
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIMSIAM NAMING GAME: A UNIFIED APPROACH
FOR REPRESENTATION LEARNING
AND EMERGENT COMMUNICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Emergent communication, driven by generative models, enables agents to develop
a shared language for describing their individual views of the same objects through
interactions. Meanwhile, self-supervised learning (SSL), particularly SimSiam,
uses discriminative representation learning to make representations of augmented
views of the same data point closer in the representation space. Building on the
prior work of VI-SimSiam, which incorporates a generative and Bayesian per-
spective into the SimSiam framework via variational inference (VI) interpretation,
we propose SimSiam+VAE, a unified approach for both representation learning
and emergent communication. SimSiam+VAE integrates a variational autoen-
coder (VAE) into the predictor of the SimSiam network to enhance representation
learning and capture uncertainty. Experimental results show that SimSiam+VAE
outperforms both SimSiam and VI-SimSiam. We further extend this model into
a communication framework called the SimSiam Naming Game (SSNG), which
applies the generative and Bayesian approach based on VI to develop internal rep-
resentations and emergent language, while utilizing the discriminative process of
SimSiam to facilitate mutual understanding between agents. In experiments with
established models, despite the dynamic alternation of agent roles during interac-
tions, SSNG demonstrates comparable performance to the referential game and
slightly outperforms the Metropolis-Hastings naming game.

1 INTRODUCTION

Emergent communication (EmCom) studies how multiple agents, through interaction, can develop a
shared language, known as a symbol emergence system (Cangelosi & Parisi, 2002; Taniguchi et al.,
2016; 2019; Lazaridou & Baroni, 2020; Rita et al., 2024; Peters et al., 2024). Many studies in Em-
Com, based on Shannon-Weaver-like communication models (Shannon & Weaver, 1949), such as
the Lewis signaling game (Lewis, 2008) or the referential game (Lazaridou et al., 2017), primarily
focus on how agents can discriminate target objects or analyze the compositionality of the emer-
gent signals (Havrylov & Titov, 2017; Denamganaı̈ et al., 2023; Lipinski et al., 2024), often without
considering internal representations. In contrast, collective predictive coding (CPC)-based EmCom
(Taniguchi, 2024), such as the Metropolis-Hastings naming game (MHNG) (Hagiwara et al., 2019;
Taniguchi et al., 2023b), views EmCom as a form of decentralized Bayesian inference. This ap-
proach focuses on both the representations learned within individual agents and the emergence of
symbols at a societal level, referred to as social representation learning.

Representation learning, on the other hand, has been a fundamental aspect of machine learning
(Bengio et al., 2013a; LeCun et al., 2015), particularly in tasks like image classification, where
the objective is to extract meaningful features from raw data (Bishop, 2006). Within this domain,
self-supervised learning (SSL) has attracted significant attention by enabling models to learn rep-
resentations without relying on labeled data (Liu et al., 2021; Uelwer et al., 2023). One important
approach in SSL is contrastive learning, which focuses on learning by comparing different aug-
mented views of the same data point (Le-Khac et al., 2020). Notable models in this area, such as
SimCLR (Chen et al., 2020), DINO (Caron et al., 2021), and SimSiam (Chen & He, 2021), have
shown that this approach can align representations and improve feature extraction.
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Both CPC-based EmCom and contrastive-based SSL follow a similar process. In CPC-based Em-
Com, agents observe the same object from different viewpoints and iteratively develop a common
language by aligning their internal representations through generative modeling (Taniguchi, 2024).
In contrast, contrastive-based SSL models, particularly SimSiam, align augmented views of the same
data point in the representation space through a discriminative process, relying only on positive pairs
(Chen & He, 2021). Furthermore, recent research (Nakamura et al., 2023) has applied variational
inference (VI) to SSL models, providing a generative interpretation of traditionally discriminative
methods, such as SimSiam, and capturing uncertainty in learned representations.

Building on the VI-based interpretation of SSL models, we propose a unified approach that con-
nects discriminative SSL-based representation learning with generative CPC-based EmCom. We
introduce SimSiam+VAE, which integrates a Variational Autoencoder (VAE) (Kingma & Welling,
2013) into the predictor of the SimSiam network. This integration enhances latent representations
with uncertainty by combining two processes: aligning positive pairs through contrastive compar-
ison and refining representations via the VAE’s encoding-decoding process, all without relying on
negative samples.

We further extend SimSiam+VAE into a structured communication framework called the SimSiam
Naming Game (SSNG), designed to facilitate EmCom between agents. In SSNG, each agent oper-
ates a separate SimSiam+VAE network, where the backbone and projector function as a perception
module to transform observations into internal representations. The VAE predictor acts as a language
coder, responsible for generating and decoding messages. Agents perceive different viewpoints of
the same object and use a Bayesian approach to form internal representations and develop an emer-
gent language. Through iterative exchanges, they interact similarly to the SimSiam+VAE, using its
discriminative process to align their representations and achieve mutual understanding.

For evaluation, we conduct two experiments. First, we assess the performance of SimSiam+VAE in
representation learning by measuring classification accuracy on the image datasets FashionMNIST
and CIFAR-10. Second, we evaluate the SSNG’s capability in emergent communication (EmCom)
using the dSprites dataset, measuring the compositional generalization of the emergent language by
applying TopSim (Brighton & Kirby, 2006) to unseen data (Chaabouni et al., 2020; Baroni, 2020)

Our contributions are summarized as follows:

• We formulate SimSiam+VAE, a unified model that bridges representation learning and
EmCom through a generative and discriminative framework. By integrating a VAE into the
SimSiam architecture, we enhance latent representation learning and uncertainty modeling,
using only positive pairs.

• We introduce the SimSiam Naming Game (SSNG), a novel communication game grounded
in the principles of CPC. SSNG utilized the combined generative-discriminative approach
of SimSiam+VAE to iteratively align internal representations and develop a shared emer-
gent language.

2 PRELIMINARIES

Self-Supervised Learning (SSL) as Variational Inference (VI): Recent work (Nakamura et al.,
2023) suggests that SSL can be interpreted through the lens of VI, a probabilistic framework for
learning latent variable models (Blei et al., 2017). In SSL, representations are typically learned by
minimizing a contrastive loss between different augmented views of the same data, with the aim
of bringing these views closer in their latent space representation. This process is analogous to
VI, where augmented views are treated as ”observations” that contribute to learning a shared latent
variable. The augmentations in SSL function similarly to distinct modalities within a multimodal
generative model in VI.

Denote X = xA, xB , where xA and xB are two augmented views of the same data point. Fig. 1(a)
illustrates the probabilistic graphical model (PGM), where the latent variable z represents a shared
representation of the augmented data. The objective of SSL, when viewed through VI, is to find
parameters θ that maximize the likelihood of the observations given z. However, computing the true
posterior pθ(z|X) directly is intractable, leading to the use of a variational distribution qϕ(z|X) to
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Figure 1: Illustrations of the SSL interpreted as a form of VI.
(a): The PGM representation of the inference process in SSL. Observations xA and xB represent
two augmented views (considered as multimodal observations) of the same data sample, derived
from a dataset D. The arrows point from xA and xB to the latent variable z, indicating that the aug-
mented views share a common latent representation z, which is inferred from these observations.
(b): The SimSiam framework (Chen & He, 2021). Two augmented views, xA and xB , are processed
through a shared backbone and projector network f to produce latent representations zA and zB . A
predictor network h generates a transformed representation z′A, which is compared to zB using a
similarity measure. A stop-gradient operation is applied to zB to prevent gradient flow from z′A,
ensuring stable training and avoiding model collapse.
(c): The proposed VI-SimSiam framework (Nakamura et al., 2023) extends SimSiam by modeling
representation uncertainty. Latent representations zA and zB are produced similarly, but two predic-
tors output the mean direction µ and concentration parameter κ of the power spherical distribution,
enabling both the representation and its uncertainty to be modeled.

approximate the posterior. This formulation leads to the objective function given by:

Ep(z|X)[log pθ(X|z)] ≥ JSSL := Eqϕ(z|X)[log pθ(X|z)]−DKL[qϕ(z|X)∥p(z)] (1)

The SSL objective function is then decomposed as:

JSSL := Jalign + Juniform + JKL (2)

where Jalign encourages the alignment of representations from different views of the same data
point, bringing them closer in the latent space. This aligns with the goal of SSL to learn invariant
representations across augmented views. Juniform promotes a well-distributed representation over
the latent space to avoid collapse. Finally, JKL, introducing a Kullback-Leibler (KL) divergence,
regularizes the approximate posterior distribution q(z|X, ϕ) to be close to the prior p(z).

The paper further demonstrates that specific SSL methods, such as SimSiam, SimCLR, and DINO,
can be viewed under this VI framework by appropriately defining how they address alignment,
uniformity, and regularization of latent variables. The inference process for these models operates
as follows:

z ∼ qϕ(z|X) = qϕ(z|xA, xB) (z is inferred from both xA and xB) (3)

3 SIMSIAM+VAE FOR REPRESENTATION LEARNING

3.1 MODEL DESCRIPTION

The proposed SimSiam+VAE model (Fig. 2) extends SimSiam by integrating a VAE into the pre-
dictor. The backbone and projector network, denoted as f , serves as a feature extractor, mapping

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Illustrations of the SimSiam+VAE.
(a) The PGM representation of the generative and inference process in SimSiam+VAE. From the
observations xA and xB , the representation z is inferred, which is subsequently used to infer latent
variable z. Solid lines indicate the generative process (from w to z), while dashed lines indicate the
inference process (from xA and xB to z and then to w).
(b) Architecture of the SimSiam+VAE framework. Two augmented views, xA and xB , are pro-
cessed through a shared backbone and projector network f to produce representations zA and zB .
The predictor h incorporates VAE components: the predictor encoder outputs the mean µA and co-
variance ΣA of the distribution over the latent variable wA. The predictor decoder reconstructs the
representation z′A from wA. The similarity between z′A and zB is measured, and a stop-gradient
operation is applied to zB to prevent collapse.

the augmented data xi, for i ∈ {A,B}, to the latent representation zi. The predictor, h, includes
an encoder h(enc) that maps zi to the parameters of a Gaussian distribution over a latent variable wi,
from which wi is sampled. The decoder h(dec) then reconstructs wi to z′i. The overall model, g,
represents the composition of the backbone-projector network f followed by the predictor h, such
that g = h ◦ f .

The inference process of the SimSiam+VAE operates as follows:
z ∼ qϕ(z|X) = qϕ(z|xA, xB) (z is inferred from both xA and xB) (4)
w ∼ qϕ(w|z) (w is inferred from z) (5)

Similar to SimSiam, the proposed SimSiam+VAE model uses the stop-gradient mechanism to block
gradients from being backpropagated through one of the branches. This mechanism treats the second
latent representation as a constant, avoiding collapse to trivial solutions. Additionally, the VAE intro-
duces a regularization term via the KL divergence, further preventing collapse through its encoding-
decoding process. We conducted experiments to compare the model’s performance with and without
the stop-gradient mechanism, as discussed in Section 5.1.

3.2 OBJECTIVE FUNCTIONS

Fig. 2(a) shows the PGM of SimSiam+VAE, showing the inference process from augmented data xA

and xB to representation z, and subsequently to the latent variable w. The objective of this model,
under VI, is to find a parameter θ∗ that maximizes the likelihood of the data. However, since the true
posterior pθ(X|z, w) is intractable, we approximate it using the variational distribution qϕ(z, w|X).
The resulting optimization problem is to maximize the objective function LSSL, which is defined as:

θ∗, ϕ∗ = argmax
θ,ϕ

Eqϕ(z,w|X)

[
log

pθ(X, z, w)
qϕ(z, w|X)

]
(6)

This optimization leads to the objective function:
JSSL ≈ Jalign + Jrecon + Juniform + JKL (7)
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where
Jalign := Eqϕ(z|X) [log pθ(z|X)]− Eqϕ(z|X) [log qϕ(z|X)] (8)

Jrecon := Eqϕ(z|X)
[
Eqϕ(w|z) [log pθ(z|w)]

]
(9)

Juniform := Eqϕ(z|X) [− log pD(z)] (10)

JKL := −Eqϕ(z|X) [DKL (qϕ(w|z,X)∥p(w))] (11)

pD(z) := EpD(X)[pθ(z|X)] (12)

The alignment loss (Eq. 8) encourages the latent representations from different augmented views of
the same data point to align in the representation space. The reconstruction loss (Eq. 9) encourages
the VAE to accurately reconstruct the representation from the latent variable w. The uniform loss
(Eq. 10) promotes a uniform distribution of representations in the representation space to avoid
collapse. The KL-divergence term (Eq. 11) regularizes the distribution of the latent variable w,
keeping it close to the prior. Lastly, (Eq. 12) defines the empirical distribution of the latent variables
derived from the data.

In SimSiam+VAE, the prior p(w) is a standard Gaussian distribution, while the prior p(z) is uni-
form on the hypersphere Sd−1. The distribution qϕ(w|z) is modeled as a multivariate Gaussian
distribution conditioned on z. Meanwhile, pθ(z|w) is defined as a Dirac delta function, indicating
a deterministic mapping from w to z. The distribution qϕ(z|X) is modeled as a mixture of experts,
where each expert corresponds to the contribution of an augmented view. The distribution pθ(z|X)
is represented as a product of experts, capturing the joint distribution across all augmented views:

p(w) ∼ N (0, I) (13)

p(z) := U(Sd−1) (14)

qϕ(w|z) := N (w;µw = h(enc)
(µ) (z),Σw = h(enc)

(Σ) (z)) (15)

pθ(z|w) := δ(z − h(dec)(w)) (16)

qϕ(z|X) :=
1

M

M∑
i=1

δ(z − fϕ(xi)) (17)

pθ(z|X) := ηθ

M∏
j=1

vMF(z;µz = gθ(xj), κz) (18)

where

• h(enc)
(µ) and h(enc)

(Σ) are the components of encoder network h(enc) that generate the mean vector
µw and covariance matrix Σw of the Gaussian distribution from which w is sampled.

• h(dec) is are decoder of language coder h, providing a deterministic mapping from w to z

• δ(z − fϕ(xi)) is a Dirac delta function centered at fϕ(xi).

• η−1
θ is a normalization constant.

• vMF(z;µz, κz) := CvMF(κz) exp(κzµ
⊤
z z) is the von-Mises-Fisher distribution with mean

direction µz and concentration parameter κz ∈ R+. The term CvMF(κz) is a normalization
constant defined using the modified Bessel function. κz is also constant.

The objective function of SimSiam+VAE is then given as:

JSSL ≈
∑
i,j

(
gθ(xi)

⊤fϕ(xj)
)
− β

∑
i

DKL (qϕ(w|z, xi)∥p(w)) (19)

Proof. See Appendix B.

In Eq. 19, the first term encourages the alignment of representations from different augmentations
of the same input, similar to the reconstruction loss in a VAE. The second term is a regularization,
ensuring that the latent variable w remains close to the prior distribution. The hyperparameter β con-
trols the balance between the alignment and regularization terms, similar to the β-VAE introduced
by Higgins et al. (2017). Pseudocode for the SimSiam+VAE model is provided in Appendix E.
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4 SIMSIAM NAMING GAME FOR EMERGENT COMMUNICATION

4.1 MODEL DESCRIPTION

The objective of SimSiam+VAE is to bring different views (augmentations) of the same data point
closer in the representation space without relying on negative pairs. This aligns with the CPC-
based EmCom, where two agents observe the same object from different viewpoints and develop
shared representations without explicit labels. In this section, we extend SimSiam+VAE to facilitate
EmCom between two agents, A and B, through a communication game called the SimSiam Naming
Game (SSNG). Each agent ∗ ∈ {A,B} operates as a branch of the SimSiam+VAE, processing its
observation x∗ ∈ {xA, xB}, which is derived from a distinct viewpoint of the original object x.

Unlike the original SimSiam+VAE, which processes two augmentations of x through a shared net-
work to produce a single latent representation z and a corresponding latent variable w, the SSNG
introduces two separate latent representations, zA and zB , one for each agent. Each branch of the
network independently maps its observation x∗ to its internal representation z∗. These represen-
tations are then combined to form a shared message w, which acts as the emergent language for
communication. The message w enables the agents to align their internal representations, foster-
ing mutual understanding. Through this structure, SSNG allows each agent to retain its unique
perspective while contributing to a shared language. This approach aligns with Peirce’s semiotics
theory (Chandler, 2002), establishing a triadic relationship among the symbol (observation x∗), the
interpretant (internal representation z∗), and the sign (message w) (Fig. 3).

Each agent ∗ ∈ {A,B} in this communication game has the two components: perception and
language coder. The perception (f∗), consisting of the backbone and projector, transforms the ob-
servation x∗ into the internal representations z∗. The language coder (h∗) includes the predictor,
which consists of an encoder (h(enc)

∗ ) and a decoder (h(dec)
∗ ). The encoder maps the internal represen-

tation z∗ to a shared message w while the decoder receives and decodes the message into an internal
representation z′∗.

The model components in the SSNG are identical to those in SimSiam+VAE. The key difference
is that the latent variable w now follows a categorical distribution over K, where K represents the
vocabulary or dictionary size. In the SSNG, the prior p(w) is a uniform categorical distribution
defined on the simplex ∆K−1 and w is modeled as:

p(w) := U(∆K−1) (20)

qϕ(w|z) := Cat(w;GS(h(enc)
∗ (z))) (21)

where h(enc)
∗ (z) represents the logits produced from the internal representation z via the encoder of

language coder. These logits are converted into a categorical distribution, Cat(w), using the Gumbel-
Softmax (GS) distribution (Jang et al., 2017). The Straight-Through (ST) estimator is then applied
to obtain one-hot vectors, enabling gradient-based training while maintaining discrete message rep-
resentations (Bengio et al., 2013b).

4.2 LOSS FUNCTION

In this communication game, agents A and B alternately take on the roles of speaker (Sp) and
listener (Li), with possible role pairs (Sp, Li) ∈ {(A,B), (B,A)}. Given the listener (Li) and the
message wSp received from the speaker (Sp), the objective function of the listener is given by:

JLi ≈ [h(dec)
Li (wSp)]

⊤fLi(xLi)− βDKL (qLi(wLi|zLi, xLi)∥p(wLi)) (22)

Proof. See Appendix C.

This objective function is applied similarly for both agents A and B when either agent acts as the
listener. In Eq. (22), the first term calculates the similarity loss between the decoded representation
z′Sp (obtained from the received message wSp through the decoder of listener’s language coder h(dec)

Li )
and the listener’s internal representation zLi (generated by listener’s perception fLi). The second
term serves as a regularization component that regularizes the listener’s latent space wLi.
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Figure 3: The EmCom between two agents, A and B, based on the SimSiam Naming Game.
(a) Two agents observe the same object from different perspectives. Each agent maps its obser-
vations to internal representations and uses them to infer and predict emergent language symbols,
enabling them to communicate their perceptions and develop a shared emergent language.
(b) The PGM of SSNG: Denote agent ∗ ∈ {A,B}. Solid lines represent the generative process,
which starts from the shared latent variable w to the representation z∗. Dashed lines represent the
inference process, where each agent infers its representation z∗ from its observation x∗, and the
shared message w is inferred jointly from both agents’ internal representations zA and zB .
(c) The structure of agents: Both agents ∗ have the same model architecture with a backbone and
projector f∗ and the predictor h∗ acts as the language coder, consisting of an encoder h(enc)

∗ and a
decoder h(dec)

∗ . In the example shown, agent A (depicted as the speaker) generates and transmits a
message wA to agent B (as the listener), who processes it through a predictor decoder, producing an
internal representation z′A, which is then compared to zB to measure their similarity.

The inference process via the SSNG builds on the SimSiam+VAE with the parameters θ and ϕ span-
ning both agents: θA, ϕA of agent A and θB , ϕB of agent B. This process is detailed in Appendix D
and operates as follows:

zA ∼ qϕ(zA|xA) (Agent A infers zA from xA) (23)
zB ∼ qϕ(zB |xB) (Agent B infers zB from xB) (24)
w ∼ qϕ(w|zA, zB) (The shared latent variable w is inferred from both zA and zB) (25)

4.3 THE SIMSIAM NAMING GAME (SSNG)

The SSNG facilitates communication and mutual understanding between agents through the follow-
ing sequence of interactions:

i) Perception: The speaker (Sp) observes the input xSp related to object x to form an internal
representation zSp using its perception module fSp.

ii) Naming: The speaker (Sp) generates a message wSp using the encoder h(enc)
Sp of the lan-

guage coder and sends this message to the listener (Li).
iii) Communication: Upon receiving the message wSp, the listener (Li) decodes it into z′Sp

using the decoder h(dec)
Li of language coder.

iv) Learning: The listener (Li) calculates the loss using Eq. 22 by comparing z′Sp with its own
zLi (generated by fLi), then updates its model parameters to refine its understanding.

v) Turn-taking: After the interaction, the roles of Sp and Li are swapped, and the process
repeats from step i).

This communication game, aligning with the principle of CPC, enables each agent to iteratively
update its understanding based on the shared symbols through encoding, sharing, decoding, and

7
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Table 1: Classification performance of different models on FashionMNIST and CIFAR-10.
Model FashionMNIST (Top-1) CIFAR-10 (Top-2)

SimSiam 82.95 59.24
VI-SimSiam 81.87 62.80

SimSiam+VAE (no stop-grad) 10.00 20.00
SimSiam+VAE (ours) 84.27 67.98

learning. A comparison among referential games (Lazaridou et al., 2017), Metropolis-Hastings
naming game (Taniguchi et al., 2023b) and our SimSiam naming game is presented in Appendix A.
The pseudocode for the SSNG is provided in Appendix F.

5 EXPERIMENTS AND DISCUSSIONS

This section presents two experiments to evaluate the proposed SimSiam+VAE model and SimSiam
naming game. The source code for these experiments is available on GitHub1.

5.1 EXPERIMENT 1: SIMSIAM+VAE IN REPRESENTATION LEARNING

Datasets: We use the FashionMNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky, 2009) datasets.

Model architecture: A Convolutional Neural Network (CNN) backbone is used for FashionMNIST,
while ResNet18 (He et al., 2016) is used for CIFAR-10. In both cases, the projector and predictor
utilize a multi-layer perceptron (MLP) architecture. (More details in Appendix G)

Linear evaluation: All models are trained for 500 epochs. Then, a classifier is trained on the frozen
representations obtained from the model using the training set labels and then evaluated on the test
set. For FashionMNIST, Top-1 accuracy is reported, while for CIFAR-10, Top-2 accuracy is used.

Comparison Models: We compare our SimSiam+VAE model against SimSiam, VI-SimSiam.

Results and Discussion: (Table 1), the stop-gradient mechanism is essential for the proposed Sim-
Siam+VAE framework. Without it, the model collapses to a trivial solution and fails to capture
representation features. Our results show that SimSiam+VAE outperforms both SimSiam and VI-
SimSiam, highlighting the advantage of integrating a VAE into the SimSiam. This integration en-
hances the model’s ability to capture diverse features, leading to improved representation learning.

5.2 EXPERIMENT 2: SIMSIAM NAMING GAME IN EMERGENT COMMUNICATION

Datasets: We use the dSprites (Matthey et al., 2017) dataset, which consists of images of 2D shapes
varying across different generative factors. Both agents are provided with the same data point but
from different perspectives. The agents are then tested using a set of unseen data points to assess
their generalization capabilities.

Model Architecture: The vocabulary size |V | is 100, and the message length is 10. An MLP is
used for the perception (backbone and projector). For the language coder’s encoder, we use an
LSTM to generate a discrete distribution over V at each time step (t). This process is performed
autoregressively, using the embedding of the discrete token sampled at the previous step (t − 1) as
input. The decoder consists of another LSTM that processes the sequence of embeddings recurrently,
with the final hidden state as the output. (More details in Appendix H).

Evaluation: All models are trained for 1000 epochs. We use Topographical Similarity (TopSim) to
evaluate how well the emergent language disentangles and aligns with the generative factors.

Comparison Models: We compare the emergent language from our SSNG with those of the refer-
ential (Xu et al., 2022) and Metropolis-Hastings naming games (Hoang et al., 2024a), all of which
use the same LSTM-based models for generating and decoding messages.

1...
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Table 2: TopSim of different communication games on the dSprites. The referential game produces
a single TopSim value, while the other games produce separate values for each agent (A and B).

Model TopSim (A) TopSim (B)
Referential Game 0.22

Metropolis-Hastings Naming Game 0.19 0.18
SimSiam Naming Game (ours) 0.22 0.18

Results and Discussion: (Table 2) Compared to the referential game, where agents are fixed as
either message generators or interpreters, SSNG demonstrates comparable performance. However,
compared to MHNG, where agents can both create and interpret messages, SSNG achieves slightly
better results. These suggest that SSNG is a potential alternative approach for facilitating EmCom.

6 RELATED WORK

Emergent Communication (EmCom) examines how agents develop a shared language through
interactions, drawing inspiration from cognitive science theories (Wagner et al., 2003; Steels, 2015).
Research in multi-agent reinforcement learning (Foerster et al., 2016) demonstrated how agents
could develop communication to optimize collective rewards. Comprehensive surveys of this field
include (Galke et al., 2022; Brandizzi, 2023; Boldt & Mortensen, 2024). Recent studies have fo-
cused on CPC-based, which emphasizes joint attention in human communication (Okumura et al.,
2023). The MHNG (Taniguchi et al., 2023b) utilizes decentralized Bayesian inference to achieve
a consensus on shared symbols, aligning with predictive coding and world model (Hohwy, 2013;
Friston et al., 2021; Taniguchi et al., 2023a). The MHNG has been applied in multimodal datasets us-
ing methods like Inter-MDM (Hagiwara et al., 2022) and Inter-GMM+MVAE (Hoang et al., 2024b).
Moreover, MHNG has been extended to recursive multi-agent communication systems (Inukai et al.,
2023) and integrated into multi-agent reinforcement learning (Ebara et al., 2023).

Representation learning is essential in machine learning tasks like image classification, allowing
models to extract features from raw data (Goodfellow et al., 2016). SSL has become a popular
method for learning representations without labels (Jing & Tian, 2020). A key SSL approach is con-
trastive learning, which aligns representations by comparing different augmented views of the same
data point (Cole et al., 2022). MoCo (He et al., 2020) introduces a momentum encoder to main-
tain a queue of negative samples, while BYOL (Grill et al., 2020) eliminates the need for negative
pairs, using a stop-gradient mechanism to avoid collapse. Recent research has combined VAE and
contrastive learning to improve representation learning. CR-VAE adds contrastive regularization to
the VAE objective (Lygerakis & Rueckert, 2023), while ContrastVAE employs a two-view approach
with ContrastELBO for sequential recommendations (Wang et al., 2022). Noise contrastive estima-
tion is used in (Aneja et al., 2021) to reweight the prior distribution. Contrastive VAEs (cVAE) focus
on isolating salient features in datasets to refine latent space representation (Abid & Zou, 2019).

7 CONCLUSIONS

This research introduces the SimSiam Naming Game (SSNG) and SimSiam+VAE, a unified model
that bridges discriminative contrastive SSL-based representation learning with generative CPC-
based EmCom through the perspective of VI. Although originating from distinct domains, both SSL
and EmCom share the goal of aligning representations—either by learning invariant representations
from augmented data views in SSL or by developing a shared language between agents observing
the same object from different perspectives. By bridging these objectives, our model demonstrates
applicability to both representation learning and EmCom.

Our experiments show that SimSiam+VAE outperforms both SimSiam and VI-SimSiam in repre-
sentation learning without requiring negative pairs. In EmCom, SSNG leverages the discriminative
properties of SimSiam and the generative Bayesian perspective of the VI interpretation to align
agents’ internal representations, fostering mutual understanding and enabling the development of
an emergent language. This work, therefore, provides an alternative communication framework for
EmCom systems.

9
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A COMPARISON AMONG REFERENTIAL GAME, METROPOLIS-HASTINGS
NAMING GAME AND SIMSIAM NAMING GAME

Aspect Referential Game Metropolis-Hastings
(MH) Naming Game

SimSiam Naming
Game (SSNG)

Objective Develop emergent lan-
guage (EmLang) to re-
fer to shared objects
or concepts, focusing
on communication ac-
curacy.

Develop EmLang
through probabilistic
updates, optimizing
mutual understanding
using MH algorithm.

Develop EmLang
through self-supervised
learning (SSL), fo-
cusing on similarity
between representa-
tions of agents.

Communication
method

Speaker sends a mes-
sage to refer to a tar-
get object among dis-
tractors.

Agents exchange
messages and update
beliefs through accep-
tance rate based on MH
algorithm.

Agents exchange mes-
sages to align and con-
vey information based
on representation simi-
larity.

Learning
Mechanism

Grounded in shared
perception, where
agents learn com-
munication through
feedback based on
correct or incorrect
reference selection.

Probabilistic updates
of beliefs and message
proposals using MH al-
gorithm, incorporating
joint attention.

Contrastive learning
SSL via variational
inference to align rep-
resentations of agents,
incorporating joint
attention.

Agent Roles A fixed speaker and
a listener with distinct
roles (describing and
selecting objects).

Both agents are capable
of proposing and eval-
uating messages itera-
tively to align their be-
liefs.

Both agents are capable
of proposing and eval-
uating messages itera-
tively to align their la-
tent representations.

Observations Both agents refer to
a single viewpoint of
each object in the con-
text.

Agents have different
viewpoints or observa-
tions of the same ob-
ject.

Agents have different
viewpoints of observa-
tions of the same ob-
ject.

Representation
Space

Not a primary focus. Continuous internal
representation space,
updated probabilisti-
cally through message
exchanges.

Continuous internal
representation space,
aligned through max-
imizing similarity
between different
viewpoints.

Information
Exchange

Messages are shared to
refer to specific target
objects.

Messages are ex-
changed and evaluated
based on the MH
acceptance rate.

Messages are ex-
changed and evaluated
based on an SSL objec-
tive function.

Interaction
Mode

One-way interaction:
speaker sends a mes-
sage, and listener
interprets it to select
the target object.

Iterative, bidirectional
interaction: both agents
propose and receive
messages.

Iterative, bidirectional
interaction: both agents
propose and receive
messages.

Table 3: Comparison between referential game (Lazaridou et al., 2017), Metropolis-Hastings nam-
ing game (MHNG) (Taniguchi et al., 2023b), and SimSiam naming game (SSNG).
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B SIMSIAM+VAE - OBJECTIVE FUNCTION

The objective function of SimSiam+VAE is derived as follows:

LSSL := Eqϕ(z,w|X)

[
log

pθ(X, z, w)
qϕ(z, w|X)

]
(26)

:= Eqϕ(z,w|X)

[
log

pθ(X | z)pθ(z | w)p(w)
qϕ(w|z,X)qϕ(z|X)

]
(27)

:= Eqϕ(z,w|X) [log pθ(X|z) + log pθ(z|w) + log p(w)− log qϕ(w|z,X)− log qϕ(z|X)] (28)

:= Eqϕ(z,w|X) [log pθ(X|z)]− Eqϕ(z,w|X) [log qϕ(z|X)] +
+ Eqϕ(z,w|X) [log pθ(z|w)] + Eqϕ(z,w|X) [log p(w)− log qϕ(w|z,X)] (29)

Since pθ(X) is intractable, we approximate it with empirical data distribution pD(X). Using Bayes’
theorem:

pθ(X|z) =
pθ(z|X)pθ(X)
Epθ(X)[pθ(z|X)]

≈ pθ(z|X)pD(X)
EpD(X)[pθ(z|X)]

(30)

then

Eqϕ(z,w|X) [log pθ(X|z)] (31)

≈ Eqϕ(z,w|X)

[
log

pθ(z|X)pD(X)
EpD(X)[pθ(z|X)]

]
(32)

≈ Eqϕ(z,w|X)
[
log pθ(z|X) + log pD(X)− logEpD(X)[pθ(z|X)]

]
(33)

≈ Eqϕ(z,w|X) [log pθ(z|X)]− Eqϕ(z,w|X)
[
logEpD(X)[pθ(z|X)]

]
+ log pD(X) (34)

Besides,

Eqϕ(z,w|X) [log p(w)− log qϕ(w|z,X)] (35)

= Eqϕ(z|X)
[
Eqϕ(w|z,X) [log p(w)− log qϕ(w|z,X)]

]
(36)

= −Eqϕ(z|X) [DKL (qϕ(w|z,X) ∥ p(w))] (37)

Substituting Eqs. (34) and (37) to Eq. (29), the objective function is:

JSSL ≈ Jalign + Jrecon + Juniform + JKL + log pD(X) (38)
≈ Jalign + Jrecon + Juniform + JKL (39)

where

Jalign := Eqϕ(z|X) [log pθ(z|X)]− Eqϕ(z|X) [log qϕ(z|X)] (40)

Jrecon := Eqϕ(z,w|X) [log pθ(z|w)] (41)

Juniform := Eqϕ(z|X) [− log pD(z)] (42)

JKL := −Eqϕ(z|X) [DKL (qϕ(w|z,X)∥p(w))] (43)

pD(z) := EpD(X)[pθ(z|X)] (44)

In SimSiam+VAE, we define p(w), p(z), qϕ(w|z), pθ(z|w), qϕ(z|X), and pθ(z|X) as mentioned in
Eqs. (13), (14), (15), (16), (17), (18), respectively.
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ALIGNMENT LOSS

Jalign := Eqϕ(z|X) [log pθ(z|X)− log qϕ(z|X)] (45)

:=
1

M

M∑
j=1

[log pθ(fϕ(xj)|X)− log qϕ(fϕ(xj)|X)] (46)

:=
1

M

M∑
j=1

[
log

(
ηθ

M∏
i=1

vMF(fϕ(xj);µz = gθ(xi), κz)

)
− log

1

M

]
(47)

:=
1

M

M∑
j=1

[
log ηθ + logM +

M∑
i=1

log vMF(fϕ(xj);µz = gθ(xi), κz)

]
(48)

Jalign ≈
∑
i,j

(
gθ(xi)

⊤fϕ(xj)
)

(49)

RECONSTRUCTION LOSS

Jrecon := Eqϕ(z|X)
[
Eqϕ(w|z) [log pθ(z|w)]

]
(50)

The inner term Eqϕ(w|z) [log pθ(z|w)] represents the reconstruction loss in the VAE component. In
representation learning, this loss can be approximated by:

Eqϕ(w|z) [log pθ(z|w)] ≈ (z′)⊤z = gθ(x)
⊤fϕ(x) (51)

where z′ denotes the reconstructed representation obtained from the latent variable w. This ap-
proximation captures the alignment between the original and reconstructed representations in the
representation space. Thus,

Jrecon ≈
∑
i

(
gθ(xi)

⊤fϕ(xi)
)

(52)

The reconstruction loss Jrecon measures the alignment between the reconstructed representation
gθ(xi) and the original one fϕ(xi). This alignment is already captured by the Jalign. Hence, Jrecon
is omitted from the total loss.

UNIFORM LOSS

The role of Juniform is to ensure that the marginal distribution pD(z) is uniform over the hypersphere,
i.e., pD(z) = U(Sd−1). However, the predictor h, defined as a DirectPred (Tian et al., 2021),
ensures that the latent representations z are uniformly spread over the hypersphere. It achieves this
by making the distribution of z approximately isotropic, with each dimension being independent
and having equal variance. Consequently, h implicitly maximizes Juniform (Nakamura et al., 2023).

Since the predictor already encourages a uniform distribution of the representations, explicitly in-
cluding Juniform in the total loss is redundant. Therefore, it can be omitted without losing the intended
effect on the representation distribution.

KL DIVERGENCE

Since each representation z is derived from the same network with a stop-gradient operation, the KL
divergence can be simplified as:

JKL ≈ −
∑
i

DKL (qϕ(w|z, xi)∥p(w)) (53)

TOTAL LOSS

Combining these components, the objective function of SimSiam+VAE is given by:

JSSL ≈
∑
i,j

(
gθ(xi)

⊤fϕ(xj)
)
− β

∑
i

DKL (qϕ(w|z, xi)∥p(w)) (54)
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C SIMSIAM NAMING GAME - OBJECTIVE FUNCTION

In the SimSiam naming game with two agents, A and B, the total loss function JSSL, derived from
the objective function of SimSiam+VAE, is adapted to account for each agent’s individual observa-
tions and representations. Unlike the original SimSiam+VAE, the SSNG separates z into two latent
representations, zA and zB , one for each agent. Each agent ∗ receives a unique observation x∗,
which is encoded into a representation z∗, and subsequently mapped to a shared latent variable w.
The total loss is reformulated as:

JSSNG ≈
∑
i,j

(
gθ(xi)

⊤fϕ(xj)
)
− β

∑
i

DKL (qϕ(w|zA, zB , xi)∥p(w)) (55)

This loss consists of the optimization process for both agent A and B. Therefore, the total loss can
be decomposed into contributions for each agent:

JSSNG = JA + JB (56)

where JA and JB represent the loss functions for agent A and agent B, respectively:

JA ≈ gB(xB)
⊤fA(xA)− βDKL (qA(w|zA, zB , xA)∥p(w)) (57)

JB ≈ gA(xA)
⊤fB(xB)− βDKL (qB(w|zA, zB , xB)∥p(w)) (58)

In the objective function of SimSiam+VAE, the parameters θ and ϕ are shared across all observa-
tions. When this objective is split into agent-specific losses, these parameters become agent-specific
versions: θA, ϕA for agent A and θB , ϕB for agent B. For simplicity, we denote the functions with
these parameters as fA, fB , etc., where the subscript “A” or “B” indicates the respective agent.

In this communication game, agents A and B alternately take on the roles of speaker (Sp) and
listener (Li), with possible role pairs (Sp, Li) ∈ {(A,B), (B,A)}. Given the listener (Li) and the
message wSp received from the speaker (Sp), the objective function of the listener is given by:

JLi ≈ gSp(xSp)
⊤fLi(xLi)− βDKL (qLi(wLi|zLi, zSp, xLi)∥p(wLi)) (59)

In EmCom, agents are unable to observe each other’s internal concepts, much like humans cannot
directly access one another’s thoughts. Therefore, the listener cannot access the speaker’s function
gSp. Instead, the listener interprets the message received from the speaker using its own decoder. To
do this, we start from each agent’s function g∗ which is composed as follows:

g∗ = h(dec)
∗ ◦ h(enc)

∗ ◦ f∗ (60)

where:

• f∗ is the perception, consisting of a backbone and projector, processing the observation x∗
to obtain the internal representation z∗.

• h(enc)
∗ is the encoder of the language coder h∗, mapping the representation z∗ to the latent

variable w∗.

• h(dec)
∗ is the decoder of the language coder h∗, reconstructing a representation z′∗ from the

received message wSp.

As described in Section 4.3, the SSNG is follows these steps:

• The speaker generates a message wSp from its observation xSp

wSp = h(enc)
Sp (fSp(xSp)) (61)

• The message wSp is then transmitted to the listener, who decodes it to produce a recon-
structed representation z′Sp:

z′Sp = h(dec)
Li (wSp) (62)
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Since the listener cannot access the speaker’s component gSp, it uses the reconstructed represen-
tation z′Sp to interpret the speaker’s intent. Thus, the function gLi, which reflects the listener’s
interpretation, is composed as:

gLi = h(dec)
Li ◦ h(enc)

Sp ◦ fSp (63)

Besides, since the listener cannot access the speaker’s internal representation zSp, the DKL will be
calculated based on its own zLi. As a result, the loss function for the listener is reformulated as:

JLi ≈ [h(dec)
Li (wSp)]

⊤fLi(xLi)− βDKL (qLi(wLi|zLi, xLi)∥p(wLi)) (64)

By this formulation, the listener’s loss emphasizes how well it can decode the speaker’s shared
message wSp using its own representations, as well as regularizing its own latent space via the KL
divergence. This captures the partial observability and the need for the listener to independently
infer and interpret the shared emergent language.

D INFERENCE VIA SIMSIAM NAMING GAME

The goal of both SimSiam+VAE and the SSNG is to align the representations of different viewpoints
of the same object. This alignment process ensures that observations of the same object from differ-
ent perspectives are represented closely in the latent space. The training process, which minimizes
an alignment loss and a reconstruction loss, gradually reduces the dissimilarity between the internal
representations of both agents.

To achieve this, the objective function encourages the representations zA from agent A’s observation
xA and zB from agent B’s observation xB to become more similar. As the alignment improves, we
achieve the approximation:

p(w | zA, zB) ≈ p(w | zA) ≈ p(w | zB) (65)

Therefore, through the SSNG, the model can learn a shared latent variable w that captures the
mutual understanding between the two agents. This shared understanding is derived from the aligned
representations zA and zB , which reflect different views of the same underlying object.

E PSEUDOCODES OF SIMSIAM+VAE

Algorithm 1 Pseudocode of SimSiam+VAE, PyTorch-like

1 # projector and backbone f()
2 # predictor h with h_enc() and h_dec()
3

4 for x in loader: # load a minibatch x
5 xA, xB = augmented(x), augmented(x) # augmentation
6 zA, zB = f(xA), f(xB) # backbone + projector
7 wA, muA, logvarA = h_enc(zA) # predictor encoder of A
8 wB, muB, logvarB = h_enc(zB) # predictor encoder of B
9 zA_recon = h_dec(wA) # predictor decoder of A

10 zB_recon = h_dec(wB) # predictor decoder of B
11

12 zA, zB = zA.detach(), zB.detach() # Stop-gradient
13 loss_align = D(zA_recon, zB) + D(zB_recon, zA)
14 loss_KL = KL(muA, logvarA) + KL(muB, logvarB)
15 loss = loss_align + loss_KL # total loss
16 loss.backward() # back-propagate
17 update(f, h) # update parameters
18

19 def D(x, y): # negative cosine similarity
20 x = normalize(x, dim=1)
21 y = normalize(y, dim=1)
22 return -(x * y).sum(dim=1).mean()
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F PSEUDOCODES OF SIMSIAM NAMING GAME

Algorithm 2 Pseudocode of SimSiam naming game, PyTorch-like

1 # get observation of object x with input_A() and input_B()
2 # perception f_Sp() of Speaker and f_Li() of Listener
3 # predictor of Speaker h_Sp with h_Sp_enc() and h_Sp_dec()
4 # predictor of Listener h_Li with h_Li_enc() and h_Li_dec()
5

6 for x in loader: # load a minibatch x
7 x_A, x_B = input_A(x), input_B(x) # observations of x
8 SSNG(Sp = B, Li = A) # SSNG: B as speaker and A as listener
9 SSNG(Sp = A, Li = B) # SSNG: A as speaker and B as listener

10

11 def SSNG(Sp, Li): # SimSiam naming game
12 z_Sp, z_Li = f_Sp(x_Sp), f_Li(x_Li) # perception
13 w_Sp, _ = h_Sp_enc(z_Sp) # speaker creates message
14 w_Li, logits_Li = h_Li_enc(z_Li) # listener creates message
15 z1_Sp = h_Li_dec(w_Sp) # listener decodes received message
16 loss = D(z_Li, z1_Sp) + KL(logits_Li) # Total loss of listener
17 loss.backward() # listener back-propagates
18 update(f_Li, h_Li) # listener updates parameters

G EXPERIMENT 1 - SIMSIAM+VAE IN REPRESENTATION LEARNING

DATASETS:

• FashionMNIST (Xiao et al., 2017) contains 70,000 grayscale images, each of size 28x28,
representing 10 classes of objects with 60,000 training and 10,000 testing images.

• CIFAR-10 (Krizhevsky, 2009) is a collection of 60,000 color images, each of size 32x32
and belonging to one of 10 different classes with 50,000 training and 10,000 testing images.

MODEL ARCHITECTURE:

• Backbone network:

– FashionMNIST Backbone: A custom CNN with two convolutional layers: the first
outputs 16 channels (kernel size 4, stride 2, padding 1), and the second doubles the
channels. A fully connected layer maps the features to 512 dimensions.

– CIFAR-10 Backbone: ResNet18 in its original form. Additionally, an alternative CNN
backbone is implemented with four convolutional layers expanding channels from 3
to 512, followed by batch normalization, ReLU, and adaptive average pooling. The
results of both backbones are comparable.

• Projector: A three-layer MLP with batch normalization projects the backbone features to a
latent space (128 for FashionMNIST, 256 for CIFAR-10).

• Predictor: An encoder-decoder MLP pair:

– Encoder: Reduces latent dimensions to 64 (FashionMNIST) or 128 (CIFAR-10).
– Decoder: Reconstructs the latent dimension with sigmoid activation.

TRAINING SETUP:

The model is trained with a batch size of 128, learning rate of 1e-3, and Adam optimizer (weight
decay 1e-5). A StepLR halves the learning rate every 10 epochs over 500 epochs. A linear classifier
is trained on the frozen representations, and performance is evaluated using Top-1 accuracy for
FashionMNIST and Top-2 accuracy for CIFAR-10.
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Figure 4: Architecture of the language coder comprising an LSTM-based encoder-decoder struc-
ture. The LSTM Encoder generates a sequence of discrete tokens to form the message w =
(m1,m2, ...,mN) from a representation z in an autoregressive manner, where each token is sam-
pled from a discrete distribution over the vocabulary V . The LSTM Decoder then reconstructs a
new representation z′ from the sequence of token embeddings, with its final hidden state serving as
the output.

COMPARISON MODELS:

We compare SimSiam+VAE against SimSiam and VI-SimSiam, all using the same backbone and
projector for fair comparison, with consistent seeding. The predictor encoder of SimSiam+VAE is
similar to SimSiam and VI-SimSiam. VI-SimSiam adds a predictor encoder for kappa estimation,
while SimSiam+VAE includes a predictor decoder to reconstruct z′ from the variable w.

H EXPERIMENT 2: SIMSIAM NAMING GAME IN EMCOM

DATASETS:

We use the dSprites dataset (Matthey et al., 2017), which contains 2D shape images that vary across
different generative factors (e.g., shape, scale, orientation).

MODEL ARCHITECTURE:

• Backbone: is an MLP with three linear layers: the input dimension of 4096 is reduced to
512, then 256, and finally 128. Each layer, except the last, is followed by batch normaliza-
tion and ReLU activation.

• Projector: A multi-layer perceptron (MLP) projects the feature dimension (128) to a latent
dimension of 256 through three fully connected layers. Each layer is followed by batch
normalization and ReLU, except for the final layer.

• Predictor: (Language Coder) handles message generation and reconstruction (Fig. 4):
– Encoder: An LSTM autoregressively generates a sequence of tokens, each sampled

from a discrete distribution over a vocabulary of size. At each step, the LSTM pro-
duces logits, one-hot vectors, and messages by taking the embedding of the previously
generated token as input.

– Decoder: Another LSTM takes these one-hot token embeddings and processes the
sequence to produce a final hidden state that reconstructs the original representation.

TRAINING SETUP:

The vocabulary size |V | is 100, and the message length is 10. The model is trained with a batch size
of 256 and a learning rate of 1e-5, using an Adam optimizer. The learning rate is scheduled to decay
by half every 10 epochs using a StepLR scheduler. The model is trained for 1000 epochs.
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