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The baryon acoustic oscillations (BAO) feature in the two-point correlation function (TPCF) of discrete
tracers such as galaxies is an accurate standard ruler. The covariance matrix of the TPCF plays an important
role in determining how the precision of this ruler depends on the number density and clustering strength of
the tracers, as well as the survey volume. An eigen-decomposition of this matrix provides an objective way
to separate the contributions of cosmic variance from those of shot-noise to the statistical uncertainties. For
the signal-to-noise levels that are expected in ongoing and next-generation surveys, the cosmic variance
eigen-modes dominate. These modes are smooth functions of scale, meaning that they are insensitive to the
modest changes in binning that are allowed if one wishes to resolve the BAO feature in the TPCF; they
provide a good description of the correlated residuals which result from fitting smooth functional forms to
the measured TPCF; they motivate a simple but accurate approximation for the uncertainty on the linear
point (LP) estimate of the BAO distance scale. This approximation allows one to quantify the precision of
the BAO distance scale estimate without having to generate a large ensemble of mock catalogs and explains
why: the uncertainty on the LP does not depend on the functional form fitted to the TPCF or the binning
used; the LP is more constraining than the peak or dip scales in the TPCF; the evolved TPCF is less
constraining than the initial one, so that reconstruction schemes can yield significant gains in precision.
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I. INTRODUCTION

Some of the tightest constraints on the cosmological
distance-redshift relation come from the baryon acoustic
oscillations (BAO) feature in the pair correlation func-
tion [1-5]. This has led to interest in the precision with
which the two-point correlation function (TPCF) can be
measured, and how this precision translates into uncertain-
ties on the distance scale estimate. As a result, there is signi-
ficant interest in understanding the covariance between pair
counts on different scales.

On the ~140 Mpc scales of most interest to BAO
cosmology, the Gauss-Poisson approximation to the covari-
ance is rather accurate [6,7]. In this approximation, three
different terms contribute: one is a purely cosmological
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term, the other is a pure shot-noise term, and the third is a
combination of the two. The first part of our paper is
devoted to a study of the relative importance of these terms.
We address this by rotating the covariance matrix into
diagonal form, checking how many eigenvectors contribute
significantly to the total covariance, and then looking at
those eigenvectors. This provides a simple way of seeing
which term dominates and when, as well as for under-
standing the shapes of the eigenvectors. We use this insight
to explore how binning of the pair counts (width of the
rectangular bins, or different bin shapes) affects the struc-
ture of the covariance matrix. Our methodology is similar
in spirit to the Karhunen-Loéve decomposition [8], in
which a stochastic process is represented by orthonormal
basis functions and uncorrelated random coefficients. The
Karhunen-Loeve decomposition was applied to cosmic
microwave background (CMB) maps [9-11] as well as
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galaxy redshift surveys [12] in the 1990s for optimal data
compression around the time of the first large-scale
cosmological surveys. Reference [13] provides a generali-
zation of this method in anticipation of subsequent gen-
eration surveys where the amount of data collected is too
large for an uncompressed maximum likelihood analysis.
They found that for both CMB maps and redshift-space
distortions, a compression by a factor of ~10 is achievable
by keeping the first ~10% of eigenmodes from the
covariance matrix.

The second half of this paper applies these insights to a
particular estimator of the BAO scale: the linear point (LP).
The LP feature in the correlation function of dark matter
or galaxies can be used as a standard cosmological
ruler [2,14-21]. The LP lies midway between the peak
and dip values in &(r), the two-point correlation function:

+ 7
rip = peak2 dlp (1)

Evidently, the precision with which r;p can be estimated
from data depends on the covariance between the rpeq
and rgj, estimates. In turn, this depends on the covariance
matrix of the measurements, which depends on the widths
of bins in which pairs were counted (or, more generally,
the bin shapes themselves). This has led to significant
computational efforts simply to determine the optimal bin
width [22,23].

Moreover, rip is typically estimated by fitting a pre-
determined functional form to the measured & (e.g. poly-
nomials, Chebyshev polynomials, generalized half-integer
Laguerre functions). The associated error bars would then
appear to be closely tied to this functional form (e.g.
Egs. (2.6) and (9) in [16] and [18]). However, in practice,
provided that the fits are good, neither the r;p estimates
nor their error bars depend strongly on which functional
form is fit. Our analysis of the covariance matrix allows us
to provide a rather general estimate of the expected
precision that is not tied to a particular functional form.
It also allows us to address a closely related question. In
principle, the inflection point ryq, the scale on which
d*é/dr* =0, could also be used as a standard rod [14].
Previous work has suggested that it is less robust than the
LP [23,24]; our analysis provides some insight into why
this is so.

This paper is organized as follows. Section II describes
how the eigenvalues and eigenvectors of the TPCF covari-
ance matrix change as the shot-noise increases, and then
uses this to provide a simple estimate of the error on the LP.
Section III shows how our results depend on the binning.
Section IV summarizes our conclusions.

Although we focus on the linear point scale, the scale r
where the pair correlation function crosses zero, &(rg) = 0,
has also been proposed for use as a standard ruler [25]. The
Appendix shows the results of applying our analysis to 7.

II. METHODS AND RESULTS

Because the neighboring bins of the TPCF amplitudes
are correlated, the covariance matrix of the bin counts is not
diagonal. Here below, we describe in detail how we use the
structure of the covariance matrix to estimate realistic error
bars on the BAO distance scale.

Where necessary to illustrate our results, we will use a
comoving volume of 5x (1.024)° A3 Gpc® in a flat
ACDM model with (Q,,0.Q;,,) = (0.281,0.046), and
(h,ny, 04) = (0.697,0.971,0.842) as in [19]. The associ-
ated linear theory values of r;p and 7y, for the dark matter
are 97.154 and 97.635 h~! Mpc, respectively. For easy
comparison with Refs. [18,19], we focus on biased tracers
at z = 0.5 [also denoted as z = 0.5057 following [19] ].
Although we explore other combinations of number density
and clustering strength, our fiducial choice has 7 = 3.2 x
107*/(h=! Mpc)? and linear bias factor b ~ 1.97, which is
similar to the Baryon Oscillation Spectroscopic Survey
(BOSS) and the Dark Energy Spectroscopic Instrument
(DESI) survey [26,27]. The combination 7P (K, ), where
kmax is the scale on which P(k) = b?>Py;,(k) is maximum,
is sometimes used as a crude measure of whether the BAO
clustering signal is dominated by shot-noise. Our fiducial
choice has 7P (ky,y) ~ 5; shot-noise dominates for values
smaller than unity. While we provide our formalism in
terms of the real-space correlation function, we use the
redshift-space monopole in our figures to show that our
methodology is valid even under redshift-space distortions.
This makes by = /(b*> +2bf/3 + f2/5) with f=
dInD/dIna being the linear theory growth rate [28].
With b~ 1.97 at z ~ 0.5, b ~2.23.

A. Gauss-Poisson approximation to covariance matrix

We begin with the two-point correlation function, which
is related to the power spectrum P(k) by

d0)= [ FEE jo). ©)

A crude model for nonlinear evolution sets P(k) =
Pin(k)e™® [e.g. [29]], so the nonlinear correlation
function is a “smeared” version of the linear one. At
z = 0.5 in our fiducial cosmology,  ~ 4.7 h~! Mpc for the
real-space TPCF; it is slightly larger, .4 ~ 6.3 h~! Mpc,
for the biased redshift-space monopole [24,30].

If the correlation function is estimated by counting pairs
separated by s + As/2 in a discrete set of N, particles
distributed in a volume V|, then the TPCF covariance
matrix described by the “Gauss-Poisson™ approximation is
given by [6,7,16,31]
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where 7 = N,/ V is the survey number density and j, is
the bin-averaged spherical Bessel function,

— 4 si+As/2 .
ks =35 [ ks, @)
s; Jsi—As/2

i

with the volume V, = 47/3(s} 0 — 57 min)> 8 being the

midpoint of bin 7, and As being the bin size. The shot-noise
only term proportional to 1/7% only contributes when
i = J, i.e., to the error bar in a single bin. The other two
terms describe the covariance between bins, and come from
“cosmic variance.” This covariance must be accounted for
when estimating the uncertainty on the BAO scale.

B. Eigen-decomposition of the covariance matrix

To illustrate our results, we now use Eq. (3) to generate
Cjj, for 30 nonoverlapping bins of Ar=2 h~! Mpc,
running from [60 — 120] A~! Mpc, with the fiducial values
of background cosmology, redshift, survey volume, biased
tracer number density, and clustering strength mentioned at
the start of this section.

Next, we diagonalize C;;. The eigenvectors, which we
denote A;(s), provide a set of orthogonal shape functions,
whose relative importance is set by the eigenvalues 4;.
Before we consider the interplay of P and 7 in determining
these eigen-modes, note that the survey volume V only
appears as an overall scaling. It scales the eigenvalues up
and down but keeps their ratios fixed, and does not affect
the eigen-shapes. That said, V is important because it does
not enter in the definition of & itself. Therefore, larger V
means that the eigen-modes will have smaller amplitudes
compared to £. This will be important below.

Before we look at the shapes, Fig. 1 shows the fractional
contribution of the eigenvalues 4; (ordered from largest to
smallest) to the total variance. The various curves show
different choices for the relative contributions of “signal”
P(k) and “shot-noise” 1/7.

The lowermost curve is for the pure shot-noise limit (we
have set P(k) = 0). This case is analytic: C;; is diagonal,
with entries (2/7V)/(7V;), where V; is the volume of the
ith bin. For bins of width Ar = r; | — r; that are equally
spaced with spacing eAr (typically € = 1 but we will see
later why the more general case is interesting) where r; is
the lower bound of the ith bin, V; = (47/3)(Ar)? x
[(je = (e=1)/2)° = (je—1— (e —1)/2)*] where j =i+
60/(eAr) and the bin centers are given by w =60+
(i — 1)eAr + eAr/2 since our bins start at 60 2~' Mpc.
Note that all eigenvectors matter. These eigenvectors are
delta functions, one for each bin, centered on the middle of
the bin.

In contrast, the uppermost curve shows the case in which
1/ii = 0: here C;; is completely determined by the P? term
in Eq. (3). Notice that now the variance is dominated by just
a few eigenvalues/eigenvectors. The intermediate curves
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FIG. 1. Fractional contribution of the sorted eigenvalues 4; to
the total variance, ! A/ Z?O A;, for a range of choices of the
ratio of “signal” (P(k) amplitude) to “noise” (1/7). Fiducial
and idealized no shot-noise cases are very similar; more than
95% of the total variance comes from the first 3 modes. More
modes matter when the noise dominates. The smooth dashed
curve shows our analytic expression for the pure noise case:
(2/aV)/(aV;). Dotted curve is for b — b—1 but fiducial
shot-noise.

show different choices for the 1/72. The “fiducial” choice
(AP(kmax) #5) is very similar to the no-noise case.
However, as the noise increases, more modes begin to
matter."

Figure 2 shows the corresponding eigenvectors. Notice
that the nth eigenvector has n — 1 zero-crossings, at least
for the first few n. It is striking that the mode with 4 zero-
crossings divides the 60-120 h~!'Mpc range up into
patches that are approximately the size of the BAO feature
itself. Presumably this is because the same P(k) appears in
both & and C;;. Dashed curves are for the case of no shot-
noise, and solid curves have the fiducial shot-noise. Recall
that these are the cases that are dominated by the first
few eigenvalues, and the associated eigenvectors are very
similar and very smooth. The smoothness is consistent with
the expectation that terms contributing to cosmic variance
should be smooth functions of scale. However, the sim-
ilarity is particularly interesting here: it suggests that the
eigenvectors for the no-noise case remain interesting even
in the presence of fiducial noise.

The other higher-order eigenvectors, which contribute
little to the total variance, are more strongly modified by the
presence of shot-noise. To gain some insight, recall that the
pure shot-noise eigenvectors would be a set of delta func-
tions, each centered on a bin. But, when P is significant,
these delta functions are now approximately rotated into the

"The cross term in C; ; 1s also analytic: it is a smoothed version
of &, with smoothing depending on scales i and j, but the
expression is lengthy so we have not written it explicitly here.
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FIG. 2. The first 9 eigenvectors \/Z;A;(s) at z = 0.5057, for default shot-noise 7z = 3.2 x 107*/(h~' Mpc)? (solid) and no shot-noise
(dashed). The first 3 modes (left hand panel), which contribute most to the total variance, are much less sensitive to shot-noise. Higher
order modes (right hand panel, note the factor of 4 difference in the y-axis scale) are essentially zero when there is no shot-noise, and
resemble delta-functions which peak at different scales, followed by oscillations, when shot-noise is present.

basis in which the P? term is diagonal. This mixes the delta
functions, and is why these higher order modes display
oscillations. We will exploit this relatively clean separation
into cosmic variance vs shot-noise dominated eigen-modes
in the next section.

C. Eigen-decomposition of correlation
function realizations

We can write one realization E of the real-space TPCF as
E(s) = &(s) + ) _gili(s), (5)
i

where &(s) is given by Eq. (2), the ¢,’s are independent
Gaussian random variates with variance 4; and mean zero,
while A, (s) are the eigenvectors of C;;. Hence, the terms
other than &£(s) represent the (correlated) scatter around
the mean.

The symbols in Fig. 3 show how the shape of = changes
as more modes are added to &, for one realization where we
have assumed the fiducial noise and bias. The changes are
relatively mild because V is sufficiently large that the 4; are
small. To highlight the differences as more modes are
added, the symbols in Fig. 4 show the total residual from
the mean, E(s) — &(s) = >, g;A(s), for this same reali-
zation. The other curves show the contribution from modes
1to4 (=1 giAi(s)), and from 5 onward (31230 g;Ai(s)).
Clearly, the first 4 modes capture most of the residual,
including the small change in shape, while the sum of
modes 5 and onward is mostly uncorrelated noise (small
amplitude oscillations around zero). This just illustrates
what Fig. 1 showed: the higher order modes are not
particularly important.

D. Truncation of modes and basis functions
for fitting the TPCF

Because we see that the sum of the first 4 modes captures
most of the residual, while the remaining modes are mostly

1x1072

1.4
1.2
1.0
E 0.8
0.6

0.4

0.2

0.0 -
60 70 80 90
s [h~1 Mpc]

FIG.3. ¢&(s), E(s), and Eq. (5) with the first 2 and 4 modes. For
a survey volume smaller than our fiducial V of ~5(h~" Gpc)?,
the deviations of the other 3 curves from the blue &(s) curve
would be larger.

1x107%

—e— Total residual

£(s) residual

60 70 80 90
s [h~! Mpc]

100 110 120

FIG. 4. Total residual E(s) — £(s) for one TPCF realization
(symbols), and the contributions to it from modes 1 to 4
(dot-dashed), and from 5 onward (dashed).
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“noise,” it is interesting to consider restricting the sum in
Eq. (5) to include only the first ~4 modes. Evidently, this
removes the shot-noise dominated fluctuations from the
realization of E, leaving a smoother curve. In essence, this
is the smooth curve one is after when “fitting” the corre-
lation. This is a nontrivial statement, since £+ the first few
eigenvectors, while smoother than the full E, will not
generally have the same shape as £ Nevertheless, since
typical datasets were designed (i.e. V; is large enough) so
that cosmic variance does not dominate, the amplitude of
these “‘cosmic variance” modes is small compared to the
amplitude of ¢ itself, so the correction to the shape is small
(cf. Fig. 3).

In the same vein, suppose one is interested in derivatives
of the correlation function. Although

2=+ Y g, (6)

if we include all 30 terms in the sum, then this will be like
differentiating a single measurement of the correlation
function. However, it is well known that one should not
differentiate a noisy measurement; rather, one should first
fit a smooth functional form to the measurement and then
differentiate the fit. In the present context, our model for
this procedure is to assert that one is not interested in d=/ds
when the sum includes all 30 terms; rather, one should only
include the first 4 (really, the ones which account for, say,
90% of the variance).

The virtue of this point of view is that this shape is
clearly determined solely by the shape of P(k); in particu-
lar, it makes no reference to the set of basis functions which
one wishes to fit to 2 (simple polynomials? Laguerre
functions? etc.). This is attractive, since a reasonable
concern is whether the set of basis functions which worked
for one underlying P(k) will also work for another
(polynomials for one, Laguerres for another?). Here, the
point is that one should think of the eigenvectors A; as
being the most appropriate set of basis functions, since
these are clearly determined by the shape of P(k).

E. Model-independent error estimates
on the BAO distance scales

We will now use this insight to discuss how one might
quantify uncertainties on estimates of the BAO scales r; p,
Ibip and rpeg. We also consider ryyq, the scale on which the
second derivative vanishes, as an alternative to ryp.

We start with Eq. (6), but restrict the sum to the first
few terms (the ones which account for, say, 90% of the
variance). Next, note that the scale s,,,,, where E' = 0 is not
necessarily the same as rp,,, where & = 0. Assuming

Aax = Smax — Fmax << 1, we have when &' = 0,

0= gl(smax) + ZgiAi'(smax)
~ fl(rmax) + Amaxé:”(rmax) + ZgiA; (Smax)

~ Amaxg//(rmax) + Zgl [A;(rmax) + AmaxAil(rmax)] ’ (7)

where we have used that &' =
yields

0 at rp.. Isolating A«

Buas __ SN 1) /€ ®)

T'max 1 + Zigi(Ai',/gﬂ)

In practice, on the peak and dip scales, (A} /") < 0.1 or
so. Since (g?) = 4, is also small, we can neglect the term in
the denominator and approximate

Gy on(Re). o

Equation (9) shows that the root-mean-square (rms) of
A, increases as |£”| decreases. Since the nonlinear TPCF
is more smeared (i.e. less curved at the peak and dip scales)
than the linear theory TPCF [recall discussion of Eq. (2)],
we expect the uncertainty in the peak scale to be larger in
the evolved field (at lower redshifts). We return to this point
in the next subsection.

The same logic can be applied to the dip scale, so

(%) N R

Hence, just as for A, the rms of A, in the evolved
TPCF is larger than the linear theory value.
Finally, for the error on the LP scale,

ALPEi‘v (11)

we have

<AI%P> ~ <A12nax> <Ar2nin> + Zﬂi A;‘(rmax) A:’(rm'in) ) (12)

Because &’ (rpa) and & (ryin) have opposite signs (by
definition), the variance of A;p is smaller than either Ap;,
or Ap.,. This demonstrates why the LP is a more precise
probe than either rp;, and rpegy.

Similarly for the inflection point, if r;,q is the scale where
& =0 and s;,p is the scale where 2’ = 0 (when the sum
which defines E is truncated to only include the eigenvalues
whose eigenvectors contribute ~90% of the variance),

103515-5
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we would set

0= él Sinfl +th 1nﬂ

~ Ainﬂéﬂ rinﬂ + Zgi Ai’(rinﬂ) + AinﬂAé”(rinﬂ)] s (13)
where Ay = Sipg — ripn. Thus,
Ainpy 2_i9i (A /rian) /€" A/

=— ~=Ng—L_. (14
Finfl 1+ 9/(A /&) 24 Tinni&"” (14)

A2ﬂ rmﬂ >2
u g A; . 15
< 1nﬂ> < Tin ﬂfm Tin ﬂ) ( )

F. Comparison with standard method

SO

To see how well this works, we first estimate the four
scales (peak, dip, LP and inflection point) in the standard
way [e.g. [14-16,18,19,30] ]: we made 100 mock realiza-
tions of the measurement [Eq. (5)], fitted a 7th order
polynomial to each, and estimated the various scales by
differentiating the fit. The rms scatter of each scale satisfies
ODip > Opeak > Oinfi > orp: the LP is the most precise,
followed by the inflection point, etc. This is consistent
with previous work [e.g. Tables 4-7 of [19]]. The actual
values are shown as the horizontal dashed lines in Fig. 5.
Previous work has shown that it does not matter if one fits
7th order generalized Laguerre functions instead [18].

Now we turn to our eigen-mode-based estimates.
Equations (10), (9), (14), and (12) show that these depend
on the number of modes that are included in the relevant

0.05
I <A.ll.l’>/7'u’ ;
0.04 V <A¥)l|)>/rDip /o
[T~z \
—o— V (Abu) /1peak
= f(A2 N /.
Z0.03{ 7V (A%a) /rna
E -==- owp/rLp 4
\O Ul)ip/"l)ip
= 0.02] == orei/reu ood
© === Ouwn/Tmn
| s [lﬁ d ° .
0.01+--——- D.a_e_sa_a-e:-eeeex/' .
W
0.001, . ' ' ‘ ‘ '
0 5 10 15 20 25 30
Up to Mode #

FIG. 5. Fractional uncertainties on the dip, peak, inflection
point and LP scales [square root of Egs. (10), (9), (14), (12)],
as a function of the number of eigen-modes that are included
(symbols). Horizontal dashed lines show the corresponding
uncertainties estimated in the standard way (see main text).

sums. The symbols in Fig. 5 show how these estimates
increase as more modes are added. We previously argued
that one should not include the higher order modes
(because one should not differentiate noisy data); these
are the ones for which the error estimate starts to diverge.
The plateau at intermediate values indicates that the error
estimate is not very sensitive to exactly how many modes
are included, provided we have enough modes, and are not
including the ones which are dominated by shot-noise.
[This plateau is not an artifact produced by approximation
Eq. (9); it is present even if we use Eq. (8).] In effect, this
plateau provides an objective measure of how many modes
should be included to accurately model the scatter between
realizations, analogous to how Fig. 1 provides an objective
way of deciding which modes are most important for a
single realization. Indeed, previous work has noted that the
inflection point is slightly less robust than the LP: here, this
is indicated by the fact that it has a shorter plateau.

It is reassuring that not only do the plateau values
reproduce the qualitative trends shown by the standard
method, they are within 80% of the fitted rms values in all
cases. Some of this discrepancy arises from the assumption
that the scale which the standard method identifies as being
the peak, say t,,,, (¢ for template), may differ slightly from
Smax (our eigen-mode based estimate of the peak scale).
As a result, the rms of 7,,,, — rna differs from the rms of
Smax — Fmax; €vidently, this difference is small.

Recall that the standard method results do not depend on
the functional form that was fit to the binned TPCF. In
effect, our analysis shows why: the low order eigenvectors
A; represent the covariance around any good fit to the
measurements which is not “fitting the noise.”

We noted that, because the BAO feature in £ becomes
more smeared at late times, & decreases, so we expect the
uncertainty on the LP scale to increase [cf. Egs. (9)-(12)].
Figure 6 tests this: it shows the same comparison as in
Fig. 5, but now with P(k) x P (k) (ie. £=0, no
smearing) for determining both &(s) and C;; when using
Eq. (5) to produce 100 realizations of Z(s). Setting ¥ — 0
changes the BAO feature in &, dramatically, and C;; less so:
e.g. the total variance is about 15% larger, and eigenvalues
3-7 contribute considerably more to the total variance
compared to when X # 0. The change in &, means that
a 7th order polynomial is no longer a good fit, so, for the
“standard” analysis, we used a 9th order polynomial.
Comparison of the dashed lines here with those in the
previous figure shows that the rms is decreased by a factor
of about 2 to 3. This is especially true for the peak which is
most affected by the smearing.2 Notice that this decrease is

It may seem surprising that, in contrast to the evolved field,
the peak and LP scales in the linear field are measured with
similar precision. This is mainly a signal-to-noise issue. Recall
that the original reason for working with the LP was not its
precision, but its robustness to evolution/smearing [14].
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FIG. 6. Same as Fig. 5, but with £ = 0 (no smearing), for both
£y (s) and the covariance matrix. Comparison with Fig. 5 (note the
difference in y-axis range) shows the potential gains in precision
which come from working with the reconstructed BAO signal.

reproduced by our eigen-mode estimates. The onset of the
plateau is delayed from about mode 4 to about mode 7 or
so, since now it is the first 7 modes which contribute to
most of the variance. This decrease demonstrates the poten-
tial gains which come from using the reconstructed TPCF
rather than the smeared one to measure the BAO scales: for
the LP, this results in a precision of better than 0.4% as
opposed to 0.8%. Our analysis has allowed us to estimate
this improvement without having to run simulations.

Some reconstruction methods move the observed biased
tracers back to (an estimate of) their initial positions
[31-33]. The TPCF is then measured using these recon-
structed positions. In this case, the number density is
unchanged but b — b — 1: typically, the BAO feature is
sharper, but the amplitude is smaller [31]. Our methodol-
ogy allows an estimate of the precision of the LP dis-
tance scale in this reconstructed signal as follows. Since
ii(b — 1)?Py,, is smaller than 7ib*Py,, the dotted curve in
Fig. 1 suggests that more modes will be needed before
we converge to a plateau as in Fig. 5. Although we do not
show it here, we have checked that this is indeed the case.
In addition, the precision of the reconstructed feature is
slightly less precise, less constraining, than the original
measurement. In other words, reconstruction yields no
significant gain in precision (of course, it does reduce
the bias in the mean value, bringing the LP closer to its
linear theory value). To realize the potential for increased
precision shown in Fig. 6, one must combine reconstructed
fields, as discussed in [33].

We conclude that our methodology is an efficient way of
determining accurate uncertainties on the linear point
estimate of the BAO distance scale. In particular, since
our analysis suggests that, for reasonable/realistic values of
the shot-noise, the relevant eigenvalues and eigenvectors
are entirely determined by the ratio of P?(k) and the survey

100 Y

—— Binsize = 2.0 4! Mpc
—+— Bin size = 4.0 h ! Mpc
—— Bin size = 6.0 h~! Mpc

10—1.

Eigenvalues, Ratios to sum (£A )
[
©
&

1074
10-5 \
A Binsize = 6.0 » ! Mpc (Nonoverlapping) -
) 5 10 15 20 25 30
Modes (7)

FIG. 7. Dependence of eigenvalues on bin size and spacing.
Wider bins have smaller total variance, so we have normalized
each eigenvalue to show its fractional contribution to the total.
The first 4 normalized eigenvalues are very similar between all 3
curves, while the first 4 values for non-overlapping 6 #~' Mpc
bins are essentially the same as the overlapping 6 #~! Mpc bins.

volume V, and they scale as (bog)?/+/V,. Our curves
assumed (b, 03, V,) = (1.97,0.84,5 h=3 Gpc?), so for
other values, the fractional error is given by scaling the
numbers in Fig. 5 by (bes/2.23)*(05/0.84)2\/5/V . This
is not quite right, because it ignores the fact that the
smearing also depends on oy, but it is a useful first guess.
Additionally, we note that the number of eigen-modes that
captures a sufficient amount of information depends on
bP(k), V, as well as . There are two features in our
analysis that show this number: (1) the change of the slope
in Fig. 7 where we plot the eigenvalues by mode and (2) the
plateaus in Figs. 5, 6, and 9 that show 6o (Which is what
we really care about). Although we do not provide an
explicit expression here, both features suggest that the first
5 eigen-modes (which contributes to ~95% of the total
covariance) are sufficient for our choice of (b, V),
which are reasonable values for current and next-generation
surveys. While our fiducial choice of binning is 30 non-
overlapping bins of 2 A~!Mpc, our results are rather
insensitive to binning, with 5 eigen-modes being sufficient
for 15 bins of 4 A~! Mpc, as well as 10 bins of 6 h~! Mpc,
the reason for which we will see in Sec. III.

III. DEPENDENCE OF EIGENVECTORS
ON BINNING

The previous section considered the structure of the
covariance matrix of a binned estimate of the TPCF. In that
analysis, the original bin size (and shape) was fixed. How is
the analysis modified if we change the binning?

In what follows, we first show that, in general, the
eigenvectors of the binned covariance matrix are not simply
binned versions of the original eigenvectors. Nevertheless,
the first few eigenvectors are unchanged by the variations in
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binning, permitted by the requirement that one be able to
detect the BAO feature in the first place.

A. Analytic analysis

Let x denote our list of bins, y the list of measured bin
amplitudes, C = (yy") the covariance matrix of the mea-
surements, and 4; and A, its eigenvalues and eigenvectors.
With some abuse of notation, let A denote the diagonal
matrix with the eigenvalues along the diagonal. If V is a
square matrix whose columns are the eigenvectors A, then

C = VAV-! = VAVT, (16)

where the final equality follows because C is real and
symmetric.

Suppose we bin so that y; = By, with B being a square
matrix and each side having the same dimension as y. For
example,

1 100 0 0 0
1 10 0 0
110 1 11 0 0 0
ik I
00O0©O0 --- 111
0000 -~ 011

would correspond to averaging the y values in the bins on
either side of each x-bin. Note that, when this is done, one
typically works with a sparser set of x values, so as to not
“double-count.” The analysis below is more transparent
when xp and x, and hence yg and y, have the same length.

If Cg denotes the covariance matrix of the binned
measurements, then

Cg = (By(By)") = BCB"
= B(VAV-))BT = (BV)A(V'BT)
= (BV)A(BV)T. (18)

If (BV)T = (BV)~!, the expression above would be the
eigenvalue decomposition of Cy, making it appear that
the eigenvalues of Cy are the same as those of C, and the
eigenvectors are simply those of C, binned using B. At face
value, this is sensible: if the eigenvectors were smooth on
scales smaller than the ‘bin width’ then they will be
unchanged by—essentially invariant to—the binning.
However, notice that

BV(BV)T = B(VVT)BT = BB (19)

is not diagonal (i.e., although V is an orthonormal basis,
VT = V~!, the same is not true for BV). This means that
we should not think of BV as being the eigenvectors. If we

use Vg to denote the eigenvectors of Cg,
Cp = Vpig V3!, (20)

then it is natural to ask: How different are the vectors which
make up Vg from those of BV?

B. Numerical analysis

Heuristically, we expect that if the binning remains
smaller than the typical size of features in the eigenvectors,
then they will be unchanged by binning. This should be
particularly true for the primary “cosmic variance” domi-
nated eigenvectors; the shot-noise dominated eigenvectors
oscillate more, but we argued that they are not interesting
anyway. Therefore, we expect the estimates of the BAO
distance scale and their uncertainties should not depend on
how the TPCF was binned, provided this binning is not
wider than the BAO feature itself. (If the bins are too wide,
they will not provide a good description of the BAO feature
anyway.)

Figures 7 and 8 show the result of two explicit tests. The
first increases the bin size, but keeps the bin centers and
hence the number of bins the same. (As a result, neighbor-
ing bins are more correlated, but this just means that Cg,
which has the same dimension as in the previous section, is
less diagonal than the original C.) This corresponds to the
€ #1 case mentioned previously (Sec. 1IB). Figure 7
shows the eigenvalues when we increase Ar by factors
of 2 and 3 (¢ = 1/2 and ¢ = 1/3), respectively. The first
few eigenvalues, which dominate the total variance, are
indistinguishable from the original ones, but the more shot-
noise dominated modes are affected. In particular, for wider
bins the shot-noise is smaller, so these shot-noise domi-
nated modes contribute less to the total variance. To remove
the fact that the total variance is reduced, we normalized
each set of eigenvalues by their total: this shows explicitly
that, as the bin size increases, the shot-noise dominated
modes contribute a smaller fraction of the total variance.

The larger symbols show the eigenvalues when Ar —
3Ar but the bins do not overlap (¢ = 1). In this case, there
are 3x fewer eigenvalues, so the total variance is obviously
different. Nevertheless, the fractional contribution of the
first 10 modes to the variance is similar to that for the over-
lapping bins (of the same width). Clearly, for the cosmic-
variance dominated modes which contribute most to the
total variance, the binning does not matter.

Figure 8 shows that this is also true for the eigenvectors.
The big symbols show the case in which Ar — 3Ar but
now the bins do not overlap (so ¢ = 1 even for this larger
bin size; for clarity, we do not show the intermediate case
where Ar — 2Ar). Again, the eigenvectors which domi-
nate the total variance (the first ~5) are indistinguishable
from the original ones. This is slightly nontrivial since now
Cp is 10 x 10 rather than 30 x 30, but the leading eigen-
vectors are unchanged. Hence, the uncertainties on distance
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FIG. 8. First9 eigenvectors /4;A;(s) at z = 0.5057, for bin sizes 2 h~! Mpc and 6 4~! Mpc with the same bin centers. Larger symbols
show the eigenvectors for the 6 4! Mpc bins that do not overlap (so there are 3x fewer bin centers, different from the overlapping bins).

scale estimates provided in the previous section will be
unchanged: they do not depend on the binning, at least for
fiducial values of the shot-noise.

More generally, if the convolution kernel which defines
the binning does not erase features in the original (cosmic
variance dominated) eigenvectors, then these eigenvectors
will not depend on the exact bin shape. For example, this
will certainly be true if the off-diagonal entries in Eq. (17)
are less than unity. Similarly, counting pairs in, e.g.,
Gaussian-like bins rather than in rectangles will not change
our conclusions.

IV. DISCUSSION AND CONCLUSIONS

We presented an eigen-decomposition of the Gauss-
Poisson approximation to the covariance matrix of the
two-point correlation function [Eq. (3)] and assessed the
importance of the power spectrum-dominated modes that
trace cosmic variance as opposed to the modes which
are dominated by shot-noise. For a fiducial cosmology
and noise-levels that are consistent with current and next-
generation surveys, the cosmic variance eigen-modes
account for most of the total variance of the TPCF (Fig. 1).
They are also smoother than the shot-noise dominated
modes (Fig. 2), so they are insensitive to the modest
changes in binning that are allowed if one wishes to
resolve the BAO feature in the TPCF (Figs. 7 and 8).

We argued that, as a result, the cosmic variance eigen-
modes alone should provide a good description of the
correlated residuals which result from fitting smooth func-
tional forms to the measured TPCF. We provided a simple
[Eq. (12)] but accurate (Fig. 5) approximation for the
uncertainty on the linear point estimate of the BAO distance
scale which explains why the uncertainty is greater in the
evolved field than in linear theory (Fig. 6), allows one to
quantify the gains from working with the reconstructed
signal, and does not depend on the functional form fitted to
the TPCF or the binning used. It also provides insight into
why the LP is more robust than the inflection point, and
why both are more precise distance indicators than the peak

or dip scales. Perhaps most importantly, our approximation
allows one to quantify the precision of the BAO distance
scale estimate without having to generate a large ensemble
of mock catalogs. Therefore, it should be useful for
estimating the gains in precision which come from making
measurements in the reconstructed field (which are often
quoted), after marginalizing over the unknown cosmologi-
cal model (a step which is often ignored).

Our approach also provides a realistic estimate of the
precision of the zero-crossing scale (Fig. 9), showing that
the uncertainty on it depends on how steeply & crosses zero.
Although it is considerably less precise than either r;p or
rinn for realistic galaxy surveys, our analysis vastly sim-
plifies the process of quantifying the synergy between joint
analyses of rp and r, in the same dataset.

In practice, our analysis exploits the appearance of
extended plateaus in plots of how the precision in the
distance scale indicator varies as more (sorted) eigen-
modes are included (cf. Figs. 5, 6 and 9), since it is these
plateau heights that correspond to the uncertainty esti-
mates that are returned from fitting basis functions to the
measurements. (If a plateau is not seen, then this is an
indication that the contributions from the cosmic variance
and shot-noise terms to the full uncertainty are not so easily
separated, and this makes it harder to pinpoint the corre-
spondence between our analysis and the standard one.)
These plateaus suggest that it should be possible to write
down a prescription for determining the optimal number
of eigen-modes which should be used in cosmological
analyses.

While we do not perform cosmological analysis to infer
cosmological parameters or evaluate cosmological models
in this work, our approach can be used to rapidly measure
the BAO scale and its uncertainties accurately given a
dataset. This will enhance the utility of the LP that previous
works have already shown: (1) the distance scale obtained
from the LP is consistent with the standard template-fitting
method, while being more model agnostic [2] and (2) the
resulting cosmological parameters inferred from the LP
are consistent with the standard approach with 20 to 30%
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larger uncertainties under a flat ACDM cosmology [21].
Furthermore, the rapid estimation of the BAO scale and its
uncertainties means that performing multiple BAO analyses
assuming a variety of different cosmological models will be
possible at reasonable computational cost, which will be
especially important in the light of the potential time-
evolving dark energy results from [5,34]. In future work,
we hope to combine our eigen-mode analysis with the
Bayesian framework of [20] utilizing the Laguerre
reconstruction methodology of [18,24] for a completely
model-agnostic BAO analysis.
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APPENDIX: APPLICATION
TO THE ZERO-CROSSING SCALE

With some care, the zero-crossing scale, r,, can also be
used as a standard ruler [25,35]. In practice, estimating r is
similar to the linear point scale: one fits the pair counts with
suitably chosen basis functions before estimating the zero-
crossing from the fit. Therefore, the analysis in the main
text can be modified to provide estimates of the uncertainty
on ry as follows.

If sq is the scale on which E(s) =0, and ry is where
&(r) =0, we have

0= &(ro) + Bodé/dr+ Y _gi[Ai(ro) + BodA/dr]. (A1)

where Ay = sy — ry. Since &(ry) = 0, dividing throughout
by & (ry) and then assuming A'(ry)/& (ry) < 1, yields
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FIG. 9. Same as Fig. 5, but now showing the fractional
uncertainties on the zero-crossing scale (gray) as well.

Notice that the uncertainty is smaller if & is bigger. This is
sensible: the zero-crossing of a curve is easier to detect if
the curve is steep. In practice, this means that more biased
tracers are to be preferred for this measurement.

Figure 9 shows how well this compares to the stan-
dard approach (of fitting a polynomial to the pair counts
over the range 100 — 160 ~~! Mpc in bins of width Ar =
2 h~! Mpc) as the number of modes that is included in the
sum increases. The figure is in the same format as Fig. 5 in
the main text, to highlight the similarity of the analysis. The
height of the plateau region defined by the gray symbols is
our eigen-mode estimate of the uncertainty on r(. It tracks
that from the standard (polynomial fitting) method quite
well (grey dashed), showing that it provides reliable
estimates for analyses of the zero-crossing scale.

For r, there are two striking differences compared to our
analyses of the scales (rp etc.) that we highlighted in the
main text. First, the plateau region—which the main text
argued is a proxy for the uncertainty on the distance scale—
is reached after only the first couple of eigen-modes. For
rp etc., more eigen-modes are needed before convergence
to a plateau is seen, and then the plateau lasts for a smaller
range of eigen-modes before the variance increases again
(mainly due to shot-noise dominated modes). Second, the
uncertainty on ry is much larger than on rip etc. This
quantifies results which are obvious by eye in Ref. [35]. In
this respect, ry p is the better distance scale indicator than r.
Nevertheless, there are synergies associated with having
two distance scale estimates from the same measurement
which we will explore elsewhere.
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