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Abstract
Semi-supervised Learning (SSL) has shown re-
markable success in applications with limited su-
pervision. However, due to the scarcity of la-
bels in the training process, SSL algorithms are
known to be impaired by the lack of proper model
selection, as splitting a validation set will fur-
ther reduce the limited labeled data, and the size
of the validation set could be too small to pro-
vide a reliable indication to the generalization
error. Therefore, we seek alternatives that do not
rely on validation data to probe the generaliza-
tion performance of SSL models. Specifically,
we find that the distinct margin distribution in
SSL can be effectively utilized in conjunction
with the model’s spectral complexity, to provide
a non-vacuous indication of the generalization er-
ror. Built upon this, we propose a novel model
selection method, specifically tailored for SSL,
known as Spectral-normalized Labeled-margin
Minimization (SLAM). We prove that the model
selected by SLAM has upper-bounded differences
w.r.t. the best model within the search space. In
addition, comprehensive experiments showcase
that SLAM can achieve significant improvements
compared to its counterparts, verifying its efficacy
from both theoretical and empirical standpoints.

1. Introduction
Attributed to recent advancements in deep learning method-
ologies, semi-supervised learning (SSL) has illustrated
strong performances across multiple domains with minimal
supervision (Sohn et al., 2020; Wang et al., 2022b; Huang
et al., 2023). However, despite its success, model selection -
one of the most fundamental problems in machine learning,
has not been adequately addressed in SSL. Where existing
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works usually unrealistically assumed the existence of a
labeled validation set that is much larger than the labeled
training set itself (Rasmus et al., 2015), or simply omit the
model selection process (Berthelot et al., 2019b), which are
clearly problematic in real-world applications (Oliver et al.,
2018). Instead, a more pragmatic strategy would be to split
out a validation set from the available labeled data.

Nonetheless, this approach is fraught with difficulties, the
inherent scarcity of labeled data in SSL contexts means that
diverting any portion of it to a validation set will signifi-
cantly hamper the performance of the SSL model. Further-
more, the limited size of the validation data could lead to
ineffective model selection (Mohri et al., 2018). This conun-
drum underscores the urgent need for alternative methods
for model selection within the SSL framework.

One potential way to address this dilemma is to directly
estimate the generalization ability of the SSL model based
only on the training data, which efficiently utilizes all the
data at hand. In order for the estimation of generalization
on training set, the notion of hypothesis complexity, plays a
vital role in understanding generalization estimation from a
philosophical perspective (Niyogi & Girosi, 1996). It is well-
known that a learning model’s generalization error bound
can be decomposed to its empirical error and hypothesis
complexity (Wei et al., 2020). When multiple models exhibit
similar training errors, the one with lower complexity is
anticipated to better generalize to unseen data, which aligns
with the Occam’s razor principle - the simplest hypothesis
that consistent with our observations is more likely to be the
correct one (MacKay, 2003; Lotfi et al., 2022).

However, as promising as it may sound, directly estimating
an SSL model’s generalization capability on the training
sample is not easy, as two prominent obstacles arise: (1)
despite the rigorous theoretical guarantee of said gener-
alization error bounds, most existing generalization mea-
sures are not specifically designed for SSL context, as the
influence of unlabeled data and noisy pseudo-labels are
not accounted. Therefore, whether these measures can be
effectively adapted to SSL remains a question to be ex-
plored (Mey & Loog, 2022); (2) the limited labeled sample
poses an additional challenge, estimating the generalization
performance of learning model heavily relies on the assump-
tion that the observed labeled data distribution is faithful to
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the true distribution, which could be easily violated due tho
the bias from limited observations (Wang et al., 2022a).

In response to the aforementioned challenges, in this study,
we propose a novel model selection method for SSL, using
training data only, known as Spectral-normalized Labeled-
margin minimization (SLAM), which combines both the
empirical error and hypothesis complexity to estimate the
expected generalization error. More specifically, our investi-
gation unveils that the classification margin of labeled data
only can serve as an effective indicator to reflect the de-
gree of overfitting for SSL model, where we attempt to use
margin-based Probable-Approximate-Correct (PAC)-Bayes
generalization metrics (McAllester, 2003; Bartlett et al.,
2017; Neyshabur et al., 2017) as means to support such
empirical observation with theoretical insights. Moreover,
to account for the potential biases introduced by the limited
volume of labeled data, we develop a local-consistency re-
weighting measure to calibrate the potential bias in label
data by up-weighs the representative sample, while down-
weighs the bias and marginal sample.

We summarize our main contributions as follows: (1) We
proposed a simple yet effective model selection method
named SLAM, which is, to the best of authors’ knowledge,
the first model selection method that is applicable to SOTA
SSL algorithms such as FixMatch (Sohn et al., 2020); (2)
we prove that the model selected by SLAM has bounded dif-
ferences w.r.t. optimal model within the pre-defined search
space. More importantly, this difference is asymptotically
governed by the SLAM metrics - which implies as SLAM
is optimized, the model we end up will converge towards
the optimal model; (3) through comprehensive empirical
studies involving a series of relevant model selection meth-
ods, and commonly used benchmark datasets, we show that
SLAM can surpass its most relevant SOTA counterparts,
performs almost as good as selecting model on test data,
which underscores the effectiveness of SLAM from both
theoretical and empirical perspectives.

2. Related Work
Model selection using unlabeled data. Many machine
learning applications involve training models using both
labeled and unlabeled data, one intuitive question is whether
can we use the more dispensable unlabeled data for model
selection, or use them to estimate the model’s generalization
performances (Platanios et al., 2014; 2016; 2017). Exten-
sive research has been conducted in this area, particularly in
the field of unsupervised domain adaptation (UDA), which
shares close resemblance to SSL (Morerio et al., 2018; Wei
et al., 2020; Berthelot et al., 2021), the key difference is
whether the unlabeled data exhibits distribution shift to the
labeled data. Broadly, works in this area can be categorized
into two main branches, one that leverages the labeled data

Table 1: A summarization of model selection methods under
SSL and UDA context.

Methods
Designed
for SSL

Applicable
to DNN

Require
Valid. Split

Stability (Lange et al., 2002) ✓ ✗ ✗

Co-Validation (Madani et al., 2004) ✓ ✗ ✗

EB-criterion (Mahsereci et al., 2017) ✗ ✓ ✗

DEV (You et al., 2019) ✗ ✓ ✓

SND (Saito et al., 2021) ✗ ✓ ✓

QLDS (Feofanov et al., 2023) ✓ ✗ ✗

MixVal (Hu et al., 2023) ✗ ✓ ✓

SLAM ✓ ✓ ✗

loss, re-weighted by the density ratio between the marginal
distribution between labeled and unlabeled, to obtain a risk-
consistent estimation of the target population risk (Sugiyama
et al., 2007; You et al., 2019), these approaches enjoys rig-
orous theoretical guarantees, but becomes trivial in the SSL
setting, as the labeled data (source domain) cannot afford to
split out a validation set. The second category relies solely
on unlabeled data for model selection, such as considering
the average prediction confidence on the unseen unlabeled
data (Morerio et al., 2018), evaluating the neighborhood
consistency (Saito et al., 2021; Hu et al., 2023). While these
methods are more applicable to SSL, they are usually built
upon heuristic intuition and do not have theoretical guar-
antees. Using a more concrete example to illustrate this
weakness, as Saito et al. (2021) pointed out, those meth-
ods need the target model to be well-trained on the source
data, so that they can exhibit meaningful indications on the
unlabeled data, however, the validity of this assumption in
SSL domain is still questionable. Specifically, we find that
poorly trained SSL models can easily fall into the pitfalls of
these heuristic-based methods.

Model selection without validation data. In cases where
we do not even wish to dispense unlabeled data for vali-
dation purposes, some methods do not require validation
data at all, where the model selection is purely built upon
training data. Specifically, Lange et al. (2002) explored the
possibility of model selection using training data only, via
the notion of uniform-stability (Bousquet & Elisseeff, 2002).
For learning with label noise, (Yuan et al., 2024) proposed
early-stopping without validation set by tracing the learn-
ing stages. Under Tsybakov Margin condition (Tsybakov,
2004), Feofanov et al. (2023) developed QLDS, a margin
separation approach inspired by the random matrix theory
for model selection. However, those methods are either not
specifically tailored for deep learning context, making them
computationally inefficient, and sometimes even infeasible
to compute, or does not reconciles with the Semi-supervised
Learning setting without further modifications.

Semi-supervised learning. As one of the most fundamen-
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tal research areas in the field of machine learning, SSL has
continuously attracted notable attention for decades. Pre-
dominantly, these advancements leverage self-training (Wei
et al., 2021; Chen et al., 2022) and pseudo-labeling tech-
niques (Lee et al., 2013; Oh et al., 2022; Wang et al., 2022a),
where models begin by learning from a modest amount
of labeled data before extending their knowledge through
pseudo-labels assigned to unlabeled data. Pseudo-labels
deemed reliable are then added to the training dataset (Zhang
et al., 2021a; Guo & Li, 2022; Wang et al., 2022b), where the
criteria are usually based on prediction confidence (Berth-
elot et al., 2021; Xu et al., 2021; Xia et al., 2021; Li et al.,
2024; Wu et al., 2024) or prediction discrepancy (Xia et al.,
2023), facilitating a gradual enhancement in the model’s
ability to generalize to new, unseen data (Wei et al., 2020).
More recently, the focus has shifted towards refining SSL
performance through data augmentation and consistency
regularization techniques (Xie et al., 2020; Sohn et al.,
2020; Zheng et al., 2022). These methods apply varying
degrees of transformation to the input data, ensuring that the
model’s output remains consistent across these transforma-
tions, thereby further improving the model’s robustness (Xie
et al., 2020).

3. Preliminaries
Notations. Under the standard setup of SSL, we have
a small group of labeled instances Xl := {x1, ...,xn}
each paired with corresponding labels Yl := {y1, ..., yn},
we also have a larger collection of unlabeled instances
Xu := {xn+1, ...,xn+m}. Usually, we have m >> n,
and all the data from observed dataset D := {Xl, Yl, Xu}
are identically and independently sampled from an unknown
distribution D : X × Y .

Model Selection. During the training process of machine
learning algorithms, different models will be generated,
forming a finite hypothesis set F . One long-standing
dilemma is choosing the one that will exhibit the best gen-
eralization performance. To solve this issue, we must first
know what is the best possible model we can select, let’s de-
fine the Bayes error R∗, which is the smallest generalization
error that could be achieved from a given model family.

Definition 3.1 (Mohri et al., 2018). Given a distribution D
over X ×Y , the Bayes error is the infimum of the generaliza-
tion errors achieved by measurable functions f : X → Y:

R∗ = inf
f∈F

R(f), (1)

a model f with R(f) = R∗ is known as the Bayes optimal
model, which we will denote as f∗.

The difference between the error of our obtained model
and the Bayes error is known as the excess error, which
can be defined as R(f) − R∗ (Mohri et al., 2018). Our

objective is therefore to find the model that minimizes excess
error. However, whilst R∗ is often discussed in the machine
learning domain, in reality, it is usually believed that R∗ is
inaccessible, since the best model might not be appearing the
pre-defined hypothesis set. Instead, we consider a simplified
task, which is finding the best model within the hypothesis
set F , which can be seen as a pre-defined search space for
all candidate models, a notion that is much more aligned to
the task of model selection (You et al., 2019).

Spectral-normalized margin bound. Bounding the gener-
alization error of the learning model has been the ultimate
pursuit of learning theory, the challenging part is to find an
appropriate measure to account for the complexity of the
model. Recent studies have indicated that conventional com-
plexity measures such as the Vapnik–Chervonenkis (VC)
dimension and Rademacher Complexity are potentially vac-
uous for high capacity models such as DNNs (Zhang et al.,
2021b). Instead, a more favorable notion that accounts
for the classification margin and Spectral Complexity was
proposed (Bartlett et al., 2017). Defining a ρi-Lipschitz
continuous DNN fA with depth L, parameterized by weight
matrices {A1, ..., AL} and non-linear activation functions
{σ1, ..., σL}, such that:

fA(x) := σL(ALσL−1(AL−1 . . . σ1(A1x) . . . )). (2)

fA is a mapping function such that fA : Rd → Rc, where c
is the cardinality of the finite label set.

Let {M1, ...,ML} be a set of reference matrices with identi-
cal dimensions to A1, ..., AL, which are used to anchor the
degree of deviation of the weight matrices (Bartlett et al.,
2017). Let ∥ · ∥σ denote the spectral norm of the weighted
matrices, and ∥ · ∥p,q denote the (p, q) matrix norm. The
spectral complexity for weighted matrices A is:

RA :=

(
L∏

i=1

ρi∥Ai∥σ

)(
L∑

i=1

∥A⊤
i −M⊤

i ∥2/32,1

∥Ai∥2/3σ

)3/2

.

(3)

Given the spectral complexity for fA, the following gener-
alization error bound can be derived:

Theorem 3.2 (Bartlett et al., 2017). For (x, y) drawn i.i.d
from any probability distribution over X × Y , with proba-
bility at least 1− δ over ((xi, yi))

n
i=1, every margin γ > 0

and network fA satisfy:

R(fA) ≤ R̂D(fA) + Õ

(
∥X∥2RA

γf
ln(W ) +

√
ln(1/δ)

n

)
,

where R̂D is the empirical error defined in Appendix B.1,
W is the maximum width of fA, and ∥X∥2 =

√∑
i ∥xi∥22

is the L2 norm of the feature matrix.
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For a more precise characterization, here we define the total
classification margin of labeled data:

γf =

n∑
i

(
f(xi)yi

−max
j ̸=yi

f(xi)j

)
. (4)

where f(xi)yi refers to the yi-th index of f ’s prediction.

Essentially, Theorem 3.2 states that, the generalization error
of an over-parameterized learning model such as fA can
be bounded with a composition of its classification margin
and complexity, comparing with the more conventional gen-
eralization measures that only consider the classification
margin (Antos et al., 2002), these Neo-generalization mea-
sures further accounts for the possibility that the learning
model will continuously grow its complexity to memorize
all data, hence maximizing margin while exhibits overfitting
at the same time. For simplicity, with certain abuse to the
notations, we simplify Theorem 3.2 by removing certain
constant and low-order terms:

R(fA) ≤ R̂D(fA) + Õ

(
RA

γf
+

√
ln(1/δ)

n

)
. (5)

In the following sections, to distinguish the spectral com-
plexity for different models, RA will be denoted by RfA .

4. Method
Delving into the specifics of our proposed model selection
method, SLAM, we uncover its key advantage: the elimi-
nation of the need for any validation data, whether labeled
or unlabeled, to facilitate model selection. This attribute
positions SLAM as a more data-efficient option compared
to other relevant approaches (You et al., 2019; Saito et al.,
2021; Hu et al., 2023). This is built upon the direct estima-
tion of the model’s generalization capability, a topic that
remains unexplored for the SSL model. A crucial initial
step in our approach is establishing the rationale behind
using the classification margin of labeled training data as
a reliable indicator of an SSL model’s tendency to over-
fit. Additionally, by incorporating the concept of spectral
complexity, SLAM further minimizes the risk of choosing
an overfitting-prone model by favoring those with simpler
structures. Finally, we draw on the principles of structural
risk minimization (Koltchinskii, 2001) to validate our ap-
proach. Through this lens, we demonstrate that SLAM
maintains a bounded difference from an informed oracle,
providing a theoretical guarantee for its effectiveness.

4.1. Margin distribution in SSL

In traditional machine learning frameworks, the classifica-
tion margin of training data for models with smaller capaci-
ties is often viewed as a reflection of their ability to gener-
alize (Antos et al., 2002; McAllester, 2003). However, this

Training iterations

Fitting 
 Learning clean pattern

Overfitting 
Learning noisy pattern

Desiderata
SLAM

Excess error  
of SLAM

Excess error  
without model selection

Figure 1: A visualization of the distribution of classification
margin and test error is SSL training, this example uses
the statistics generated from the training of MixMatch on
CIFAR-10, with 40 labeled examples. In order to better
observe the trend, unit scales are removed so that they can
be summarized in a single figure. "Desiderata" refers to the
best model defined on test set accuracy. As we can observe,
SLAM aids the model selection of SSL by significantly
reducing the excess error.

assumption does not hold for modern deep learning models,
as these models have sufficient capacity to memorize train-
ing samples, allowing them to exhibit large margins while
simultaneously overfitting. This leads to the ineffectiveness
of conventional margin-based generalization measures in
DNNs under the fully-supervised learning setup.

However, our primary finding in the SSL context offers a
fresh perspective: the classification margin, when applied ex-
clusively to labeled data, can often indicate the level of over-
fitting for the SSL model. This emerges in scenarios where
the volume of unlabeled data significantly exceeds that of
labeled data. In such cases, the model, while assigning
pseudo-labels to unlabeled data, is prone to overfits on these
noisy pseudo-labels. This overfitting is manifested as a shift
in the model’s outputted margin distribution, transitioning
from the distribution conditioned on clean classes, P (Y |X),
towards that conditioned on noisy classes, P (Ŷ |X) (Liu
& Tao, 2015). By examining the labeled data xl, we can
observe and track this probability distribution shift. Specif-
ically, if the posterior probability P (Ŷ |X = xl) for the
labeled data deviates from its expected value (which ideally
should be close to 1), it indicates the extent of the model’s
overfitting to the noisy pseudo-labels. This insight offers
a valuable method for evaluating the generalization perfor-
mance of DNN models, particularly in the context of SSL.

Specifically, as shown in Figure 1, we can primarily catego-
rize the learning process of the SSL model into two main
stages. Initially, the model tends to fit the underlying true
pattern, evidenced by a mutual increase in both the classifi-
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cation margin of labeled and unlabeled data and a decrease
in the test error. During this phase, the model’s confidence in
its predictions for both labeled and unlabeled data progres-
sively strengthens. However, after a certain pivotal point,
the previously observed mutual increase in margins ceases,
giving way to a divergent trend: the margin of unlabeled
data continues to rise monotonically, while the margin of la-
beled data starts to decrease, concurrently, the generalization
error also start to increase around this juncture. These signs
are indicative of the model beginning to overfit the noisy
pseudo-labels assigned to the unlabeled data. As the model
increasingly maximizes the classification margin based on
these incorrect patterns, the classification margin associated
with the clean labeled data correspondingly diminishes.

4.2. Local-consistency re-weighting

Nevertheless, using labeled margin alone in SSL still has a
notable drawback, that is, due to the limited observations,
the distribution of labeled data could significantly differ
from the underlying true distribution, hence simply max-
imizing the labeled margin, without the consideration of
the representativeness of those data points, can lead to the
selection of the biased model. To mitigate this issue, we
propose a novel approach to account for the importance of
each individually labeled datum, named local-consistency
re-weighting. Local-consistency re-weighting aims to assign
higher weights to labeled data that are more representative to
its class and assign lower weights to data that are potentially
biased or marginal to its class distribution.

Algorithm 1 Local-consistency re-weighting.

Require: SSL model f , labeled dataset Xl, Yl, unlabeled
instances Xu

1: compute the labeled margin γf as defined in Equ. 4
2: for i = 1, . . . , n do
3: sample the KNNs of xi from unlabeled data Xu,

denote as {xi
1, · · · ,xi

k}
4: compute the pseudo-labels for unlabeled KNNs as

{yi1, · · · , yik} := f({xi
1, · · · ,xi

k})
5: compute the local-consistency weights for (xi, yi)

using Equ. 7
6: end for
7: return the local-consistency weights array

For each labeled datum, we sample its K-nearest-neighbor
(KNN) from the unlabeled dataset, and calculate the pseudo-
label consistency, defined as follows:

W((x, y)i,K) =

∑K
j=1 1(ŷ

i
j = yi)

K
. (6)

Where 1(·) is an indicator function. This approach up-
weighs labeled data that has a neighborhood with consistent

pseudo-labels, and down-weighs labeled data with incon-
sistent pseudo-label neighbors, as this suggests that those
samples lie on the borderline of their class distribution, and
are far from the class centroid, and thus should be given less
weights when we wish to maximizing the margin.

Lastly, to ensure the unit scale does not change, we ap-
ply normalization to ensure the reweighted weights do not
change the sum of the margin:

W((x, y)i,K) = n · W((x, y)i,K)∑n
i=1 W((x, y)i,K)

. (7)

4.3. Spectral complexity estimation

While the margin alone can be informative in SSL due
to its unique distribution characteristics, it could not tell
us anything about the model’s complexity. If the model’s
complexity grows unbounded, it could eventually memo-
rize all labeled and unlabeled data in a brute-force manner,
rendering margin ineffective. Therefore, in this part, we
introduce the classical complexity measure, that has been
commonly employed in other literature, known as spectral
norm (Bartlett et al., 2017; Miyato et al., 2018). This notion
alone differs from our previously defined spectral complex-
ity RfA , as RfA aims to measure the model as a whole,
whereas the spectral norm measures each layer individu-
ally. Nevertheless, we follow the commonly used surrogate
approach, which is to use the products of the layer-wise
spectral norm to approximate the spectral complexity (Jiang
et al., 2019; Yang et al., 2023). We describe such measure
as the empirical spectral complexity R̂fA :

R̂fA :=

L∏
i=1

∥Ai∥σ =

L∏
i=1

max(diag(Σ(Ai))), (8)

where Σ(Ai) is the singular value of weight matrix Ai.

4.4. Spectral-normalized Labeled-margin Minimization

After knowing the classification margin of labeled data, and
the empirical spectral complexity, we now present the main
SLAM objective:

ϕk(f) = R̂D(f) +
R̂fA

γf
+

√
log k

n
. (9)

where ϕk is the SLAM metrics for the k-th model from the
hypothesis set. Consequently, R̂fA and γf are the empiri-
cal spectral complexity and labeled margin for the k(f)-th
model, where k can be view as an index function.

Thus, the model that minimizes aforementioned objective
on dataset D is denoted as f†

D:

f†
D = argmin

γf ,R̂fA

ϕk(f) = argmin
γf ,R̂fA

[
R̂D(f) +

R̂fA

γf
+

√
log k

n

]
.

(10)
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Overall, the takeaway message that can summarize the
underlying rationale of SLAM is that: SLAM tries to find
the simplest model that can best separates the labeled data,
while exhibiting small training loss.

4.5. Theoretical Analysis

In this section, we present a formal theoretical generaliza-
tion guarantee for the model selected by SLAM. This guar-
antee is established through a PAC-style generalization error
bound. Our proof is grounded in the principle of structural
risk minimization (SRM) (Koltchinskii, 2001; 2006), which
warrants and motivates model selection directly based on
the training set and generalization estimation, a process that
is also known as "bound-minimization", as we trying to se-
lect the model with smallest estimated generalization error
bound. Specifically, SRM first assumes that the target hy-
pothesis class F can be decompose into a finite set, and for
every hypothesis set Fk within F is assumed to be nested,
i.e. Fk ∈ Fk+1.

To demonstrate that our proposed method is provably close
to the best model within the pre-defined hypothesis set,
extending on Mohri et al. (2018)’s proof, we have the fol-
lowing inequality:
Theorem 4.1. We can obtain the following inequality w.r.t
the spectral-normalized margin complexity. With probability
at least 1-δ:

R(f†
D) ≤ inf

f∈F

(
R(f) + 2

R̂fA

γf
+

√
log k

n

)
+

√
2 log(3/δ)

n
.

Theorem 4.1 demonstrates that the generalization error of
the model selected by SLAM is primarily upper-bounded by
the best-in-set model, with the penalization of hypothesis
complexity and the sample complexity term. This can be
proved using McDiarmid’s inequality, which is an exten-
sion of Azuma and Hoeffding’s concentration inequality,
whom are commonly used to bound differences between
two sequences. See Appendix B.3 for full proof.

Built upon Theorem 4.1, we can straight-forwardly arrive at
the following oracle inequality:
Corollary 4.2. With probability of at least 1 - δ, we have the
following inequality for the model returned by our model
selection function:

R(f†
D)−R(f∗) ≤ 2

R̂f∗
A

γ∗
f

+

√
2 log(3/δ)

n
+

√
log k(f∗)

n
.

Remark 4.3. This result directly sets the upper bound on
the excess error between the model returned by SLAM and
the best model within the pre-defined hypothesis set. This
means, in the worst-case scenario, the SSL model selected
by our method can not be worse than the optimal model up
to a polynomial factor of the right-hand side (R.H.S).

5. Experiment
5.1. Setup

Datasets. We evaluate our methods on a series of com-
monly used benchmark datasets in Semi-supervised Learn-
ing (SSL): CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
2009). To create different level of available supervision sig-
nals, following default setting (Sohn et al., 2020; Wang et al.,
2022b), for CIFAR-10, we randomly sample {4,25,400} la-
beled data per-class, for CIFAR-100, we randomly sample
{4,25,100} labeled data per-class.

Baselines. While there lacks of prior methods to directly
perform model selection on SOTA SSL methods, we can
migrate relevant approaches from other similar domains
as attempts to address this issue. First, we consider the
methods that focus on model selection without a valida-
tion set, such as EB-criterion (Mahsereci et al., 2017). In
addition, another highly relevant line of work is Unsuper-
vised Domain Adaption (UDA), where methods such as
density-reweighed cross-validation (Sugiyama et al., 2007;
You et al., 2019) and SND (Saito et al., 2021), MixVal (Hu
et al., 2023) have received notable success in perform model
selection on unknown target domain.

Target SSL algorithms. Since the model selection on
SOTA SSL baselines remains unexplored, in this study, we
will conduct all model selection methods on several popular
and representative SSL algorithms. Namely, in this study,
we use MixMatch (Berthelot et al., 2019b), ReMixMatch
(Berthelot et al., 2019a) and FixMatch (Sohn et al., 2020)
as target SSL algorithms.

Implementation details. We follow the commonly used
implementation details in SSL (Berthelot et al., 2019b; Sohn
et al., 2020; Zhang et al., 2021a), where we use WideResNet-
28-2 (Zagoruyko & Komodakis, 2016) for CIFAR-10. For
computational efficiency reasons, we make minor modifi-
cations to use WideResNet-28-2 for CIFAR-100 instead of
WideResNet-28-8. All models are trained for 220 iterations.

5.2. Results

To comprehensively evaluate the capability of SLAM, we
conduct several realistic model selection tasks under SSL
settings, including early-stopping, hyper-parameter selec-
tion, and model selection against train/val splitting.

Early-stopping. For the early-stopping task, our objective
is to select the model from the best epoch, where the rest of
the settings are aligned with the default setup.

For the CIFAR-10 dataset, our first observation is that in
nearly all cases, the model selected by SLAM is within one
standard deviation of the optimal model. In addition, we
note the gap between the model selected by SLAM and the
next best baselines in MixMatch(40) and MixMatch(250),
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Table 2: Early-stopping performances on CIFAR-10, where the best performing method is bold, and the next best method is
underlined. †: Best model based on test set performance.

METHOD MIXMATCH REMIXMATCH FIXMATCH

# LABEL 40 250 4000 40 250 4000 40 250 4000

EB-CRITERION 32.86± 1.80 61.19± 5.91 87.10± 4.20 50.57± 4.14 59.12± 0.13 91.16± 0.71 92.95± 1.28 94.40± 0.18 94.86± 0.55
DEV 52.65± 4.30 79.14± 8.02 92.64± 0.45 79.41± 14.7 92.28± 0.28 94.72± 0.13 93.19± 0.97 94.56± 0.15 95.25± 0.07
ENTROPY 55.47± 5.98 79.75± 0.76 88.00± 0.26 86.99± 1.61 89.96± 1.15 93.37± 0.15 72.38± 7.81 93.10± 0.24 94.29± 0.37
SND 51.40± 4.08 79.51± 0.21 91.63± 0.09 89.92± 1.76 93.16± 0.44 94.80± 0.02 63.12± 2.69 94.63± 0.12 94.90± 0.72
MIXVAL 51.40± 4.08 79.71± 2.55 91.67± 0.39 89.79± 1.38 93.08± 0.51 94.77± 0.16 36.08± 18.4 83.32± 17.9 95.21± 0.09

SLAM 59.99± 2.79 84.47± 0.87 92.97± 0.14 89.79± 1.32 93.43± 0.15 94.90± 0.24 94.43± 0.73 94.76± 0.14 95.51± 0.20

OPTIMAL† 62.97± 4.53 86.40± 0.93 93.33± 0.15 89.95± 0.91 93.59± 0.13 95.19± 0.07 94.50± 0.69 94.95± 0.08 95.68± 0.14

Table 3: Early-stopping performances on CIFAR-100, where the best performing method is bold, and the next best method
is underlined. †: Best model based on test set performance.

METHOD MIXMATCH REMIXMATCH FIXMATCH

# LABEL 400 2500 10000 400 2500 10000 400 2500 10000

EB-CRITERION 19.91± 0.84 48.08± 5.44 66.51± 0.69 33.82± 2.96 65.51± 0.43 73.46± 0.39 15.89± 8.73 54.97± 7.63 58.48± 0.16
DEV 25.16± 1.13 53.12± 0.87 66.33± 0.36 43.96± 2.39 65.13± 0.57 73.24± 0.37 45.06± 2.48 64.23± 0.56 70.85± 0.72
ENTROPY 16.81± 0.72 41.55± 0.34 57.61± 5.66 37.46± 2.16 61.93± 0.94 69.67± 1.52 37.03± 3.64 58.24± 1.51 66.03± 1.32
SND 20.03± 0.52 54.07± 0.59 63.31± 0.10 36.90± 5.34 60.13± 0.50 69.46± 0.58 39.04± 5.70 59.17± 2.07 70.47± 0.10
MIXVAL 25.17± 0.85 53.49± 0.30 66.52± 0.60 27.27± 2.11 64.53± 0.78 72.76± 0.54 39.04± 5.70 64.13± 2.99 70.57± 0.67

SLAM 25.45± 0.29 54.28± 0.60 66.80± 0.05 45.45±2.66 65.77±0.73 73.52±0.61 45.35± 1.74 64.33± 0.80 71.27± 0.59

OPTIMAL† 26.26± 1.14 54.59± 0.51 67.20± 0.31 45.96± 2.48 66.05± 0.50 73.80± 0.69 45.57± 1.41 65.06± 0.20 72.01± 0.16
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Figure 2: Results for hyper-parameter selection on CIFAR-10(40).

are more significant than other cases, which we attributed
to two main reasons: (1) for models that are more robust,
such as ReMixMatch and FixMatch, or cases with more
labeled data, such as MixMatch(4000), the overfitting is
more benign, to wit, even overfitting has already occurred,
the model can still generalize reasonably well to the unseen
data (Cao et al., 2022); (2) the proposed SLAM method
is less sensitive to the bias and incoherent distribution due
to the limited labeled data size, which is aligned with our
hypothesis and verified the efficacy of SLAM.

For the CIFAR-100 dataset, we can observe similar trends
in terms of the SLAM performances against other baselines.
When applied to strong base models such as ReMixMatch
and FixMatch, there are baselines whose performances are
reasonably close to SLAM (e.g. EB-Criterion, DEV), but no
baseline method consistently exhibits robust performances.
Moreover, while DEV appears to be the best alternative
for SLAM, we emphasize that DEV undertook necessary
modifications to adapt the SSL setting, which makes it a
proxy for minimizing labeled data loss. This approach is, in

principle, similar to labeled margin maximization, therefore,
the advantageous performance of SLAM can be mainly
attributed to the local consistency re-weighting and spectral
complexity minimization.

Overall, our experiment results find that popular model se-
lection methods defined for unsupervised model selection
can indeed be borrowed to SSL to a certain extent, how-
ever, no baseline method can consistently exhibit robust
performances across different target models, and different
benchmark datasets, this finding underscores the cruciality
of proposing model selection method specifically designed
for SSL, also justified the empirical superiority of SLAM as
a model selection method.

Early-stopping on Out-of-Class data. We also evaluate
the performance of model selection on dataset that exist
Out-of-Class (OOC) data (Su et al., 2021), specifically, we
adapt Semi-Aves dataset as benchmark to evaluate the per-
formance of model selection methods in OOC cases (Huang
et al., 2021; Su & Maji, 2021). As shown in Table 5, we can
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Table 4: Early-stopping performance against train/validation split on CIFAR-10, where the best performing method is bold,
and the next best method is underlined. †: Best model based on test set performance.

METHOD MIXMATCH REMIXMATCH FIXMATCH

# LABEL 250 4000 250 4000 250 4000

VALIDATION-(10%) 68.64± 1.56 88.11± 0.00 90.64± 1.65 94.63± 0.12 81.25± 1.24 93.68± 0.51
VALIDATION-(10%)† 72.60± 1.10 88.91± 0.71 93.26± 0.48 95.06± 0.08 95.09± 0.21 95.57± 0.19
VALIDATION-(20%) 68.15± 4.23 88.29± 0.14 92.10± 0.21 94.69± 0.28 90.30± 2.06 94.91± 0.55
VALIDATION-(20%)† 71.17± 1.35 88.73± 0.09 93.61± 0.25 95.15± 0.08 95.12± 0.18 95.68± 0.13

SLAM 84.47± 0.87 92.97± 0.14 93.43± 0.15 94.90± 0.24 94.76± 0.73 95.51± 0.20

Table 5: Early-stopping performance on Semi-Aves.

METHOD MIXMATCH FIXMATCH

# LABEL 3959 3959

ENTROPY 61.56± 0.20 65.28± 0.50
SND 61.83± 0.76 67.64± 0.21

MIXVAL 58.23± 0.67 52.62± 0.36
DEV 60.10± 0.60 65.74± 1.89

SLAM 62.08± 0.84 67.80± 0.03

OPTIMAL 62.78± 0.16 68.03± 0.03

observe that SLAM consistently maintains strong perfor-
mance, performing almost as good as the model with best
test set performances.

Hyper-parameter selection. Except for early-stopping
during model training, another challenge for the model se-
lection of SSL models is the hyper-parameter selection. It
is well-known that SSL algorithms are hyper-parameter-
intensive, and the choice of hyper-parameter can signifi-
cantly affect the final performance. In this part, we give an
empirical evaluation of the effectiveness of SLAM in hyper-
parameter selection. Specifically, we explore a spectrum of
essential hyper-parameters across SOTA SSL algorithms,
examining how the SLAM metrics correlate with actual
performance outcomes. Given the wide range of hyper-
parameters in the SSL model, it is impractical to enumerate
all possible parameters. Instead, we can only name a few
representative hyper-parameters from popular algorithms, as
illustrative examples to showcase the capability of SLAM.

For instance, MixMatch’s critical parameters include
the weights assigned to unlabeled loss (Berthelot et al.,
2019b), we define a search range for these weights set at
{1, 25, 50, 100}. ReMixMatch builds upon MixMatch by
introducing additional parameters, such as the weight con-
trolling the rotation loss (Berthelot et al., 2019a), with its
search range defined as {0.1, 0.25, 0.5, 1}. Similarly, for
FixMatch, significant parameters include the confidence
threshold (Sohn et al., 2020), with its search range specified
as {0.5, 0.8, 0.9, 0.95}.

Figure 2 showcases our analysis of hyper-parameter selec-

tion for models trained on the CIFAR-10 dataset with only
40 labeled samples. This visualization reveals a pronounced
correlation between the SLAM metrics and test errors, in-
dicating that SLAM metrics can effectively guide the iden-
tification of optimal hyper-parameters as validated on the
test set. This finding underscores SLAM’s practical utility
in refining hyper-parameter selection, further supporting its
empirical success in enhancing model performance.

Model selection against validation split. In this part, we
explore scenarios characterized by a relatively abundant
supply of labeled data, so that splitting a validation set
is feasible. More specifically, we consider cases where
there are more than 10 labeled data per class. We test two
validation split ratios, 10% and 20%.

Within the context of the CIFAR-10 dataset, as detailed
in Table 4, it is evident that employing SLAM for model
selection consistently yields superior results compared to
the division of a validation set. More specifically, one key
observation that aligns with our previous hypothesis is, that
when we use a smaller portion of labeled data as a validation
set (e.g. 10%), the validation set is too small to provide
any meaningful indications, as we can observe, in 10%
validation data cases, the model selected by validation set
significantly deviates from the best model selected by the
test set. Conversely, while using larger validation data, the
model selected will be closer to the best model defined over
the test set. Yet, it still exhibits notable differences to the
model selected by SLAM.

6. Conclusion
In this study, we introduce a novel model selection method
designed for the SSL context, an essential yet often over-
looked field. This method uniquely combines empirical
error and model complexity to predict the generalization
ability of SSL models, leading to significant empirical en-
hancements. Furthermore, we demonstrate that the disparity
between the model chosen by our method and the optimal
model within the selection pool is upper-bounded. This
provides a robust theoretical assurance, a feature rarely ex-
tended by current SOTA model selection strategies.
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A. Scope of the study and future works
Safety of Semi-supervised Learning. In domains where decisions have critical consequences, such as medical diagnosis
and fraud detection, ensuring the reliability and safety of SSL models is paramount (Li et al., 2017; 2019; Li & Liang,
2019; Guo et al., 2020). Without robust model selection mechanisms, service providers lack a reliable method to assess a
model’s real-world efficacy. By introducing a model selection approach for SSL with verifiable guarantees, we contribute to
bolstering the trustworthiness of models under conditions of limited labeled data. This enhancement is vital for supporting
dependable decision-making in sensitive areas, ultimately safeguarding public welfare. Future work could be developed,
focusing the the part model selection plays in safe SSL, i.e. whether applying model selection reconciles with the theoretical
guarantee, or simply by applying appropriate model selection is sufficient for achieving safe SSL.

B. Theoretical justification
B.1. Assumptions

In this subsection, we give some key assumptions that are necessary for the formulation of our theoretical analysis.

Assumption B.1. Assume that the empirical error of function f can be written as:

R̂D(f) ≤ n−1
n∑
i

1

[
f(xi)yi

≤ γ +max
j ̸=yi

f(xi)j

]

which is an analog of the 0-1 loss under the multi-classification case, where existing surrogate loss functions such as
cross-entropy loss can be proven as Bayes-consistent to the defined loss, i.e., minimizing cross-entropy loss is asymptotically
equivalent to minimize the defined empirical error R̂D (Zhang, 2004).

Assumption B.2 (Decomposable Hypothesis Space). For a given hypothesis set F , it can be decomposed into countably
many sub-hypothesis-set Fk, such that F =

⋃
k≥1 Fk.

Assumption B.3 (Nested Hypothesis Space). For a given hypothesis set F that satisfies Assumption B.2, its decomposed
hypothesis set satisfies Fk ∈ Fk+1 for all k ≥ 1.

B.2. Preliminaries

Lemma B.4. For all f ∈ F and for all k ∈ N, the following inequality holds:

P

[
sup
f∈F

|R(f)− ϕk(f)| > ϵ

]
≤ 2e−2nϵ2 . (11)
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Proof.

P

[
sup
f∈F

R(f)− ϕk(f) > ϵ

]
= P

[
sup
k≥1

sup
f∈Fk

R(f)− ϕk(f) > ϵ

]

≤
∞∑
k=1

P

[
sup
f∈Fk

R(f)− ϕk(f)

]
(Boole’s inequality)

=

∞∑
k=1

P

[
sup
f∈Fk

R(f)− R̂D(f)− R̂fA

γf
> ϵ+

√
log k

n

]
(Substituting equation 9)

≤
∞∑
k=1

exp

(
−2n

[
ϵ+

√
log k

n

])
(McDiarmid’s inequality)

≤
∞∑
k=1

exp(−2nϵ2) exp(−2 log k)

= exp(−2nϵ2)

∞∑
k=1

1

k2

=
π2

6
exp(−2nϵ2) (solution to Basel’s problem)

≤ 2e−2nϵ2 .

B.3. Proof of Theorem 4.1

Our proof follows the one described by (Mohri et al., 2018), where we use the Spectral-Margin Complexity as the plug-in
alternatives for the Rademacher Complexity, combining with Lemma B.4:

Proof.

P

[
R(f†

D)−R(f)− 2
R̂fA

γf
−
√

log k(f)

n
> ϵ

]

= P

[
R(f†

D)− ϕk(f†
D)(f

†
D) + ϕk(f†

D)(f
†
D)−R(f)− 2

R̂fA

γf
−
√

log k(f)

n
> ϵ

]

≤ P
[
R(f†

D)− ϕk(f†
D)(f

†
D) >

ϵ

2

]
+ P

[
ϕk(f†

D)(f
†
D)−R(f)− 2

R̂fA

γf
−
√

log k(f)

n
>

ϵ

2

]

≤ 2 exp(−nϵ2/2) + P

[
ϕk(f)(f)−R(f)− 2

R̂fA

γf
−
√

log k(f)

n
>

ϵ

2

]

= 2 exp(−nϵ2/2) + P

[
R̂D(f)−R(f)− R̂fA

γf
>

ϵ

2

]
(Substituting equation 9)

= 2 exp(−nϵ2/2) + exp(−nϵ2/2) (Applying Lemma B.4)

Setting δ := 3e−nϵ2/2 hence completes the proof.
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