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Abstract

In recent years, machine translation has evolved001
with the integration of multimodal informa-002
tion. Infusion of multi-modality into transla-003
tion tasks decreases ambiguation and enhances004
translation scores. Common modalities in-005
clude images, speech, and videos, which pro-006
vide additional context alongside the text to be007
translated. While multimodal translation with008
images has been extensively studied, video-009
guided machine translation (VMT) has gained010
increasing attention, particularly since (Wang011
et al., 2019) first explored this task. In this012
paper, we provide a comprehensive overview013
of VMT, highlighting its unique challenges,014
methodologies, and recent advancements. Un-015
like previous surveys that primarily focus on016
image-guided multimodal translation, this work017
explores the distinct complexities and opportu-018
nities introduced by video as a modality.019

1 Introduction020

Multimodal Machine Translation (MMT) improves021

translation by incorporating more context. This022

context can be in the form of images, audio and023

video. This infusion of extra context helps in dis-024

ambiguation of translated text and makes it more025

meaningful and accurate. MMT often mimics the026

way human translators annotate data. They take027

into account all the information that emanates from028

all modalities while translating the sentence in029

source language to target language. While MMT030

mostly focuses on images being the additional031

modality to the source text sentence, Video-guided032

machine translation has been picking immense in-033

terest as compared to other MMT techniques due034

to its ability to provide richer, more dynamic con-035

textual information than images.036

VMT takes advantage of the temporal and mul-037

timodal nature of videos, which combine visual,038

auditory, and textual data into a single cohesive039

source of information. Unlike static images, videos040

Figure 1: An example with the noun sense ambiguity
problem in the VMT model by (Wang et al., 2019)

capture sequences of events, actions, and interac- 041

tions, offering a more comprehensive understand- 042

ing of the context. This makes video-based MMT 043

particularly effective for tasks such as translating 044

instructional videos, movies, or multimedia con- 045

tent, where temporal alignment and multimodal 046

fusion are critical. For example, in a cooking video, 047

the translation of a spoken instruction (e.g., "chop 048

the onions") can be disambiguated by the visual 049

demonstration of the action, ensuring the transla- 050

tion is both accurate and contextually appropriate. 051

In Fig. 1 the presence of the word "bin" tarnslates 052

to "trash bin" in chinese after observing the context 053

from the given video. 054

The importance of video-guided MMT lies in its 055

ability to address several limitations of traditional 056

text-based and image-guided translation systems. 057

Videos provide temporal continuity which enable 058

models to capture the progression of events and 059

actions over time. Second, the integration of mul- 060

tiple modalities (text, audio, and video) allows for 061

more robust disambiguation of ambiguous terms 062

or phrases. VMT has practical applications in real- 063

world scenarios, such as cross-lingual video cap- 064

tioning, multimedia content localization, and assis- 065

tive technologies for the hearing impaired. 066

In this paper, we provide a comprehensive survey 067

of video-guided MMT, focusing on its methodolo- 068

gies, challenges, and advancements. Unlike previ- 069
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ous surveys that primarily focus on image-guided070

MMT, this work highlights the unique aspects of071

video-guided MMT and its growing importance in072

the field. We systematically categorize and analyze073

state-of-the-art approaches, datasets, and evalua-074

tion metrics, while also identifying key open prob-075

lems and future research directions.076

Our contributions are:077

1. A novel taxonomy for video-guided multi-078

modal machine translation, which systemat-079

ically categorizes existing VMT approaches.080

(Section 4)081

2. Comprehensive comparisons of methods,082

datasets, and state-of-the-art systems provided.083

(Section 6)084

3. Identifing key challenges and future research085

directions are discussed to guide further ad-086

vancements in Video guided MT. (Section 8)087

2 Background and Preliminaries088

Machine translation involves translating texts from089

one language to another language. From statistical090

to neural MT has undergone pioneering transfor-091

mations. We discuss below various stages of MT092

developments connecting it with VMT.093

2.1 Neural Machine Translation094

Neural Machine Translation (NMT) has evolved095

significantly through key innovations in neural ar-096

chitectures. (Sutskever et al., 2014) pioneered097

sequence-to-sequence learning using LSTMs,098

demonstrating that reversing source sentences im-099

proved translation by shortening dependencies,100

achieving a BLEU score of 34.8 on English-French101

tasks. (Bahdanau et al., 2016) introduced attention102

mechanisms, enabling dynamic focus on relevant103

source segments and addressing long-sequence lim-104

itations. (Luong et al., 2015) refined this with105

global and local attention models. The transformer106

architecture (Vaswani et al., 2023) eliminated recur-107

rence entirely, using self-attention for superior par-108

allelization. Subword segmentation techniques like109

byte-pair encoding improved rare-word handling110

(Sennrich et al., 2016) through compositional trans-111

lation units. Multilingual NMT systems achieved112

zero-shot translation via shared parameters and lan-113

guage tokens, revealing interlingual representations114

(Wu et al., 2016).115

2.2 Image Guided Machine Transaltion 116

Image-guided machine translation (IMT), which 117

uses visual information as an additional modal- 118

ity, gained momentum with the introduction of the 119

Multi30K dataset by (Elliott et al., 2016). However, 120

the scarcity of paired image-text datasets led to al- 121

ternative approaches such as retrieval-based image 122

machine translation (Fang and Feng, 2022; Tang 123

et al., 2022a; Zhang et al., 2020), which retrieves 124

relevant images, and text-to-image-guided machine 125

translation (Calixto et al., 2019; Li et al., 2022a; 126

Long et al., 2021; Yuasa et al., 2023; Guo et al., 127

2023), where synthetic images are generated from 128

text. 129

2.3 Other Forms 130

Beyond IMT, text-in-image machine translation 131

(Chen et al., 2023; Lan et al., 2023; Ma et al., 132

2022, 2024, 2023) focuses on translating text em- 133

bedded within images. Another development in 134

MMT is simultaneous machine translation (SiMT) 135

(Haralampieva et al., 2022; Imankulova et al., 2020; 136

Ive et al., 2021), which generates translations be- 137

fore receiving the full input to reduce latency while 138

maintaining quality. 139

In all of the above cases videos are not a part 140

of the modeling. Therefore video-guided machine 141

translation has emerged which incorporates tempo- 142

ral information alongside visual and textual data 143

for improved translation accuracy. 144

3 Problem Formulation 145

The task of VMT involves contextually appropri- 146

ate translations of source language text by uti- 147

lizing additional modalities such as video and 148

audio. Formally, given a source language text 149

S = {s1, s2, . . . , sn} and a corresponding video 150

frame sequence V = {v1, v2, . . . , vm} (which may 151

include associated audio A = {a1, a2, . . . , ak}), 152

the goal is to produce a target language translation 153

T = {t1, t2, . . . , tp} that is linguistically accurate 154

and contextually aligned with the multimodal in- 155

put. The objective of video-guided MT is to learn a 156

mapping function f that maximizes the likelihood 157

of the target translation T given the source text S, 158

video V , and audio A, expressed as 159

f(S, V,A) = argmax
T

P (T | S, V,A). 160

This involves optimizing model parameters to min- 161

imize the discrepancy between the predicted trans- 162

lation T̂ and the ground truth T , typically using 163
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Figure 2: Taxonomy for Video Guided Machine Translation
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cross-entropy loss or other sequence-level objec-164

tives. The integration of video and audio modali-165

ties introduces unique challenges, such as temporal166

alignment and scalability, which distinguish video-167

guided MT from traditional text-based or image-168

guided MT and necessitate specialized approaches169

to effectively harness the rich, dynamic information170

provided by multimodal inputs.171

Video-guided multimodal MT leverages multi-172

ple modalities (text, video, and audio) to improve173

translation quality. The approaches can be broadly174

categorized based on how they handle modality fu-175

sion. Below and in Fig. 2, we present a taxonomy176

of these approaches, with supervised approaches177

focusing on Late Fusion, Early Fusion, Hybrid178

Fusion and unsupervised approaches focusing on179

Video Pivoting.180

4 Video Guided Machine Translation.181

4.1 Late Fusion182

The early approaches in VMT utilized separate en-183

coders for video and text modalities and combined184

them at a later stage in the VMT pipeline.185

(Wang et al., 2019) designed a multimodal se-186

quence to sequence model with temporal attention187

and source attention for videos and text embed-188

dings respectively.189

(Hirasawa et al., 2020) introduce a novel ap-190

proach to video representation in machine transla-191

tion by incorporating positional encodings, making192

the model aware of the temporal order of frames.193

They further enhance the video representation by194

distinguishing between two types of features: ac-195

tion and appearance. The action features, captured196

by a dedicated video encoder, focus on motion in-197

formation crucial for disambiguating verbs in the198

translation process. Conversely, appearance fea-199

tures, extracted by an image encoder, provide de-200

tailed information about objects and scenes within201

each frame, aiding in the disambiguation of nouns.202

This dual-feature approach allows the model to bet-203

ter align visual cues with textual elements.204

(Gu et al., 2021) introduce a novel approach to205

video representation inspired by Hierarchical At-206

tention Networks (HAN) (Miculicich et al., 2018).207

Their model divides video input processing into208

two distinct components: motion representation209

and spatial representation. For capturing motion210

dynamics, they employ a pretrained I3D (Carreira211

and Zisserman, 2017) network. The spatial aspect212

is handled by a specialized HAN, which constructs213

a multi-level representation hierarchy: object-level, 214

frame-level, and video-level. In this special HAN, 215

each successive level of representation serves as 216

a helper for the higher level, allowing for a pro- 217

gressively more comprehensive understanding of 218

the video’s spatial content. The object-level fea- 219

tures inform the frame-level representation, which 220

in turn contributes to the overall video-level under- 221

standing. This hierarchical approach enables the 222

model to capture both fine-grained spatial details 223

and broader contextual information. For generat- 224

ing the translated sentence, the authors utilize a 225

GRU (Gated Recurrent Unit) (Chung et al., 2014) 226

network as the decoder. 227

(Lv et al., 2025). integrates the selective atten- 228

tion module and the bidirectional attention module 229

by taking inspiration from (Li et al., 2021) and 230

(Tang et al., 2022b). Their architecture utilizes two 231

encoders each for video and source text and fuses 232

the obtained representations using a cross modal 233

bidirectional attention mechanism. The fused rep- 234

resentations are then decoded into target-language 235

subtitles using an autoregressive transformer de- 236

coder. An empirical evaluation across multiple do- 237

mains reveals that the model’s performance notably 238

diminishes in out-of-domain scenarios. 239

4.2 Early Fusion 240

This fusion occurs when different modalities are 241

embedding together before being passed on to a 242

shared encoder: 243

(Kang et al., 2023)introduces a cross-modal en- 244

coder that jointly processes video and text represen- 245

tations. The model enhances video features with 246

positional encodings to capture temporal informa- 247

tion. This cross-modal architecture enables the 248

model to focus on relevant parts of both text and 249

video inputs, facilitating more effective multimodal 250

understanding. The training process incorporates 251

two key objectives: cross-entropy loss in the de- 252

coder for sequence generation, and a novel cross- 253

modal contrastive learning (CTR) objective. The 254

CTR objective is designed to learn shared seman- 255

tics between video and text modalities, encouraging 256

similar video-text pairs to have closer representa- 257

tions while pushing dissimilar pairs apart in the 258

embedding space. 259

(Guan et al., 2025) introduces the FIAT archi- 260

tecture, a uni-modal encoder that integrates mul- 261

tiple fine-grained inputs for video-guided transla- 262

tion. The model incorporates various types of tags, 263

including entities, audio sentiments, locations, ex- 264
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Models Datasets Modelling Approaches En-Zh Zh-En
(Wang et al., 2019) VaTex Dual Attention and Dual

Encoder for Text/Video
29.1 26.4

(Hirasawa et al.,
2020)

VaTex Order-aware video frames
using positional embed-
dings.

35.4 -

(Gu et al., 2021) VaTex Hierarchical Attention
Network (HAN) applied
at object, frame, and video
levels.

35.9 -

(Li et al., 2023b) EVA Introduces Frame At-
tention and Ambiguity-
Aware Attention.

- 27.6

(Li et al., 2023a) Vatex Uses Video as Pivot be-
tween languages

29.6 26.6

(Kang et al., 2023) VaTex
BigVideo

Introduces additional con-
trastive loss.

37.6
44.8

-

(Guan et al., 2025) TriFine Uses fine-grained speech
features with soft attention
masks.

38.06 25.51

(Lv et al., 2025) TopicVD Uses selective attention
and Bi-Attention on Text
and Videos.

29.33 -

Table 1: Overview of Multimodal Translation Models, Approaches, and BLEU scores in En-Zh and Zh-En Directions
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pressions, and video captions, alongside source265

subtitles. The cross-modal encoder processes these266

diverse inputs jointly, allowing for complex inter-267

actions between different modalities. To capture268

nuanced speech information, the architecture em-269

ploys a soft attention mask that incorporates stress270

patterns from the audio. This attention mecha-271

nism helps the model focus on emphasized parts of272

speech, improving the accuracy and naturalness of273

translations.274

4.3 Hybrid Fusion275

(Li et al., 2023b) introduce SAFA (Selective At-276

tention with Frame Attention) that integrates two277

key innovations: frame attention and selective at-278

tention. The frame attention mechanism, inspired279

by gated fusion techniques, encourages the model280

to focus on the most relevant video frames, par-281

ticularly central frames where subtitles typically282

appear. This is implemented through a frame at-283

tention loss. The selective attention component284

dynamically determines when to leverage visual285

information for translation, especially useful for286

handling ambiguous text. To further enhance the287

model’s ability to handle ambiguity, SAFA incorpo-288

rates an ambiguity-aware loss, encouraging heavier289

reliance on video information for ambiguous text290

while prioritizing textual cues for non-ambiguous291

cases.292

4.4 Unsupervised Methods293

(Li et al., 2023a) uses videos to serve as a "univer-294

sal pivot" to bridge language pairs without parallel295

corpora, with spatial-temporal graphs providing296

fine-grained visual grounding for both close and297

distant language pairs. Video pivoting in MMT298

leverages visual content from videos as an inter-299

mediary to align source and target languages in300

unsupervised settings. This approach addresses the301

challenge of latent space alignment between lan-302

guages by exploiting the shared visual-semantic303

information in videos, which provide richer spatial-304

temporal context than static images. The core305

mechanism involves multimodal back-translation306

combined with pseudo-visual pivoting, where mod-307

els learn a shared multilingual embedding space.308

Table 1 presents a comparison between all exist-309

ing approaches.310

5 Video Encoders311

Recent advances in video encoding architectures312

have significantly expanded the toolkit for video313

understanding in VMT tasks moving beyond tra- 314

ditional 3D CNNs and ResNet-based approaches 315

to specialized transformer architectures and cross- 316

modal alignment strategies. Transformer-based 317

models like VideoSwin Transformer (Liu et al., 318

2021) introduced locality-constrained spatiotempo- 319

ral attention through shifted window mechanisms 320

which reduced computational costs by 20× com- 321

pared to 3D CNNs through hierarchical feature 322

processing. Concurrently, ViViT (Arnab et al., 323

2021) demonstrated pure-transformer efficacy by 324

factorizing spatial-temporal tokens and leveraging 325

image-pretrained weights through temporal adap- 326

tation of vision transformers. Contrastive learn- 327

ing frameworks such as CLIP4Clip (Luo et al., 328

2021) adapted image-text pretrained CLIP mod- 329

els for video retrieval via parameter-free similar- 330

ity calculation and temporal alignment modules 331

and jointly optimized video-text embeddings. This 332

paradigm was extended by VideoCLIP(Xu et al., 333

2021), which incorporated hard negative mining 334

during contrastive pretraining to boost zero-shot 335

performance on video QA and aslo enabled tem- 336

poral localization without task-specific fine-tuning. 337

Emerging foundational encoders like VideoPrism 338

(Zhao et al., 2024) unified global-local video under- 339

standing through hybrid contrastive and masked au- 340

toencoding pretraining. For multimodal integration, 341

VideoGPT+ (Maaz et al., 2024b) introduced dual 342

spatial-temporal pathways combining ViT-L/14 im- 343

age encoders with TimeSformer (Bertasius et al., 344

2021) video models via adaptive pooling gates. 345

The MERV (Chung et al., 2025) framework ad- 346

vanced specialized knowledge fusion by spatiotem- 347

porally aligning features from DINOv2 (Oquab 348

et al., 2024), ViViT (Arnab et al., 2021)(temporal), 349

and SigLIP (Zhai et al., 2023) encoders through 350

cross-attentive mixing, boosting VideoLLM per- 351

formances. These architectures collectively ad- 352

dress VMT’s core requirements - balancing spatial- 353

temporal resolution, cross-modal alignment, and 354

computational efficiency - while providing adapt- 355

able frameworks for integrating domain-specific 356

visual knowledge into translation pipelines. 357

6 Datasets 358

Table 2 presents all the datasets used in Video- 359

guided machine Translation. 360

Vatex datset introduced in (Wang et al., 2019) 361

is one of the most widely used benchmarks for 362

video-guided multimodal machine translation. It 363
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consists of multilingual video descriptions and is364

designed to facilitate research in video captioning365

and translation. The dataset contains over 41,000366

videos collected from the MSR-VTT (Xu et al.,367

2016) dataset, with each video annotated with 10368

English descriptions and their corresponding trans-369

lations in Mandarin Chinese. The videos cover a370

diverse range of topics, including sports, music,371

and everyday activities, making it a robust resource372

for training and evaluating multimodal MT models.373

374

EVA (Li et al., 2023b)is a large-scale resource375

focused on subtitle ambiguity. It contains 852,000376

Japanese-English and 520,000 Chinese-English377

parallel subtitle pairs, each aligned with corre-378

sponding video clips sourced from movies and TV379

episodes. EVA also features a specially curated380

evaluation set where subtitle ambiguity is guaran-381

teed and the accompanying video is necessary for382

disambiguation, directly addressing a major limita-383

tion of prior MMT datasets.384

How2 (Sanabria et al., 2018) was one of the385

first datasets addressing multimodal language un-386

derstanding. It contains 79,114 instructional videos387

along with English subtitles and aligned Portuguese388

subtitles. All the clips contain the summary of the389

event occurring in the clip.390

VISA (Li et al., 2022b) contains clips from391

movies and TV along with parallel subtitles in En-392

glish and Japanese. All subtitles are ambiguous and393

fall into either the "Polysemy" or "Ambiguous" cat-394

egory. Hence, any translation task involving these395

subtitles must rely on the corresponding video clip396

for context.397

BigVideo (Kang et al., 2023) is a large-scale398

dataset specifically focusing on video subtitle trans-399

lation. It contains 4.5 million English-Chinese sen-400

tence pairs aligned with 156,000 unique videos,401

totaling 9,981 hours of content. It is currently the402

largest video-guided machine translation dataset403

available. BigVideo contains two specially anno-404

tated test sets: Ambiguous and Unambiguous. The405

Ambiguous set contains source inputs that require406

video context for accurate translation, while the Un-407

ambiguous set includes self-contained text suitable408

for translation without visual cues.409

The MAD-VMT (Shurtz et al., 2024) (Movie410

Audio Descriptions for Video-guided Machine411

Translation) dataset is derived from the MAD412

dataset, which contains transcribed audio descrip-413

tions of movies typically used for visually impaired414

audiences. To create MAD-VMT, the English tran-415

scriptions from MAD were machine-translated into 416

Chinese using Google Translate. This approach 417

was adopted to increase the amount and lexical 418

diversity of both source and target language pre- 419

training data for video-guided machine translation 420

tasks. 421

TopicVD (Lv et al., 2025) is a topic-based 422

dataset designed for VMT of documentaries, ad- 423

dressing the lack of large-scale, diverse video 424

data in long-form videos. It consists of 256 425

documentaries spanning eight topics - Economy, 426

Food, History, Figure, Military, Nature, Social, 427

and Technology-comprising 285 hours of video 428

and 122,930 Chinese-English parallel subtitle pairs, 429

with contextual information for each video-subtitle 430

pair. The dataset enables research on domain adap- 431

tation as experiments show that visual and contex- 432

tual information significantly enhance translation 433

performance, especially in in-domain scenarios. 434

Trifine (Guan et al., 2025) is a comprehensive 435

tri modal dataset designed for vision-audio-subtitle 436

analysis and translation tasks. It features a parallel 437

corpus of English-Chinese subtitles, complemented 438

by fine-grained audio labels such as audio senti- 439

ment and stress, as well as video labels including 440

location, entities, expressions, and actions. 441

7 Previous Surveys 442

(Shen et al., 2024) explores Multimodal Machine 443

Translation in detail covering various aspects like 444

Image-guided MT, In-Image MT, Video-guided 445

MT and Chat Multimodal MT. It explores image- 446

guided MT in utmost detail, underlining its mod- 447

elling approaches and datasets in detail. It also 448

touches upon various works which analyze the 449

extent of the importance of images in improving 450

the translations. However, the (Shen et al., 2024) 451

doesn’t explore the intricacies of video-guided MT 452

by going into the depth of modeling and taxon- 453

omy of VMT. Similarly, (Paul et al., 2024) sur- 454

veys MMT papers related to Indian Languages with 455

Image-guided MT in focus. 456

8 Challenges and Future Directions 457

This section discusses about various challenges 458

in VMT and also points towards possible future 459

research directions 460

8.1 Challenges 461

Information Redundancy and Computational 462

Overhead According to (Guan et al., 2025), 463
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Dataset Language Clips Secs Sen Domain Genre AM FT S A-S Alignment TB
How2 En-Pt 186K 5.8 186K Instruction Short Video × × ✓ ✓ ×

VATEX En-Zh 41K 10 129K Captions Short Video × × ✓ × ×
VISA En-Ja 40K 10 40K Subtitle Film and Television ✓ × × × ×
EVA En-Zh/Ja 1.4M 10 1.4M Subtitle Film and Television ✓ × × × ×

BigVideo En-Zh 3.3M 8 4.5M Subtitle Short Video ✓ × × × ×
MAD-VMT En-Zh 193K - 193K Caption Movies × × × × ×

Trifine En-Zh 2.4M 10 2.4M Subtitle Short Video ✓ ✓ ✓ ✓ ×
TopicVD En-Zh 122K 8.4 122K Subtitle Documentary × × × ✓ ✓

Table 2: Overview of Video Based Machine Translation Datasets. "Secs" denote the duration of each clip. "Sen"
denote the number of sentences in the dataset. "AM" denote the availability of ambiguity-aware dataset. "FT"
denotes the availability of fine-grained tags of the dataset. "S" denotes the availability of Audio. "A-S" alignment
indicates whether the Audio-Video are aligned. "TB" denotes topic based segragation of the dataset.

VMT requires selecting multiple frames to ex-464

tract coarse-grained visual features. However, not465

all frames contribute equally to translation qual-466

ity, leading to increased computational overhead.467

The inclusion of redundant frames can also intro-468

duce regularization issues, impacting model perfor-469

mance.470

Audio Integration in VMT While VMT primar-471

ily relies on visual cues for translation, incorporat-472

ing audio is crucial. Audio provides essential con-473

textual information, such as speaker intent, tone,474

and background sounds, which significantly en-475

hance translation accuracy. However, effectively476

fusing audio with video representations remains a477

challenge. (Guan et al., 2025) has only introduced478

a trimodal dataset with audio and fine grained tags.479

Data Scarcity in Low-Resource Languages480

VMT models require triplet data—video, source481

text, and target text—for training. However, such482

datasets are scarce, particularly for low-resource483

languages and underrepresented language families.484

This data bottleneck limits the scalability and gen-485

eralization of VMT models. Table 2 shows that486

most video-guided MT datasets consist of English487

and Chinese data with no representation from other488

language families.489

8.2 Future Directions490

Integrating World Knowledge using Video491

LLMs Enhancing VMT with external world492

knowledge, such as named entities (famous per-493

sonalities, cultural references) and idiomatic ex-494

pressions, could improve translation accuracy.495

Techniques like knowledge graph integration or496

retrieval-augmented generation could be explored.497

Pretrained large-scale multimodal models, trained498

on extensive text-image corpora, could be fine-499

tuned for VMT. Video LLMs like (Maaz et al.,500

2024b), (Cheng et al., 2024) and (Maaz et al.,501

2024a) inherently capture rich cross-modal repre- 502

sentations and have instruction following ability 503

making them valuable for video-guided translation 504

tasks which may involve reasoning. 505

High-Quality Multilingual and Domain-Specific 506

Datasets Developing large-scale, high-quality 507

datasets across multiple language families and di- 508

verse domains is essential for improving VMT. 509

This would address current data scarcity challenges 510

and enhance translation performance in various 511

contexts. Only (Lv et al., 2025) currently has do- 512

main specific segregation of data in English and 513

Chinese. 514

Real-Time Translation with Low Latency 515

Achieving real-time video-guided translation with 516

minimal latency is a key goal. Optimizations such 517

as efficient frame selection, lightweight transformer 518

architectures, and parallelized inference pipelines 519

could be explored to enable low-latency, high- 520

accuracy translations. Recently (Chen et al., 2024) 521

attempted to cruch stream video using Video LLMs. 522

However, they lose out on better representation for 523

spatial and temporal features. 524

9 Conclusion 525

In this paper, we provide a comprehensive overview 526

of video-guided machine translation (VMT). We 527

begin by discussing the background and evolution 528

of multimodal machine translation (MMT) to VMT. 529

Next, we present a taxonomy of various VMT ap- 530

proaches based on their model design. We then 531

review the datasets commonly used for VMT re- 532

search. Finally, we discuss the key challenges in 533

VMT and explore potential future directions for 534

advancing this task. 535

Limitations 536

Since video-guided machine translation is an 537

emerging field, any survey on this topic must be 538
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continuously updated to reflect new research de-539

velopments. As new datasets, models, and ap-540

proaches are introduced, the landscape of VMT541

evolves rapidly, making it challenging to maintain542

a comprehensive and up-to-date overview.543
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