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Abstract

Metaphors are commonly found in advertis-
ing and internet memes. However, the free
form of internet memes often leads to a lack
of high-quality textual data. Metaphor identi-
fication demands a deep interpretation of both
textual and visual elements, requiring exten-
sive common-sense knowledge, which poses
a challenge to language models. To address
these challenges, we propose a compact frame-
work that enhances the small model by distill-
ing knowledge from Multi-modal Large Lan-
guage Models(MLLMS). Specifically, our ap-
proach designs a three-step process inspired
by Chain-of-Thought (CoT) that extracts and
integrates knowledge from larger models into
smaller ones. We also developed a modality fu-
sion architecture to transform knowledge from
large models into metaphor features, supple-
mented by auxiliary tasks to improve model
performance. Experimental results on the MET-
MEME dataset demonstrate that our method
not only effectively enhances the metaphor
identification capabilities of small models but
also outperforms existing models. To our
knowledge, this is the first systematic study
leveraging MLLMs in metaphor identification
tasks.

1 Introduction

Metaphors are highly prevalent in our everyday
expressions and writings, which can have a range
of impacts on downstream tasks in Natural Lan-
guage Processing (NLP), such as semantic under-
standing (Neuman et al., 2013), sentiment anal-
ysis(Ghosh and Veale, 2016; Mohammad et al.,
2016) and other tasks. In recent years, the rise of
social media has sparked interest in multi-modal
metaphors. As a result, several datasets for multi-
modal metaphors have been proposed (Zhang et al.,
2021, 2023a; Alnajjar et al., 2022).

Current research on multi-modal metaphor iden-
tification is still in its early stages. The pri-
mary challenge lies in the complexity and variety
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Figure 1: An example of multi-modal metaphor identifi-
cation.

of multi-modal metaphors. Compared to single-
modality identification, multi-modal metaphor
identification not only spots metaphors in sentences
but also categorizes them as image-dominated, text-
dominated, or complementary. The second major
challenge arises from the poor quality of textual
content, mainly sourced from advertisements and
memes on social media. Texts give the image more
metaphorical features. Recent efforts use OCR (Op-
tical Character identification) to extract texts in the
image. However, only relying on OCR to convert
them into parallel texts leads to the loss of texts’
positional information. Figure 1 presents a repre-
sentative example, symbolizing how 'PUBG’ (a
video game) acts like a trap preventing 'me’ from
achieving my ’life goals’.

To overcome these challenges, we hope to gain



insights from LLMs, utilizing their rich world
knowledge and contextual understanding capabili-
ties to obtain deeper meanings of both images and
text. An intuitive but efficient approach is to use
these LLMs to generate supplementary informa-
tion without fine-tuning them; we then only need
to fine-tune a smaller model to establish connec-
tions between this information and metaphors. To
reduce the illusion of MLLMs, inspired by CoT,
we have designed a three-step method that pro-
gressively acquires the MLLM’s information in
describing images, analyzing text, and integrating
information from both modalities. The advantages
of this strategy is as follows: First, it can provide
downstream models with additional information for
each modality. Second, the shallow-to-deep under-
standing sequence aligns closely with human logic,
making it easier for the LLM to grasp deeper mean-
ings. Furthermore, subsequent steps can correct
misunderstandings from earlier steps, enhancing
the model’s robustness.

In this study, we aim to design a CoT-based
method to distill knowledge from MLLMs and en-
hance metaphor identification in smaller models
by fine-tuning them to link this knowledge with
metaphors. The basic idea is shown in Figure 1, we
first input images and text into the MLLM and ob-
tain information describing the image, text, and
their fusion. Furthermore, we have designed a
downstream modality fusion structure, which is
intended to translate supplementary information
into metaphorical features for more accurate classi-
fication. Specifically, we have designed two auxil-
iary tasks focused on determining the presence of
metaphors within the image and text modalities.

2 Related Work

Early metaphor identification tasks were confined
to a single modality and employed methods based
on rule constraints and metaphor dictionaries (Fass,
1991; Krishnakumaran and Zhu, 2007; Wilks et al.,
2013). With the flourishing development in the
field of NLP, machine learning-based methods (Tur-
ney et al., 2011; Shutova et al., 2016) and neural
network-based methods (Mao et al., 2019; Zayed
et al., 2020) have successively emerged. Following
the introduction of the Transformer (Vaswani et al.,
2017), Methods based on pre-trained models gradu-
ally supplanted the former methods and became the
current mainstream approach (Cabot et al., 2020;
Li et al., 2021; Lin et al., 2021). Ge et al. (2023)

have categorized current efforts into four main di-
rections, namely additional data and feature meth-
ods (Shutova et al., 2016; Gong et al., 2020; Kehat
and Pustejovsky, 2021), semantic methods (Mao
etal.,2019; Choi et al., 2021; Su et al., 2021; Zhang
and Liu, 2022; Li et al., 2023b; Tian et al., 2023a),
context-based methods (Su et al., 2020; Song et al.,
2021), and multitask methods (Chen et al., 2020;
Le et al., 2020; Mao et al., 2023; Badathala et al.,
2023; Zhang and Liu, 2023; Tian et al., 2023b),
where semantic methods and multitask methods
have become the primary focus of recent research.

As an emerging direction, numerous datasets
across image and text modalities have emerged,
primarily sourced from social media and advertise-
ments, yielding extensive multilingual text-image
modal data (Zhang et al., 2021; Xu et al., 2022;
Zhang et al., 2023a). Unlike the aforementioned
approaches that extract information from different
modalities and directly merge them, we leverage
LLMs employing the CoT method to analyze fea-
tures between modalities, aiding downstream mod-
els in cross-modal fusion.

3 Method

We propose a novel framework based on knowledge
distillation from MLLMs to enhance metaphor
identification. In this section we first introduce
the task definition(3.1) and the complete model
architecture((3.2). After that, we elaborate on
knowledge acquisition from MLLMs using the CoT
method(3.3) and the implementation of the down-
stream fusion module(3.4). Finally, we provide a
brief exposition of the training methodology (3.5).

3.1 Task Definition

Formally, the task of multi-modal metaphor iden-
tification falls under the typical category of multi-
modal classification problems. Given a set of cross-
modal sample pairs, the task aims to determine
whether metaphorical features are present and pro-
vide a classification result. Our work focuses on
the identification of metaphors in image-text pairs,
thus the task is represented as:

Y = F(2!,27) (1)

where 2! and 27 respectively denote the features
of the image and text modalities. Our objective is
to utilize a more effective method F' to ensure that
the classification result ¥ more closely aligns with
the true value y.
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Figure 2: An illustration of our framework of knowledge distillation from the MLLM for multi-modal metaphor

identification.

3.2 Overview

As shown in Figure2, our model architecture con-
sists of two primary components: a knowledge
distillation module and a downstream structure for
multi-model fusion.

In the knowledge distillation module, we pro-
vide a pair of image-text to the MLLM and design
a three-step template with CoT prompting. The
first two templates instruct the MLLM to focus
exclusively on a single modality—either text or im-
age, ignoring the other to generate explanations and
insights. In the third step, the MLLM combines
insights from both modalities. Based on previous
analyses, the model achieves a deeper understand-
ing and a fuller integration of both modalities.

After obtaining additional textual information
for different modalities from the MLLM, we merge
this with the original texts to form a textual input.
Similarly, the input image is treated as the visual
modality input. The model then processes these
inputs through modality-specific encoders to derive
feature vectors.

In the multi-model fusion module, we scale and
combine vectors from different modalities and de-
velop a fine-grained classifier. Specifically, we in-
tegrate the supplementary image description vector
with the visual modality input vector as the image
vector, combine the text analysis vector with the
textual input vector as the text vector, and merge

these to form a cross-modal vector. These three
vectors are then used for classification purposes.
The classifier uses the cross-modal vector to de-
tect metaphors, the image vector to identify image-
dominated content, and the text vector for text-
dominated content. This approach enhances the
use of multi-modal features for precise metaphor
recognition.

3.3 Knowledge Distillation from MLLMs
Using the CoT Method

To guide the MLLM in generating higher-quality
and more informative features, we employ CoT
prompting. This method directs the MLLMs to
extract deeper information across modalities. We
then utilize this supplementary information to as-
sist the smaller model in achieving better semantic
understanding and modality fusion. In conclusion,
we construct the three-step prompts as follows.
STEP1. Initially, to ensure that the model con-
centrates on comprehending objects, scenes, or
other visual elements in the image(Represented
by 2') without interference from textual features,
we guide the model to understand and interpret the
image information based on a template Question1:

This step can be formulated as follows:

m! = MLLM (2", Questionl) ()



Questionl: Please temporarily ignore the ftext
in the image and describe the content in the
image. Try fo be concise while ensuring the
correctness of your answers.

STEP2. Next, to better comprehend the hidden
meanings in the text(Represented by =) while
excluding any interference from image features,
we guide the model to understand and interpret
the textual information according to a template
Question?2:

Question2: Please analyze the meaning of the
text. Note that there may be homophonic
memes and puns, distinguish and explain them
but do not over interpret while ensuring the
correctness of the answer and be concise.

This step can be formulated as follows:
mT = MLLM (z", Question2) (3)

STEP3. Ultimately, we aspire for the model
to synthesize the results from the previous two
steps(Represented by m! and m”) and further in-
tegrate the image and text features(z’ and z7),
thereby obtaining more profound cross-modal in-
teraction information. We encourage the model to
fuse features from different modalities according
to template Question3:

/Quesfion3: Please combine the image, text,
and their and try to
understand the deep meaning of the
combination of the image and text. No need
to describe images and text, only answer
implicit meanings. Ensure the accuracy of the
answer and try to be concise as much as
\possible.

This step can be formulated as follows:

mMi® = MLLM (2!, 27, m?, m*, Question3)

4

3.4 Multi-modal Fusion for Metaphor
Identification

After obtaining additional modal information gen-
erated by the MLLM, we designed a modal fusion
architecture to facilitate inter-modal integration and
effectively leverage the extra information produced
by the MLLM to enhance metaphor identification
capabilities.

3.4.1 Modality-Specific Encoding

We use an image encoder and a text encoder to
obtain vectorized encodings of the image =/ and

text 27 for subsequent inter-modal fusion. Con-
sidering the additional information generated by
the MLLM is presented in text form, we treat it
as extra visual m!, textual m”, and mixed m™M®
information. This information is concatenated with
the original text and then processed through the
text encoder for computation.

V = ViT-Encoder(z?),

T = XLMR-Encoder(z”, m”, m!, m*)

&)

where V is the output of the image encoder, and T'
is the output of the text encoder.

To enable the text encoder to distinguish be-
tween texts from different modalities during com-
putation, we adopt a method similar to BERT’s
segment encoding by adding extra learnable pa-
rameter vectors for the text from each modality.
The vectorized encoding E'mb; of the i-th word
z; (x; € {27, mT m!, mMi*}) entering the text
encoder can be represented as follows:

Emb; = Er(x;) + Ep(i) + Es(segment(x;))

(6)
where Er, Ep and Eg represent learnable matri-
ces for token embeddings, positional encodings,
and segment embeddings, respectively. The term
segment(z;) € (0,1,2,3) refers to the segment
encoding of the word z;, this encoding is specifi-
cally represented by the following formula:

1, ifx;em!

2, ifx; € {7, mT

segment(z;) = S it :cl . ;Mm } 7
I (2

0, otherwise

3.4.2 Modality Fusion

Before modal fusion, to ensure the vector dimen-
sions from both encoders are consistent, in the tex-
tual modality, we compute the average of all word
vectors mean(T") as the vector representation of the
entire sentence. For the visual modality, we take
the vector of the CLS token V1 g as the representa-
tion of the entire image. Then, we use a linear layer
with a GeLU activation function (Hendrycks and
Gimpel, 2016) to map it to the same feature space
as the textual modality. The formula is represented
as follows:

yreshare — GeLU(W,Vers + by)  (8)

Considering that the text information from dif-
ferent modalities generated by the large model has



already undergone a degree of fusion within the
text encoder, we therefore concatenate these two
vectors from both modalities to obtain the final
fused vector representation. The formula for this
process is as follows:

M = [V mean(T)] )

Finally, we use a linear layer and a softmax clas-
sifier for metaphor classification.

i = softmax(Wazsie EM™ + barie)  (10)

Considering the diverse sources of metaphorical
features, we employ two separate classifiers to cat-
egorize metaphors predominantly driven by either
the image modality or the text modality. The aim is
to force the identification of metaphorical features
in both image and text before their fusion, thereby
reducing the classification complexity for the final
classifier. This approach of fine-grained metaphor
identification is based on the following formula:

1D
(12)

ET =[Vreshape, mean (T, 1)]

ET —mean([T,r, T,,r])

Here, T,,,r, T,,r and T,,,r respectively represent
the parts of the text encoding vector that describe
the image and the text. Finally, two classifiers
are used to categorize the metaphorical features
in the text and the image. The formula for this
classification process is as follows:

g1 = softmax(WrET + by)
i1 =softmax(Wr ET + br)

(13)
(14)

In the above-mentioned formulas, Wy, Wasiz,
W and W are trainable parameter matrices; b,
bariz, by and by represent bias matrices.

3.5 Training

The training objective of our multi-modal metaphor
identification model involves the integration of
three distinct loss functions, denoted as L, Lt
and L. The loss function is as follows:

1 |DymEl X
L= g ; Log (Y,Y) (15)

where Dy is the number of samples in the
dataset, The loss formula is parameterized as £ =
(L1, Lp, Lo}, with Y = {7, 47,57} and Y rep-
resenting the model’s predicted outcomes and the
true values, Lo is the cross-entropy loss function.

To optimize the overall performance, we define
the aggregate loss L, as a weighted combination
of these individual losses. The final loss function
is formulated as:

Lowm =05-L;1+0.5-Lp+ Ly (16)

4 Experiments

In this section, we begin by introducing the dataset
used to validate our method, as well as the exper-
imental setup. Following this, we report the ex-
perimental results and provide an analysis of these
outcomes.

4.1 Data and Setting

We selected the multi-modal metaphor dataset pro-
posed by Xu et al. (2022), which consists of 10,000
meme images collected from social media. Text
information was extracted from these images us-
ing OCR methods to construct the multi-modal
metaphor dataset, which includes 6,000 entries in
Chinese and 4,000 in English. In addition to the
classification labels for metaphors, they also anno-
tated the source of the metaphors and their associ-
ated emotions.

All trained models were set with a learning rate
of 1e-5, a batch size of 8, and were trained for 100
epochs with an early stopping mechanism in place.
The dataset was randomly shuffled and divided into
training, validation, and test sets in a 6:2:2 ratio.
All experiments were conducted on a single 3090-
24G GPU. The final results of our method were
obtained by taking the average of five different ran-
dom seeds, with the average single run time within
20-30 minutes. Finally, the model’s performance
was evaluated based on the F1 score.

The Low-Rank Adaptation (LoRA Hu et al.
(2021)) fine-tuning approach was adopted for fine-
tuning LLMs. All of the settings followed those
used in alpaca-lora'.

4.2 Baseline Methods

Language Models

We tested several common pre-trained mod-
els for this task, including the AutoEncoder
MBERT (Pires et al., 2019), XLM-R (Conneau
et al., 2019), as well as the AutoRegressive models
mT5 (Xue et al., 2020) and mBART (Liu et al.,
2020). Additionally, we evaluated the capabilities
of LLMs on this task by using LLaMA?2 (Touvron

lalpaca-lora


https://github.com/tloen/alpaca-lora

Modality Model Type Model ACC P. R. F1.
AutoEncoder M-BERT-base 74.60 61.25 7693 68.20
XLMR-base 83.32 7857 7271 75.53
. M-T5-base 83.86 80.25 7191 75.85
Language model | AutoRegressive Model M-BART-large 8352 7879 7314 75.86
LLMs LLaMAZ2-7b (LoRA) 83.07 7823 7229 75.15
ChatGLM3-6b (LoRA) 84.81 8222 72.86 77.26
ResNet50 75.25 69.53 53.59 60.52
CNN Model VGG16 77.69 7248 59.63 65.43
Vision model ConvNeXt-base 79.33 74775 62.87 68.30
Transformer Model ViT-base 7475 65.50 60.62 62.97
Swin Transformer-base 78.83 77.82 5626 65.31
VILT 83.13 78.01 72.86 75.35
multi-modal model internlm-xcomposer-7b (zero-shot) | 67.50 30.83 17.29 22.16
BLIP2-2.7b (zero-shot) 38.33 3344 8297 47.05
BLIP2-2.7b (LoRA) 85.66 80.61 78.34 79.46
CLIP (Zhao et al., 2023) 75.05 60.83 83.07 70.23
Vilio (Muennighoff, 2020) 84.30 79.97 79.97 76.74
Related Work CoolNet (Xiaoget al., 2023) 7749 66.84 7229 69.46
MultiCMET (Zhang et al., 2023b) | 85.66 82.69 75.25 78.79
OURS 87.70 83.33 81.58 82.44

Table 1: Results of different methods on the task of multi-modal metaphor identification.

et al., 2023) and ChatGLM3 (Zeng et al., 2022),
due to their strong performance in both Chinese
and English corpora. We fine-tuned both models
separately using LoRA.

Visual Models

We also tested models from the visual domain, in-
cluding convolutional neural network (CNN) mod-
els such as VGG (Simonyan and Zisserman, 2014),
ResNet (He et al., 2016), and ConvNeXt (Liu et al.,
2022), as well as models based on the Transformer
architecture, like ViT (Dosovitskiy et al., 2020) and
Swin Transformer (Liu et al., 2021).

Multi-modal Models

In the multi-modal model domain, we selected
VILT (Kim et al., 2021), BLIP2 (Li et al., 2023a),
and InternLM-XComposer (Zhang et al., 2023c) to
test their capabilities in addressing the metaphor
recognition task. All three models employ the
Transformer architecture, yet they differ signifi-
cantly in model size. We tested the capabilities of
these MLLMs both in a zero-shot setting and with
LoRA fine-tuning.

Other Related Works

We also explored other works related to our task,
thereby lending more credibility to our comparative
analysis. Below, we introduce these works in detail.

e CLIP: Zhao et al. (2023) evaluation of vari-

ous models for hate meme detection task, We
adopted best performance CLIP to evaluate its
effectiveness in multi-modal metaphor identi-
fication tasks.

* Vilio (Muennighoff, 2020): Using OCR and
entity recognition technologies to extract text
and visual features from memes for better
meme harmfulness detection tasks.

* CoolNet (Xiao et al., 2023): Extracting text
syntactic structure to boost model’s sentiment
analysis ability on Twitter multi-modal data.

* MultiCMET (Zhang et al., 2023b): A base-
line model for chinese multi-modal metaphor
identification task. It uses the CLIP model to
generate additional information to assist in the
fusion between modalities.

4.3 Main Results

Table 1 shows the capabilities of different models
in the task of multi-modal metaphor identification.
Here we only evaluated the main classification re-
sults . We did not assess the outcomes of the
two subtasks ! and §” as the two subtasks were
primarily designed to serve the main task.

Our approach achieved the best results in both
Chinese and English sample sets. Considering the
outcomes produced directly by LLM (internlm-
xcomposer-7b), we allowed it to indirectly generate



Model ACC P. R. F1.

Ours 87.70 83.33 81.58 82.44
-fusion model 85.66 77.87 83.12 8041
-CoT features 85.06 7842 79.75 79.08
-Vision encoder | 86.25 78.36 84.53 81.33

Table 2: Ablation study for the components in the model
on metaphor identification.

VM LM ACC P. R. F1.
ResNet 8238 7829 69.48 73.62
VGG | M-BERT | 85.86 84.60 73.42 78.61
ViT 85.75 81.73 7699 179.27
M-T5 76.66 6851 62.64 65.44
ViT M-BART | 80.21 70.97 75.14 72.92
XLMR | 86.39 83.68 76.54 79.92

Table 3: The impact of different language and vision
model combinations on the metaphor identification task,
VM for Visiual Model and LM for Language Model.
We simply use a linear layer to fuse the features of two
modalities.

additional features for images and texts, effectively
leveraging the large model’s capabilities. Coupled
with a downstream classifier, this approach resulted
in an additive effect.

The performance of multi-modal models varied
widely, with most models not surpassing language
models. This underscores the importance of textual
modality in recognizing multi-modal metaphors.
MLLMs did not perform well in zero-shot scenar-
ios, partly due to our designed prompt templates.
However, the primary reason is the models’ inabil-
ity to understand the task. Encouragingly, after
fine-tuning BLIP2, its capabilities surpassed all
other comparative methods and all language mod-
els. This demonstrates the benefit of interaction
between image and text modalities in the task and
how large models can effectively understand and
address this task after fine-tuning.

In related work, studies closely aligned with
our own, such as those by Zhang et al. (2023b)
and Muennighoff (2020), have achieved compet-
itive performances. However, Twitter sentiment
classification by Xiao et al. (2023), which differs
somewhat from our task, consequently showed
weaker performance.

4.4 Influence of Different Factors

Table 2 shows the effects demonstrated by our

model after undergoing ablation experiments.
Replacing the fusion structure in the model with

a linear layer resulted in a significant decrease in
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Figure 3: The effect of different sizes of models with
or without CoT generation and the rate of improvement.
We controlled the intercept of the model size between
0 1, to be able to show the effect of improvement on a
single figure.

performance. This suggests the necessity of addi-
tional fusion structures to help the model under-
stand the extra features generated by the MLLM.
Moreover, eliminating the CoT generation method
of the MLLM, and relying solely on a one-step
generation method, led to an even more notice-
able performance drop. This also indicates that the
CoT method can generate better additional features,
thereby assisting downstream models in making
more accurate judgments.

Interestingly, the performance of the model de-
clined only slightly when we removed the image
processing module. This indicates that large mod-
els can provide a certain level of visual information
for smaller models, but more comprehensive in-
formation still requires the contribution of visual
models.

4.5 The Impact of Different Language Visual
Model Combinations

We tested the capabilities of multiple visual and
textual models during modal fusion. To control
variables, the language model was uniformly set to
MBERT when testing visual models, and the ViT
visual model was used consistently when testing
language models.

From the data in Table 3 and Table 1, although
in single modality settings, the visual model VGG
and the textual model mT5 achieved the best per-
formance, the combination of ViT and XLM-R
outperformed all others upon modal fusion.

Additionally, the combinations of ResNet +
MBERT and VGG + MBERT are also baseline



Labels: True
Ours: True

Baseline: False X

| been watching too many cute
seal videos

Everyone: sit like a lady

Labels: False Mo:

Ours: False +/

Baseline: True X

\\ advice to sit like a lady.

[ 3-step Outputs of internLM ]

// Image description: The image shows a close-up of a potato with a seal's N\
face drawn on it.
Text meaning in the image: The text reads "I been watching too many
cute seal videos".
The hidden meaning conveyed by the combination of image and
text: The image and text combination is intended to be humorous and
sarcastic, implying that the viewer has been watching too many cute seal
\\\Videos, as evidenced by the potato with a seal's face drawn on it. /

J/Image description: The image features a woman sitting in a chair\\
| wearing a red dress. She appears to be posing for a photo, with her legs |
crossed and a hand on her hip.
Text meaning in the image: The text "Everyone:sit like a lady Me:" is a
homophonic meme. The intended meaning is that everyone should sit like a
lady, which implies good manners and proper behavior.
The hidden meaning conveyed by the combination of image and
text: The combination of the woman's pose and the caption creates a
humorous and sarcastic tone, implying that the woman is not following the

Figure 4: Examples of case study.

/

models proposed by Met-Meme (Xu et al., 2022).
According to the results, we reported the same re-
sults as them.

4.6 The Impact of Language Model Size

Figure 3 illustrates the abilities of models of dif-
ferent sizes under our architecture. It was evident
that as the model size increased, especially when
the model was initially small, there was a progres-
sively noticeable performance improvement. When
the model was too small, the additional textual in-
formation did not yield positive effects; rather, it
could had the potential to negatively impact the
model’s performance. It was only when the model
size was increased that the model became capable
of understanding longer contextual information.

4.7 Case Study

To further explore the effectiveness of our proposed
model, we select two examples from the testing
dataset illustrated in Figure 4.

The first example demonstrates an image-led
metaphor. By directly comparing a seal with a
potato, it depicts the consequences of looking at
too many cute seals. The MLLM, through its un-
derstanding of the image, accurately recognized the
resemblance between the seal and the potato. Com-
bined with the textual information, it correctly in-
terpreted the true meaning expressed by the meme,
thereby aiding the downstream model in making
the correct judgment.

In the second example, the MLLM identified
features from both the image and text, and then
combined these to correctly understand the humor-
ous meaning expressed in the meme. As a result,
the downstream model accurately recognized that
it did not contain metaphorical features. In con-
trast, methods lacking the additional information
from the large model judged it to be metaphorical
based solely on the phrase "like a lady," leading to
a misjudgment.

5 Conclusion

In summary, our study aimed to tackle the chal-
lenges of multi-modal metaphor interpretation by
leveraging advanced multi-modal language mod-
els. We designed a three-step method with CoT-
prompting to extract richer information from both
images and text. Augmented knowledge from large
models proved crucial in enhancing smaller models
to grasp metaphorical features within each modal-
ity and in the fusion of modalities. This work not
only advances multi-modal metaphor identification
but also paves the way for future research explor-
ing the potential of MLLMs in addressing complex
language and vision challenges.

Limitations

We believe the main limitation of our work lies in
only testing our metaphor recognition ability within
a multilingual meme dataset and not extending to



other subtasks in meme datasets, such as harmful-
ness detection, nor to metaphor identification in
other multi-modal datasets. However, despite the
lack of experimental data, we are confident in our
work’s applicability in these directions, which will
also be one of our future research focuses.
Additionally, regarding the meme dataset, we
did not find a usage license, nor did we filter for
potential harmfulness or offensiveness in the data,
including in the extra features generated by the
MLLM, which may contain toxic data, thus pre-
senting a risk of offensiveness and harmfulness.
Although we used a method of averaging five
tests for our model, for other comparative meth-
ods, we simply took the results from the first run
for inclusion in our tables. We acknowledge this
could introduce some error, but we believe that
even if the comparative methods were tested in
the same way, our method would still demonstrate
overwhelmingly superior performance.
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