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Abstract

Fine-tuning language models (LMs) has yielded success on diverse downstream
tasks, but as LMs grow in size, backpropagation requires a prohibitively large
amount of memory. Zeroth-order (ZO) methods can in principle estimate gradients
using only two forward passes but are theorized to be catastrophically slow for
optimizing large models. In this work, we propose a memory-efficient zeroth-
order optimizer (MeZO), adapting the classical ZO-SGD method to operate in-
place, thereby fine-tuning LMs with the same memory footprint as inference. For
example, with a single A100 80GB GPU, MeZO can train a 30-billion parameter
model, whereas fine-tuning with backpropagation can train only a 2.7B LM with
the same budget. We conduct comprehensive experiments across model types
(masked and autoregressive LMs), model scales (up to 66B), and downstream
tasks (classification, multiple-choice, and generation). Our results demonstrate
that (1) MeZO significantly outperforms in-context learning and linear probing;
(2) MeZO achieves comparable performance to fine-tuning with backpropagation
across multiple tasks, with up to 12× memory reduction and up to 2× GPU-hour
reduction in our implementation; (3) MeZO is compatible with both full-parameter
and parameter-efficient tuning techniques such as LoRA and prefix tuning; (4)
MeZO can effectively optimize non-differentiable objectives (e.g., maximizing
accuracy or F1). We support our empirical findings with theoretical insights,
highlighting how adequate pre-training and task prompts enable MeZO to fine-tune
huge models, despite classical ZO analyses suggesting otherwise.1

1 Introduction

Fine-tuning pre-trained language models (LMs) has been the dominant methodology for solving many
language tasks [28], adapting to specialized domains [42], or incorporating human instructions and
preferences [73]. However, as LMs are scaled up [13, 72], computing gradients for backpropagation
requires a prohibitive amount of memory – in our test, up to 12× the memory required for inference –
because it needs to cache activations during the forward pass, gradients during the backward pass,
and, in the case of Adam [52], also store gradient history (see Section 3.4 for a detailed analysis).

As a result, while it is possible to run inference with a 30-billion (30B) parameter LM on a single
Nvidia A100 GPU (with 80GB memory), backpropagation with Adam is feasible only for a 2.7B LM.
Parameter-efficient fine-tuning methods (PEFT [46, 57, 54]) update just a fraction of the network

∗Equal contribution and corresponding authors.
1Our code is available at https://github.com/princeton-nlp/MeZO.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/princeton-nlp/MeZO


SST-2 RTE CB BoolQ WSC WIC MultiRC Copa ReCoRD SQuAD DROP
10

30

50

70

90

Ac
cu

ra
cy

/F
1 

(%
)

Zero-shot ICL MeZO FT (12x memory)

Figure 1: OPT-13B results with zero-shot, in-context learning (ICL), MeZO (we report the best
among MeZO/MeZO (LoRA)/MeZO (prefix)), and fine-tuning with Adam (FT). MeZO demonstrates
superior results over zero-shot and ICL and performs on par with FT (within 1%) on 7 out of 11 tasks,
despite using only 1/12 memory. See Table 1 for detailed numbers and Figure 3 for memory profiling.

parameters, but still need to cache many activations, because the tuned parameters are scattered
throughout the model. In our tests, fine-tuning an OPT-13B model with full parameter tuning or
PEFT requires 12× and 6× more memory than inference respectively.

In-context learning (ICL [13]) has allowed solving many tasks with a single inference pass, during
which the model processes labeled examples (demonstrations) in its context and then outputs a
prediction on a test example. While this allows for quick adaptation of the model to specific use cases,
current models allow a limited context size (and thus, limited demonstrations) and the performance
is sensitive to the formatting and choice of demonstrations [60, 66]. ICL can slow with the number
of demonstrations, and it often performs worse than fine-tuning of medium-sized models [13].

Backpropagation also cannot optimize non-differentiable criteria, which have gained popularity in
fine-tuning LMs according to human preference scores or set safety standards [89, 73]. Typically,
these adaptations involve expensive reinforcement learning from human feedback (RLHF [20]).

A classical zeroth-order optimization method, ZO-SGD [88], uses only differences of loss values
to estimate the gradients. Thus, in principle, the method can update neural networks with just
forward passes, though naive implementation still doubles the memory overhead and classical lower
bounds [69, 32] suggest that convergence slows linearly with model size. As such, ZO methods have
been applied in deep learning settings to find adversarial examples or tune input embeddings [91, 90]
but not to directly optimize large-scale models (see Liu et al. [61] for a survey).

In this work, we propose a memory-efficient zeroth-order optimizer (MeZO), which adapts the
classical ZO-SGD algorithm and reduces its memory consumption to the same as inference. We
apply MeZO to fine-tune large LMs and show that, both empirically and theoretically, MeZO can
successfully optimize LMs with billions of parameters. Specifically, our contributions are:

1. In MeZO, we adapt the ZO-SGD algorithm [88] and a number of variants to operate in-place on
arbitrarily large models with almost no memory overhead (see Algorithm 1 and Section 2).

2. We conduct comprehensive experiments across model types (masked LM and autoregressive
LM), model scales (from 350M to 66B), and downstream tasks (classification, multiple-choice,
and generation). MeZO consistently outperforms zero-shot, ICL, and linear probing. Moreover,
with RoBERTa-large, MeZO achieves performance close to standard fine-tuning within 5%
gap; with OPT-13B, MeZO outperforms or performs comparably to fine-tuning on 7 out of 11
tasks, despite requiring roughly 12× less memory (Figure 1 and Section 3). In our implemen-
tation, MeZO requires only half as many GPU-hours as Adam fine-tuning for a 30B model
(see Appendix F.6).

3. We demonstrate MeZO’s compatibility with full-parameter tuning and PEFT (e.g., LoRA [46]
and prefix-tuning [57]) in Section 3.

4. Further exploration showcases that MeZO can optimize non-differentiable objectives such as
accuracy or F1 score, while still requiring only the same memory as inference (Section 3.3).

5. Our theory suggests that adequate pre-training ensures the per-step optimization rate (Theorem 1)
and global convergence rate (Lemma 3) of MeZO depend on a certain condition number of the
landscape (i.e., the local effective rank, see Assumption 1) instead of numbers of parameters. This
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Algorithm 1: MeZO

Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale ϵ, batch size
B, learning rate schedule {ηt}

for t = 1, ..., T do
Sample batch B ⊂ D and random seed s
θ ← PerturbParameters(θ, ϵ, s)
ℓ+ ← L(θ;B)
θ ← PerturbParameters(θ,−2ϵ, s)
ℓ− ← L(θ;B)
θ ← PerturbParameters(θ, ϵ, s) ▷ Reset parameters before descent

projected_grad← (ℓ+ − ℓ−)/(2ϵ)
Reset random number generator with seed s ▷ For sampling z
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi − ηt ∗ projected_grad ∗ z

end
end

Subroutine PerturbParameters(θ, ϵ, s)
Reset random number generator with seed s ▷ For sampling z
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi + ϵz ▷ Modify parameters in place

end
return θ

result is in sharp contrast to existing ZO lower bounds [69, 32] suggesting that the convergence
rate can slow proportionally to the number of parameters (Section 4).

2 Zeroth-order optimization

Zeroth-order (ZO) optimizers have long been studied in the context of convex and strongly convex
objectives. In the following, we first introduce a classical ZO gradient estimator, SPSA (Defini-
tion 1 [88]) and the corresponding SGD algorithm, ZO-SGD (Definition 2). Then we describe
MeZO, our in-place implementation that requires the same memory as inference in Section 2.1 and
Algorithm 1. We highlight that SPSA can also be used in more complex optimizers, such as Adam,
and we provide memory-efficient implementations for those algorithms too (Section 2.2).

Consider a labelled dataset D = {(xi,yi)}i∈[|D|] and a minibatch B ⊂ D of size B, we let L(θ;B)
denote the loss on the minibatch. We introduce a classical ZO gradient estimate in this setting.2

Definition 1 (Simultaneous Perturbation Stochastic Approximation or SPSA [88]). Given a model
with parameters θ ∈ Rd and a loss function L, SPSA estimates the gradient on a minibatch B as

∇̂L(θ;B) = L(θ + ϵz;B)− L(θ − ϵz;B)
2ϵ

z ≈ zz⊤∇L(θ;B) (1)

where z ∈ Rd with z ∼ N (0, Id) and ϵ is the perturbation scale. The n-SPSA gradient estimate
averages ∇̂L(θ;B) over n randomly sampled z.

SPSA requires only two forward passes through the model to compute the gradient estimate (for
n-SPSA, each estimate requires 2n forward passes). As ϵ→ 0, the SPSA estimate can be understood
as a rank-1 reconstruction of the gradient. During training, n can be treated as a hyperparameter and
follow a schedule [11, 15], though in cursory experiments (Appendix A), n = 1 is the most efficient.

2The original SPSA algorithm [88] perturbs the model by 1/z and thus requires that z has finite inverse
moments, precluding the choice of z as Gaussian. 1/z is very large with high probability for a zero-mean
Gaussian z, so we adopt the standard in many theoretical [70, 32] and empirical [64] works and perturb the
parameters by z with z as a Gaussian random variable.
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We use n = 1 as the default. It is widely known that the SPSA estimate can be used to replace the
backpropagation gradient in any optimizer such as SGD.

Definition 2 (ZO-SGD). ZO-SGD is an optimizer with learning rate η that updates parameters as
θt+1 = θt− η∇̂L(θ;Bt) where Bt is the minibatch at time t and ∇̂L is the SPSA gradient estimate.

2.1 Memory-efficient ZO-SGD (MeZO)

The vanilla ZO-SGD algorithm costs twice the memory of inference, as it needs to store z ∈ Rd. We
propose a memory-efficient implementation of ZO-SGD called MeZO, as illustrated in Algorithm 1.
At each step, we first sample a random seed s, and then for each of z’s four uses in Algorithm 1, we
reset the random number generator by s and resample the relevant entry of z. Using this in-place
implementation, MeZO has a memory footprint equivalent to the inference memory cost.

We note that Algorithm 1 describes perturbing each parameter separately, which may be time-
consuming for large models. In practice, we can save time by perturbing an entire weight matrix
instead of each scalar independently. This incurs an additional memory cost as large as the largest
weight matrix; usually, this is the word embedding matrix (e.g., 0.86GB for OPT-66B).

Storage Efficiency of MeZO. Parameter-efficient fine-tuning (PEFT) techniques fine-tune just a
fraction of the network parameters and have thus been proposed as a way to reduce the storage costs
of fine-tuned model checkpoints. Fine-tuning with MeZO reduces the storage cost of the resulting
checkpoint far more than popular PEFT techniques (e.g., LoRA [46] and prefix tuning [57]). We
reconstruct the MeZO trajectory using a single seed, which spawns step-wise seeds to sample z, and
the projected_grad at each step.3 As such, for fine-tuning a 66B model, MeZO requires saving
the seed plus 20,000 (steps) × 2 bytes, which is less than 0.1MB. LoRA fine-tunes 19M parameters
and requires 38MB storage, and prefix tuning fine-tunes 6M parameters and requires 12MB storage.

2.2 MeZO extensions

We note that SPSA is a popular ZO gradient estimator but not the only one. Many one-point gradient
estimators have been proposed in past works [34, 87, 95], and using such estimators in place of SPSA
would halve the training time. However, cursory experiments with one such promising estimator
[113] reveal that these are not as efficient as SPSA when fixing the number of forward passes
(Appendix B.5). As such, we implement MeZO with the SPSA estimator.

MeZO can also be combined with other gradient-based optimizers, including SGD with momentum
or Adam. Though naive implementation would require additional memory to store the gradient
moment estimates, MeZO-momentum and MeZO-Adam alleviate such overhead by recomputing the
moving average of the gradients using saved past losses and z (see Appendix B for a full discussion).

We also note that all of the coordinates of the SPSA gradient estimate have the same scale, but
deep Transformers can have gradients of different scales for each layer [59, 61]. As such, we draw
inspiration from layerwise adaptive optimizers [109, 110] to design several MeZO variants. Cursory
experiments showed that these algorithms are not more efficient (in terms of forward passes), but we
nevertheless present them as potential optimizers for more complex objectives. See Appendix B.

Forward Auto-Differentiation Note that z⊤∇L(θ;B) is a Jacobian-vector product (JVP), which
can be computed in parallel with an inference pass with excess memory consumption equivalent to
that of the largest activation in the network [40]. In this case, z must be stored on the GPU in order to
construct the gradient estimate, so this procedure requires slightly more than two times the memory
needed for inference. We analyze this algorithm in detail in Appendix D. Note that using a non-zero
ϵ in SPSA, which is not possible through the JVP method, may boost generalization by promoting a
sharpness-minimizing term. Past works (e.g., Baydin et al. [9]) have also studied JVP-based training
but achieved limited empirical success.

3Note that this reconstruction requires no additional forward passes through the model and no access to the
data used during fine-tuning, since projected_grad implicitly encodes this information.
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Figure 2: Experiments on RoBERTa-large. We report zero-shot, linear probing (LP), and MeZO and
fine-tuning (FT) with full parameter, LoRA, and prefix-tuning. MeZO outperforms zero-shot and LP
and approaches FT (within 5% for k = 512) with much less memory. Detailed numbers in Table 18.

3 Experiments

Preliminary experiments (Appendix A) show that MeZO only works when using prompts [13, 84, 35].
Past works [83, 67] have demonstrated how the inclusion of a suitable prompt ensures the fine-tuning
objective is closely related to the pre-training one. In Section 4, we extend these ideas to show how
using a simple prompt simplifies the fine-tuning optimization procedure, thereby enabling zeroth
order methods to work efficiently. All experiments below use prompts detailed in Appendix E.2. All
fine-tuning with backpropagation (FT) experiments follow convention and use Adam, though we also
report results when performing FT with SGD in Appendix F.

We conduct comprehensive experiments on both medium-sized masked LMs (RoBERTa-large,
350M [65]) and large autoregressive LMs (OPT-13B, 30B, 66B [112]) in few-shot and many-shot
settings with prompts. We also explore both full-parameter tuning and PEFT including LoRA [46]
and prefix-tuning [57] (see Appendix E.5 for details). We compare MeZO with zero-shot, in-context
learning (ICL), linear-probing (LP), and fine-tuning with Adam (FT). MeZO uses substantially less
memory than FT but requires significantly more training steps.

We first show that MeZO improves substantially over zero-shot, ICL, and LP across model types, sizes,
and task types. Moreover, MeZO performs comparably to FT over a number of tasks, while drastically
reducing the memory cost by, for example, 12× on OPT-13B. Further experiments demonstrate that
MeZO can optimize non-differentiable objectives, such as accuracy and F1 score (Section 3.3). We
compare the memory consumption of ICL, FT, LP, and MeZO in Figures 3 and 4.

3.1 Medium-sized masked language models

We conduct experiments with RoBERTa-large on sentiment classification, natural language inference,
and topic classification tasks. We follow past works [35, 67] in studying the few-shot and many-shot
settings, sampling k examples per class for k = 16 and k = 512 (details in Appendix E). We run
MeZO for 100K steps and fine-tuning for 1000 steps, noting that one MeZO step is substantially
faster than one fine-tuning step (see Appendix F.6 for a comparison). We summarize the results from
Figure 2 and Table 18 below.

MeZO works significantly better than zero-shot, linear probing, and other memory-equivalent
methods. On all six diverse tasks, MeZO can optimize the pre-trained model and consistently
perform better than zero-shot and linear probing. We also show for several tasks that MeZO can
outperform another ZO algorithm, BBTv2 [90], by up to 11% absolute (Appendix F.4).4

With enough data, MeZO achieves comparable performance (up to 5% gap) to FT. MeZO
achieves close-to-fine-tuning performance on k = 16, with some tasks only having 2% gaps. When
using k = 512 data, the gap between MeZO and FT further reduced to within 5% across all tasks.

MeZO works well on both full-parameter tuning and PEFT. Full-parameter tuning (MeZO) and
PEFT (MeZO with LoRA and prefix-tuning) achieve comparable performance, while MeZO (prefix)

4BBTv2 can only train low-dimensional projected prefixes instead of the full model.
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Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP
Task type ———————— classification ———————— – multiple choice – — generation —

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6
ICL 87.0 62.1 57.1 66.9 39.4 50.5 53.1 87.0 82.5 75.9 29.6
LP 93.4 68.6 67.9 59.3 63.5 60.2 63.5 55.0 27.1 3.7 11.1

MeZO 91.4 66.1 67.9 67.6 63.5 61.1 60.1 88.0 81.7 84.7 30.9
MeZO (LoRA) 89.6 67.9 66.1 73.8 64.4 59.7 61.5 87.0 81.4 83.8 31.4
MeZO (prefix) 90.7 70.8 69.6 73.1 57.7 59.9 63.7 84.0 81.2 84.2 28.9

FT (12x memory) 92.0 70.8 83.9 77.1 63.5 70.1 71.1 79.0 74.1 84.9 31.3

Table 1: Experiments on OPT-13B (with 1000 examples). ICL: in-context learning; LP: linear
probing; FT: full fine-tuning with Adam. MeZO outperforms zero-shot, ICL, and LP across the board,
and achieves comparable (within 1%) or better performance than FT on 7 out of 11 tasks.

Task SST-2 RTE BoolQ WSC WIC SQuAD
30B zero-shot 56.7 52.0 39.1 38.5 50.2 46.5
30B ICL 81.9 66.8 66.2 56.7 51.3 78.0
30B MeZO/MeZO (prefix) 90.6 72.6 73.5 63.5 59.1 85.2
66B zero-shot 57.5 67.2 66.8 43.3 50.6 48.1
66B ICL 89.3 65.3 62.8 52.9 54.9 81.3
66B MeZO/MeZO (prefix) 93.6 66.4 73.7 63.5 58.9 85.0

Table 2: Experiments on OPT-30B and OPT-66B (with 1000 examples). We report the best of MeZO
and MeZO (prefix). See Appendix F.2 for more results. We see that on most tasks MeZO effectively
optimizes up to 66B models and outperforms zero-shot and ICL.

sometimes outperforms MeZO. We also show in Appendix F.3 that the three variants converge at
similar rates, agreeing with our theory in Section 4, which shows that MeZO converges at a rate
independent of the number of parameters being optimized.

We show additional results with more FT and MeZO variants in Appendix F.1. We see that (1)
ZO-Adam sometimes outperforms ZO-SGD but is not consistent across tasks; (2) LP and then MeZO,
as suggested for fine-tuning [53], can sometimes improve the performance.

3.2 Large autoregressive language models

With the promising results from RoBERTa-large, we extend MeZO to the OPT family [112], on a
scale of 13B (Table 1), 30B, and 66B (Table 2). We select both SuperGLUE [98] tasks5 (including
classification and multiple-choice) and generation tasks. We randomly sample 1000, 500, and 1000
examples for training, validation, and test, respectively, for each datset. We run MeZO for 20K steps
and fine-tuning for 5 epochs, or 625 steps, noting that each step of MeZO is substantially faster than
fine-tuning (see Appendix F.6 for a comparison). Please refer to Appendix E for details. Table 1
yields the following observations.

MeZO outperforms memory-equivalent methods and closely approaches fine-tuning results.
We see that on a 13B-parameter scale, MeZO and its PEFT variants outperform zero-shot, ICL, and
LP across almost all tasks. When comparing to FT, which costs 12× more memory (Section 3.4),
MeZO achieves comparable (within 1%) or better performance on 7 out of the 11 tasks.

MeZO exhibits strong performance across classification, multiple-choice, and generation tasks.
We investigate MeZO on generation tasks, which are regarded as more intricate than classification or
multiple-choice tasks. We evaluate on two question answering datasets, SQuAD [80] and DROP [31].
We use teacher forcing for training and greedy decoding for inference (details in Appendix E).

Table 1 shows that, on all generation tasks, MeZO outperforms zero-shot, ICL, and LP, and achieves
comparable performance to FT. Considering that many applications of fine-tuning LMs – including
instruction tuning or domain adaptation – target generation tasks, our results underscore the potential
of MeZO as a memory-efficient technique to optimize large LMs for realistic and exciting applications.

5We also include SST-2, which is a simple sentiment classification task that we use for development.
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Model RoBERTa-large (350M) OPT-13B
Task SST-2 SST-5 SNLI TREC SQuAD
Zero-shot 79.0 35.5 50.2 32.0 46.2
Cross entropy (FT) 93.9 55.9 88.7 97.3 84.2
Cross entropy (MeZO) 93.3 53.2 83.0 94.3 84.7
Accuracy/F1 (MeZO) 92.7 48.9 82.7 68.6 78.5

Table 3: MeZO with non-differentiable objectives. For classification (k = 512), we use MeZO with
full-parameter and optimize accuracy; for SQuAD (1,000 examples), we use MeZO (prefix) and F1.
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Figure 3: GPU memory consumption with different
OPT models and tuning methods on MultiRC (400 to-
kens per example on average).

Hardware Largest OPT that can fit

FT FT-prefix Inference
1×A100 (80GB) 2.7B 6.7B 30B
2×A100 (160GB) 6.7B 13B 66B
4×A100 (320GB) 13B 30B 66B
8×A100 (640GB) 30B 66B 175B†

Figure 4: Largest OPT models that one can
tune with specific hardwares and algorithms.
† : projected results without actual testing.

MeZO scales up to 66 billion parameter models. We demonstrate the efficacy of MeZO on even
larger models, up to 66B, in Table 2. While directly fine-tuning models at such scales is extremely
costly (Section 3.4), MeZO can effectively optimize these models and outperform zero-shot and ICL.

3.3 Training with non-differentiable objectives

We demonstrate the efficacy of MeZO for optimizing non-differentiable objectives through initial
experiments. Accuracy and F1 are used as the respective objectives (details in Appendix E.6). Table 3
reveals that MeZO with accuracy/F1 successfully optimizes LMs with superior performance to
zero-shot. Although minimizing cross entropy results in stronger performance, these preliminary
findings highlight the promising potential of applying MeZO to optimize non-differentiable objectives
without clear differentiable surrogates, such as human preferences [73].

3.4 Memory usage and wall-clock time analysis

In this section we profile the memory usage of zero-shot, ICL, FT, FT (prefix), and MeZO. We
test OPT models of various sizes with Nvidia A100 GPUs (80GB memory) on MultiRC (average
#tokens=400), and report the peak GPU memory consumption (details in Appendix E.7).

As shown in Figure 3 (refer to Appendix F.5 for detailed numbers), MeZO exhibits the same memory
consumption as zero-shot while offering memory savings of up to 12 times compared to standard FT
and 6 times compared to FT (prefix). This advantage enables training larger models within a fixed
hardware budget, as illustrated in Figure 4. Specifically, using a single A100 GPU, MeZO allows for
tuning a model that is 11 times larger than what is feasible with FT.

In Appendix F.6, we compare the wall-clock time efficiencies of our implementations of MeZO and
Adam fine-tuning. MeZO achieves 7.74× per-step speedup and requires 8× fewer GPUs with a 30B
model, but takes more steps to converge. Overall, MeZO only requires half as many GPU-hours to
fine-tune a 30B model compared to full-parameter fine-tuning. The wall-clock benefit of MeZO is
not inherent to the algorithm and is highly dependent on the implementation. We primarily provide
this information as a demonstration that MeZO does not take a prohibitively long time to run.

The above measurements are dependent on the computing infrastructure. In Appendix C, we compare
the theoretical time-memory tradeoff of MeZO and backpropagation and find that MeZO is always
more memory-efficient than backpropagation and is often more time-efficient. The above analyses
also do not consider recent advances (e.g., gradient checkpointing [18], FlashAttention [23], and
quantization [27]). We leave investigating the how MeZO works with these methods to future work.
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4 Theory

Our theoretical analysis highlights why MeZO can optimize large LMs, although a number of classical
results [69, 47, 79, 3, 70] suggest that optimization should be catastrophically slow when training so
many parameters. The inclusion of a simple prompt is crucial for MeZO to succeed (Appendix A).
Past works [83, 67] have suggested that including such a prompt ensures that the fine-tuning objective
is closely related to the pre-training one. As such, here, we make the assumption that the model has
already been trained for many steps on the fine-tuning objective, which implies that the loss landscape
exhibits favorable conditions (Assumption 1). Then, we derive a convergence rate independent of
the number of parameters. We show that the loss decreases per step at a rate independent of the
parameter dimension d (Theorem 1), and that, under stronger conditions, the algorithm converges in
time independent of d (Lemma 3). Together, these results imply that MeZO is not catastrophically
slower than SGD when fine-tuning.6 For ease of illustration, we assume that z is sampled from a
sphere with radius

√
d, and in Appendix G.2, we derive the rate for a general Gaussian z, which was

used in the experiments.

We follow classical analyses of SGD and replace the minibatch gradient estimate with SPSA (Defi-
nition 1). Consider the minibatch SGD update θt+1 ← θt − η∇L(θ;Bt) where Bt is a minibatch
drawn uniformly from DB . Crucially, the SGD minibatch gradient estimate is unbiased.
Definition 3 (Unbiased Gradient Estimate). Any minibatch gradient estimate g(θ,B) is said to be
unbiased if E[g(θ,B)] = ∇L(θ).

4.1 Per-step analysis

The classical descent lemma uses a Taylor expansion to study how SGD reduces the loss at each
optimization step. It highlights that when the gradient covariance is large, the maximum possible
decrease in loss at each optimization step is small, thereby resulting in slower optimization.
Lemma 1 (Descent Lemma). Let L(θ) be ℓ-smooth.7 For any unbiased gradient estimate g(θ,B),

E[L(θt+1) | θt]− L(θt) ≤ −η ∥∇L(θt)∥2 +
1

2
η2ℓ · E[∥g(θ,Bt)∥2]. (2)

The descent lemma highlights the importance of the gradient norm, which we derive for MeZO below.
Lemma 2. Let B be a random minibatch of size B. Then, the gradient norm of MeZO is

Ex

[∥∥∥∇̂L(θ;B)∥∥∥2] =
d+ n− 1

n
E
[
∥∇L(θ;B)∥2

]
.

where n is the number of z sampled in n-SPSA (Definition 1) and d is the number of parameters.

Thus, in the usual case where n ≪ d, MeZO has a much larger gradient norm than SGD.8 The
descent lemma also shows that to guarantee loss decrease, one needs to choose the learning rate as

η ≤ 2 ∥∇L(θt)∥2

ℓ · E[∥g(θ,B)∥2]
Lemma 2
=======⇒ ηZO =

n

d+ n− 1
ηSGD (3)

where ηZO and ηSGD are the maximum permissible learning rates for MeZO and SGD respectively.
Thus we see that without any further assumptions, MeZO can slow optimization by decreasing the
largest permissible learning rate by a factor of d. Moreover, MeZO reduces the loss decrease that can
be obtained at each step and, as a consequence, slows convergence by a factor of d as well.

Surprisingly, our experiments show that MeZO can quickly optimize pre-trained models with billions
of parameters, and reducing the number of tuned parameters via PEFT techniques does not substan-
tially accelerate optimization (Appendix F.3). We attribute these phenomena to the Hessian of the loss
exhibiting small local effective rank. It is prohibitively expensive to directly measure the effective
rank of the Hessian of a large LM on a reasonably sized dataset. However, many previous works
have shown that the Hessian of the loss for deep neural networks trained by SGD has remarkably low

6Section 3 uses the standard choice of Adam for FT; we provide SGD experiments in Appendix F.1.
7This is satisfied for the standard cross-entropy objective.
8All of our experiments use n = 1.
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effective rank [74, 75, 36, 107, 105, 82]. In particular, the bulk of the spectrum concentrates around
0 with only a small number of outliers, and the number of these outliers is an upper bound on the
effective rank. In addition, prior works [4, 56] have demonstrated that LM fine-tuning can occur in a
very low dimensional subspace (< 200 parameters), which further supports the below assumption.
We formalize the assumption on the effective rank below. In particular, we require an upper bound on
the Hessian in a neighborhood around the current iterate to have effective rank at most r.
Assumption 1 (Local r-effective rank). Let G(θt) = max(x,y)∈D ∥∇L(θt; {(x,y)})∥. There exists
a matrix H(θt) ⪯ ℓ · Id such that:

1. For all θ such that ∥θ − θt∥ ≤ ηdG(θt), we have∇2L(θ) ⪯H(θt).

2. The effective rank of H(θt), i.e tr(H(θt))/ ∥H(θt)∥op, is at most r.

Under this assumption, we show that the convergence rate of ZO-SGD does not depend on the number
of parameters. Instead, the slowdown factor only depends on the effective rank of the Hessian.
Theorem 1 (Dimension-Free Rate). Assume the loss exhibits local r-effective rank (Assumption 1). If
θt+1 = θt − ηZO∇̂L(θt;B) is a single step of ZO-SGD using the n-SPSA estimate with a minibatch
of size B, then there exists a γ = Θ(r/n) such that the expected loss decrease can be bounded as

E[L(θt+1) | θt]− L(θt) ≤ −ηZO ∥∇L(θt)∥2 +
1

2
η2ZOℓ · γ · E[∥∇L(θ;B)∥

2
] (4)

By applying Equation (3), we can directly compare to the SGD descent lemma.
Corollary 1. Choosing the learning rate ηZO = γ−1 · ηSGD, ZO-SGD obtains a loss decrease of

E[L(θt+1) | θt]− L(θt) ≤
1

γ
·
[
−ηSGD ∥∇L(θt)∥2 +

1

2
η2SGDℓ · E[∥∇L(θ;B)∥

2
]

]
. (5)

Here we see that comparing to SGD, the slowdown factor of ZO-SGD scales with the local effective
rank r, which we argue is much smaller than the number of parameters d. The above analysis focuses
on how much ZO-SGD and SGD decrease the loss at each step. Below, we show that under stronger
assumptions about the loss landscape, we can obtain rates for how quickly the ZO-SGD algorithm
converges to an optimal value.

4.2 Global convergence analysis

We show that the global convergence rate also slows by a factor proportional to the local effective
rank under stronger assumptions about the loss landscape. We assume that the landscape obeys the
classical PL inequality: the gradient norm grows quadratically with the suboptimality of the iterate.

Definition 4 (PL Inequality). Let L∗ = minθ L(θ). The loss L is µ-PL if, for all θ, 1
2 ∥∇L(θ)∥

2 ≥
µ(L(θ)− L∗).

The PL inequality is not as strong as assuming that optimization exhibits kernel-like dynamics, but it
ensures that the landscape is amenable to analysis [50]. In addition to the PL inequality, we assume
the trace of the gradient covariance is bounded, so noise does not disrupt the trajectory too drastically.
Definition 5 (Gradient Covariance). The SGD gradient estimate on a minibatch of size B has
covariance Σ(θ) = B(E

[
∇L(θ;B)∇L(θ;B)⊤

]
−∇L(θ)∇L(θ)⊤).

As we show in Appendix G.1, this assumption holds for common loss functions such as square loss or
binary cross entropy for several settings (e.g., kernel behavior [67]). With these two assumptions, we
show that ZO-SGD has a slowdown proportional to the effective rank r, not the parameter dimension.
Lemma 3 (Global Convergence of ZO-SGD). Let L(θ) be µ-PL and let there exist α such that
tr(Σ(θ)) ≤ α(L(θ)− L∗) for all θ. Then after

t = O


( r

n
+ 1

)
·
(
ℓ

µ
+

ℓα

µ2B

)
log
L(θ0)− L∗

ϵ︸ ︷︷ ︸
SGD rate (Lemma 4)


iterations of ZO-SGD we have E[L(θt)] ≤ L∗ + ϵ.
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5 Related work

Zeroth-order optimization Many classical lower bounds have been derived for ZO-SGD in the
strongly convex and convex settings [47, 3, 79, 32, 85, 69] as well as non-convex [101]. These
bounds generally depended on the number of parameters d. More recently, [100, 6, 15] showed that
if the gradient has low-dimensional structure, then the query complexity scales linearly with the
intrinsic dimension and logarithmically with the number of parameters, though the estimation has at
least Ω(sd log d) memory cost. Additional tricks such as sampling schedules [11] and other variance
reduction methods [48, 62] can be added to ZO-SGD. ZO has inspired distributed methods [93, 43]
and black-box adversarial example generation [14, 63, 17, 64] in deep learning. Ye et al. [108],
Balasubramanian and Ghadimi [7] estimate the Hessian to perform ZO optimization along important
directions. There are also ZO methods that optimize without estimating the gradient [38, 68, 44].

Memory-efficient backpropagation Several algorithms have been proposed to efficiently approx-
imate backpropagation by sparsifying gradients [92, 102], approximating Jacobians [1, 19], and
subsampling the computational graph [71, 2]. However, these methods may accrue large approxima-
tion errors for deep networks. Gradient checkpointing [18] reduces memory cost of backpropagation
at the cost of recomputing some activations. FlashAttention [23] also reduces memory cost by
recomputing attention matrices. Dettmers et al. [26, 27] explore quantization of large LMs’ weights
and optimizer states, which leads to memory reduction in both training and inference.

Gradient-free adaptation of large language models BBT and BBTv2 [91, 90] use evolutionary
algorithms to achieve gradient-free optimization; however, due to its sensitivity to high dimensionality,
BBT is limited to only optimize a low-dimension projection of prefixes and they focus on RoBERTa-
large size models and few-shot settings. Other works in “black-box tuning” of LMs focus on
optimizing discrete prompts without updating the model, either via reinforcement learning [16, 25, 29],
ensemble [45], or iterative search [78]. Concurrent work in [106] uses iterative forward passes to
improve in-context learning performance.

6 Conclusion

We have shown that MeZO can effectively optimize large LMs across many tasks and scales. Further
experiments suggest that MeZO can optimize non-differentiable objectives, which backpropagation
usually cannot do. Our theory illustrates why MeZO is not catastrophically slow when tuning billions
of parameters. As a limitation, MeZO takes many steps in order to achieve strong performance,
though we show that the per-step speedup in MeZO can often make fine-tuning with MeZO run faster
than a standard implementation of fine-tuning with backpropagation. We did not explore combining
MeZO with other memory-efficient methods, such as FlashAttention [23] and quantization [26],
though we hope to investigate this in the future.

We are excited to explore the applicability of MeZO to a number of areas, including but not limited to:
pruning, distillation, saliency, interpretability, and dataset selection for fine-tuning. Non-differentiable
objectives are a particularly exciting area, given recent advances in tuning large LMs to adapt to
human feedback. Conducting theoretical analyses for how these efficient gradient estimates impact
the performance of different applications is also of interest.
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A Algorithmic Ablations

We perform a number of ablations to select the best algorithm. As is standard in ZO literature, we
consider the main computational cost to be the number of forward passes. In our case, the number
of forward passes can be affected by the number of gradient steps taken, any usage of gradient
accumulation, and using more noise samples to reduce the variance of the gradient estimate.

We observed that the performance of MeZO improves monotonically with the number of steps, and
there does not appear to be any overfitting. Hence, when performing algorithmic ablations, we can
focus on the efficiency of different algorithms without considering implicit bias. This is also reflected
in our theoretical analysis. To ease the computational load, we fix the number of forward passes to
10, 000 and compare many different algorithms for RoBERTa-large on a smaller set of tasks that span
sentiment analysis, entailment, and topic classification: SST-2, SNLI, and TREC. We emphasize
that 10, 000 is a small budget and is only used as a setting to compare these ZO algorithms to each
other. We find that using a linearly decreasing learning rate schedule during training, as was done for
fine-tuning with backpropagation in [65], does not help or hurt MeZO. Similarly, using a learning
rate warmup leads to identical results on these three tasks. For simplicity, we use a constant learning
rate schedule with no warmup for all of the below experiments. We perform few-shot experiments
with k = 16 and average the results across 5 seeds.

Experiment Hyperparameters Values

MeZO Batch size {16, 64} ×
Learning rate {1e−5, 1e−6, 1e−7} ×

ϵ {1e−3, 1e−5} ×
Weight Decay {0, 0.1}

Table 4: The hyperparameter grid used in our ablation experiments. For simplicity, we use a constant
learning rate schedule.

A.1 Prompting

We study if adding a prompt is crucial to the ability of MeZO to optimize the network. We use prompts
from Gao et al. [35]. Malladi et al. [67] claimed the prompt makes the optimization trajectory well-
behaved, though we note that the current paper considers RoBERTa-large and large autoregressive
models while the previous work only studied RoBERTa-base. We note the similarity between kernel
behavior and our theoretical setting in Section 4. MeZO succeeds on tasks that are reported to not
exhibit kernel behavior in Malladi et al. [67], so we investigate whether or not the prompt is necessary.

SST-2 SNLI TREC

Prompt 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)
No Prompt 51.9 (2.9) 34.8 (2.1) 19.5 (9.0)

Table 5: Experiments using MeZO to fine-tune models with and without a prompt.

Both experiments followed the grid in Table 4, but we also expanded the grid to include a learning rate
of 1e− 4 for the no prompt case. As a result of these experiments, we fix the setting to prompt-based
fine-tuning for all of the below experiments.

A.2 Sample schedules

One can sample nt noise vectors at the tth step and use nt-SPSA to compute the gradient estimate.
Similar ideas were proposed in Bollapragada et al. [11], Cai et al. [15]. We study the effect of linearly
increasing and constant sampling schedules in the ablation setting. The intuition for the linearly
increasing schedule is that the optimizer may need a higher fidelity gradient as it approaches the
minimum. Increasing the number of zs can speed up optimization by reducing the gradient variance,
but doing so also increases the number of forward passes required for each optimization step, so
there is a trade-off to study. We note that increasing the number of zs should be accompanied by
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a proportional scaling of the learning rate, analogous to the linear scaling rule proposed in [39]
(theoretical justification can follow the SDE technique [58]). Table 6 shows no consistent benefit in
one schedule over the other, and it demonstrates that increasing the n in n-SPSA while fixing the
number of forward passes allowed results in only marginal gains at best.

n Schedule SST-2 SNLI TREC

n = 1 Constant 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)
n = 4 Constant 89.5 (1.1) 68.6 (3.2) 62.3 (5.6)
n = 4 Linear 89.6 (1.4) 65.3 (6.4) 66.1 (5.5)
n = 16 Constant 90.4 (0.7) 67.0 (3.4) 62.8 (6.3)
n = 16 Linear 88.9 (1.2) 62.8 (5.9) 64.2 (5.3)

Table 6: Experiments using MeZO with different schedules for n. We scale the learning rate
proportionally to the number of z’s sampled.

B MeZO Variants

There is a rich history of transferring ideas from first order optimization to enhance ZO algorithms.
Below, we highlight several variants of MeZO that did not achieve as high performance as the
algorithm presented in Algorithm 1.

B.1 Memory-efficient n-SPSA

We highlight how MeZO can perform n-SPSA (Definition 1) efficiently for n > 1 in Algorithm 2.
In particular, if sampling n z vectors and averaging the projected gradients, we require storing 2n
additional scalars: the random seeds and the projected gradients. The same caveat about perturbing
individual weights versus entire weight matrices still applies here (see Section 2).

B.2 Augmenting MeZO with Gradient History

The n-SPSA algorithm merely provides a gradient estimate that can subsequently be used in place
of the gradient in any gradient-based optimizer. Many popular optimizers, such as Adam and SGD
with momentum, require storing some historical information about gradients (e.g., a moving average).
This requirement causes such algorithms to require 2× or 3× the memory that is needed for SGD.

However, one advantage of MeZO is that the gradient history can be recomputed at each step without
requiring much additional memory. In reference to Algorithm 1, note that the gradient only needs
projected_grad and the random seed s used to compute the perturbation z, so we need to only
store 2 scalars per step to reproduce the gradient history (i.e., up to 2T scalars during training).
This is a substantial reduction in added memory overhead that is usually needed for using Adam or
momentum instead of vanilla SGD.

Table 18 illustrates that MeZO-Adam can sometimes improve the performance of MeZO, though
each gradient step requires additional computation (but no additional forward passes). We leave it to
future work to investigate when MeZO-Adam may be more useful than MeZO.

Experiment Hyperparameters Values

MeZO-Adam Batch size 64
Learning rate {1e−6, 1e−5, 1e−4, 5e−4, 1e−3}

ϵ 1e−3
Weight Decay 0

Table 7: The hyperparameter grid used for MeZO-Adam. For simplicity, we use a constant learning
rate schedule.
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Algorithm 2: MeZO with n > 1

Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale ϵ, batch size
B, learning rate schedule {ηt}, n for n-SPSA estimate (Definition 1)

for t = 1, ..., T do
seeds, projected_grads← [] ▷ Will each contain n scalars
for j = 1, ..., n do

Sample batch B ⊂ DB and random seed s
θ ← PerturbParameters(θ, ϵ, s)
ℓ+ ← L(θ;B)
θ ← PerturbParameters(θ,−2ϵ, s)
ℓ− ← L(θ;B)
θ ← PerturbParameters(θ, ϵ, s) ▷ Reset parameters
projected_grad← (ℓ+ − ℓ−)/(2ϵ)
projected_grads[j]← projected_grad
seeds[j]← s

end
for j = 1, ..., n do

Reset random number generator with seed seeds[j]
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi − (ηt/n) ∗ projected_grads[j] ∗ z ▷ Avg grad for z1, ...,zn

end
end

end

Subroutine PerturbParameters(θ, ϵ, s)
Reset random number generator with seed s ▷ For sampling z
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi + ϵz ▷ Modify parameters in place

end
return θ

B.3 Modifying the Variance of MeZO

Our theory in Section 4 sketches the well-known fact that the variance of the stochastic gradient
estimate can impact the rate of optimization. ZO methods can be combined with standard variance
reduction techniques to possibly improve optimization speed. For example, Liu et al. [62] designed a
variance reduced ZO algorithm, analogous to SVRG [49], to improve the speed of convergence. Below,
we show that several variance reduction methods (e.g., using the gradient norm) can be implemented
in a memory-efficient manner. However, when controlling for the total budget of forward passes (i.e.,
function queries), these methods are not as performant as MeZO. We nevertheless present them to
demonstrate the ease with which MeZO can be adapted, and we suggest these methods may be useful
for optimizing more complex objectives.

First, we define a general SPSA estimate that has the same expectation (i.e., the true gradient) but has
a scaled variance.
Definition 6 (Variance-Modified SPSA). Given a matrix D = diag(d), the variance modified SPSA
computes

∇̃L(θ;B) = L(θ + ϵ(d−1 ⊙ z);B)− L(θ − ϵ(d−1 ⊙ z);B)
2ϵ

(d⊙ z)

where d ∈ Rd has nonzero entries and d−1 denotes the coordinatewise reciprocal.

The above SPSA variant is an unbiased estimator of the gradient, because E[∇̃L(θ;B)] =
E[D−1zz⊤D∇L(θ;B)] = E[∇L(θ;B)]. We will draw inspiration from classical methods (i.e.,
“control variates”) and choose d to be a block vector with gradient norms or parameter norms [99].
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To select the parameter groups, we split the model by layer, keeping the embedding and the head
separate (i.e., RoBERTa-large has 24 + 2 = 26 parameter groups). It is straightforward to measure
the parameter norms without consuming additional memory. We can measure the gradient norms
without performing backpropagation, as shown below.

Proposition 1 (ZO Estimate of Gradient Norm of ℓth Layer). Define zℓ to have z ∼ N (0, 1) in
each coordinate corresponding to parameters in the ℓth layer and 0 everywhere else. Then, we can
estimate the norm of the gradient of the loss w.r.t. the ℓth layer∇θℓ

as

∥∇θℓ
L(θ;B)∥2 ≈

∣∣∣∣L(θ + ϵzℓ;B)− L(θ − ϵzℓ;B)
2ϵ

∣∣∣∣
As is true for SPSA, increasing the number of zℓ’s sampled for each value of ℓ and averaging the
result reduces the variance of the estimate. The rationale for this estimate is that for any vector v,
Ez[(⟨v, z⟩)2] = ∥v∥22 for Gaussian z. It is clear that this estimate can be computed in a memory
efficient way, although it requires 2L forward passes to compute gradient norms for L parameter
groups.

We show the experimental results for modifying the variance below. We follow the ablation setting
and use a fixed budget of 10, 000 steps (Appendix A). Generally, using the gradient norm to reduce
the variance substantially hurts performance (Table 8). If we “cheat” and allow one backpropagation
through the network to estimate the gradient norm, then we see that reducing the variance using the
gradient norm does not substantially hurt or help performance. Modifying the variance using the
parameter norm, analogous to layerwise adaptive rate methods, does not substantially impact the
performance of MeZO (Table 9).

Our observation is that decreasing the variance by setting d as the gradient norm does not improve
optimization. This empirical result agrees with the exposition in Section 4 that the straightforward
variance analysis (which yields a dependence on the number of parameters d) is not the best lens to
study the rate of optimization when fine-tuning with MeZO. Our effective rank view in Theorem 1
and Lemma 3 is likely a better characterization of fine-tuning dynamics. We leave it to future work to
explore if these methods can be useful for other more complex objectives.

Recompute d ZO estimate of d SST-2 SNLI TREC

Baseline MeZO (Algorithm 1) 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)
89.7 (0.8) 65.2 (5.2) 64.3 (6.4)
87.0 (2.5) 49.6 (9.2) 32.6 (7.7)

79.0 (10.3) 48.9 (2.2) 38.7 (7.5)

Table 8: Experiments modifying the variance of MeZO using d as the gradient norm (see Definition 6).
We sometimes recompute d at the start of each epoch or use Proposition 1 to estimate d without
requiring backpropagation.

Recompute d SST-2 SNLI TREC

Baseline MeZO (Algorithm 1) 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)
89.2 (2.1) 65.4 (4.2) 64.8 (5.6)
88.2 (4.7) 65.2 (4.0) 64.7 (5.5)

Table 9: Experiments modifying the variance of MeZO using d as the parameter norm (see Defini-
tion 6). We sometimes recompute d at the start of each epoch.

B.4 Modifying the Expectation of MeZO

The above experiments show that modifying the variance of MeZO cannot consistently accelerate its
convergence. However, a simple modification of Definition 6 allows us to change the expectation of
MeZO as well. This can be used to efficiently estimate coordinate-wise normalized gradient-based
optimizer updates (e.g., Adam).
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Definition 7 (Expectation-Modified SPSA). Given a matrix D = diag(d), the variance modified
SPSA computes

∇̃L(θ;B) = L(θ + ϵ(d−1 ⊙ z);B)− L(θ − ϵ(d−1 ⊙ z);B)
2ϵ

z

where d ∈ Rd.

Now, we see that ∇̃L(θ;B) = E[D−1zz⊤∇L(θ;B)] so the SPSA estimate is no longer an unbiased
estimator for ∇L(θ). If we choose d to be the gradient norm, for example, then SPSA can estimate
the normalized gradient. Concurrent work in Tang et al. [94] gives another ZO estimate of the
normalized gradient while assuming access to only rankings of inputs (instead of the noisy function
evaluations available in our setting). We find that estimating the normalized gradient does not perform
as well as directly estimating the gradient (Table 10). Regardless, we present this algorithm as a way
to highlight that any coordinate-wise operation to the gradient can be applied in a memory-efficient
manner.

Method SST-2 SNLI TREC

Baseline MeZO (Algorithm 1) 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)
Estimate of normalized gradient (Definition 7) 88.0 (1.2) 60.0 (2.4) 44.0 (14.0)

Table 10: Experiments modifying the expectation of MeZO using d as the gradient norm (see
Definition 7). We use the ZO estimate of the gradient norm (Proposition 1).

B.5 One-point estimate

Here, we investigate the efficacy of one-point gradient estimators in place of the two-point SPSA
method. Using a one-point estimator instead of SPSA can reduce the MeZO running time by half.
Many one-point estimators have been proposed in the past [34, 87, 95]. For simplicity, we focus
on one estimator [113] that has a form reminiscent of SPSA but requires only one forward pass to
estimate the gradient at each step.
Definition 8 (One-Point Gradient Estimate, Zhang et al. [113]). For a loss function L evaluated on a
batch Bt with parameters θt at step t, we can draw random noise zt ∼ N (0, Id) and compute the
gradient estimate using hyperparameter ϵ as written below.

∇̂L(θt;Bt) =
L(θt + ϵzt;Bt)− L(θt−1 + ϵzt−1;Bt−1)

ϵ

Notably, this one-point gradient estimate uses the loss at the previous iterate instead of evaluating the
loss again at the current iterate. As such, this estimator requires only one forward pass at each iterate
to estimate the gradient. For well-behaved loss functions and slow-moving optimization, these two
formulas are intuitively similar. However, Table 11 finds this estimator to be much less efficient than
SPSA when fixing the number of forward passes.

Steps SST-2 SST-5 SNLI MNLI RTE TREC
—— sentiment —— —— natural language inference —— — topic —

SPSA [88] 20K 92.8 (0.5) 51.3 (0.9) 82.9 (1.0) 74.4 (0.8) 76.7 (1.7) 92.7 (0.6)
One-point estimate [113] 20K 90.0 (0.4) 44.6 (2.0) 70.1 (1.5) 57.2 (0.9) 64.1 (1.0) 57.3 (5.7)
One-point estimate [113] 40K 91.8 (0.5) 45.9 (1.7) 74.4 (0.8) 61.0 (1.0) 68.7 (1.2) 73.0 (3.1)

Table 11: Comparison between SPSA and a one-point estimate Zhang et al. [113]. One-point estimate
only does one forward pass per step, thus is twice as fast as two-point estimate per step. As such, the
number of forward passes after 40K steps with the one-point estimate is the same as the number of
forward passes with SPSA after 20K steps. The results show that two-point estimate is much more
effective than one-point estimate.

C Memory Analysis

The compute-memory tradeoff of backpropagation is complex to analyze. Griewank and Walther
[40] provides a rigorous theoretical treatment of the problem. We empirically measure the memory
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consumption of different methods for commonly used large language models, but here we hope to
provide a more rigorous comparison of different gradient estimation algorithms, independent of the
software used to implement them. Below, we summarize some key points that may help readers to
understand how the MeZO compute-memory tradeoff compares to backpropagation.

Given a network, the first step to perform backpropagation is to decompose the model into easily
differentiable blocks. We note that this decomposition is not unique. For each block, one can
choose to cache the resulting output during the forward pass (thereby consuming memory) or instead
recompute the output when it is needed (thereby consuming compute). The below proposition,
adapted from Rule 21 in Griewank and Walther [40], captures this tradeoff.

Proposition 2 (Time-Memory Tradeoff for Backpropagation, Griewank and Walther [40]). Consider
a network containing N bits. For any time-memory tradeoff hyperparameter c = O(1), there exists a
backpropagation algorithm that runs in time O(cN) and consumes memory proportional to O(N1/c).

Grimm et al. [41] also gave sharp bounds for the memory-time product. Note that the popular gradient
checkpointing [18] method allows one to tune c with limited precision (i.e., one cannot always further
split a differentiable block and observe savings). Experiments in Chen et al. [18] choose c = 2
to achieve O(

√
N) memory while consuming O(2N) computation. In the extreme case, gradient

checkpointing allows one to use O(N logN) computation and O(logN) memory.

MeZO always consumes 2N compute and O(1) memory, so it is more compute-efficient at the same
memory cost as gradient checkpointing. Our exposition in Section 2 discusses that we can perturb
groups of parameters together to save time while consuming additional memory. However, we do
not consider that variant here because it is somewhere in the middle of the compute-memory pareto
curve, where we cannot reason about what backpropagation will do. In particular, MeZO can split
groups differently than backpropagation can, since MeZO does not require that each parameter group
is easily differentiable, so it is hard to compare the two algorithms along the entire pareto curve.

We also compare backpropagation for the c = 1 case (i.e., storing everything during the forward
pass). When storing everything, backpropagation consumes O(N) time and O(N) memory. Hence,
SPSA consumes slightly more time and substantially less memory than backpropagation at this end
of the tradeoff.

Unlike gradient checkpointing, MeZO computes only an approximation of the gradient. This
approximation is only useful for fine-tuning with a prompt, making it less broadly useful than
gradient checkpointing. There are other methods that approximate the gradient with less memory
consumption than gradient checkpointing (see the Related Work section), though it is unclear how
the memory consumption of those algorithms compare to MeZO.

D Forward Auto-Differentiation

We discuss the merits of using forward auto-differentiation instead of two forward passes to construct
a gradient estimate for fine-tuning. As ϵ→ 0, the SPSA gradient estimate (Definition 1) can be written
as zz⊤∇L(θ;B). The term z⊤∇L(θ;B) is a Jacobian-vector product (JVP), and it is well-known
that this can be computed in parallel with a single forward pass while consuming additional memory
equivalent to that of the largest activation in the model. To fully compute the gradient estimate, one
must store z on the GPU while performing inference, so we observe that this algorithm requires more
memory than MeZO.

We note that implementation of the forward auto-differentiation algorithm is not well-supported in
PyTorch at the time of writing. The autograd JVP function computes the JVP in a memory-inefficient
way, as noted in the documentation, and the other available methods to compute a JVP are not
sophisticated enough to easily scale to a complex LLM. Computing the JVP is straightforward when
using JAX, so we profile the memory consumption of inference and the JVP for RoBERTa-large
when using JAX. We use batch size 16 with the MultiRC task. Note that JAX may automatically
use rematerialization to avoid out of memory errors so we focus on settings in which the memory
utilization remains below 50%. The resulting memory usage during inference, backpropagation, and
forward auto-differentiation are reported in Table 12.
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We see that forward auto-differentiation is substantially more memory efficient than backpropagation
but less memory efficient than inference. Furthermore, forward auto-differentiation selects ϵ = 0,
which removes potentially beneficial third-and-higher order Taylor expansion terms from the estimate.

Task Inference (and MeZO) Backpropagation Forward Auto-Differentiation
Excess Memory (MB) 327.50 24156.23 830.66

Table 12: Memory consumption of RoBERTa-large when using batch size 16 with the MultiRC task.
The reported memory does not include the cost of storing the model on the GPU, which is required
for all three cases.

E Experiment setup

E.1 Datasets

For RoBERTa-large, we consider classification datasets: SST-2 [86], SST-5 [86], TREC [97],
MNLI [103], SNLI [12], and RTE [22, 8, 37, 10]. We follow Malladi et al. [67] in limiting the
test set to 1, 000 examples for fast iteration. For training and validation, we have two settings: k = 16
and k = 512, which mean that we have 16 or 512 examples per class for both training and validation.

For OPT experiments, we consider the SuperGLUE dataset collection [98], including: BoolQ [21],
CB [24], COPA [81], MultiRC [51], ReCoRD [111], RTE [22, 8, 37, 10], WiC [77], and WSC [55].
We also include SST-2 [86] and two question answering (QA) datasets, SQuAD [80] and DROP [31].
We randomly sample 1,000 examples for training, 500 examples for validation, and 1,000 examples
for testing.

E.2 Prompts

Table 13 shows the set of downstream tasks and prompts with which we fine-tune RoBERTa-large,
which are adapted from [35].

Dataset C Type Prompt Label words

SST-2 2 sentiment cls. <S1> It was [MASK] . {great, terrible}
SST-5 5 sentiment cls. <S1> It was [MASK] . {great, good, okay, bad, terrible}
TREC 6 topic cls. [MASK] : <S1> {Description, Expression, Entity,

Human, Location, Number}
MNLI 3 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
SNLI 3 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
RTE 2 NLI <S1> ? [MASK] , <S2> {Yes, No}

Table 13: The prompts of the datasets we used in our RoBERTa-large experiments (Table 18 and
Figure 2). The prompts are adapted from [35] and include a template and a set of label words that
can fill in the [MASK]token. <S1> and <S2> refer to the first and the second (if any) input sentence.

Table 14 demonstrates the prompts we use for OPT. Note that in OPT experiments we have three
types of tasks: classification, multiple-choice, and question answering. Prompts are adopted from
GPT-3 [13] and PromptSource with minor changes [5].

E.3 Hyperparameters

We use the hyperparameters in Table 15 for MeZO experiments on RoBERTa-large (Table 18 and
Figure 2). Experiments in Appendix A informed the grid; in particular, the choice of ϵ seemed
to not significantly impact performance, and using a larger batch size consistently yielded faster
optimization. We use the hyperparameters in Table 16 for MeZO experiments on OPT.

Regarding learning rate scheduling and early stopping, we use linear learning scheduling for all
fine-tuning with backpropagation experiments and constant learning rate for all MeZO experiments.
For RoBERTa experiments, we evaluate the model on validation sets every 1/10 of total training steps
and save the best validation checkpoint. All FT experiments use 1K steps and MeZO experiments use
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Dataset Type Prompt

SST-2 cls. <text> It was terrible/great
RTE cls. <premise>

Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB cls. Suppose <premise> Can we infer that "<hypothesis>"? Yes, No, or Maybe?
Yes/No/Maybe

BoolQ cls. <passage> <question>?
Yes/No

WSC cls. <text>
In the previous sentence, does the pronoun "<span2>" refer to <span1>? Yes or No?
Yes/No

WIC cls. Does the word "<word>" have the same meaning in these two sentences? Yes, No?
<sent1>
<sent2>
Yes/No

MultiRC cls. <paragraph>
Question: <question>
I found this answer "<answer". Is that correct? Yes or No?
Yes/No

COPA mch. <premise> so/because <candidate>
ReCoRD mch. <passage>

<query>.replace("@placeholder", <candidate>)
SQuAD QA Title: <title>

Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

Table 14: The prompts of the datasets we used in our OPT experiments. There are three types of tasks:
classification (cls.), multiple-choice (mch.), and question answering (QA). Prompts are adopted from
GPT-3 [13] and PromptSource [5] with minor changes. <text> represents input from the dataset and
Yes represents label words. For inference on multiple choice tasks, we put in different candidates
in the prompt and calculate the average log-likelihood for each candidate, and choose the candidate
with the highest score. For inference on QA tasks, we use greedy decoding to generate the answer.

100K steps. For OPT experiments, we evaluate the model on validation sets every 1/5 of the total
training steps and save the best validation checkpoint. All FT experiments train for 5 epochs and all
MeZO experiments use 20K steps. Note that FT experiments mostly converge within 5 epochs but
we observe that MeZO performance can still improve with more training steps.

E.4 Modeling and implementation

For RoBERTa experiments, we follow [35] for the prompt-based fine-tuning paradigm for masked
language models. Please refer to the original paper for more details.

In OPT experiments, for classification tasks, we train the model similarly to [35], i.e., we take the
logits corresponding to the label words and apply cross entropy loss on them; for multiple choice
tasks and generation tasks (QA), we only keep the correct candidate and use teacher forcing to train
on the correct examples. We only keep the loss on tokens in the candidate part and exclude the prompt
part.

For OPT inference on classification and multiple-choice tasks, we use the model to get the average
log-likelihood (by tokens) of all the candidates/label words, and predict the one with the highest
average log-likelihood. For generation tasks, we use greedy decoding to generate the answer.

For in-context learning, we use 32 examples in the context. We also try filling in as many examples
as possible in the context but this does not improve performance and sometimes leads to unstable
results. Thus we keep the 32-example results.
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Experiment Hyperparameters Values

MeZO Batch size 64
Learning rate {1e−7, 1e−6, 1e−5}

ϵ 1e−3
Weight Decay 0

MeZO (prefix) Batch size 64
Learning rate {1e−2, 5e−3, 1e−3}

ϵ 1e−1
Weight Decay 0

# prefix tokens 5

MeZO (LoRA) Batch size 64
Learning rate {1e−5, 5e−5, 1e−4}

ϵ 1e−3
Weight Decay 0.1

(r, α) (8, 16)

FT with Adam Batch size (k = 16) {2, 4, 8}
Batch size (k = 512) {8, 16, 32}

Learning Rates {1e−5, 3e−5, 5e−5}
Weight Decay 0

FT with SGD Batch size (k = 16) {2, 4, 8}
Batch size (k = 512) {8, 16, 32}

Learning Rates {1e−4, 5e−4, 1e−3, 5e−3, 1e−2}
Weight Decay 0

FT (prefix) Batch size {8, 16, 32}
Learning Rates {1e−2, 3e−2, 5e−2}
Weight Decay 0

# prefix tokens 5

FT (LoRA) Batch size {4, 8, 16}
Learning Rates {1e−4, 3e−4, 5e−4}

(r, α) (8, 16)

Table 15: The hyperparameter grids used for RoBERTa-large experiments. MeZO uses a constant
learning rate schedule, and FT uses linear scheduling. All FT experiments use 1K steps and MeZO
experiments use 100K steps. We check validation performance every 1/10 total training steps.

For linear probing of classification tasks, we take the output feature and use scipy package to train
a linear classifier. For multiple-choice tasks and generation tasks, we found that this leads to poor
results since the output space is the whole vocabulary; instead, we do head-tuning, where the whole
model is fixed except for the LM projection head. We use a batch size of 8 and a learning rate of
{1e−4 5e−4}, and train the head for 5 epochs.

For experiments on 30B and 66B OPT models, we largely follow the OPT hyperparameters except
that we do not evaluate the intermediate validation performance and directly use the last checkpoint
for evaluation, due to the high storage cost of intermediate checkpoints of large models.

E.5 Parameter-efficient fine-tuning

Fine-tuning and storing a copy of the large language model for each downstream task is expensive.
Parameter-efficient fine-tuning (PEFT) techniques alleviate this problem: instead of tuning all model
parameters, PEFT only tunes a small number of additional parameters (usually less than 1%) and can
often achieve comparable or better performance [57, 54, 30]. The ZO optimizer is compatible with
PEFT methods, since ZO can operate on any subset of the model parameters. We are interested in the
following two common PEFT methods, designed for transformers [96].

LoRA [46] adds a tunable low-rank delta to a linear layer during fine-tuning. Suppose a linear layer
performed Wx+ b during pre-training with W ∈ Rm×n. When fine-tuning, LoRA introduces two
smaller matrices A ∈ Rm×r and B ∈ Rr×n such that r ≪ min(m,n). The linear layer is then
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Experiment Hyperparameters Values

MeZO Batch size 16
Learning rate {1e−6, 1e−7}

ϵ 1e−3

MeZO (prefix) Batch size 16
Learning rate {1e−2, 1e−3}

ϵ 1e−1
# prefix tokens 5

MeZO (LoRA) Batch size 16
Learning rate {1e−4, 5e−5}

ϵ 1e−2
(r, α) (8, 16)

FT with Adam Batch size 8
Learning Rates {1e−5, 5e−5, 8e−5}

Table 16: The hyperparameter grids used for OPT experiments. All weight decay is set to 0. FT uses
5 epochs and linear scheduled learning rates and MeZO uses 20K steps and constant learning rates.
We check validation performance and save the best checkpoint every 1/5 total training steps.

computed as (
W +

α

r
AB

)
x+ b (6)

where r and α are hyperparameters. A and B are trained on the downstream task while W is frozen
at its pre-trained value. In transformers, this modification to the linear layer is applied to the query
and value operations of each attention layer. Empirically, r can be very small, so the number of
trainable parameters during fine-tuning is small. We choose r = 8 and α = 16.

Prefix-tuning [57] adds a prefix of m tunable representations at each layer and freezes the rest of the
model. The representations are added as new keys and values and treated as additional context during
the attention operation. We initialize these tunable representations by randomly sampling tokens from
the vocabulary and passing them through the LLM to get their keys and values at different attention
layers. We found this crucial to make prefix tuning stable with MeZO, and this trick additionally
boosts the performance of prefix tuning with backpropagation, as shown in Table 17. We also tried
the reparameterization trick in [57], which does not help MeZO training. In our experiments, we find
m = 5 to be sufficient to achieve good performance on most tasks.

We also show that MeZO is compatible with parameter-efficient fine-tuning methods, such as prefix
tuning and LoRA. Surprisingly, the performance of MeZO does not improve substantially when tuning
much fewer parameters, as one might expect from classical analyses (see Section 4). Accordingly,
our theoretical analysis in Section 4 suggests that the convergence rate of ZO-SGD does not depend
on the parameter dimension during fine-tuning.

Task SST-2 SST-5 SNLI MNLI RTE TREC
Type —— sentiment —— —— natural language inference —— — topic —

FT (prefix, random init) 90.7 (1.7) 47.2 (2.0) 70.7 (2.8) 62.6 (3.3) 63.5 (4.4) 83.4 (4.7)
FT (prefix, real act init) 91.9 (1.0) 47.7 (1.1) 77.2 (1.3) 66.5 (2.5) 66.6 (2.0) 85.7 (1.3)

Table 17: Prefix-tuning ablations. We compare randomly-initialized prefixes and real word activation
prefixes. Using real word activations significantly outperforms random initialization.

E.6 Training with non-differentiable objectives

The experiments maximizing the accuracy of a RoBERTa-large model were all conducted using the
same grid as MeZO in Table 15.

For OPT experiments on SQuAD with F1 as objective, we use a batch size of 16. For MeZO, we use
a learning rate of {1e−6, 5e−6, 1e−5} and ϵ = 1e−3. For MeZO (prefix), we use a learning rate of
{1e−1, 5e−2, 1e−2} and ϵ = 1e−1.
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E.7 Memory profiling

In memory profiling, we use standard implementation with Huggingface’s transformers [104]
package. We did not turn on any advance memory-saving options, e.g., gradient checkpointing. We
set the per-device batch size as 1 to test the minimum hardware requirement to run the model with
specific optimization algorithms. For multi-GPU backpropagation, we use fully sharded data parallel
(FSDP) [33] provided by PyTorch [76]. For multi-GPU MeZO, we use transformers multi-GPU
inference of large models. We use Nvidia’s nvidia-smi command to monitor the GPU memory
usage. We call a run “successful” if there is no out of memory error from GPUs for at least 100 steps.
We also profile fine-tuning with LoRA, but find its memory usage similar to that of fine-tuning with
prefix-tuning. Hence here we only show the analysis with prefix-tuning.

F More experiment results

F.1 RoBERTa-large experiments

Table 18 contains the detailed numbers corresponding to Figure 2 and also reports the performance of
MeZO-Adam.

Task SST-2 SST-5 SNLI MNLI RTE TREC
Type —— sentiment —— —— natural language inference —— — topic —

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0

Gradient-free methods: k = 16

LP 76.0 (2.8) 40.3 (1.9) 66.0 (2.7) 56.5 (2.5) 59.4 (5.3) 51.3 (5.5)
MeZO 90.5 (1.2) 45.5 (2.0) 68.5 (3.9) 58.7 (2.5) 64.0 (3.3) 76.9 (2.7)
MeZO (LoRA) 91.4 (0.9) 43.0 (1.6) 69.7 (6.0) 64.0 (2.5) 64.9 (3.6) 73.1 (6.5)
MeZO (prefix) 90.8 (1.7) 45.8 (2.0) 71.6 (2.5) 63.4 (1.8) 65.4 (3.9) 80.3 (3.6)
MeZO-Adam 90.4 (1.4) 45.4 (1.5) 74.1 (2.7) 64.3 (0.8)† 59.2 (11.1)† 78.3 (1.4)

Gradient-based methods: k = 16

FT 91.9 (1.8) 47.5 (1.9) 77.5 (2.6) 70.0 (2.3) 66.4 (7.2) 85.0 (2.5)
FT (LoRA) 91.4 (1.7) 46.7 (1.1) 74.9 (4.3) 67.7 (1.4) 66.1 (3.5) 82.7 (4.1)
FT (prefix) 91.9 (1.0) 47.7 (1.1) 77.2 (1.3) 66.5 (2.5) 66.6 (2.0) 85.7 (1.3)

Gradient-free methods: k = 512

LP 91.3 (0.5) 51.7 (0.5) 80.9 (1.0) 71.5 (1.1) 73.1 (1.5) 89.4 (0.5)
MeZO 93.3 (0.7) 53.2 (1.4) 83.0 (1.0) 78.3 (0.5) 78.6 (2.0) 94.3 (1.3)
MeZO (LoRA) 93.4 (0.4) 52.4 (0.8) 84.0 (0.8) 77.9 (0.6) 77.6 (1.3) 95.0 (0.7)
MeZO (prefix) 93.3 (0.1) 53.6 (0.5) 84.8 (1.1) 79.8 (1.2) 77.2 (0.8) 94.4 (0.7)
MeZO-Adam 93.3 (0.6) 53.9 (0.8) 85.3 (0.8) 79.6 (0.4) 79.2 (1.2) 95.1 (0.3)

Gradient-based methods: k = 512

FT 93.9 (0.7) 55.9 (0.9) 88.7 (0.8) 84.4 (0.8) 82.7 (1.4) 97.3 (0.2)
FT (LoRA) 94.2 (0.2) 55.3 (0.7) 88.3 (0.5) 83.9 (0.6) 83.2 (1.3) 97.0 (0.3)
FT (prefix) 93.7 (0.3) 54.6 (0.7) 88.3 (0.7) 83.3 (0.5) 82.5 (0.8) 97.4 (0.2)

Table 18: Experiments on RoBERTa-large (350M parameters). LP: Linear probing; ZO, ZO (LoRA),
and ZO (prefix): our memory-efficient ZO-SGD (Section 2.1) with full-parameter tuning, LoRA, and
prefix-tuning respectively; FT: fine-tuning with Adam. All reported numbers are averaged accuracy
(standard deviation). All experiments use prompts (Appendix E.2). ZO outperforms zero-shot and
LP by a large margin and approaches FT performance with much less memory cost.

LP-MeZO We also compare MeZO to performing linear probing and then subsequently performing
fine-tuning via MeZO, following the analogous suggestion for fine-tuning in Kumar et al. [53]. We use
the MeZO grid described in Table 15. Note that the linear probing checkpoints used here have early
stopping, unlike the ones reported in Table 18. We heuristically implement early stopping by limiting
the number of iterations (from 5000 to 1000) and increasing the convergence tolerance (from 1e−4 to
0.01) in the scipy solver. Experiments on a few settings show that LP-MeZO can sometimes improve
performance without increasing the memory consumption (see Table 19). However, sometimes, linear
probing first can severely hurt performance.
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Task SST-2 SST-5 SNLI TREC

Zero-shot 79.0 35.5 50.2 32.0
FT 91.9 (1.8) 47.5 (1.9) 77.5 (2.6) 85.0 (2.5)

MeZO 90.5 (1.2) 45.5 (2.0) 68.5 (3.9) 76.9 (2.7)
LP-MeZO 91.4 (1.4) 41.9 (3.3) 70.7 (3.4) 54.0 (4.5)

Table 19: Performing linear probing before fine-tuning with MeZO, as suggested previously [53],
can sometimes improve performance without increasing the memory overhead. We use k = 16 for
these experiments.

F.2 OPT experiments

Table 20 present the full results of OPT-30B and OPT-66B, with detailed MeZO numbers.

Task SST-2 RTE BoolQ WSC WIC SQuAD
30B zero-shot 56.7 52.0 39.1 38.5 50.2 46.5
30B ICL 81.9 66.8 66.2 56.7 51.3 78.0
30B MeZO 90.6 66.4 67.2 63.5 56.3 85.2
30B MeZO (prefix) 87.5 72.6 73.5 55.8 59.1 83.9

66B zero-shot 57.5 67.2 66.8 43.3 50.6 48.1
66B ICL 89.3 65.3 62.8 52.9 54.9 81.3
66B MeZO 91.2 65.7 72.7 63.5 58.9 *
66B MeZO (prefix) 93.6 66.4 73.7 57.7 58.6 85.0

Table 20: Experiments on OPT-30B and OPT-66B (with 1,000 examples). *: MeZO requires further
tuning to successfully optimize.

F.3 Convergence of MeZO with full-parameter and PEFT

We demonstrate the convergence rate of MeZO, MeZO (LoRA) and MeZO (prefix) on SST-2 and
SNLI for the first 5,000 steps in Figures 5. We see that despite the different number of parameters
they optimize, MeZO demonstrates similar training speed on full parameter and PEFT. This agrees
with our theory in Section 4, which shows that MeZO’s optimization speed is independent of the
number of parameters.
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Figure 5: MeZO does not optimize significantly faster when tuning fewer parameters, agreeing with
our theory in Section 4.
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F.4 ZO vs BBTv2

We compare ZO with BBTv2 [90] on mutually assessed tasks in Table 21. ZO significantly outperform
BBTv2. Furthermore, BBTv2 is limited to optimize in low-dimensional space and requires prefix-
tuning and a down-projection to reduce the number of optimized parameters. BBTv2 also employs
an iterative scheme which only optimizes one layer at a time. In contrast, ZO works with both
full-parameter tuning and PEFT, as shown in our experiments (Section 3) and theory (Section 4).

Task SST-2 SNLI RTE
Task type —— sentiment —— – natural language inference –

Zero-shot 79.0 50.2 51.4

BBTv2 90.3 (1.7) 57.3 (2.3) 56.7 (3.3)
MeZO 90.5 (1.2) 68.5 (3.9) 64.0 (3.3)
MeZO (LoRA) 91.4 (0.9) 69.7 (6.0) 64.9 (3.6)
MeZO (prefix) 90.8 (1.7) 71.6 (2.5) 65.4 (3.9)

Table 21: ZO vs BBTv2 with RoBERTa-large. BBTv2 performance is from Sun et al. [90].

F.5 Memory profiling

We show the detailed numbers of memory profiling results Table 22, which also corresponds to
Figure 3. For how we profile the memory usage, please refer to Appendix E.7.

Method Zero-shot / MeZO ICL Prefix FT Full-parameter FT

1.3B 1xA100 (4GB) 1xA100 (6GB) 1xA100 (19GB) 1xA100 (27GB)
2.7B 1xA100 (7GB) 1xA100 (8GB) 1xA100 (29GB) 1xA100 (55GB)
6.7B 1xA100 (14GB) 1xA100 (16GB) 1xA100 (46GB) 2xA100 (156GB)
13B 1xA100 (26GB) 1xA100 (29GB) 2xA100 (158GB) 4xA100 (316GB)
30B 1xA100 (58GB) 1xA100 (62GB) 4xA100 (315GB) 8xA100 (633GB)
66B 2xA100 (128GB) 2xA100 (134GB) 8xA100 16xA100

Table 22: Memory usage on the MultiRC (avg #tokens=400) dataset.

F.6 Wallclock time efficiency

In this section, we measure the wallclock time efficiency of MeZO compared to full-parameter FT,
with respect to different model sizes. We conduct our experiments with 80GB A100s connected by
NVLink and InfiniteBand, which are state-of-the-art solutions for distributed training. As shown in
Table 23, on the MultiRC datasets, training with MeZO brings 7.74× speedup per step compared to
full-parameter FT on a 30B model. This is due to (1) MeZO does not require costly backpropagation
and (2) MeZO requires fewer GPUs and reduces the multi-GPU communication overhead. We can
see that MeZO has a bigger advantage when training larger models—the multi-GPU overhead for
fine-tuning is larger.

Note that even though MeZO has better per-step wallclock efficiency, it requires significantly more
steps than standard FT. Taking our OPT-30B experiments as an example: MeZO takes 32× more
steps than standard FT, while FT takes 8× more GPUs and 7.74× more time per step. Overall, MeZO
requires only half as many GPU-hours as FT for a 30B model.
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1.3B 2.7B 13B 30B 66B

MeZO (bsz=16) 0.815s (1) 1.400s (1) 2.702s (1) 5.896s (1) 12.438s (4)
MeZO (bsz=8) 0.450s (1) 0.788s (1) 1.927s (1) 4.267s (1) 7.580s (2)
FT (bsz=8) 0.784s (1) 1.326s (1) 13.638s (4) 45.608s (8) 84.098s (20)

bspd=2, ga=4 bspd=2, ga=4 bspd=1, ga=2 bspd=1, ga=1 bspd=1, ga=1

Table 23: Wallclock time per step of different training methods. Numbers in brackets are numbers
of GPUs required. It is measured on 80GB A100s with NVLink and InfiniteBand connections. The
wallclock time is averaged over 100 steps. It is measured on the MultiRC task with the OPT family.
We use a batch size (“bsz”) of 8 for FT and 16 for MeZO (consistant with our main experiment
setting). For comparison we also add MeZO with a batch size of 8. For FT (FSDP), we show the
following additional information. “bspd”: batch size per device. “ga”: gradient accumulation steps.
The effective batch size is bspd×ga× #GPUs. Note that for FT 66B, the effective batch size 20.
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G Proofs

Proof of Lemma 2. We first note that in the ϵ→ 0 limit, we have

∇̂L(θ;B) = 1

Bn

∑
(x,y)∈B

∑
i∈[n]

ziz
⊤
i ∇L(θ; {(x,y)}).

Taking expectation over the batch B and the zi, we have E[∇̂L(θ;B)] = ∇L(θ), so ∇̂L(θ;B) is an
unbiased estimator of the gradient.

Computing the second moment, we get

E
[
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]
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1
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Let u,v be two arbitrary vectors. We have that
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Next, note that when (x1,y1) ̸= (x2,y2), we have

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})⊤

]
= ∇L(θ)∇L(θ)⊤,

and when (x1,y1) = (x2,y2) we have

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})⊤

]
= ∇L(θ)∇L(θ)⊤ +ΣMB(θ).

Therefore
1

B2

∑
(x1,y1),(x2,y2)∈B

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})⊤

]
= ∇L(θ)∇L(θ)⊤ +

1

B
Σ(θ),

and plugging this yields

E
[
∇̂L(θ;B)∇̂L(θ;B)⊤

]
=

(
1 +

d− 2

n(d+ 2)

)
·
(
∇L(θ)∇L(θ)⊤ +

1

B
Σ(θ)

)
+

d

n(d+ 2)
I ·

(
∥∇L(θ)∥2 + 1

B
tr(Σ(θ))

)
.

(7)

Finally, we have
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Proof of Theorem 1. By Taylor’s theorem with remainder, we have that

L(θt+1) = L(θt) +∇L(θt)⊤(θt+1 − θt)

+

∫ 1

0

λ(θt+1 − θt)
⊤∇2L(λθt+1 + (1− λ)θt)(θt+1 − θt)

⊤dλ

Next, note that

∥θt+1 − θt∥ = η
∥∥∥∇̂L(θ;B)∥∥∥ ≤ η

√
d · 1

Bn

∑∣∣z⊤
i ∇L(θ; {(x,y)})

∣∣ ≤ ηdG(θt).

Therefore ∥λθt+1 + (1− λ)θt − θt∥ ≤ ηdG(θt). By the assumption we have the upper bound
∇2L(λθt+1 + (1− λ)θt) ⪯H(θt), and thus

L(θt+1) ≤ L(θt) +∇L(θt)⊤(θt+1 − θt) + (θt+1 − θt)
⊤H(θt)(θt+1 − θt)

= L(θt)− η∇L(θt)⊤∇̂L(θt;B) +
1

2
η2∇̂L(θt;B)⊤H(θt)∇̂L(θt;B).

Taking the conditional expectation with respect to θt and plugging in (9), the formula for the
covariance of our ZO estimate ∇̂L(θt;B), yields

E[L(θt+1) | θt] ≤ L(θt)− η ∥∇L(θt)∥2 +
η2

2

〈
H(θt),E

[
∇̂L(θ;B)∇̂L(θ;B)⊤

]〉
= L(θt)− η ∥∇L(θt)∥2 +

η2

2
· d

n(d+ 2)

(
∥∇L(θt)∥2 +

1

B
tr(Σ(θt))

)
tr(H(θt))

+
η2

2

(
1 +

d− 2

n(d+ 2)

)(
∇L(θt)⊤H(θt)∇L(θt) +

1

B
⟨Σ(θt),H(θt)⟩

)
By assumption, the Hessian upper bound H(θt) satisfies ∥H(θt)∥op ≤ ℓ and tr(H(θt)) ≤ ℓr. Thus

E[L(θt+1) | θt] ≤ L(θt)− η ∥∇L(θt)∥2 +
η2ℓ

2
·
(
dr + d− 2

n(d+ 2)
+ 1

)
·
(
∥∇L(θt)∥2 +

1

B
tr(Σ(θt))

)
= L(θt)− η ∥∇L(θt)∥2 +

η2ℓ

2
·
(
dr + d− 2

n(d+ 2)
+ 1

)
· E

[
∥∇L(θt;B)∥2

]
,

as desired.

G.1 Proofs of Global Convergence

Lemma 4. Let L(θ) be µ-PL and let there exist α such that tr(Σ(θ)) ≤ α(L(θ) − L∗) for all θ.
Then after

t = O

((
ℓ

µ
+

ℓα

µ2B

)
log
L(θ0)− L∗

ϵ

)
iterations of SGD we have E[L(θt)] ≤ L∗ + ϵ.

Proof of Lemma 4. The descent lemma for SGD yields

E[L(θt+1) | θt]− L(θt) ≤ −η ∥∇L(θt)∥2 +
1

2
η2ℓ · E[∥∇L(θt;B)∥2].

Plugging in E[∥∇L(θt;B)∥2] = ∥∇L(θt)∥2 + 1
B tr(Σ(θt)) and selecting a learning rate η ≤ 1

ℓ
yields

E[L(θt+1) | θt] ≤ L(θt)−
η

2
∥∇L(θt)∥2 +

η2ℓ

2B
tr(Σ(θt))

Since L is µ-PL, we get

E[L(θt+1) | θt] ≤ L(θt)− ηµ(L(θt)− L∗) +
η2ℓ

2B
tr(Σ(θt)).
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Since tr(Σ(θt)) ≤ α(L(θt)− L∗), we have

E[L(θt+1) | θt] ≤ L(θt)− ηµ(L(θt)− L∗) +
η2ℓα

2B
(L(θt)− L∗).

Altogether,

E[L(θt+1)]− L∗ ≤
(
1− ηµ+

η2ℓα

2B

)
(E[L(θt)]− L∗)

Choosing η = min( 1ℓ ,
µB
ℓα ), we obtain

E[L(θt+1)]− L∗ ≤
(
1−min(

µ

2ℓ
,
µ2B

2ℓα
)

)
(E[L(θt)]− L∗).

Therefore we reach a solution with E[L(θt)]− L∗ ≤ ϵ after

t = max

(
2ℓ

µ
,
2ℓα

µ2B

)
log

(
L(θ0)− L∗

ϵ

)
= O

((
ℓ

µ
+

ℓα

µ2B

)
log
L(θ0)− L∗

ϵ

)
iterations.

Proof of Lemma 3. By Corollary 1, ZO-SGD with ηZO = γ−1ηSGD yields

E[L(θt+1) | θt]− L(θt) ≤
1

γ
·
[
−ηSGD ∥∇L(θt)∥2 +

1

2
η2SGDℓ · E[∥∇L(θ;B)∥

2
]

]
.

As in the proof for SGD, choosing ηSGD ≤ 1
ℓ yields

E[L(θt+1) | θt]− L(θt) ≤ γ−1 ·
[
−ηSGD

2
∥∇L(θt)∥2 +

η2SGDℓ

2B
tr(Σ(θt))

]
.

Therefore under µ-PL and the tr(Σ(θt)) ≤ α(L(θt)− L∗) assumption we obtain

E[L(θt+1)]− E[L(θt)] ≤ γ−1 ·
[
−ηSGDµ+

η2SGDℓα

2B

]
· (E[L(θt)]− L∗)

=⇒ E[L(θt+1)]− L∗ ≤
(
1− γ−1

(
ηSGDµ−

η2SGDℓα

2B

))
(E[L(θt)]− L∗).

Choosing ηSGD = min( 1ℓ ,
µB
ℓα ) yields

E[L(θt+1)]− L∗ ≤
(
1− γ−1 ·min(

µ

2ℓ
,
µ2B

2ℓα
)

)
(E[L(θt)]− L∗).

Therefore we reach a solution with E[L(θt)]− L∗ ≤ ϵ after

t = γ ·max

(
2ℓ

µ
,
2ℓα

µ2B

)
log

(
L(θ0)− L∗

ϵ

)
= O

(( r

n
+ 1

)
·
(
ℓ

µ
+

ℓα

µ2B

)
log
L(θ0)− L∗

ϵ

)
iterations.

G.1.1 Verification of assumptions

We show that the tr(Σ(θt)) ≤ α(L(θt)− L∗) assumption holds for certain losses.

First, consider optimizing the model f(x;θ) with square loss, so that

L(θ) = 1

N

∑
i∈[N ]

(f(xi;θ)− yi)
2.

One then has that

Σ(θ) =
2

N

∑
i∈[N ]

(f(xi;θ)− yi)
2∇f(xi;θ)∇f(xi;θ)

⊤ −∇L(θ)∇L(θ)⊤.
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Therefore

tr(Σ(θ)) ≤ 2

N

∑
i∈[N ]

(f(xi;θ)− yi)
2 ∥∇f(xi;θ)∥2

≤ 2L(θ)
∑
i∈[N ]

∥∇f(xi;θ)∥2 .

Assume that the data can be interpolated, i.e., L∗ = 0. If the function is L-Lipschitz, i.e.,
∥∇f(x;θ)∥ ≤ L, then the condition holds with α = 2NL2. If we are in the kernel regime,
i.e., f(xi;θ) = ϕ(xi)

⊤θ for some feature map ϕ, then

∇2L(θ) = 2

N

∑
i∈[N ]

f(xi;θ)∇f(xi;θ)
⊤.

Thus

tr(Σ(θ)) ≤ N tr(∇2L(θ)) · L(θ) ≤ Nℓr · L(θ).
So the condition holds for α = Nℓr.

Next, consider the cross entropy loss function, i.e

L(θ) = 1

N

∑
i∈[N ]

exp(−yif(xi;θ)).

One then has that

Σ(θ) =
1

N

∑
i∈[N ]

exp(−2yif(xi;θ))y
2
i∇f(xi;θ)∇f(xi;θ)

⊤ − L(θ)L(θ)⊤,

Assume that the targets yi are bounded in [−1, 1] (which is true for binary classification tasks), and
that L∗ = 0 (which can be achieved if |f(x;θ)| can be sent to∞) we have that

tr(Σ(θ)) ≤ 1

N

∑
i∈[N ]

exp(−2yif(xi;θ)) ∥∇f(xi;θ)∥2 .

In the kernel regime, f(xi;θ) = ϕ(xi)
⊤θ, and thus

∇2L(θ) = 1

N

∑
i∈[N ]

exp(−yif(xi;θ))∇f(xi;θ)∇f(xi;θ)
⊤.

Therefore

tr(Σ(θ)) ≤ N tr(∇2L(θ)) · L(θ) ≤ Nℓr · L(θ).
Therefore the condition holds with α = Nℓr as well.

G.2 Proofs for Gaussian perturbations

The first lemma computes the second moment of the covariance estimate ∇̂L(θ;B) when z is drawn
N (0, I).
Lemma 5. Let zi ∼ N (0, I) i.i.d. Then

E
[
∇̂L(θ;B)∇̂L(θ;B)⊤

]
=

(
1 +

1

n

)
·
(
∇L(θ)∇L(θ)⊤ +

1

B
ΣMB(θ)

)
+

1

n
I ·

(
∥∇L(θ)∥2 + 1

B
tr(ΣMB(θ))

)
.

(8)

Proof. As in the proof of Lemma 2, we have that in the ϵ→ 0 limit

E
[
∇̂L(θ;B)∇̂L(θ;B)⊤

]
=

1

B2n2

∑
(x1,y1),(x2,y2)∈B

∑
i,j∈[n]

E
[
(ziz

⊤
i ∇L(θ; {(x1,y1)}))(zjz⊤

j ∇L(θ; {(x2,y2)}))⊤
]
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For vectors u,v, we have that

Ezi,zj
[ziz

⊤
i uv⊤zjz

⊤
j ] = uv⊤

when i ̸= j, and

Ezi
[ziz

⊤
i uv⊤ziz

⊤
i ] = Ez[z

⊗4](u,v) = 3Sym(I⊗2)(u,v) = u⊤v · I + 2uv⊤.

Therefore

E
[
∇̂L(θ;B)∇̂L(θ;B)⊤

]
=

1

B2

∑
(x1,y1),(x2,y2)∈B

(
n− 1

n
+

2

n

)
E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})⊤

]
+

1

n
· E

[
L(θ; {(x1,y1)})⊤L(θ; {(x2,y2)})

]
I.

In the proof of Lemma 2 we showed that

1

B2

∑
(x1,y1),(x2,y2)∈B

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})⊤

]
= ∇L(θ)∇L(θ)⊤ +

1

B
Σ(θ).

Plugging this yields

E
[
∇̂L(θ;B)∇̂L(θ;B)⊤

]
=

(
n+ 1

n

)
·
(
∇L(θ)∇L(θ)⊤ +

1

B
Σ(θ)

)
+

1

n
I ·

(
∥∇L(θ)∥2 + 1

B
tr(Σ(θ))

)
.

(9)

We can prove an analog to Theorem 1 in the case where the zi are Gaussian. One challenge is that
∥θt+1 − θt∥ is no longer bounded; instead we the r-local effective rank assumption only holds with
high probability, and thus to bound the expected loss decrease we must control the probability of the
∥θt+1 − θt∥ being large.

Consider the following modified version of the local r-effective rank assumption, where the upper
bound on the Hessian is measured over a ball of radius twice as large as the one in Assumption 1.
Assumption 2 (Local r-effective rank, Gaussian). Let G(θt) = max(x,y)∈D ∥∇L(θt; {(x,y)})∥.
There exists a matrix H(θt) such that:

1. For all θ such that ∥θ − θt∥ ≤ 2ηdG(θt), we have ∇2L(θ) ⪯H(θt).

2. The effective rank of H(θt), i.e., tr(H(θt))/ ∥H(θt)∥op, is at most r.

Theorem 2 (Dimension-Free Rate, Gaussian z). Assume the loss exhibits local r-effective rank
(Assumption 2). If θt+1 = θt− ηZO∇̂L(θt;B) is a single step of ZO-SGD using the n-SPSA estimate
with a minibatch of size B, then there exists a γ = Θ(r/n) such that the expected loss decrease can
be bounded as

E[L(θt+1) | θt]− L(θt)

≤ −ηZO ∥∇L(θt)∥2 +
1

2
η2ZOℓ · γ · E[∥∇L(θt;B)∥

2
] + η2ZOℓG(θt)

2 exp(−Ω(nd)).

Proof of Theorem 2. Let A be the event that ∥θt+1 − θt∥ ≤ 2ηdG(θt). On A, we have that

L(θt+1) ≤ L(θt)− η∇L(θt)⊤∇̂L(θ;B) +
1

2
η2∇̂L(θt;B)⊤H(θ)∇̂L(θt;B).

Likewise, since L is ℓ-smooth, we have that

L(θt+1) ≤ L(θt)− η∇L(θt)⊤∇̂L(θ;B) +
1

2
η2ℓ

∥∥∥∇̂L(θt;B)∥∥∥2 .
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Therefore

E[L(θt+1) | θt] ≤ L(θt+1)− η ∥∇L(θt)∥2 +
1

2
η2

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)⊤ · 1(A)

]
,H(θt)

〉
+

1

2
η2ℓE

[∥∥∥∇̂L(θt;B)∥∥∥2 · 1(¬A)]
= L(θt+1)− η ∥∇L(θt)∥2 +

1

2
η2

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)⊤

]
,H(θt)

〉
1

2
η2

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)⊤ · 1(¬A)

]
, ℓI −H(θt)

〉
.

The latter term can be bounded as follows

1

2
η2

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)⊤ · 1(¬A)

]
, ℓI −H(θt)

〉
≤ η2ℓE

[∥∥∥∇̂L(θ;B)∥∥∥2 · 1(¬A)]
≤ η2ℓE

[∥∥∥∇̂L(θ;B)∥∥∥4] 1
2

Pr[¬A]1/2.

The gradient estimate ∇̂L(θ;B) satisfies∥∥∥∇̂L(θ;B)∥∥∥ ≤ 1

n

∑
i∈[n]

∣∣z⊤
i ∇L(θ;B)

∣∣ · ∥zi∥
The expectation term is upper bounded as

E
[∥∥∥∇̂L(θ;B)∥∥∥4] ≤ 1

n

∑
i∈[n]

E
[∣∣z⊤∇L(θ;B)

∣∣4 · ∥z∥4]
≤ E

[∣∣z⊤∇L(θ;B)
∣∣8]1/2 E [

∥z∥8
]1/2

≤
√
105(d+ 6)2G(θt)

4,

where we have plugged in explicit formulas for moments of Gaussian and χ2 random variables.

Next, note that on the event ¬A, we have

2ηdG(θt) ≤ ∥θt+1 − θt∥ = η
∥∥∥∇̂L(θt;B)∥∥∥ ≤ η · 1

n

∑
i∈[n]

∥zi∥2 G(θt).

Therefore

Pr[¬A] ≤ Pr

∑
i∈[n]

∥zi∥2 ≥ 2nd


Lemma 6 (Standard χ2-tail bound). Let Z be a χ2 random variable with k degrees of freedom. Then

Pr[Z ≥ k + u] ≤ exp

(
−min

(
u2

16k
,
u

16

))

Since
∑

i∈[n] ∥zi∥
2 is a χ2 random variable with nd degrees of freedom, we thus have that

Pr[¬A] ≤ exp

(
−nd

16

)
.

Altogether,

1

2
η2

〈
E
[
∇̂L(θ;B)∇̂L(θ;B)⊤ · 1(¬A)

]
, ℓI −H(θt)

〉
≤ η2ℓ1051/4(d+ 6)G(θt)

2 exp(−nd

32
)

= η2ℓG(θt)
2 exp(−Ω(nd)).
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Finally, plugging in (8), along with the fact that ∥H(θt)∥op ≤ ℓ and tr(H(θt)) ≤ ℓr,〈
E
[
∇̂L(θ;B)∇̂L(θ;B)⊤

]
,H(θt)

〉
=

r + n+ 1

n
· ℓ

(
∥∇L(θt)∥2 +

1

B
tr(Σ(θt))

)
=

r + n+ 1

n
· E

[
∥∇L(θt;B)∥2

]
Thus letting γ = r+n+1

n yields

E[L(θt+1) | θt]− L(θt)

≤ −η ∥∇L(θt)∥2 +
1

2
η2ℓ · γ · E[∥∇L(θt;B)∥2] + η2ℓG(θt)

2 exp(−Ω(nd)),

as desired.
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