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Abstract
Addressing imbalanced or long-tailed data
is a major challenge in visual recognition
tasks due to disparities between training and
testing distributions and issues with data noise.
We propose the Wrapped Cauchy Distributed
Angular Softmax (WCDAS), a novel softmax
function that incorporates data-wise Gaussian-
based kernels into the angular correlation
between feature representations and classifier
weights, effectively mitigating noise and sparse
sampling concerns. The class-wise distribution
of angular representation becomes a sum of
these kernels. Our theoretical analysis reveals
that the wrapped Cauchy distribution excels the
Gaussian distribution in approximating mixed
distributions. Additionally, WCDAS uses
trainable concentration parameters to dynamically
adjust the compactness and margin of each class.
Empirical results confirm label-aware behavior
in these parameters and demonstrate WCDAS’s
superiority over other state-of-the-art softmax-
based methods in handling long-tailed visual
recognition across multiple benchmark datasets.
The code is public available.

1. Introduction
Deep convolutional neural networks are the leading methods
for computer vision tasks, including visual recognition.
This strength is largely due to their robust representation
learning, a technique that simplifies target images into a
vector space with fewer dimensions. This crucial step is
facilitated by the penultimate layer and subsequently fed
into the final classifier, followed by a softmax function,
which calculates the probability of an input image being in
the j-th class: P (y = j | x) (Bridle, 1989; Goodfellow
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et al., 2016). However, most image recognition tasks
have been demonstrated on well-balanced datasets. In
contrast, most real-world data comes with an imbalanced
distribution: a few high-frequency classes contain many
training examples, while many low-frequency classes have
insufficient training examples. This scenario is referred to
as long-tailed recognition (Liu et al., 2019), and standard
methods trained with such datasets tend not to yield the
same performance as balanced ones (Liu et al., 2019; Lin
et al., 2017; Cui et al., 2021).

Numerous studies have focused on long-tailed recognition
by attempting to re-balance the data distribution through
class-balanced sampling or class re-weighting (Han et al.,
2005; Kang et al., 2020; Kubát & Matwin, 1997; Huang
et al., 2016; 2020; Hong et al., 2023). However, they
may under-represent the majority class (Han et al., 2005;
Kang et al., 2020; Kubát & Matwin, 1997) or destabilized
the network during optimization (Huang et al., 2016;
2020). In addition to direct sampling, focal loss (Lin
et al., 2017) adopts loss function emphasizing samples
with larger loss value. However, it inevitably involves
hyperparameters tuning by cross-validation. An alternative
method is to adopt a label-aware correction via introducing
a class-wise generalization error bound, such as Label-
Distribution-Aware Margin Loss (LDAM) (Cao et al., 2019)
and Balanced Meta-Softmax (BALMS) (Ren et al., 2020).
Cao, et. al. have proved that to improve the accuracy
in recognizing long-tailed distributed data, classes with
fewer training examples should have a higher generalization
error bound (Cao et al., 2019). However, both LDAM and
BALMS can be vulnerable when the number of examples
per class is unknown and constantly changing. Therefore,
further corrections are required for continuous training.
Meta-Weight-Net (Shu et al., 2019) and Equilibrium loss
(Feng et al., 2021) are developed for class re-weighting and
inter-class margin correction, which require no visibility to
the underlying data distribution. However, those methods
can either be subject to lengthy training time due to
the nature of meta-learning (Shu et al., 2019) or high
space complexity because of the memory module (Feng
et al., 2021). Lastly, using angular softmax, Kobayashi
has proposed applying von Mises-Fisher distribution for
compact feature space via a user-defined concentration
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parameter (κ) (Kobayashi, 2021). However, such a method
leads to lengthy hyper-parameter tuning with isotopic κ
for all classes. Meanwhile, their trainable class-wise
κ approach shows inferior performance compared with
the user-defined counterpart for an optimal performance
(Kobayashi, 2021). In addition, data noise also exists in
long-tail problem (Tong Wu & Lin, 2021; Cao et al., 2021;
Zhang et al., 2023).

In light of these challenges, we propose the Wrapped
Cauchy Distributed Angular Softmax (WCDAS) for long-
tailed visual recognition based on (Kobayashi, 2021).
We presume that the data-wise probability distribution
follows the wrapped Normal distribution and deduce
that WCDAS can be a better fit for mixed distributions
comprised of individual distributions. We also demonstrate
that WCDAS has several desirable features, such as
adaptive regulation of the margins between classes via a
concentration parameter, exhibiting label-aware behavior.
Upon evaluation on several benchmark long-tailed image
classification datasets, WCDAS outperforms state-of-the-art
softmax-based methods.

In summary, our contributions include: 1) proposing a
model that considers noise-induced uncertainty in the form
of data-wise wrapped Normal distributed kernels; 2) proving
that WCDAS can more effectively fit the mixed distribution
of such kernels; 3) showing that under a specific condition,
our method also significantly enhances inter-class margins,
resulting in compact clustering; and 4) demonstrating that
the concentration parameter can be adaptive, with classes
with fewer training samples having a higher concentration
parameter and a larger margin.

2. Related works
Angular-based Softmax. Angular softmax (Liu et al., 2016)
and its mutant approaches (Deng et al., 2019; Liu et al.,
2017) have recently been proposed to improve the softmax
loss in face verification tasks. Unlike conventional softmax,
these methods allow neural networks to learn features in
an angular manner by focusing on the cosine similarity
between classifier weights and features. Among these,
Large-margin softmax (Liu et al., 2016) directly enforces
inter-class separability on the dot-product similarity, while
SphereFace (Liu et al., 2017) and ArcFace (Deng et al.,
2019) enforce multiplicative and additive angular margins
on the hypersphere manifold, respectively. These margins
are controlled by a hyperparameter, m: the larger the value
of m, the larger the margin. Consequently, larger margins
between classes can lead to compact clusters, resulting in
enhanced performance over conventional softmax. (Liu
et al., 2017; Deng et al., 2019; Liu et al., 2016).

Long-tailed recognition. Datasets with long-tailed

distribution (Liu et al., 2019) not only have an imbalanced
class with respect to the number of examples per class but
also have a long tail of classes with only a few examples
(<10), i. e., tail class. Two predominant approaches for
such a problem are (1) loss function improvement and (2)
data re-balancing. The former approach exploits aggressive
learning in the tail classes (Lin et al., 2017; Jingru Tan, 2020;
Cui et al., 2019) or forcing large margin between classes,
especially tail classes(Cao et al., 2019; Ren et al., 2020; Ye
et al., 2020). In particular, Cao et. al. (Cao et al., 2019)
theoretically prove that the generalization error bound could
be minimized by increasing the margins of tail classes. In
addition to margin correction, Feng et. al. also balances the
classification via a Feature Memory Module (Feng et al.,
2021). At the same time, a handful of studies focus on
data re-balancing during training, the second approach for
imbalance training. Data rebalancing can be achieved by
data re-sampling (Han et al., 2005; Kang et al., 2020; Kubát
& Matwin, 1997) or class re-weighting (Huang et al., 2016;
2020). However, data re-balancing-based strategies can
lead to overfitting the tail classes and less efficient learning
of the over-representative ones. The sampling strategies
include fixed samplers (Kang et al., 2020) and meta-based
samplers (Ren et al., 2020; Shu et al., 2019). Decoupled
training (Kang et al., 2020) is a simple yet effective solution
that could significantly improve the generalization issue
on long-tailed datasets. During this two-stage training,
the representation learning is trained by instance-balanced
sampler (Kang et al., 2020) while the classifier is further
fine-tuned by class-balanced sampler (Kang et al., 2020)
and meta sampler (Ren et al., 2020).

Parametric modeling of feature distribution. Despite
the emergence of deep learning being attributed to non-
parametric non-linearity modeling, effectively training
a network can prove challenging when dealing with
certain real-world datasets that present issues such as class
imbalance and insufficient examples. Parametric modeling,
based on certain assumptions, can greatly assist learning in
these adverse situations (Yang et al., 2021; Hayat et al.,
2019). One such approach involves approximating the
Gaussian distribution of feature representation in few-shot
learning to enhance generalizability (Yang et al., 2021). In
the context of imbalanced classes, studies have shown that
Gaussian distribution (Hayat et al., 2019) and von Mises-
Fisher distribution (Kobayashi, 2021) modeling of feature
representation, or angles between weights and features, can
significantly improve performance. Parametric modeling of
the feature space can also better handle uncertainty caused
by noise in the data. Popular methods of utilizing parametric
models to account for uncertainty include Variational
Auto-encoder (Kingma & Welling, 2013), Bayesian-based
dropout (Gal & Ghahramani, 2016), and DUL (Chang et al.,
2020), among others.
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Inspired by these three distinct approaches, we propose
a method that parametrically models the feature
representation. This method uses data-wise Gaussian
kernels as basis and it includes class-wise parameters that
are trainable, providing an adaptable framework for various
types of data."

3. Wrapped Cauchy Distributed Angular
Softmax (WCDAS)

Previous knowledge. For angular softmax, the predicted
probability from the linear classifier in CNNs for the j-th
class given a sample vector x and a weighting vector w is
formulated as:

P (y = j | θ) = ef(θ;j)∑C
c=1 e

f(θ;c)
=

escosθj∑C
c=1 e

scosθc
(1)

where,
f(θ; j) = s cos θj (2)

f(θ; j) calculates the angle between normalized vectors
x and w, cosθj = xTwj . For the ease of writing, we
refer the angular representation (θj) between x and w as
"angular features". s ∈ R is a empirically-defined constant
(Deng et al., 2019; Liu et al., 2017) or trainable parameter
(Kobayashi, 2021).

Intuition and Overview of WCDAS. The probability
function (f(θ; j)) of the angular softmax function (Equation
2) describes the angle between representation features
and classifier weights. As such, the classifier weights
are optimized to minimize the loss function, given cosθj .
However, this approach may potentially lead to overfitting,
especially when training with a few examples, as discussed
in previous large-margin based cosine softmax studies
(Kobayashi, 2021; Liu et al., 2016), or with data containing
noise, as reported by other studies (Tong Wu & Lin,
2021; Cao et al., 2021; Zhang et al., 2023). To address
these issues, our method seeks an optimal parametric
probability density function of θj , conditioned on y =
j, i.e., P (θ | y = j). To achieve this, we initially
propose using a data-wise Gaussian-based kernel as a basis.
Intuitively, given θ, such a kernel can model the data-wise
uncertainty caused by the input noise or sparse sampling,
instead of a direct class-wise distribution (Section 3.1). By
doing so, we can obtain the class-wise angular feature
probability density function by summing the individual
basis (Section 3.1). Subsequently, we prove that this class-
wise distribution can be more accurately approximated by a
Wrapped Cauchy distribution, f(ρ, θ; j), with a class-wise
trainable concentration parameter, ρ ∈ RC (Section 3.2).
We provide insights into why our novel softmax is a better
parametric distribution for representation feature modeling
(Section 3.2) and how it can create large margins under
specific conditions (Section 3.3).
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Figure 1: Illustration of our method compared with other methods.
Black dot: representation of each data in one class. Yellow
dot with a black edge: centroid of the cluster. Gray solid line:
Gaussian kernel boundary. (a) Input data 1, 2, ..., M in Class j.
(b) parametric modeling of features from each data via a wrapped
Normal kernel. (Hayat et al., 2019; Kobayashi, 2021) (c) Left
panel: parametric modeling of features from each data via wrapped
Normal distribution. Right panel: zoomed diagram of the magenta
box in the left panel.

3.1. Wrapped Normal Basis for Angular Feature
Density Estimation.

Assumption. To mitigate overfitting in the representation
features, we approximate the uncertainty induced by
noise or sparse sampling using a Gaussian distribution.
Consequently, the angular feature of each data point follows
the probability distribution of a Normal distribution in
circular coordinates, i.e., a Wrapped Normal distribution
or a von Mises-Fisher distribution. Given that the
latter approximates the former distribution, we treat both
distributions as equivalent for ease of discussion. This
model of noise or sparse sampling-induced uncertainty using
a Gaussian distribution has been widely utilized in various
studies (Gal & Ghahramani, 2016; Rasmussen & Williams,
2005; Abdar et al., 2021). Following this assumption, the
probability distribution function of the angular feature for
the m-th data point in the j-th class can be represented in the
form of a Symmetric-Wrapped Stable (SWS) distribution
(Jammalamadaka & SenGupta, 2001):

h(ρ, θ;m, j) =
1

2π

(
1 + 2

∞∑
n=1

ρn
a

m cosn(θm − µm)

)
(3)

where n ∈ N, ρm ∈ [0, 1) denotes concentration parameter
of m-th data in j-th class, µm denotes the center of j-
th class and a ∈ (0, 2]. When a = 1, Equation 18
returns the wrapped Cauchy distribution and for a = 2,
we get the wrapped Normal distribution (Jammalamadaka &
SenGupta, 2001). The bigger ρm is, the more compact the
wrapped Normal kernel is. Since h(ρ, θ;m, j) computes the
probability θm belongs to j-th class with the optimized
classifier weights, hence, for the correct class to be
recognized based on Equation 1, µm → 0.

Note that in our proposed method, we approximate the
uncertainty of each θm as wrapped Normal distribution
parameterized by ρm and µm instead of modeling the
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f(θ; j) directly (Hayat et al., 2019; Kobayashi, 2021). Such
difference is shown in Figure 1(b) and (c).

Class-wise probability distribution. Subsequently, mixed
distribution f(θ; j) can be obtained by summing all the
h(ρ, θ;m, j) in j-th class:

fmixed(θ; j) =
1

Mj

Mj∑
m=1

h(ρ, θ;m, j) (4)

where Mj is the total number of samples in j-th class.
fmixed(θ; j) describes the mixture of Mj wrapped Normal
distributions centered around zero. Such an idea is
used in the non-parametric estimation of a probability
density function, such as kernel density estimation (KDE)
(Rosenblatt, 1956; Parzen, 1962). However different from
KDE, ρj , a vector comprised of all ρm in j-th class, can be
different in values, representing the heterogeneity of each
data.

Theorem 1. Let fmixed(θ; j) be a mixed distribution
formed by summing several wrapped Normal distributions
h(ρ, θ;m, j) (Equation 18). h(ρ, θ;m, j) is centered at µm.
µm follows Normal distribution N (0, σ) centered at zero,
where σ → 0. Then fmixed(θ; j) can be approximated as:

fmixed(θ; j) ∼
1

2πMj

Mj∑
m=1

(
1 + 2

∞∑
n=1

ρn
2

m cosnθm

)
(5)

Corollary 1.1. Let fmixed(θ; j) be a mixed distribution
formed by mixing several wrapped Normal distributions
(Equation 18 and Equation 5), then fmixed(θ; j) is a wrapped
distribution with cosine moments, αmixed, given by

α
{n}
mixed =

1

Mj

Mj∑
m=1

α{n}
m (6)

where α
{n}
m is the n-th cosine trigonometric moment of

h(ρ, θ;m, j).

We present the detailed proof of Theorem 1 and Corollary
1.1 in Appendix A. Theorem 1 essentially shows that when
summing the wrapped Normal distributed kernel basis with
a small perturbation away from zero, the result can be
approximated as a sum of wrapped Normal distributions
centered at zeros. Corollary 1.1 demonstrates that cosine
moments of the mixed distribution can be obtained by
averaging the cosine moments of each distribution. We
note that the cosine moments of mixed distribution from
two wrapped Normal distributions centered at zeros have
been proven by Bailey, et. al. (Bailey & Codling, 2020).
We here prove that it can be generalized to several functions
that are not centered at zero under certain conditions.

3.2. Angular Feature Probability Approximation via
Wrapped Cauchy Distribution.

It is vital to find the optimal presentation of fmixed(θ; j).
One straightforward solution is to use non-parametric
approaches (Rosenblatt, 1956; Parzen, 1962). However,
those methods usually require large computational costs
for large dataset (Holmström, 2000). In our case, those
methods also requires each ρm to be calculated separately.
Therefore, we approximate fmixed(θ; j) with parametric
distribution, denoting f(θ, ρ; j). According to Theorem
1, f(θ, ρ; j) should also be an SWS distribution. Among
the two predominant SWS distributions (Wrapped Cauchy
distribution vs Wrapped Normal distribution), wrapped
Cauchy distribution can fit Equation 5 better than the
wrapped Normal distribution.
Theorem 2. Let fmixed(θ; j) be a mixed distribution formed
by mixed several wrapped Normal distributions h(ρ, θ;m, j)
of j-th class, centred around zero, defined in Equation 4.
f(θ, ρ; j) is the approximated distribution with a choice
of wrapped Normal fWN(θ, ρ; j) and wrapped Cauchy
fWC(θ, ρ; j). Let ρj, min of f(θ, ρ; j) minimize the least
square error between f(θ, ρ; j) and mixed distribution
fmixed(θ; j) of j-th class:

∆ρj ,WC or WN = ||fWN or WC(ρ, θ; j)

− 1

2πMj

Mj∑
m=1

(
1 + 2

∞∑
n=1

ρn
2

m cosnθm

)
||2 (7)

ρmin = argmin
ρ

∆ρ (8)

Then the least square error of optimal ρj, min of j-th class
is correlated with standard deviation of (

∑Mc

mc=1 ρ
n2

m )
1
n or

(
∑Mc

mc=1 ρ
n2

m )
1
n2 with respect to n ∈ [1,∞)

∆ρj,min,WN ∝ SDn=1

 Mj∑
m=1

ρn
2

m

 1
n

or ∆ρj,min,WC ∝ SDn=1

 Mj∑
m=1

ρn
2

m

 1
n2

(9)

Theorem 3. Let ρm of individual h(ρ, θ;m, j) distribute
uniformly across its defined domain [0, 1), ∆WN and ∆WC

defined in Equation 29, Then ∆ρj,min,WC < ∆ρj,min,WN

The detailed proofs of Theorem 2 and Theorem 3 are
provided in Appendix A. These proofs substantiate that a
mixed distribution constituted by SWS distributions aligns
better with the wrapped Cauchy distribution than with
the wrapped Normal distribution. Although the proof is
analytical, it is based on the numerical assumption that ρm
in the j-th class is evenly distributed in [0, 1) (Theorem 3).
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Figure 2: Heatmap of ∆ρmin,wn (a) and ∆ρmin,wc (b) with respect to ρ and σ. (c) Binary heatmap showing whether wrapped Cauchy (WC:
black) or wrapped Normal (WN: gray) is preferred for simulated mixed distribution.

We also provide a numerical simulation for more general
situations where ρm ∼ N (µρ, σρ). Given that ρ ∈ [0, 1),
we simulate µρ and σρ with the value of 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9. Any ρ values outside the [0, 1) domain
are clipped to 0 and 1, respectively. Figure 2 shows the
results, indicating a preference for the Wrapped Normal
distribution when σρ is small (σρ ≤ 0.1); otherwise, the
wrapped Cauchy distribution is preferred. This implies
that unless the mixed distribution fmixed(θ; j) comprises
wrapped Normal distributions with similar concentration
parameters, the wrapped Cauchy distribution, due to its
heavy tail, provides a better approximation for fmixed(θ; j).

Assuming that ρm follows a uniform distribution is an
idealized assumption that simplifies the learning process.
In practice, the actual distribution of ρm might be more
intricate. However, as our simulation of Gaussian-
distributed ρm demonstrates, there is a trend: the greater the
diversity of ρm values, the more advantageous the Cauchy
distribution becomes as an approximation over Gaussian,
given the heavy tail of the Cauchy distribution.

3.3. Large Margin ρ and optimization

It is important to obtain the optimal ρ. According to the
geometric series, Equation 18 can be written in an alternative
form with element-wise calculation(Jammalamadaka &
SenGupta, 2001):

f(ρ, θ) =
1− ρ2

2π(1 + ρ2 − 2ρ cos θ))
(10)

where ρ is the vector containing ρj∈[1,C] from all classes
with the total number of C. We note that this alternative
form of Equation 18 is presented for the ease of calculating
the margin between classes.

Large margin via WCDAS. Several studies have
demonstrated that the large margin-based softmax approach
can lead to better performance both in balanced (Deng et al.,

2019; Liu et al., 2017; 2016) and imbalanced datasets (Ren
et al., 2020; Hayat et al., 2019; Cao et al., 2019). We
here prove that WCDAS can perform equivalently as those
methods under a certain domain of ρ. However, we note that
not all ρ in WCDAS contribute to a large margin. Intuitively,
only high ρ leads to tighter clustering. We here provide the
boundary of ρ that will lead to large inter-class margins.

Theorem 4. Let ρj be the concentration parameter of
wrapped Cauchy distribution fwc of the j-th class. x is the
normalized presentation feature and w is the normalized
weights of the classifier layer. Let θj and θk be the
angle between x and w of j-th and k-th class respectively,
where x is from class j. When ρj ∈ (0.42332, 1), then
∥fWC(θj)− fWC(θk)∥ > ∥ cos θj − cos θk∥ for any θj and
θk when cos θj > cos θk. The margin can be expressed as

∥fWC(θj)− fWC(θk)∥ =
ρj + ρ2j

π(1− ρj)3
∥ cos θj − cos θk∥

(11)

The detailed derivation is shown in Appendix A. Theorem 4
shows that within such a domain, WCDAS yields a larger
margin compared with cos θ. It is worth mentioning that
such behavior holds with any θj and θk. It is also shown
that the larger ρj is, the larger the margin is (Appendix
Figure 6). However, we note that our paper cannot prove
that the margin is label-aware because of the gradient-
based optimization. Therefore, the behaviors of ρ during
optimization require numerical studies (see Section 4.3).

Optimization We can calculate its gradient with respect to
ρ:

∂f(ρ, θ)

∂ρ
=
−2ρ+ (1 + ρ2) cos θ

π(1 + ρ2 − 2ρ cos θ)2
(12)

Through direct visualization of Equation 12 (Figure 3), we
notice two characteristics of our method: (1) when θ is
away from 0, ρ decreases, i. e., ∂f(ρ,θ)

∂ρ < 0; when θ is
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Figure 3: Gradient plot of ∂f(ρ,θ;j)
∂ρ

with respect to ρ and θ(a). The cross sections plotted along ρ (b) and θ (c).

around 0, ρ increases, i. e., ∂f(ρ,θ)
∂ρ > 0. (2) The gradient

∂f(ρ,θ)
∂ρ also increases when θ is around 0. Through the

former characteristic, ρ is able to regulate the margin from
the classifier layer. In contrast, the second characteristic can
destabilize the whole network, since the value of ρ can also
go beyond the defined domain. To address this issue, we
define wρ ∈ (−∞,∞) so that ρ follows the behavior of
sigmoid function with respect to wρ, which approximates
ρ ∈ [0, 1):

ρ =
1

1 + e−wρ
,wρ ∈ RC (13)

In summary, both the classifier and the feature extractor
update the gradient. While the classifier is updated using
our proposed method in Algorithm 1, the feature extractor
(or encoder) is trained in a conventional manner.

Algorithm 1 Wrapped Cauchy Distributed Angular Softmax

1: Input: Epoch number E, feature representation x,
weights in classifier w, scale s.

2: Initialize: wρ

3: while e < E do
4: while in Minibatch do
5: ρ = 1

1+e−wρ

6: cos θ =
xTwj

∥x∥∥w∥

7: f(ρ, θ) = 1−ρ2

2π(1+ρ2−2ρ cos θ))

8: Compute Softmax: ef(ρ,θ;j)∑C
c=1 ef(ρ,θ;c)

9: Compute the cross entropy loss L
10: Update wρ,w based on gradients ∂L

∂wρ
, ∂L
∂w

11: end while
12: e← e+ 1
13: end while

4. Empirical Experiments
4.1. Experimental setup

We perform extensive ablation experiments on different
aspects of our method (Section 4.2 and 4.3). We also
compared our approach with SOTA softmax-based methods
(Section 4.4) using four large-scale long-tailed datasets:
CIFAR10-LT/100-LT (Krizhevsky, 2009), ImageNet-LT
(Liu et al., 2019; Deng et al., 2009) and iNaturalist 2018
(Van Horn et al., 2018). Among those datasets, CIFAR10-
LT, CIFAR100-LT and ImageNet-LT are truncated from
their balanced counterpart, following exponential decay
across classes (Liu et al., 2019) (see detail descriptions
in Appendix B.1).

Implementation. All models are trained using SGD
optimizer with momentum 0.9, weight decay 10−4. The
learning rate decays by a cosine scheduler. Unless specified,
we use 90 training epochs. Other hyper-parameters are
listed in Appendix Table 5. The standard data augmentation
is applied to input images. According to (Kang et al., 2020),
we apply a decoupled representation learning and classifier
learning: The whole network is first trained via an instance-
balanced sampler (Kang et al., 2020). Only the classifier is
further trained over 30 epochs sampled by a class-balanced
sampler (Kang et al., 2020) or meta sampler (Ren et al.,
2020). We apply WCDAS to both feature learning and
classifier learning.

4.2. Wrapped Normal vs Wrapped Cauchy, Class-wise ρ
vs Single ρ

In this numerical experiment, we further validate Theorem
3 utilizing ImageNet-LT. For a fair comparison, Angular
Softmax (Equation 1) is used as a baseline instead of the
conventional softmax function. Note that we implement von
Mises–Fisher distribution to approximate wrapped Normal
distribution (WNDAS). Table 1 shows that despite that both
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ρ one wρ for all classes (wρ ∈ R) class-wise wρ (wρ ∈ RC)
Method Many Medium Few All Many Medium Few All
Angular Softmax 52.8 33.9 15.7 38.7 - - - -
WNDAS 55.0 38.2 20.4 42.1 54.9 38.6 20.2 42.3
WCDAS 56.2 40.4 21.7 43.8 56.2 40.9 24.1 44.5

Table 1: Top 1 accuracy for ImageNet-LT (ResNet-10 (He et al., 2016)) with wrapped Normal distributed angular softmax (WNDAS) and
WCDAS using one wρ ∈ R or class-wise wρ ∈ RC. The result validates Theorem 3

WNDAS and WCDAS display evident improvement from
the baseline counterpart, WCDAS consistently performs
better than WNDAS. Additionally, we test scenario when
setting one wρ for all classes (wρ ∈ R) or class-wise wρ

(wρ ∈ RC). Our result proves that class-wise wρ shows
superior performance. Intuitively, such results demonstrate
that classes in the long-tailed training require different
margins for better accuracy, consistent with previous
observations (Cao et al., 2019; Ren et al., 2020).

4.3. wρ optimization.

Init. Many Medium Few All
2.0 55.6 40.5 23.2 43.9
1.0 57.3 40.5 21.4 44.3
0 56.0 40.7 23.5 44.2
He 56.2 41.1 22.6 44.3
Xa. 56.3 40.7 22.5 44.2
-1.0 56.2 40.9 24.1 44.5
-2.0 56.3 40.5 23.1 44.0

Table 2: Top 1 accuracy for ImageNet-LT (ResNet-10 (He et al.,
2016)) with various wρ initialization (Init.) values. He (He et al.,
2015) and Xavier (Xa.) (Glorot & Bengio, 2010). Initial learning
rate: 0.4

Robustness of wρ Initialization. The initialization
of parameters is a critical element in the optimization
of deep networks, having significant impact on the
quality of the final model. Given that our method
introduces a new trainable parameter, wρ, we performed
empirical evaluations to assess its robustness under different
initialization strategies. We observed some variance in the
final outcomes depending on the initialization values used
(Appendix Table 6). This discrepancy, however, could be
mitigated by either extending the number of training epochs
(Appendix Table 6) or increasing the learning rate (Table
4.3). This suggests that shorter training periods or smaller
learning rates may not be adequate for our approach. We
also experimented with the He (He et al., 2015) and Xavier
(Glorot & Bengio, 2010) initialization strategies, both of
which are zero-centered. The results indicated that the final
model was less sensitive to these initialization methods
(Table 4.3).

Visualizing ρ During Optimization. For a closer look

Epoch 30Epoch 10 Epoch 40 Epoch 90

Representation Classi�er

Few
Medium
Many

0.7

0.5

0.3

0.6

0.4

Few
Medium
Many

Figure 4: Bar graph of ρ with respect to three sets of class at
different stages of training: 10th, 40th, 90th epoch at representation
learning and 30th epoch at classifier learning. Three sets of class
include few (<20), medium (20-100) and many (>100). Class-
balanced sampler are used in classifier learning.

0.7

0.5

0.3

0.6

0.4

0.9

CIFAR10-LT CIFAR100-LT iNaturalist 2018

Few
Medium
Many

Figure 5: Bar graph of ρ values on CIFAR100-TL/10-TL and
iNaturalist 2018.

at the optimization process, we graphically display the
values of ρ during the two-stage decoupled learning phase,
specifically for three class sets: few, medium, and many.
With ImageNet-LT as an example (Figure 4), we observe
that ρ increases with each epoch, suggesting that the
wrapped Cauchy distribution becomes increasingly tight.
During representation learning, different class frequencies
correspond to different values of ρ. On average, the ’Few’
class exhibits a larger ρ while the ’Many’ class shows a
smaller ρ (Appendix Figure 7). Larger ρ values lead to
greater margins during training (Theorem 4).

Prior research has established that both tighter feature
clustering (Kobayashi, 2021) and larger margins (Cao
et al., 2019; Ren et al., 2020) enhance classification results,
especially for tail classes (Cao et al., 2019). Our findings are
consistent with these studies (Cao et al., 2019; Kobayashi,
2021; Ren et al., 2020). The frequency-dependent disparity
in ρ decreases in classifier learning due to the use of the
class-balanced sampler (Kang et al., 2020). It’s also notable
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Dataset CIFAR-100-LT CIFAR-10-LT
Imbalance factor 200 100 10 200 100 10
Focal loss (Lin et al., 2017) 40.2 ± 0.5 43.8 ± 0.1 60.0 ± 0.6 71.8 ± 2.1 77.1 ± 0.2 90.3 ± 0.2

LDAM loss (Cao et al., 2019) 41.3 ± 0.4 46.1 ± 0.1 62.1 ± 0.3 73.6 ± 0.1 78.9 ± 0.9 90.3 ± 0.1

cRT (Kang et al., 2020) 44.5 ± 0.1 50.0 ± 0.2 63.3 ± 0.1 76.6 ± 0.2 82.0 ± 0.2 91.0 ± 0.0

LWS (Kang et al., 2020) 45.3 ± 0.1 50.5 ± 0.1 63.4 ± 0.1 78.1 ± 0.0 83.7 ± 0.0 91.1 ± 0.0

BALMS (Ren et al., 2020) 45.5 ± 0.0 50.8 ± 0.0 63.0 ± 0.0 81.5 ± 0.0 84.9 ± 0.0 91.3 ± 0.0

Angular-based Softmax
Angular Softmax 44.2 ± 0.5 49.7 ± 0.6 64.1 ± 0.2 80.9 ± 0.2 83.8 ± 0.2 91.4 ± 0.1

L-Softmax (Liu et al., 2016) 46.2 ± 0.2 51.3 ± 0.2 64.8 ± 0.1 79.9 ± 0.4 85.0 ± 0.2 91.8 ± 0.1

AM-Softmax (Deng et al., 2019) 45.4 ± 0.4 50.1 ± 0.1 63.9 ± 0.2 77.5 ± 0.4 81.6 ± 0.5 90.9 ± 0.7

t-vMF Similarity (Kobayashi, 2021) 46.2 ± 0.2 50.3 ± 0.5 64.7 ± 0.2 80.9 ± 0.3 83.8 ± 0.3 91.2 ± 0.3

WCDAS (ours) 49.3 ± 0.1 52.5 ± 0.1 65.8 ± 0.1 81.7 ± 0.1 86.4 ± 0.3 92.4 ± 0.2

Table 3: Top 1 accuracy (mean ± SD) for CIFAR-10/100-LT training with ResNet32 (He et al., 2016). Results of Angular Softmax
(Eq. 1), L-Softmax, AM-Softmax and t-vMF Similarity are reproduced with optimal hyper-parameters reported in their original papers.
WCDAS generally outperforms SOTA methods.

Dataset ImageNet-LT iNaturalist 2018
Many Medium Few All Many Medium Few All

OLTR (Liu et al., 2019) 43.4 35.0 18.5 35.5 65.7 66.3 63.4 65.2
Center loss (Wen et al., 2016) 53.0 35.1 15.6 39.1 71.7 66.0 60.4 64.3
cRT (Kang et al., 2020) 49.9 37.5 23.0 40.3 70.9 67.0 66.4 67.3
LWS (Kang et al., 2020) 48.0 37.5 22.9 39.6 69.0 68.2 66.6 67.7
BALMS (Ren et al., 2020) 48.0 38.3 22.9 39.9 66.8 67.4 67.9 68.1
Angular-based Softmax
Angular Softmax (Eq. 1) 52.8 33.9 15.7 38.7 71.8 65.3 61.4 65.0
L-Softmax (Liu et al., 2016) 54.0 35.1 15.4 39.1 72.7 66.1 60.1 64.5
AM-Softmax (Deng et al., 2019) 54.2 36.0 16.7 40.3 73.1 67.3 61.9 65.9
t-vMF Similarity (Kobayashi, 2021) 55.4 39.9 22.5 43.5 75.1 72.2 69.7 71.0
WCDAS (class-balanced) 56.2 40.9 24.1 44.5 75.5 72.3 69.8 71.8
WCDAS (meta) 53.8 41.7 25.3 44.1 71.4 72.3 70.5 70.8

Table 4: Top 1 accuracy for ImageNet-LT (ResNet10 (He et al., 2016)) and iNaturalist 2018 (ResNet50 (He et al., 2016)). Results are
reproduced with the same settings of our method (Appendix Table 5). Comparison of original results are provided in Appendix Table 8
together with more SOTA methods included.

that class-dependent ρ values can be observed across all
the tested datasets (Figure 5). Moreover, our method shows
that even with different initial positions, the aforementioned
pattern holds true and ρ tends to converge to similar values
(Appendix Figure 7), demonstrating stability during training.

4.4. Comparing with SOTAs

We performed an extensive comparison of our method with
state-of-the-art (SOTA) softmax-based methods designed
for long-tail recognition on CIFAR-10/100-LT (Table 3),
ImageNet-LT (Table 4), and iNaturalist 2018 (Table 4). In
addition, we included several leading angular-based softmax
approaches for comparison, adhering to the same decoupled
two-step training procedures. The class-balanced sampler
was used for classifier learning in these methods. To ensure
a fair comparison, our method also utilized the same sampler.

A more detailed discussion about the choice of sampler is
provided in Appendix B.4.

Given that WCDAS requires a larger learning rate (0.4) for
ImageNet-LT and iNaturalist 2018, we sought to exclude
the possibility that the superior results of our model could
be attributed to the larger learning rate. To do this, we
present two tables: one with SOTA methods reproduced
using a learning rate of 0.4 (Table 4), and the other featuring
results directly obtained from the original papers (Appendix
Table 8). Both Table 4 and Appendix Table 8 indicate that
our method achieves better accuracy than other competing
softmax-based methods.

Furthermore, the improvement is particularly noticeable
in the tail class, which consists of fewer samples. For
instance, our method improved the accuracy from 22.5
to 25.3 for ImageNet-LT, without compromising the head
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class. Previous works often sacrificed other classes in the
process of improving accuracy (Kang et al., 2020; Ren et al.,
2020). This improvement was even more evident on CIFAR-
100/10-LT, likely because fewer samples per class are more
susceptible to noise, an aspect our method accounts for.

5. Conclusion
We’ve introduced the WCDAS approach for long-tail visual
recognition tasks. Generally, WCDAS outperforms state-
of-the-art (SOTA) softmax-based methods across all four
datasets. The symmetric-wrapped stable (SWS) family
incorporates a wide variety of distributions, each with its
unique properties (Jammalamadaka & SenGupta, 2001).
Our work expands the understanding of their utility in
various contexts and challenges established methods, such
as vMF. Four distinct advantages distinguish our method
from previous works (Kobayashi, 2021; Cao et al., 2019)
and contribute to its superior performance: (1) WCDAS
accommodates out-of-distribution "imperfect" data due to
its heavy tail, while still ensuring compact intra-class feature
clustering. (2) WCDAS operates like a large margin angular
softmax when ρ is large. As ρ increases during training,
our loss function aligns with the classification task’s cross-
entropy loss. We provide a visualization of the loss surface
with respect to ρ and θ. (3) Our empirical study shows
that tail classes have larger ρ, leading to more compact
clusters and larger margins (Theorem 4). Previous studies
have confirmed the significant performance benefits of
these factors (Cao et al., 2019). (4) Our method, unlike
previous user-defined parameter approaches (Kobayashi,
2021), achieves optimal performance with trainable ρ.

However, WCDAS has limitations: it may necessitate a
different learning rate or number of epochs compared to
other methods, indicating a need for parameter re-tuning.
Although WCDAS displays label-aware behaviors for all
tested datasets, our paper does not offer a theoretical proof
for this.

Looking to the future, WCDAS can serve as the softmax
function replacement in deep learning models, improving
other deep learning methods, such as mixture-of-experts
(Wang et al., 2021b; Zhang et al., 2021b), and contrastive
learning-based methods (Cui et al., 2021; Wang et al.,
2021a). Additionally, WCDAS could potentially be
applicable to long-tail video recognition (Zhang et al.,
2021a) and long-tail object detection (Feng et al., 2021) with
minimal or no adjustments. However, further validation is
necessary for these domains.
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A. Proofs and Derivations
A.1. Proof to Theorem 1

h(ρ, θ;m, j) =
1

2π

(
1 + 2

∞∑
n=1

ρn
2

m cosn(θm − µm)

)
, n ∈ N (14)

h(ρ, θ;m, j) =
1

2π

(
1 + 2

∞∑
n=1

ρn
2

m (sinnµm sinnθm + cosnµm cosnθm)

)
(15)

Given that µm → 0, then sinnµm can be approximated as nµm and cosnµm can be approximated as 1. Therefore:

h(ρ, θ;m, j) =
1

2π

(
1 + 2

∞∑
n=1

ρn
2

m (nµj sinnθm + cosnθm)

)
(16)

Therefore, mixed distribution fmixed(θ; j) can be written as:

fmixed(θ; j) =
1

Mj


1

2π

(
1 + 2

∞∑
n=1

ρ
n2

1 (nµ1 sinnθ1 + cosnθ1)

)
+ · · · +

1

2π

(
1 + 2

∞∑
n=1

ρ
n2

Mj
(nµMj

sinnθMj
+ cosnθMj

)

)
︸ ︷︷ ︸

Mj


(17)

fmixed(θ; j) =
1

2π
+

1

Mj

(
2

∞∑
n=1

(nρn
2

1 µ1 sinnθ1 + · · ·+ nρn
2

Mj
µMj

sinnθMj
)

)
︸ ︷︷ ︸

Mj

(18)

+
1

Mj

(
2

∞∑
n=1

(ρn
2

1 cosnθ1 + · · ·+ ρn
2

Mj
cosnθMj

)

)
︸ ︷︷ ︸

Mj

(19)

Given that µ follows N (0, σ), Therefore we can further approximate:

1

Mj

(
2

∞∑
n=1

(nρn
2

1 µ1 sinnθ1 + · · ·+ nρn
2

Mj
µMj

sinnθMj
)

)
︸ ︷︷ ︸

Mj

→ 0 (20)

Subsequently, we obtain:

fmixed(θ; j) =
1

2πMj

Mj∑
m=1

(
1 + 2

∞∑
n=1

ρn
2

m cosnθm

)
(21)
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A.2. Proof to Corollary 1.1

fmixed(θ; j) =
1

2πMj

Mj∑
m=1

(
1 + 2

∞∑
n=1

ρn
2

m cosnθm

)
(22)

=
1

2π

1 + 2

∞∑
n=1

1

Mj

Mj∑
m=1

ρn
2

m cosnθm

 (23)

Therefore, we get:

fmixed(θ; j) =
1

2π

(
1 + 2

∞∑
n=1

α
{n}
mixed cosnθm

)
(24)

(25)

where αmixed is the cosine moment of the mixed distribution:

α
{n}
mixed =

1

Mj

Mj∑
m=1

ρn
2

m =
1

Mj

Mj∑
m=1

α{n}
m (26)

A.3. Proof to Theorem 2

∆ρ =
1

π

∞∑
n=1

(
(α

{n}
fit − α

{n}
mixed) cosnθ

)2
(27)

For any θ and n, to minimize ∆ρ, it is equivalently as minimizing
∑∞

n=1(α
{n}
fit − α

{n}
mixed)

2:

∆ρ =
1

π

∞∑
n=1

(α
{n}
fit − α

{n}
mixed)

2 (28)

For wrapped Cauchy distribution, α{n}
fit = ρnWC,∀ρ ∈ R. For wrapped Normal distribution, α{n}

fit = ρn
2

WN,∀ρ ∈ R.
α
{n}
mixed = 1

Mj

∑Mj

m=1 ρ
n2

m according to Corollary 1.1. Without losing the generosity, we derive the case of wrapped Cauchy
distribution as an example:

∆ρmin,WC =
1

π

∞∑
n=1

(ρnmin −
1

Mj

Mj∑
m=1

ρn
2

m )2 =
1

π

∞∑
n=1

(ρnmin − α
{n}
mixed)

2 (29)

(α
{n}
mixed)

1
n = ( 1

Mj

∑Mj

m=1 ρ
n2

m ))
1
n can be treated as the n-th component of a cluster. To minimize the error ∆ρmin,wc, ρmin is

the centroid of the cluster composed of n number of ( 1
Mj

∑Mj

m=1 ρ
n2

m )
1
n . Therefore,

ρmin = En∈[1,∞)(
1

Mj

Mj∑
m=1

ρn
2

m )
1
n = En∈[1,∞)(α

{n}
mixed)

1
n (30)

Take Equation 30 back into Equation 29 substituting ρnmin, we approximate:
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∆ρmin,wc =
1

π

∞∑
n=1

(
(En∈[1,∞)(α

{n}
mixed)

1
n )n − α

{n}
mixed

)2
=

1

π

∞∑
n=1

(
(En∈[1,∞)(α

{n}
mixed)

1
n )n − ((α

{n}
mixed)

1
n )n
)2

(31)

According to Binomial Theorem:

xn − an = (x− a)(an−1 + xan−2 + · · ·xn−2a+ xn−1). (32)

Let a = En∈[1,∞)(α
{n}
mixed)

1
n and an = (α

{n}
mixed)

1
n , we simplify Equation 31 into:

∆ρmin,WC ∝
∞∑

n=0

(an − ann)
2

∝ (a− a1)
2 + (a− a2)

2(a+ a2)
2 + · · ·

+ (a− an−1)
2(an−1 + aan−2 + · · · an−2a+ an−1)2. (33)

We expand the Equation 31 based on Equation 33:

∆ρmin,WC =
1

π

∞∑
n=1

(
En∈[1,∞)(α

{n}
mixed)

1
n − (α

{n}
mixed)

1
n

)2 (
(En∈[1,∞)(α

{n}
mixed)

1
n )n−1 + · · ·+ (α

{n}
mixed)

n−1
n

)2
(34)

Because ρm ∈ [0, 1), α{n}
mixed ∈ [0, 1) and the value of α{n}

mixed decrease as n increases. Therefore, higher order terms in
Equation 34 can be neglected (n>1). Accordingly, we get:

∆ρmin,WC ∼
1

π

(
En∈[1,∞)(α

{n}
mixed)

1
n − (α

{1}
mixed)

)2
+O(n)

∼ 1

π

En∈[1,∞)(α
{n}
mixed)

1
n − 1

Mj

Mj∑
m=1

ρm

2

+O(n)

∝ SDn=1(
1

Mj

Mj∑
m=1

ρn
2

m )
1
n (35)

Following a similar derivation, when α
{n}
fit = ρn

2

:

∆ρmin,WN ∼
1

π

(
En∈[1,∞)(α

{n}
mixed)

1
n2 − (α

{1}
mixed)

)2
+O(n)

∼ 1

π

En∈[1,∞)(α
{n}
mixed)

1
n2 − 1

Mj

Mj∑
m=1

ρm

2

+O(n)

∝ SDn=1(
1

Mj

Mj∑
m=1

ρn
2

m )
1
n2 (36)

A.4. Proof to Theorem 3

Let ρm of individual h(ρ, θ;m, j) distribute uniformly across its defined domain [0, 1). Assuming that we have N number
of h(ρ, θ;m, j) (i. e., Mj = N ), then ρ1 = 1/N , ρ1 = 2/N , · · · , ρN = (N − 1)/N .
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α
{n}
mixed =

1

N

M∑
m=1

(m
N

)n2

(37)

Given Faulhaber’s formula, which is:

N∑
k=1

kp =
Np+1

p+ 1
+

1

2
Np +

p∑
k=2

Bk

k!

p!

(p− k + 1)!
Np−k+1 (38)

The coefficients involve Bernoulli numbers Bj . For each n, we get:

For n = 1,

α
{1}
mixed =

1

N

N∑
k=1

ρ =
1

N

N∑
k=1

k

N
= (1 +

1

N
)/2 (39)

For n = 2,

α
{2}
mixed =

1

N

N∑
k=1

ρ4 =
1

N

N∑
k=1

(
k

N

)4

=
1

5
+

1

2

1

N
+

1

3

1

N2
− 1

30

1

N4
(40)

For n = 3,

α
{3}
mixed =

1

N

N∑
k=1

ρ9 =
1

N

N∑
k=1

(
k

N

)9

=
1

10
+

1

2

1

N
+

3

4

1

N2
− 7

10

1

N4
+

1

2

1

N6
− 3

20

1

N8
(41)

. . . (42)

For n = n0,

α
{n}
mixed =

1

N

N∑
k=1

ρn
2
0 =

1

N

N∑
k=1

(
k

N

)n2
0

=
1

n2
0 + 1

+
1

2N
+

1

N

n2
0∑

k=2

Bk

k!

n2
0!

(n2
0 − k + 1)!

1

Nk−1
(43)

Given N > 1, then α
{n}
mixed ∈ (0, 1) (Equation 39 - 43). Hence, (α{n}

mixed)
1
n shows more "variance" than (α

{n}
mixed)

1
n2 given

α
{n}
mixed ∈ (0, 1). Therefore, (En∈[1,∞)(α

{n}
mixed)

1
n − α

{1}
mixed)

2 < (En∈[1,∞)(α
{n}
mixed)

1
n2 − α

{1}
mixed)

2. According to Equation 35
and Equation 36:

∆ρmin,WC < ∆ρmin,WN (44)

A.5. Proof to Theorem 4

∥fwc(θ1)− fwc(θ2)∥ =∥
1− ρ2

2π(1 + ρ2 − 2ρ cos θ1)
− 1− ρ2

2π(1 + ρ2 − 2ρ cos θ2)
∥ (45)

=
1− ρ2

2π
∥ 2ρ cos θ1 − cos θ2
(1 + ρ2 − 2ρ cos θ1)(1 + ρ2 − 2ρ cos θ2)

∥ (46)

≥ 1− ρ2

2π

2ρ∥ cos θ1 − cos θ2∥
(1 + ρ2 − 2ρ)(1 + ρ2 − 2ρ)

(47)
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Simplified the above equation as follows:

1− ρ2

2π

2ρ∥ cos θ1 − cos θ2∥
(1 + ρ2 − 2ρ)(1 + ρ2 − 2ρ)

(48)

=
ρ+ ρ2

π(1− ρ)3
∥ cos θ1 − cos θ2∥ (49)

In order to show a larger margin, it needs to satisfy the following condition:

ρ+ ρ2

π(1− ρ)3
∥ cos θ1 − cos θ2∥ ≥ ∥ cos θ1 − cos θ2∥ (50)

ρ+ ρ2

π(1− ρ)3
≥ 1 (51)

Solving Equation 51, we get ρ ≥ 0.42332. Additionally, notice from Equation 51 that the larger ρ is, the larger the margin is
(Figure 6).

Figure 6: plot of ρ+ρ2

π(1−ρ)3
(Y-axis) with respect to ρ (X-axis).

B. Supplementary Results
B.1. Experiment settings

CIFAR10-LT and CIFAR100-LT: CIFAR10-LT and CIFAR100-LT contain 10 and 100 classes, respectively. Various
imbalance factors (10-200) are evaluated. an imbalance factor β is calculated by β = Mmax

Mmin
where Mmax and Mmin are the

numbers of training samples for the most and least frequent classes respectively. We employ the ResNet-32 backbone for
these two datasets, similar to previous works. Given that CIFAR-LT 10/100 tends to show large variances in performance
results, as stated in (Ren et al., 2020), we, therefore, report the mean and standard error from 3 independent replicas.

ImageNet-LT: It contains 1000 classes, and the number of images per class ranges from 1280 to 5 images with an imbalance
factor of 256. ResNet-10 and ResNext-50 backbones are used for the experiments. ImageNet-LT is also used for various
ablation studies.

iNaturalist 2018: It is a naturally imbalanced fine-grained dataset with 8,142 categories, following the long-tailed
distribution. The number of images per class ranges from 1000 to 2, with an imbalance factor of 500. We use ResNet-50 as
the backbone and apply the same training settings as for ImageNet-LT except batch size 512.
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Evaluation Setup. After training on the long-tailed dataset, we evaluate the models on the corresponding balanced
test/validation dataset and report top-1 accuracy. To give further insight, we report accuracy on three splits of the set of
classes for ImageNet-LT and iNaturalist 2018: Many-shot (>100 images), Medium-shot (20-100 images), and Few-shot
(<20 images), adopting from OLTR (Liu et al., 2019).

Hyperparameters for the best performance. Backbones and hyper-parameters of our method used for all datasets are
listed in Table 5.

Datasets Epochs lr (representation/classifier) Backbone Init. s
CIFAR100-LT 300 0.2/0.2 ResNet-32 0. trainable (Kobayashi, 2021)
CIFAR10-LT 300 0.2/0.2 ResNet-32 0. trainable(Kobayashi, 2021)
ImageNet-LT 90 0.4/0.2 ResNet-10 -1. trainable(Kobayashi, 2021)
iNaturalist 2018 200 0.4/0.2 ResNet-50 1. 250

Table 5: Choice of hyper-parameter in all datasets. lr: Initial learning rate of GSD with cosine scheduler. Init: Initialization of wρ.
Trainable s are implemented following (Kobayashi, 2021)

B.2. Impact of epoch number.

As Table 6 shows, when using a learning rate of 0.2, the overall performance of our method improves with more training
epochs, indicating inadequate training. However, we note that such an improvement is attributed to the accuracy improvement
of Class "Many". Meanwhile, the accuracy of Class "Few" decreases slightly with more training epochs. It is likely due to
the fact that the model weighs more on high-frequency classes with longer training time. Therefore, we increase the learning
rate while the same training epoch (Table 2 in Main text).

90 epochs 150 epochs
Initialization Many Medium Few All Many Medium Few All
2.0 55.3 40.4 22.9 43.7 56.9 40.6 22.1 44.3
1.0 55.1 40.2 23.0 43.7 56.9 40.6 22.0 44.3
0 55.0 40.1 22.4 43.3 56.3 39.8 21.7 43.9
-1.0 55.6 40.3 22.8 43.7 57.4 40.8 21.7 44.5
-2.0 55.4 40.3 22.3 43.5 56.3 40.5 22.2 44.0

Table 6: Top 1 accuracy for ImageNet-LT (ResNet-10) with various wρ initialization (Init.) values. Initial learning rate: 0.2.

B.3. Class-wise ρ optimization

Convergence of ρ. Regardless of initialization, ρ are able to converge to similar values (Figure 7), demonstrating our
method is robust against initialization.

Sampling method Many Medium Few All
Class balanced sampling (Kang et al., 2020) 56.2 40.9 24.1 44.5
Meta-sampling (Ren et al., 2020) (lr = 0.005) 54.0 42.0 23.0 44.0
Meta-sampling (Ren et al., 2020) (lr = 0.01) 53.8 41.7 25.3 44.1
Meta-sampling (Ren et al., 2020) (lr = 0.05) 52.3 41.2 27.7 43.7

Table 7: Top 1 accuracy for ImageNet-LT (ResNet-10) with different sampler in classifier learning. We use 3 different learning rates in
meta sampling.

B.4. Impact of the sampler in decoupled training

The sampler is demonstrated to be critical when training with an imbalanced dataset, especially in classifier learning.
To assess which sampler yields better performance for WCDAS, we compare two predominant sampling approaches:
class-balanced sampler and meta sampler. For a fair comparison, we conducted three experiments with a meta sampler using
different learning rates. Table 7 shows that a class-balanced sampler consistently shows better results than a meta sampler
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Figure 7: Bar graph of ρ values at 90th epoch with respect to different weight initialization values. Three sets of class are plotted include
few (<20), medium (20-100) and many (>100).

when considering all classes. However, a meta-sampler provides a more balanced accuracy across classes with medium or
few examples.

B.5. Comparison with selected SOTA methods using same settings: large learning rate.

Table 8 shows the comparison of our method with SOTA softmax-based methods. We note that the results are directly copied
from the original paper. Our method shows superior performance. We also note that those methods show no improvement
beyond the results from their original papers when applying a larger learning rate (Table 4), indicating that a learning rate of
0.2 is sufficient or optimal for those methods.

Dataset Imagenet-LT iNaturalist 2018
Many Medium Few All Many Medium Few All

Focal loss (Lin et al., 2017) 36.4 29.9 16.0 30.5 - - - 61.1
OLTR (Liu et al., 2019) 43.2 35.1 18.5 35.6 65.9 66.3 63.6 65.4
Center loss (Wen et al., 2016) 53.1 35.0 15.6 39.2 71.5 66.0 61.8 65.8
cRT (Kang et al., 2020) 52.3 39.5 23.2 41.8 73.2 68.8 68.9 69.3
LWS (Kang et al., 2020) - - - 41.4 71.5 71.3 69.7 70.7
LDAM loss (Cao et al., 2019) - - - 36.1 - - - 64.6
τ -normalized (Kang et al., 2020) 51.9 38.3 22.5 40.6 71.1 68.9 69.3 69.3
BALMS (Ren et al., 2020) 50.3 39.5 25.3 41.8 - - - -
Angular based Softmax
L-Softmax (Liu et al., 2016) 53.7 35.1 16.4 39.5 71.2 66.3 60.9 64.7
AM-Softmax (Deng et al., 2019) 54.0 36.0 18.6 40.5 72.5 67.6 63.2 66.4
t-vMF Similarity (Kobayashi, 2021) 55.2 40.6 22.3 43.7 74.2 72.1 69.9 71.1
WCDAS (class-balanced) 56.2 40.9 24.1 44.5 75.5 72.3 69.8 71.8
WCDAS (meta) 53.8 41.7 25.3 44.1 71.4 72.3 70.5 70.8

Table 8: Top 1 accuracy for ImageNet-LT (ResNet10 (He et al., 2016)) and iNaturalist 2018 (ResNet50 (He et al., 2016)). Results are
copied directly from the original papers.
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