 0.86±0.014 0.87±0.014
Twitter SA 0.65±0.025 0.85±0.019 0.91±0.015 0.80±0.021 0.83±0.02 0.91±0.015 0.68±0.025 0.80±0.021 0.91±0.015

Figure 3: A visualization of Table 2. The experiment results for single-task and multi-task fine-
tuning, aggregated across all experiments.

this trend holding consistently across all three models. Margins of error were calculated in the
standard way, i.e. zα

2

√
σ2/n.

When comparing multi-task and single-task performance, we observe a distinct advantage in favor
of multi-task fine-tuning. Notably, there is a performance boost on the Headline and Twitter Senti-
ment Analysis tasks, which rely heavily on the model’s ability to interpret and generate stylistically
appropriate responses. The clear improvements on all tasks demonstrate the cocktail effect of multi-
task fine-tuning and show the robustness of this method. Appendix D contains more in depth results
regarding optimal dataset interactions, showing the top combinations per task.

Phi-3-Mini: To further stress-test this concept, we shifted our focus to the smaller Phi-3-Mini model,
with 3.8 billion parameters, approximately 50% smaller than the primary LLMs used in our previ-
ous experiments. We replicated the same experiments but this time compared the results with the
significantly larger and state-of-the-art GPT-4-o model. The results, summarized in Fig. 1, highlight
a substantial performance gap between the baseline Phi-3-Mini and GPT-4-o (with the exception of
the FinNerCLS task).

However, by fine-tuning the model on the datasets mentioned above, we significantly outperformed
GPT-4-o on most tasks. All classification tasks showed substantial improvements over GPT-4-o,
emphasizing the effectiveness of targeted fine-tuning. Notably, a fine-tuned Phi-3-Mini model even
slightly outperformed GPT-4-o on the challenging ConvFinQA benchmark. ConvFinQA involves
conversations, which likely provide implicit few-shot learning opportunities, enabling the model
to better understand and anticipate the structure of the questions. This contrasts with the FinQA
dataset, which lacks conversational context, resulting in only modest gains for the fine-tuned model.
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Table 3: Performance comparison for MMLU-Pro Business, MMLU-Pro Economics, and Fi-
nanceBench. For each model the best multi-task fine-tuning score is compared with the baseline.

MMLU-Pro Business MMLU-Pro Economics FinanceBench
Baseline Multi-task Baseline Multi-task Baseline Multi-task

Mistral-7B-Instruct-v0.3 0.3207 0.2548 0.4716 0.4040 0.4533 0.4667
Llama-3.1-8B-Instruct 0.5296 0.4068 0.4716 0.5213 0.6133 0.6733
Phi-3-Mini 0.4702 0.3904 0.6149 0.5652 0.4733 0.4667
Phi-3-Small-128k-instruct 0.5361 0.4461 0.6647 0.6078 0.5867 0.6400

Figure 4: Normalized averaged scores for all seven core tasks described in Section 3.1 across all
experiments. Each point represents the average score for a single fine-tuned model. The colors
represent the type of datasets used in the experiment.

This experiment demonstrates that by using multi-task fine-tuning, and by specifically targeting
downstream tasks, it is possible to outperform much larger and more powerful models in these
tasks. The full results are presented in Appendix B.

Domain Generalization With the exception of Llama on FinQA, all the downstream tasks improve
significantly with multi-task finetuning, across all models. Table 3 shows that this trend does not
necessarily implicate that the models have improved in the general finance domain. While there
may be some improvement in FinanceBench, there is no clear improvement in the other two tasks,
and possibly even a regression. This finding raises a strong concern regarding the use of these
downstream tasks, or many of the other commonly used benchmarks, as proxies for successful
domain adaptation.

Data Regularization Hypothesis We provide a further analysis of the data by examining the effect
of the two non-financial datasets: Open-Orca and Orca-Math. In Fig. 4 we present a summary of all
fine-tuning experiments. We compute the average score of each fine-tuned model across the seven
core tasks described in Section 3.1. For visualization purposes, we normalize the results for each
model separately to be between 0.15 and 0.85. There is a clear distinction between models that used
the non-financial datasets, and models that relied purely on the downstream tasks.

8
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Open-Orca performs well across tasks and models. Unlike Orca-math, where strengthening math-
ematical reasoning abilities is directly related to model performance on tasks, it is nontrivial to
interpret why adding general data would help with domain-specific downstream tasks. Moreover, it
is very likely that the models were exposed to this data during pre-training, i.e., no new reasoning
abilities were added.

When aligning LLMs, Ouyang et al. (2022) adapt the loss used by Stiennon et al. (2020), includ-
ing a regularization term: β log [MRL,ϕ(y|x)/MSFT(y|x)]. This component is used to ensure the
new model does not stray ’too far’ from the original model, and is missing in the standard domain
adaptation regime. We hypothesize that since the pretrained model M has already been exposed to
Open-Orca, incorporating it in finetuning serves a similar purpose. In other words, we assume:

log [MDdomain(y|x)/M(y|x)] ≥ log
[
M(Ddomain∪Dgen)(y|x)/M(y|x)

]
.

We leave the exploration and research of this hypothesis to future work.

5 RELATED WORK

Domain-specific LLMs: Recent advances in LLMs have led to many attempts at creating mod-
els tailored to specific domains. These models aim to outperform general-purpose ones by having
deeper knowledge of the domain, being more effective at solving tasks relevant to that domain, or
adopting a more appropriate style. Several methods have been suggested for training these models.
One approach is to pre-train a language model entirely on domain-specific data, as seen in (Wu et al.,
2023; Singhal et al., 2023). Another common approach is to take pre-trained LLMs and fine-tune
them for specific downstream tasks (Xie et al., 2023b; Wang et al., 2023a; Cheng et al., 2024; Jiang
et al., 2024; Cheng et al., 2023) in a domain adaptation process.

Domain Adaptation of LLMs: Various techniques have been developed to transform a general
language model into a domain-specific one. One option is continual pre-training (CPT) (Gururangan
et al., 2020), where a pre-trained LLM undergoes further training on raw data that contains relevant
domain-specific knowledge, enhancing the model’s understanding of that domain. Another method
involves supervised fine-tuning (SFT), where the model is trained on a large set of domain-specific
instructions (Wei et al., 2021). Some approaches focus on specific tasks within the domain, fine-
tuning the model with instruction datasets tailored to those particular tasks (Wang et al., 2023a).
There are also various works on approaches for selecting data for training (Xie et al., 2023a; Xia
et al., 2024).Additionally, a hybrid approach has been proposed, where CPT is performed first,
followed by domain-specific instruction tuning to refine the model’s capabilities (Bhatia et al., 2024;
Wu et al., 2024; Xie et al., 2024b;c).

Finance Benchmarks: With the increasing adoption of LLMs, several benchmarks have been pro-
posed to evaluate model performance in the financial domain. Recently, efforts have been made to
combine existing tests and datasets into more comprehensive evaluation frameworks. For instance,
FinBen (Xie et al., 2024a), PIXIU (Xie et al., 2024b), and BBT-Fin (Lu et al., 2023) aggregate a
variety of common tasks to provide a broad analysis of general financial skills. Other benchmarks
focus on more specialized scenarios. For example, FinEval (Zhang et al., 2023) was developed to
assess LLM financial knowledge based on academic textbooks, while SuperCLUE-Fin (Xu et al.,
2024) aims to replicate real-world financial tasks through a detailed breakdown of subtasks. Another
example is FinDABench (Liu et al., 2024), which places a strong emphasis on financial analysis and
reasoning rather than pure knowledge evaluation.

6 CONCLUSIONS

In this work, we demonstrated the potential of multi-task fine-tuning as a robust approach to optimiz-
ing the performance of LLMs on downstream tasks. Through extensive experimentation involving
over 200 training runs, we showed that combining training data from multiple related financial tasks
creates a ”cocktail effect”, yielding significant performance gains, and even allowing smaller mod-
els such as Phi-3-Mini to surpass larger counterparts like GPT-4-o on targeted benchmarks. Our
findings highlight the advantages of a training approach that leverages synergies between tasks.

Furthermore, our exploration of integrating general instruction-following and mathematical datasets
demonstrated promising results, combining what may be a regularization effect, with an enhance-
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ment of numerical reasoning abilities. Nevertheless, we observed that while multi-task fine-tuning
significantly boosts specific task performance, it does not necessarily translate into improved over-
all domain knowledge. This suggests that while multi-task fine-tuning is effective for task-specific
improvements, broader gains in domain competency may require more sophisticated strategies.

Overall, our results provide strong empirical evidence for the benefits of multi-task fine-tuning in
domain-specific model adaptation. This approach not only optimizes task performance but also
underscores the importance of thoughtful dataset selection and the value of leveraging cross-task
learning. Future work may benefit from exploring hybrid approaches that combine multi-task learn-
ing with targeted domain adaptation, aiming to bridge the gap between task-specific proficiency and
more comprehensive domain understanding.

LIMITATIONS

We acknowledge several limitations of this work. As with all experiments involving fine-tuning,
the choice of hyperparameters plays a critical role. While we conducted a targeted hyperparameter
search, the large scale of our experiments made a comprehensive grid search infeasible.

Additionally, the financial domain is vast, encompassing many intricacies and complexities that
extend beyond the scope of the seven core datasets used in this study. Our work serves as a case study
focusing on these representative datasets, but addressing other aspects of finance will necessitate the
use of additional datasets tailored to those specific areas.

Finally, we note that while there are plenty of empirical results that demonstrate the general effec-
tiveness of multi-task learning, there is still a significant lack of modern theory (Crawshaw, 2020).
Although past works provide strong theoretical frameworks for multi-task learning (Evgeniou &
Pontil, 2004; Ciliberto et al., 2015), it is difficult to extend them elegantly to modern deep learning
methods.
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A LLM AS A JUDGE PROMPT

We used the following prompt:

<Instruction >

Please act as an impartial judge and evaluate the quality of the response provided
by an AI assistant to the user question displayed below. You will be given a ref-
erence answer and the assistant’s answer. Begin your evaluation by comparing
the assistant’s answer with the reference answer. Identify and correct any mis-
takes. Be as objective as possible. After providing your explanation, you must
rate the response on a scale of 0 to 2 by strictly following this format: [[rating]],
for example: The rating is: [[1]], or: My rating is [[0]].
Note! The answers have to answer the question correctly, but they do not have
to be identical, or equally detailed, or equally helpful! You are only measuring
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equality of correctness, not completeness. Be forgiving of rounding errors, as
long as they are not essential, as well as over/under explaining.
You should provide a 0 rating when the answers does not match the reference.
You should provide a 1 rating when the answer is partially correct.
You should provide a 2 rating when the answer is correct.
For example, if the reference answer is ”It cost $5B annually” and the assistant
answer is ”It cost $5 billion per year”, the rating should be 2.
If the assistant answer is ”It cost $5”, the rating should be 1.
If the assistant answer is ”It cost $4 million per month”, the rating should be 0.

For example, if the reference answer is a list of most major locations on
Earth and the assistant replies concisely ’Globally’, the rating should be 2.
If the assistant replies ’A variety of places worldwide’, the rating should be 1.
If the assistant replies ’In Europe’, the rating should be 0.
For example, if the question is ”What was his salary?” and the reference answer
is ”We can see that by adding the various components in table 3, we get that
3K + 7.5K equals a total salary of 10.5K annually”, and the assistant’s answer is
”10,500”, the rating should be 2.
If the assistant’s answer is ”10.5K. This salary reflects and excellent compensation
given the low cost of living in the area”, the rating should still be 2.
If the assistant’s answer is ”the answer can be found in table 3 by adding 3K +
7.5K”, the rating should be 1.
If the assistant’s answer is ”7.5K”, the rating should be 0.
</Instruction >

<Question >

{question}
</Question >

<Reference Answer >
{ref answer}
</Reference Answer >

<Assistant’s Answer >
{answer}
</Assistant’s Answer >

B PHI-3-MINI FULL RESULTS

Table 4: Comparison of GPT-4-o to Phi-3-Mini, including its baseline, single-task fine-tuning, and
multi-task fine-tuning variants.

Phi-3-Mini GPT-4-o
Baseline Single-task FT Multi-task FT

Twitter SA 0.65 0.66 0.91 0.75
Twitter Topics 0.41 0.87 0.88 0.65
FinNerCLS 0.71 0.97 0.98 0.66
FPB 0.48 0.13 0.89 0.80
FinQA 0.47 0.31 0.54 0.72
ConvFinQA 0.65 0.66 0.76 0.75
Headline 0.67 0.67 0.96 0.80
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C FULL RESULTS

Fig. 5 is a visualization of the results from Table 2, and shows the full results for each model across
all seven tasks. Phi-3-Mini is brought here as well for completeness.

Figure 5: Evaluation scores of all four models on all seven core tasks described in Section 3.1. The
relative gain (in percentage) is reported of each fine-tuning experiment.

D ABLATION STUDY RESULTS

Table 5, Table 6, and Table 7 present the top 3 most helpful dataset combination for Llama-3.1-
8B-Instruct, Mistral-7B-Instruct-v0.3, and Phi-3-Small, respectively, across each task used in our
ablation study. The tables provide detailed results for each task, showing the score achieved, the
difference from the maximum score, and the percentage of the maximum score. Note that since
using the dataset itself trivially enhances abilities, we only include Di such that Di /∈ Di.

E DATASET EXAMPLES

DATASET: HEADLINE

Instruction:
Assess if the news headline touches on price in the past. Options: Yes, No
Input:
april gold down 20 cents to settle at $1,116.10/oz
Output:
No
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Table 5: Top 3 most helpful datasets for Llama-3.1-8B-Instruct
Task Datasets Score Diff from Max % of Max

Twitter SA Orca-Math, Headline, FPB, FinNerCLS, ConvFinQA, FinQA,
TwitterTopics, Open-Orca

0.8652 0.0419 95.38

Twitter SA Headline, FPB 0.8635 0.0436 95.20
Twitter SA FPB, Open-Orca 0.8425 0.0645 92.89
TwitterTopics FPB, Twitter SA 0.5903 0.2812 67.73
TwitterTopics FinNerCLS, Twitter SA 0.5834 0.2880 66.95
TwitterTopics FinQA, Twitter SA 0.5799 0.2915 66.54
FinNerCLS Headline, Open-Orca 0.6912 0.2972 69.93
FinNerCLS Orca-Math, Open-Orca 0.6851 0.3032 69.32
FinNerCLS ConvFinQA 0.6805 0.3079 68.85
FPB FinQA, TwitterTopics 0.8121 0.0775 91.29
FPB Headline, TwitterTopics 0.8106 0.0791 91.11
FPB Twitter SA, Open-Orca 0.8079 0.0817 90.81
ConvFinQA FPB 0.7927 0.0592 93.05
ConvFinQA TwitterTopics, Twitter SA 0.7672 0.0848 90.05
ConvFinQA FPB, FinQA 0.7618 0.0902 89.42
Headline FPB, FinQA 0.7235 0.2256 76.23
Headline FPB 0.6917 0.2574 72.88
Headline FPB, FinNerCLS 0.6899 0.2592 72.69
FinQA Orca-Math, FPB 0.6507 0.0000 100.00
FinQA Orca-Math, TwitterTopics 0.6480 0.0027 99.59
FinQA Orca-Math 0.6418 0.0089 98.63

Table 6: Top 3 most helpful datasets for Mistral-7B-Instruct-v0.3
Task Datasets Score Diff from Max % of Max

Twitter SA Orca-Math, Headline, FPB, FinNerCLS, ConvFinQA, FinQA,
TwitterTopics, Open-Orca

0.8643 0.0486 94.68

Twitter SA FPB, Open-Orca 0.8555 0.0574 93.72
Twitter SA TwitterTopics, Open-Orca 0.8513 0.0616 93.26
TwitterTopics Orca-Math, Headline, FPB, FinNerCLS, ConvFinQA, FinQA,

Twitter SA, Open-Orca
0.4873 0.3964 55.14

TwitterTopics Headline, FinQA 0.4800 0.4038 54.31
TwitterTopics FPB, Open-Orca 0.4753 0.4084 53.78
FinNerCLS Headline, ConvFinQA 0.7581 0.2226 77.30
FinNerCLS Headline, FinQA 0.7353 0.2454 74.98
FinNerCLS ConvFinQA, FinQA 0.7327 0.2480 74.72
FPB Orca-Math, Headline, FinNerCLS, ConvFinQA, FinQA, Twitter-

Topics, Twitter SA, Open-Orca
0.8193 0.0660 92.54

FPB Orca-Math, FinQA 0.8098 0.0756 91.46
FPB Twitter SA, Open-Orca 0.8092 0.0761 91.40
ConvFinQA Orca-Math, FPB 0.6891 0.1258 84.56
ConvFinQA Orca-Math 0.6884 0.1265 84.48
ConvFinQA Orca-Math, Headline 0.6824 0.1326 83.73
Headline TwitterTopics, Open-Orca 0.7377 0.2145 77.48
Headline Open-Orca 0.7299 0.2223 76.65
Headline ConvFinQA, Open-Orca 0.7275 0.2247 76.40
FinQA Orca-Math, FPB 0.5609 0.0000 100.00
FinQA Orca-Math, TwitterTopics 0.5564 0.0044 99.21
FinQA Orca-Math 0.5538 0.0071 98.73

DATASET: FPB

Instruction:
You are given a financial document. Your task is to infer its sentiment. Answer using one of the
following labels: [’Negative’, ’Neutral’, ’Positive’], and include nothing else. You must answer with
a single word, and no additional context.
Input:
Under the terms of the agreement, Bunge will acquire Raisio’s Keiju, Makuisa and Pyszny Duet
brands and manufacturing plants in Finland and Poland.
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Table 7: Top 3 most helpful datasets for Phi-3-Small
Task Datasets Score Diff from Max % of Max

Twitter SA Headline, Open-Orca 0.8677 0.0461 94.96
Twitter SA Orca-Math, TwitterTopics 0.8597 0.0540 94.09
Twitter SA TwitterTopics, Open-Orca 0.8526 0.0611 93.31
TwitterTopics Orca-Math, Headline, FPB, FinNerCLS, ConvFinQA, FinQA,

Twitter SA, Open-Orca
0.5629 0.3203 63.74

TwitterTopics Headline, Open-Orca 0.5449 0.3383 61.70
TwitterTopics ConvFinQA, Open-Orca 0.5418 0.3414 61.34
FinNerCLS Orca-Math, ConvFinQA 0.7912 0.1872 80.87
FinNerCLS ConvFinQA, Open-Orca 0.7866 0.1919 80.39
FinNerCLS Orca-Math, FinQA 0.7702 0.2082 78.72
FPB Orca-Math, Headline, FinNerCLS, ConvFinQA, FinQA, Twitter-

Topics, Twitter SA, Open-Orca
0.8365 0.0583 93.48

FPB Twitter SA, Open-Orca 0.8333 0.0616 93.12
FPB Headline, Open-Orca 0.8189 0.0760 91.51
ConvFinQA Orca-Math, FinNerCLS 0.7416 0.0680 91.60
ConvFinQA Orca-Math, TwitterTopics 0.7409 0.0686 91.52
ConvFinQA Orca-Math, FPB 0.7396 0.0700 91.35
Headline ConvFinQA, Open-Orca 0.6956 0.2644 72.46
Headline Open-Orca 0.6846 0.2754 71.32
Headline Orca-Math, Open-Orca 0.6794 0.2806 70.77
FinQA Orca-Math, FinNerCLS 0.6364 0.0000 100.00
FinQA Orca-Math, TwitterTopics 0.6329 0.0036 99.44
FinQA Orca-Math, FPB 0.6178 0.0187 97.07

Output:
neutral

DATASET: FINNERCLS

Instruction:
What is the entity type of ’40 William St’ in the input sentence. Options: person, location, organi-
zation
Input:
This LOAN AND SECURITY AGREEMENT dated January 27, 1999, between SILICON VALLEY
BANK (”Bank”), a California-chartered bank with its principal place of business at 3003 Tasman
Drive, Santa Clara, California 95054 with a loan production office located at 40 William St., Ste.
Output:
location

DATASET: FINQA

Instruction:
Please answer the given financial question based on the context.
Input:
Interest rate to a variable interest rate based on the three-month LIBOR plus 2.05% (2.34% as of
October 31, 2009). If LIBOR changes by 100 basis points, our annual interest expense would change
by $3.8 million...
Question:
What is the interest expense in 2009?
Output:
3.8

DATASET: CONVFINQA

Instruction:
Read the following texts and table with financial data from an S&P 500 earnings report carefully.
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Based on the question-answer history (if provided), answer the last question. The answer may
require mathematical calculation based on the data provided.

Input:
Charges during the years then ended are presented below: The fair value of restricted stock that

- 2013 2012 2011
1 balance at beginning of year 2,804,901 2,912,456 2,728,290
2 granted 192,563 92,729 185,333
3 cancelled -3,267 -200,284 -1,167
4 balance at end of year 2,994,197 2,804,901 2,912,456
5 vested during the year 21,074 408,800 66,299
6 compensation expense recorded $6,713,155 $6,930,381 $17,365,401
7 weighted average fair value of restricted stock granted during the year $17,386,949 $7,023,942 $21,768,084

vested during the years ended December 31, 2013, 2012, and 2011 was $1.6 million, $22.4 million,
and $4.3 million, respectively.

Substantially in accordance with the original terms of the program, 50% of these LTIP units vested
on December 17, 2012 (accelerated from the original January 1, 2013 vesting date), 25% vested on
December 11, 2013 (accelerated from the original January 1, 2014 vesting date), and the remainder
is scheduled to vest on January 1, 2015.

Question:
What was the total, in millions, capitalized to assets associated with compensation expense related
to long-term compensation plans, restricted stock, and stock options in the year of 2013?
Output:
4.5

Question:
And what was it in 2012, also in millions?
Output:
4.1

DATASET: TWITTER-TOPICS

Instruction:
You are given a financial sentence taken from Twitter. Your task is to infer its topic. Answer using
one of the following labels: [’Analyst Update’, ’Fed - Central Banks’, ’Company - Product News’,
’Treasuries - Corporate Debt’, ’Dividend’, ’Stock Commentary’, ’Stock Movement’], and include
nothing else.
Input:
Here are Thursday’s biggest analyst calls: Apple, Amazon, Tesla, Palantir, DocuSign, Exxon &
more...
Output:
Analyst Update

DATASET: TWITTER-SA

Instruction:
You are given a financial sentence taken from Twitter. Your task is to infer its sentiment. Answer
using one of the following labels: [’Bearish’, ’Bullish’, ’Neutral’], and include nothing else.
Input:
$BYND - JPMorgan reels in expectations on Beyond Meat...
Output:
Bearish
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DATASET: ORCA-MATH

Instruction:
You are given a mathematical word problem. Solve it step by step and provide the answer.
Input:
You wanted to subtract 46 from a number, but you accidentally subtracted 59 and got 43. How much
do you get from the correct calculation?
Output:
If you subtract 46 from the original number, you would get 56.

DATASET: OPEN-ORCA

Instruction:
You are an AI assistant. You will be given a task. You must generate a detailed and long answer.
Input:
Generate a fifteen-word sentence that describes all this data: Midsummer House eatType restaurant;
Midsummer House food Chinese; Midsummer House priceRange moderate; Midsummer House
customer rating 3 out of 5; Midsummer House near All Bar One.
Output:
Midsummer House is a moderately priced Chinese restaurant with a 3/5 customer rating, located
near All Bar One.

DATASET: FINANCEBENCH

Instruction:
You are given a financial question and a financial document. Your task is to answer the question
based on the document.
Input:
Amcor plc and Subsidiaries Consolidated Statements of Income ($ in millions, except per share
data)...
Question:
Does AMCOR have an improving gross margin profile as of FY2023? If not, explain why.
Output:
No. For AMCOR, there has been a slight decline in gross margins by 0.8%.

DATASET: MMLU-PRO ECONOMICS

Instruction:
The following are multiple choice questions (with answers) about economics. Think step by step
and then finish your answer with ”the answer is (X)” where X is the correct letter choice.
Input:
Mr. Jones is president of the First National Bank of St. Louis and wishes to determine if his bank
is holding too much of its demand deposits as reserves. The bank’s total deposits = $1,700,000 and
the reserve ratio is 20%. If Mr. Jones finds that reserves = $850,000 what might he conclude about
excess reserves? Options: A: ”$340,000”, B: ”$600,000”, C: ”$425,000”, D: ”25%”, E: ”10%”,
F: ”$510,000”, G: ”$1,700,000”, H: ”30%”, I: ”$255,000”, J: ”15%”
Output:
F

DATASET: MMLU-PRO BUSINESS

Instruction:
The following are multiple choice questions (with answers) about business. Think step by step and
then finish your answer with ”the answer is (X)” where X is the correct letter choice.
Input:
Mr. Frankel wants to borrow $2,000 from November 16 for 143 days. The interest rate is 6%.
What would the difference in the interest charge amount to if the bank used exact interest instead
of bankers’ interest? Options: A: ”$2.00”, B: ”$0.25”, C: ”$1.50”, D: ”$1.32”, E: ”$3.30”, F:
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”$0.50”, G: ”$0.99”, H: ”$0.66”, I: ”$1.98”, J: ”$2.64”
Output:
H
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