
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CABA: A COLLUSIVE AGGREGATION-EMERGENT
BACKDOOR ATTACK IN FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) has been shown to be vulnerable to backdoor attacks
conducted by malicious clients. Although many studies have enhanced the stealth-
iness and durability of backdoors, the full potential of collusive attacks in FL re-
mains underexplored. Existing collusive attacks typically adopt a strategy where
each malicious client trains independently. These attacks inevitably embed back-
door features into the uploaded updates and make them susceptible to detection.
To fully exploit the collaborative capabilities of malicious clients, we propose
a novel collusive attack, named CABA (Collusive Aggregation-based Backdoor
Attack), where the backdoor behavior emerges only during model aggregation.
In CABA, multiple malicious clients jointly craft a set of updates that individu-
ally exhibit no backdoor characteristics, allowing them to bypass defense mech-
anisms. However, when aggregated, these updates manifest the backdoor in the
global model. Extensive experiments demonstrate that our proposed attack can
successfully bypass six state-of-the-art defense mechanisms, demonstrating supe-
rior stealth and attack efficacy compared to existing collusive approaches. Our
research highlights the critical importance of developing defense mechanisms that
can inspect the combined behavior of model updates after aggregation.

1 INTRODUCTION

Federated Learning (FL) (Yang et al., 2019; Kairouz & et al., 2021) enables collaborative model
training across numerous clients under the coordination of a central server, epitomized by algo-
rithms like FedAvg (McMahan et al., 2017). This paradigm offers significant privacy advantages by
allowing clients to keep their raw data local. However, the opacity of local training processes ex-
poses FL to security threats, notably Byzantine attacks (Deshmukh, 2024; Li et al., 2024). In these
attacks, malicious clients submit arbitrary model updates to corrupt the global model or impede
convergence. Among these threats, Backdoor attacks (Mothukuri et al., 2021; Fang & Chen, 2023)
are particularly insidious. In this scenario, an adversary implants a hidden backdoor into the global
model, causing it to misclassify inputs embedded with a specific trigger—for instance, classifying
any image of a “dog” as a “cat” whenever a small green square is present in the corner—while main-
taining high accuracy on benign data. Previous work (Bagdasaryan et al., 2020) has shown that such
attacks can be mounted by a single malicious client simply submitting a poisoned model update.

To enhance the stealth and effectiveness of these attacks, recent research has shifted towards collu-
sive strategies (Xie et al., 2020; Lyu et al., 2025; Li et al., 2023) that leverage multiple malicious
clients. These strategies represent a clear escalation, moving beyond single-point failures. For ex-
ample, attacks like CoBA (Lyu et al., 2025) coordinate multiple attackers to jointly optimize a more
subtle backdoor trigger and their corresponding local models, making the attack more potent. Other
advanced methods like 3DFed (Li et al., 2023) employ a “decoy” strategy, where some malicious
clients submit crafted updates to manipulate the server’s statistical baseline, thereby helping to cam-
ouflage the primary malicious updates from their collaborators. Despite their sophistication, these
approaches still operate under a common, limiting paradigm: each malicious client independently
trains and submits a complete, functional backdoor model. This represents a relatively shallow
form of collusion, where collaboration is used for concealment rather than fundamentally altering
the nature of the attack itself.
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This independent training paradigm, even when coordinated, creates a critical vulnerability. Be-
cause each malicious update contains the full statistical and structural signature of a backdoor, it
remains detectable by robust defense mechanisms(Blanchard et al., 2017; Deshmukh, 2024; Fang
et al., 2025). Current defenses primarily operate at the server by inspecting incoming model updates.
One class of defense relies on statistical anomaly detection (Yin et al., 2018; Nguyen et al., 2022);
for instance, Multi-Krum (Blanchard et al., 2017) identifies outliers based on Euclidean distance
between model updates, while Foolsgold (Fung et al., 2020) flags colluding clients by detecting
abnormally high cosine similarity in their gradient updates. A second, more powerful class of de-
fenses (Li & Dai, 2024; Xu et al., 2025; Rieger et al., 2022) inspect the intrinsic properties of a
single model. Proactive defenses like BackdoorIndicator (Li & Dai, 2024) investigates the interac-
tion of sequentially inserted backdoors by pre-embedding a backdoor into the global model using
out-of-distribution (OOD) data, and it classifies a client as malicious if the client’s uploaded update
yields high accuracy on this pre-embedded backdoor. Consequently, while a collusive attack with
decoys might bypass simple distance-based or PCA-based checks, its core backdoor update can still
be identified and rejected by these more advanced, intrinsic-aware defenses.

Our contribution. Through our survey of current research on collusive attacks and defenses, we
have found that existing collusive attacks are insufficient to bypass state-of-the-art defense tech-
niques. The full potential of collusive mechanisms remains underexplored. To fully explore the
upper bounds of collusive threats, we design and propose a novel Collusive Aggregation-emergent
Backdoor Attack, named CABA. Instead of each attacker contributing a complete backdoor model,
CABA distributes the training across multiple clients. In CABA, the adversary constructs a set
of malicious updates via joint backdoor training among multiple malicious clients. Individually,
each client’s update is merely a benign-looking fragment; the complete backdoor functionality only
manifests after the server aggregates these distinct partial updates. This fragmentation ensures that
no single update possesses the statistical anomalies or the complete intrinsic properties of a back-
door, allowing it to bypass both anomaly detection and property-based defenses. Extensive experi-
ments demonstrate that CABA bypasses six state-of-the-art defense mechanisms, proving to be both
stealthier and more effective than existing collusive attacks. Our research exposes a blind spot in
existing defense mechanisms and demonstrates the importance of validating the combined model
after aggregation.

2 PRELIMINARIES

2.1 FEDERATED LEARNING

In the traditional horizontal FL paradigm, there is a central server S responsible for orchestrating
all clients and aggregating local model updates from clients into the global model. In each training
round t, the server first broadcasts the global model Gtto the selected subset Ct of clients. Each
selected client i ∈ Ct trains its local model Lt

i locally using its own dataset Di. Once Client i
finishes training, it only uploads the local model update gti = Lt

i − Gt instead of data to the server
to keep data privacy. After receiving these model updates, the server aggregates these updates into
the global model according to the aggregation algorithm. FedAvg (McMahan et al., 2017) is the
baseline aggregation algorithm. In FedAvg, the server computes Gt+1 = Gt+ η

|Ct|
∑

i∈Ct gti as the
new aggregated global model for the next round, where η is the learning rate and |Ct| is the number
of selected clients in the current round. The server repeats the above training process until the global
model converges. In the rest of our paper, we use FedAvg as our default aggregation algorithm.

2.2 BACKDOOR ATTACKS IN FL

Backdoor attacks aim to implant the backdoor into the model by injecting training samples patched
with specified triggers and corresponding target labels during the model training process. The back-
doored model will output the target label designated by the attacker once the model meets the testing
samples containing the trigger, while it will perform normally under other circumstances. The dis-
tributed architecture and non-transparent local training process of FL present a viable attack surface
for backdoor attacks. The adversary can simply participate in the FL training process and upload the
backdoored local model to the server to introduce the backdoor functionality into the global model.
The Model Replacement Attack (Bagdasaryan et al., 2020) points out this vulnerability and success-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

fully backdoors FL through replacing the uploaded update with the backdoored model update gtb
trained by the adversarial loss Ladv = αLclass + (1 − α)Lano on the partially backdoored dataset
Dbackdoor. It designs the normalization term Lano and scales the backdoor updates by the factor γ to
evade the anomaly detection and ensure the effectiveness of the replacement. Based on this vanilla
method, there are also many advanced methods proposed to improve the stealth and durability of the
backdoor attack in FL (Zhang et al., 2022; Dai & Li, 2023; Krauß et al., 2024).

2.3 ROBUST AGGREGATION ALGORITHMS FOR FL

In FL, robust aggregation algorithms are designed to protect the central model from poisoning or
Byzantine attacks by identifying and filtering out malicious model updates from adversarial clients
during the aggregation phase. While conventional Federated Averaging is highly vulnerable to such
attacks, the objective of robust aggregation is to ensure that the aggregated global model update pro-
motes convergence, even in the presence of a subset of malicious clients. Formally, a robust aggrega-
tion algorithm Robust AGG() aims to compute an aggregated update such that the new global model
Gt+1 = Robust AGG({gtk}k∈Ct) approximates the ideal model derived solely from honest clients.
A range of robust aggregation algorithms exists to secure FL systems. Multi-Krum (Blanchard et al.,
2017) (Distance-Based) identifies malicious clients by calculating a score based on the distance of
each update to its neighbors and discards those that are statistical outliers with the highest scores.
FLAME (Nguyen et al., 2022) (Clustering-Based) uses HDBSCAN to group model updates based on
cosine similarity, then identifies the largest and most stable cluster as benign while rejecting smaller
clusters and outliers as potentially malicious. FoolsGold (Fung et al., 2020) (Similarity-Based) pe-
nalizes coordinated malicious clients by down-weighting the influence of updates that are highly
similar to many others. RFLBAT (Wang et al., 2022) (Projection-Based) identifies and removes
backdoor attacks by using PCA and K-means clustering to detect client updates with unusually
large parameter changes, then excludes these outlier contributions. DeepSight (Rieger et al., 2022)
(Behavior-Based) detects malicious participants by analyzing model update patterns—examining
prediction differences, neuron update magnitudes, and data distribution homogeneity—to group
and reject clients showing backdoor-like training behaviors. BackdoorIndicator (Li & Dai, 2024)
(Property-Based) is a proactive defense mechanism where the central server in FL injects a tem-
porary indicator task, constructed from out-of-distribution (OOD) data, into the global model and
then identifies malicious updates by observing the preservation of this task’s accuracy, a side-effect
intrinsically caused by the OOD nature of the backdoor training process itself.

3 PROBLEM DEFINITION

3.1 THREAT MODEL

Attacker’s Goal. The attacker’s objective is to embed backdoors into the global FL model via a sub-
set of compromised clients, while preserving the model’s performance on its main task. Specifically,
the backdoored global model should exhibit the backdoor behavior designated by the attacker while
performing as well as the benign classifier when encountering the original samples without the trig-
ger. Moreover, the attacker seeks to conduct the backdoor injection covertly, thereby circumventing
server-side defenses.

Attacker’s Knowledge and Capability. The attacker is assumed to control a subset of clients, grant-
ing full authority to modify their local data, training procedures, and submitted model updates; these
compromised clients may also collude. However, the attacker cannot access the central server or be-
nign clients, nor eavesdrop on their communications. We evaluate this threat under two knowledge
settings. In a white-box scenario, the attacker is omniscient—possessing knowledge of all client data
distributions and server-side mechanisms—to establish the attack’s upper bound. Conversely, in a
realistic black-box scenario, the attacker’s knowledge is restricted to its own compromised clients,
consistent with standard FL protocols.

3.2 PROBLEM FORMULATION

System Model. Our paper considers a horizontal FL system containing N clients. Each client i
owns a local dataset Di = {(xi

j , y
i
j)}

di
j=1 where di = |Di| and (xi

j , y
i
j) represents the feature vector

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and ground-truth label of the j-th data sample in i-th client’s dataset. The data can be distributed
in either an IID (Independent and Identically Distributed) or non-IID manner across clients. In
each FL training round, the central server randomly selects a subset Ct containing Ns out of N
clients to participate in the global model aggregation process. In each joint training round t, as
illustrated in Section 2.1, the server broadcasts the c and receives local updates {gtk}k∈Ct from a
selected subset Ct of clients. Different from FedAvg, we assume that the server deploys the defense
mechanism against adversarial attacks during the aggregation phase. The server aggregates all local
updates according to the aggregation algorithm with the defense mechanism, which is denoted as
the function Robust AGG(). At the end of this training round, the global model Gt is transformed
to Gt for the next round t+ 1 by the formula: Gt+1 = Robust AGG({gtk}k∈Ct)

Attack Objective. To conduct collusive backdoor attacks, we assume the attacker controls a set of
multiple clients Ct

adv ⊂ Ct in each round t by default. We denote the backdoor trigger as xtri and
the target label as ŷ. The attack objective of the collusive backdoor attack in each round t can be
formulated as the following:

x∗
tri, {gtm}∗m∈Ct

adv
= argmin

xtri,{gt
m}m∈Ct

adv

|Dtest|∑
j=0

ℓGt+1(xj , yj)︸ ︷︷ ︸
main task loss

+

|Dtest|∑
j=0

ℓGt+1(xj + xtri, ŷ)︸ ︷︷ ︸
backdoor loss

(1)

where ℓGt+1 denotes the classification loss function given the labeled data samples in the test dataset.
The first term in the objective function guarantees the accuracy of the main classification task of FL
and the second term ensures the effectiveness of the backdoor injection. Therefore, the primary
challenge of designing the collusive backdoor attack is a distributed optimization problem to find a
solution of xtri, {gtm}m∈Ct

adv
to minimize both the first loss term and second loss term at the same

time against the robust aggregation algorithm.

4 OUR COLLUSIVE ATTACK: CABA

4.1 MOTIVATION

Figure 1: The visualization of previous
collusive attacks’ updates.

While recent studies explore collusive backdoor attacks,
their methods still concentrate the core backdoor training,
creating a critical vulnerability. Approaches like DBA
and CoBA produce malicious updates that are highly sim-
ilar to each other, making them easily detectable by clus-
tering or similarity-based defenses. As illustrated in Fig-
ure 1, malicious updates are homogeneous and distinct
from benign updates. Other methods, such as 3DFed, ob-
fuscate statistics but still confine the actual backdoor in-
jection to a single client’s update. This centralization en-
sures that intrinsic backdoor features persist within that
individual update, rendering it vulnerable to property-
based defenses like BackdoorIndicator. The fundamental
limitation across these attacks is their failure to distribute
the backdoor training process itself. In this paper, we ad-
dress this gap by distributing the backdoor training across
multiple colluding clients. This strategy aims to ensure that no single malicious update exhibits the
complete, detectable characteristics of a backdoor, thus significantly enhancing the attack’s stealth.

4.2 OVERVIEW OF CABA

Our collusive backdoor attack, CABA, is based on the rationale previously discussed in Section
4.1. The core strategy involves multiple clients who jointly train a unified backdoor model and then
partition it. Each colluding client uploads only its assigned sub-model. This distribution of the back-
door’s features ensures that each individual update remains stealthy, exhibiting minimal deviation
from benign models and thus being harder to detect than a conventional single-client attack. We
designed the CABA algorithm to implement this powerful collusive attack, and its overall pipeline
is depicted in Figure 2.

4
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Figure 2: The Overview of CABA.

Figure 3: The visualization of our
CABA’s malicious updates.

Our proposed CABA framework constructs stealthy back-
door updates in FL through a four-phase process per
round. First, in the Data Redistribution phase, attack-
ers engineer a Non-IID data distribution among com-
promised clients to foster model diversity. This is cru-
cial for the subsequent Benign Model Pre-training phase,
where distinct benign models are trained on these skewed
datasets, serving as initializations. The third phase, Joint
Trigger Tuning, optimizes the trigger pattern itself to en-
hance attack efficacy. In the final and pivotal Joint Back-
door Training phase, the benign models are collectively
fine-tuned on a poisoned dataset using a composite loss
function. This function is designed to enforce the back-
door objective only on the aggregated model while main-
taining the benign appearance of individual sub-models
to evade defenses. Finally, the compromised clients up-
load these individually innocuous sub-models, with the backdoor activating only upon aggregation
by the central server. Figure 3 visualizes the effect of the collusive malicious updates generated by
the four-phase process described above. As shown, the malicious updates are indistinguishable from
the benign updates.

4.3 DETAILED METHODOLOGY

Algorithm 1 details the procedure of our CABA algorithm for malicious clients to jointly train the
optimal trigger and their colluding models. We now detail each stage of the algorithm.

Data Redistribution. Model homogeneity, resulting from the standard IID data assumption in
FL, is a primary obstacle to our attack. With sub-models converging to near-identical parameters
(cosine similarity ¿ 0.99), the aggregated model effectively mirrors the sub-models. This makes
it impossible to simultaneously achieve the conflicting objectives of individual model stealth and
aggregate backdoor efficacy. Our joint training method, which distributes backdoor functionality,
thus requires initial model diversity, necessitating heterogeneous starting points that an IID setting
cannot provide.

To ensure the training of diverse benign models, we implement a data redistribution phase to en-
gineer a Non-IID partition. First, we aggregate data from all malicious clients Ct

adv into a unified
dataset Dt

sum =
⋃

k∈Ct
adv

Dk. We then employ a Dirichlet distribution, controlled by a parameter
λ, to sample a class probability vector for each client, which dictates the allocation of data from
Dt

sum. A smaller λ induces a more skewed, Non-IID distribution. The redistribution is formulated

5
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Algorithm 1: CABA
1 AdversaryExecutes: (on behalf of compromised clients Ct

adv)
2 // Data Redistribution
3 Pool and redistribute datasets among all compromised clients based on Equation 2;
4 // Benign Pre-training and Trigger Tuning
5 for each client k ∈ Ct

adv do
6 Pre-train a benign base model Hk on its redistributed dataset based on Equation 3;
7 end
8 // Joint Trigger Tuning
9 Optimize the backdoor trigger xtri using the pooled dataset based on Equation 4;

10 // Joint Backdoor Model Training
11 Aggregate current client attack models to get the aggregated model Gagg;
12 for each data batch in pooled dataset do
13 Form a poisoned data batch using the trigger xtri;
14 Jointly update all client models {Gk} based on a composite loss based on Equation 5
15 end
16 Return the set of malicious models {Gk}k∈Ct

adv
to the server;

as:
D̃k = {(x, y) ∈ Dt

sum | y = m with probability pk,m} (2)

Each colluding malicious client replaces its local dataset Dk with D̃k to be used for the subsequent
joint backdoor training.

Benign Model Pre-training. To create the necessary model diversity for joint training, we introduce
a Benign Model Pre-training phase. Each malicious client trains the global model Gt on its unique,
redistributed dataset D̃k, adhering to the standard FL protocol. This process yields a set of distinct
benign models {Gt

k} that serve as heterogeneous starting points for the subsequent joint backdoor
fine-tuning. The training follows the standard gradient descent update:

Gt
k ← Gt

k − η
∑

(xj ,yj)∈D̃k

∇ℓGt
k
(xj , yj) (3)

where ℓGt
k

is the cross-entropy loss. To maintain stealth, training hyperparameters, such as learning
rate and iterations, mirror those of honest clients. The outcome is a unique benign model Gt

k for
each attacker, ready for the next phase.

Joint Trigger Tuning. To enhance stealth and reduce the conflict between the main and backdoor
tasks, we implement a Joint Trigger Tuning phase. In this phase, we treat the trigger xtri as an
optimizable variable. We use SGD to simultaneously update both the trigger and the global model
Gt on the aggregated malicious dataset Dt

sum. The model is trained on samples patched with the
trigger but retaining their ground-truth labels, denoted as (X + xtri · 1|X|, Y ). To constrain the
trigger’s modifications, a projection operation Proj is applied after each update, projecting the trigger
into an L2-norm hypersphere of radius N . The optimization process is formulated as:

xtri ← xtri − Proj(η∇ℓGt(X + xtri · 1|X|, Y ), N, 2) (4)

This approach finds an optimal trigger that minimally impacts main task accuracy, thereby aligning
the objectives of the two tasks. While we use a pixel pattern as our default example, this method is
trigger-agnostic.

Joint Backdoor Training. Joint backdoor training aims to create a set of malicious sub-models
that seem benign individually but manifest a backdoor when aggregated. This is achieved by op-
timizing a composite loss function, ℓjoint. First, to instill the backdoor in the aggregated model
of malicious clients, which is formulated as Gt

agg ←
∑

k∈Ct
adv

1
|Ct

adv|
· Gt

k, a backdoor loss,
ℓGt

agg
(Xb, Yb), is applied to it. Simultaneously, to make each individual sub-model appear benign,

an opposing loss,
∑

k∈Ct
adv

ℓGt
k
(X̂k, Yk), forces each one to predict the correct ground-truth label on

data with the backdoor trigger. To evade server-side defenses, two regularization terms are added:
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ℓcos({Gt
k}k∈Ct

adv
) minimizes the cosine similarity between the sub-models’ updates, and a term

based on ||Gt
k −Ht

k|| restricts the L2-norm deviation of each sub-model from its initial state. The
final combined loss function is a weighted sum of these components:

ℓjoint = (1−α)
∑

k∈Ct
adv

ℓGt
k
(X̂k, Yk)+αℓGt

agg
(Xb, Yb)+βℓcos({Gt

k}k∈Ct
adv

)+γ
∑

k∈Ct
adv

||Gt
k−Ht

k|| (5)

This allows for the simultaneous training of all sub-models, using a custom structure to backprop-
agate gradients from the aggregated model to the individual ones, ultimately producing seemingly
benign models that can collusively inject a backdoor.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

FL settings. We conduct evaluations on the CIFAR-10 dataset. The model employed for all exper-
iments is ResNet-18. Following standard FL benchmarks, we set the total number of clients to 100,
with 4 clients being compromised by default, over 500 training rounds. In each round, 20 clients are
randomly sampled to participate and all compromised clients are always being selected. To simulate
a non-IID data distribution, we partition the dataset among clients using a Dirichlet distribution (Li
et al., 2022) with a factor of 0.5. Each client trains its local model using SGD with a learning rate
of 0.1 and a batch size of 64 for 5 local training rounds. The server uses the FedAvg algorithm for
aggregation.

Baseline attacks and Defenses. To provide a comprehensive comparison, we evaluate against
four state-of-the-art baseline collusive backdoor attacks mentioned above: DBA (Xie et al., 2020),
Chameleon (Dai & Li, 2023), CoBA (Lyu et al., 2025), and 3DFed (Li et al., 2023). We evalu-
ate the robustness of our attack against a suite of seven defenses: DeepSight (Rieger et al., 2022),
FLAME (Nguyen et al., 2022), FoolsGold (Fung et al., 2020), BackdoorIndicator (Li & Dai,
2024), Multi-Krum (Blanchard et al., 2017), RFLBAT (Wang et al., 2022), and we also consider
FedAvg as a NoDefense baseline.

Metrics. We use three metrics for evaluation: Accuracy (Acc, %), which measures the model’s
performance on clean test samples. Attack Success Rate (ASR, %), which measures the model’s
prediction accuracy on samples embedded with the backdoor trigger, targeting the specified class.
Defense Bypass Rate (DBR, %), which quantifies the percentage of malicious updates that are not
detected or filtered by the defense mechanism.

Others. For all baseline attacks and defenses, we adhere to the hyperparameter settings specified
in their original papers. All experiments are conducted five times using different random seeds, and
we report the average results. All experiments were conducted on a single NVIDIA A800 GPU.

5.2 EXPERIMENTAL RESULTS

5.2.1 ATTACK PERFORMANCE COMPARISON

To evaluate the efficacy of our proposed CABA attack, we conducted a comprehensive set of experi-
ments comparing it against several state-of-the-art backdoor attacks—DBA, Chameleon, CoBA, and
3Dfed—in the face of various robust aggregation defenses. The experiments were performed on the
CIFAR-10 dataset under both IID and Non-IID data settings, with attacks initiated at different train-
ing rounds (400, 800, and 1200). As shown in Table 1 and Table 3 in Appendix, in the absence of
any defense (Nodefense), most attacks achieve a high ASR, with CoBA and our CABA consistently
reaching near-perfect ASRs. However, when defenses such as Multi-Krum, FLAME, and Foolsgold
are deployed, the effectiveness of existing attacks like DBA and Chameleon is significantly dimin-
ished, as indicated by their substantially reduced ASRs. In contrast, CABA maintains a high ASR,
often exceeding 90%, across almost all defenses and start rounds in both IID and Non-IID scenarios.
This demonstrates CABA’s superior stealth and robustness. Notably, the 3Dfed attack failed against
the Deepsight defense in the Non-IID setting; this is attributed to the excessive injection of decoy
models, which disrupted the clustering mechanism essential for Deepsight’s operation, leading to its
failure. The results clearly indicate that CABA is highly effective at bypassing a wide array of ex-
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Table 1: Performance comparison of various backdoor attacks against robust aggregation defenses
in CIFAR-10 under the IID setting.(Acc%/ASR%)
Defense Start Round DBA Chameleon CoBA 3Dfed CABA

Nodefense
400 92.30/91.17 91.78/30.84 92.52/99.99 91.66/89.11 91.95/92.06
800 92.51/91.21 92.63/30.73 92.78/99.99 92.47/90.13 92.79/92.33

1200 92.98/92.54 92.92/31.46 93.04/99.86 89.65/90.18 92.89/100.00

Multi-Krum
400 89.75/8.62 90.06/9.08 89.65/100.00 89.13/94.84 89.45/90.25
800 92.10/9.56 91.62/9.54 91.08/99.13 91.19/92.84 91.81/95.22

1200 92.70/9.64 92.33/9.43 92.73/13.09 92.10/98.84 92.53/98.35

FLAME
400 89.69/92.23 88.80/8.52 90.40/99.83 90.59/8.43 90.46/96.78
800 91.91/92.08 91.80/9.38 91.81/99.85 91.10/9.45 92.11/98.35

1200 92.72/9.80 92.93/9.76 92.78/12.75 92.68/9.65 92.58/99.98

Foolsgold
400 91.96/9.95 92.19/13.02 91.96/11.74 92.12/93.97 91.60/89.32
800 92.60/9.99 92.51/12.86 92.49/13.00 92.41/95.37 92.52/92.72

1200 93.07/10.17 93.23/12.76 93.14/12.33 92.81/97.97 93.15/99.71

RFLBAT
400 92.02/91.11 91.82/31.19 92.28/99.80 92.10/94.45 92.08/90.71
800 92.44/90.05 92.45/35.73 92.07/99.96 92.43/95.18 92.82/93.52

1200 93.01/88.90 92.76/34.38 92.85/99.98 92.27/96.16 93.16/100.00

Deepsight
400 91.39/41.14 91.34/9.16 91.09/60.76 91.21/9.44 91.47/44.93
800 92.25/61.07 92.26/9.10 92.15/80.06 92.30/9.11 92.44/48.94

1200 92.87/75.37 89.55/8.35 92.79/96.69 90.11/9.61 93.03/65.15

B.Indicator
400 90.66/36.07 91.09/9.58 91.72/99.41 91.53/30.74 92.16/91.50
800 92.56/71.10 92.06/9.27 92.85/99.89 92.58/20.44 92.60/90.03

1200 92.61/82.39 92.40/9.35 92.89/99.94 92.29/94.86 92.68/99.13

isting defense mechanisms, showcasing its advanced capabilities in mounting successful backdoor
attacks in federated learning.

5.2.2 EFFECT OF PARAMETERS

Figure 4: The impact of varying data distributions and the number of malicious clients on the ASR
and DBR of the CABA attack.

In this section, we investigate the impact of two critical parameters on our attack’s performance:
the degree of data non-uniformity across clients, simulated by the Dirichlet distribution parameter
dir alpha, and the proportion of malicious clients, referred to as the Attack Rate. The results,
illustrated in Figure 4, demonstrate the robustness and efficiency of our proposed method under
varying conditions. The left panel of the figure shows the attack’s performance as dir alpha
varies from 0.2 (highly Non-IID) to 0.9 (approaching IID). The results clearly indicate that our
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attack maintains a consistently high Attack Success Rate (ASR), remaining near 100% against the
majority of defenses regardless of the level of data heterogeneity. This demonstrates the attack’s
remarkable robustness to the statistical challenges commonly found in real-world federated learning
environments. The right panel of the figure evaluates the attack’s efficacy as a function of the Attack
Rate, ranging from 10% to 40%. The experiment reveals that our attack is highly efficient, achieving
a near-perfect ASR even when only 10% of the clients are malicious. This high performance is
sustained as the proportion of attackers increases, underscoring that the attack does not require
a large coalition of adversaries to successfully compromise the global model. Collectively, these
parameter studies confirm that our attack is potent and resilient across a wide range of challenging
and realistic federated learning scenarios.

5.2.3 ABLATION STUDY

Table 2: Ablation Study
Component w/o DR w/o JTT w/o JBT

MultiKrum 98.01 86.43 97.22
Foolsgold 6.41 86.33 13.61
FLAME 9.44 88.87 13.07
Deepsight 10.82 46.37 67.10
RFLBAT 97.27 85.47 98.78
B.Indicator 97.21 93.92 8.44

To validate the contribution of each key com-
ponent within our proposed CABA framework,
we performed a thorough ablation study. The
CABA framework is primarily composed of three
modules: Data Redistribution (DR), Joint Trig-
ger Tuning (JTT), and Joint Backdoor Training
(JBT). We systematically removed each compo-
nent one at a time and evaluated the attack’s per-
formance (ASR) against a suite of six different
defense mechanisms. The results, presented in
Table 2, reveal the integral role of each module.
For instance, without the DR, the ASR against de-
fenses like Foolsgold and FLAME drops dramat-
ically to 6.41% and 9.44%, respectively, indicating that DR is critical for evading defenses that rely
on update similarity. The removal of JTT also leads to a significant performance decline against
most defenses, highlighting its importance in creating a robust backdoor. Similarly, the absence
of JBT severely hampers the attack’s effectiveness against defenses like Foolsgold, FLAME, and
B.Indicator. These results collectively affirm that all three components are essential for the high
efficacy of the CABA attack, and they work in concert to bypass a wide range of robust aggregation
defenses.

6 RELATED WORK

As mentioned in Section 2, backdoor attacks evolved from statistically deviant single-client meth-
ods (Bagdasaryan et al., 2020; Sun et al., 2024; Wang et al., 2020) to stealthier collusive strategies
that distribute triggers across clients (e.g., DBA (Xie et al., 2020), 3DFed (Li et al., 2023)) to by-
pass statistical defenses. Consequently, server-centric defenses have advanced from passive, statis-
tical filtering techniques (e.g., Multi-Krum (Blanchard et al., 2017), Foolsgold (Fung et al., 2020),
RFLBAT (Wang et al., 2022)), which are vulnerable to adaptive attacks, to robust active methods. A
prime example is BackdoorIndicator (Li & Dai, 2024), which actively probes the model with OOD
tasks to reliably detect hidden backdoors.

7 CONCLUSION

This paper addresses the fundamental vulnerability of existing collusive backdoor attacks in Fed-
erated Learning, wherein each adversary submits a complete and individually detectable backdoor
model. We propose CABA, a novel “aggregation-emergent” attack where multiple malicious clients
collaboratively submit seemingly benign model fragments. The full backdoor functionality man-
ifests only after these fragments are aggregated by the server. Our experiments demonstrate that
CABA successfully bypasses six state-of-the-art defense mechanisms, revealing a critical blind spot
in current defense strategies that focus solely on inspecting individual client updates. This work un-
derscores the urgent need for future security paradigms to shift towards post-aggregation validation
of the global model to counter these emergent threats.

9
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8 ETHICS STATEMENT

This paper presents a novel and potent backdoor attack method, CABA, which could potentially
be used for malicious purposes. We acknowledge the risks associated with publishing such an
attack. However, we strongly believe that the benefits of this research to the security community
substantially outweigh the potential harm. The primary purpose of this work is to proactively expose
a critical blind spot in current federated learning defenses, which predominantly focus on inspecting
individual client updates. By demonstrating an ”aggregation-emergent” attack, we aim to motivate
researchers to develop more sophisticated defense mechanisms that incorporate post-aggregation
validation. This paper serves as both a warning and a benchmark, providing a crucial tool for
evaluating the robustness of future defense strategies and ultimately fostering the development of
more secure and trustworthy federated learning systems.

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we have provided a detailed description of our experi-
mental setup in Section 5.1. This includes comprehensive information on the datasets (CIFAR-10),
model architecture (ResNet-18), federated learning configurations, baseline attacks and defenses,
and all relevant hyperparameter settings used in our evaluations. Furthermore, upon publication of
this paper, we will make our source code, including the implementation of the CABA attack and
the scripts used to generate our experimental results, publicly available to facilitate verification and
further research in this area.
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APPENDIX

A THE LIMITATION OF CABA

Despite its demonstrated effectiveness, a primary limitation of CABA stems from its core design
principle: the reliance on faithful aggregation. The attack’s success is predicated on the precise
and unaltered combination of the seemingly benign sub-model updates to reconstruct the malicious
functionality in the global model. This dependency introduces a potential vulnerability. Specifically,
CABA’s efficacy can be compromised if the central server applies any pre-aggregation modifications
to the incoming updates. Defense mechanisms or standard operational procedures such as gradient
clipping, differential privacy (which involves adding noise), or model pruning, if applied individ-
ually to each update before the final summation, could disrupt the delicate, pre-calculated synergy
among the collusive updates. Such modifications would likely alter the sub-models in unintended
ways, thereby impeding the successful emergence of the backdoor in the aggregated global model
and significantly degrading the ASR. Therefore, while CABA is robust against defenses that inspect
updates in isolation, its performance is sensitive to server-side interventions that manipulate the
updates themselves prior to aggregation.
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Table 3: Performance comparison of various backdoor attacks against robust aggregation defenses
in CIFAR-10 under the Non-IID setting.(Acc%/ASR%)
Defense Start Round DBA Chameleon CoBA 3Dfed CABA

Nodefense
400 91.05/89.41 91.55/39.91 91.25/99.56 83.14/92.78 91.63/90.37
800 92.65/89.27 92.38/18.34 92.15/99.70 90.53/94.08 92.46/91.15

1200 92.73/94.09 92.93/20.88 92.48/100.00 91.47/99.33 91.67/97.35

Multi-Krum
400 88.99/8.84 87.76/9.22 89.10/99.72 83.78/99.44 89.44/90.83
800 90.92/8.81 90.70/9.81 90.77/99.53 87.08/97.77 89.36/97.55

1200 92.32/9.69 91.81/8.87 92.53/100.00 92.24/98.18 92.21/91.63

FLAME
400 89.22/94.75 88.29/8.82 89.10/99.79 88.61/91.49 87.36/98.84
800 91.06/95.08 91.30/9.38 91.80/99.99 89.81/9.6 90.41/93.16

1200 92.21/93.58 91.70/9.59 92.28/99.93 90.0/99.08 92.66/92.12

Foolsgold
400 90.21/39.03 91.29/10.83 90.23/97.82 91.32/9.67 90.39/99.37
800 92.10/9.84 92.07/12.80 91.45/98.33 91.95/9.81 91.49/94.53

1200 92.71/10.35 92.73/15.68 92.66/99.99 92.5/94.94 92.61/90.74

RFLBAT
400 90.55/77.40 91.37/40.73 91.84/99.94 90.33/97.83 91.29/91.36
800 92.14/94.00 92.37/53.93 91.92/99.95 75.44/6.63 91.78/97.42

1200 92.74/94.82 92.87/57.08 92.62/99.99 92.01/93.63 92.32/93.74

Deepsight
400 90.79/63.88 91.45/9.64 91.89/60.53 fail 92.57/33.89
800 91.20/58.77 91.97/9.44 92.09/14.25 fail 92.60/35.32

1200 92.56/73.36 92.89/9.77 92.74/99.47 fail 92.79/32.96

B.Indicator
400 87.94/19.18 88.69/9.00 89.17/99.89 89.32/8.64 91.59/91.95
800 89.13/20.32 89.93/8.40 91.59/99.86 85.55/56.87 91.48/91.90

1200 92.24/83.94 92.14/9.46 92.42/99.62 92.60/17.54 92.19/93.66

Table 4: Experiment Parameters
Parameter Value
benign lr 0.1
benign lr gamma 0.1
benign momentum 0.9
benign retrain no times 5
benign weight decay 0.0005
indicator threshold 85
deepsight num channel 3
ood data batch size 64
ood data sample lens 800
ood data source CIFAR100
poisoned data split method dirichlet
α 0.8

Parameter Value
poisoned dirichlet alpha 0.9
poisoned rate 5/64
backdoor lr 0.05
backdoor momentum 0.9
backdoor original class 1
backdoor label swap 2
backdoor retrain no times 5
backdoor weight decay 0.0005
batch size 64
tuned trigger round 1
β 0.01
γ 0.001

B EXPERIMENTAL DETAILS

For our experiments, we established a comprehensive set of parameters to ensure reproducibility
and rigor, as detailed in Table 4. This table outlines the hyperparameters for both the benign
and backdoor model training processes. Key settings include the learning rates (benign lr = 0.1,
backdoor lr = 0.05), momentum (0.9 for both), and weight decay (0.0005 for both). The con-
figuration also specifies parameters for our data handling methodology, such as utilizing CIFAR-
100 as the out-of-distribution (ood) data source and employing a Dirichlet distribution with poi-
soned dirichlet alpha=0.9 for partitioning the poisoned data. Crucial coefficients for our proposed
method are set as α=0.8, β=0.01, and γ=0.001. Furthermore, the specifics of the backdoor attacks
are defined in Table 5, which enumerates the four distinct trigger patterns by their precise pixel
coordinates.
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Table 5: Backdoor Trigger Patterns
Pattern ID Coordinates

Backdoor pattern 0 (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)

Backdoor pattern 1 (0, 9), (0, 10), (0, 11), (0, 12), (0, 13), (0, 14)

Backdoor pattern 2 (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5)

Backdoor pattern 3 (4, 9), (4, 10), (4, 11), (4, 12), (4, 13), (4, 14)

C A CLOSE LOOT AT CABA

To illustrate the stealthiness of our proposed CABA method, we conduct a comparative analysis
of the backdoor behavior exhibited by malicious models under different attack scenarios. Figure
5 presents the poisoned accuracy of four malicious models over successive communication rounds
when subjected to the 3DFed defense mechanism, while Figure 6 shows the performance of mali-
cious models constructed by CABA under the same conditions.

As depicted in Figure 5, the malicious models aggregated by 3DFed consistently maintain a very
high backdoor accuracy, frequently approaching 100%. The performance curves of the four models
are nearly identical, indicating that their malicious updates possess a high degree of similarity. This
uniformity and consistently high success rate on the backdoor task make the malicious behavior
conspicuous and easily detectable. The persistent, high-accuracy pattern serves as a clear signature
of the attack, which can be leveraged by defense mechanisms.

In stark contrast, the behavior of malicious models generated by the CABA framework, shown in
Figure 6, is significantly more erratic and unpredictable. The backdoor accuracy of each model fluc-
tuates dramatically across rounds, without maintaining a consistently high level. Furthermore, the
performance curves for the different models diverge, showing no discernible correlation or pattern.
This volatility suggests that CABA does not rely on continuously injecting a strong, uniform back-
door into a single model. Instead, the backdoor behavior characteristics are strategically distributed
among all sub-models across different rounds. By avoiding a persistent and high-impact malicious
signature in any individual model update, CABA effectively conceals the attack, thereby achieving
superior stealthiness and posing a greater challenge to existing defense strategies.
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Figure 5: The backdoor accuracy of the malicious models uploaded by 3DFed varies with the num-
ber of communication rounds.

Figure 6: The backdoor accuracy of the malicious models uploaded by CABA varies with the num-
ber of communication rounds.
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