Under review for the Reinforcement Learning Conference (RLC)

Operator Bellman Equations Support Compositional
& Verifiable Planning in Hierarchical World-models

Anonymous authors
Paper under double-blind review

Abstract

We introduce new reward-free Bellman Equations called Operator Bellman Equations
which, rather than value functions, produce predictive planning representations called
state-time feasibility functions (STFFs) which are compositional, factorizable, and
interpretable. This means: 1) STFFs can be sequentially composed to compute
high-dimensional predictions over long-horizons of sequential Options (policies), 2)
high-dimensional STFFs can be represented and computed efficiently in a factorized
form, and 3) STFFs record the probabilities of semantically interpretable goal-success
and constraint-violation events. We discuss how these properties are critical for
verifiable planning that can scale to dynamic high-dimensional world-models.

Consider an agent in Fig. 1, minimally constituted as a set of coupled transition systems: a grid-world
space P,(a'|z,a,t), a hydration space Py (y'|y, a,) with conditioning variables o, € A, = {apya, e}
which hydrate or dehydrate the agent, respectively; and a logical space P,(o’|o,a,), where o
is a binary vector, and a, € A, = {ae, a1, az,a3} is a variable that flips bits (as flips bit 2,
(1,0,0) 22 (1,1, 0), a does nothing). The full Cartesian product-space dynamics are defined as:

Pa' g 2o,y z,at) = S Po(o’lo,an) Py Iy,) Flag, aylz,a) Po(@'|2,a,t), (1)

Qg Oy

where F is an affordance function that specifies a causal coupling between low- and high-level
dynamics, e.g. an agent can drive the y-dynamics by taking action agrink at Tiare to induce apyq.

Affordance > Task Logic

F(ao, aylz, a) i
L ag o o+

X World ¢ Y Hydration

3) N g

Je(Onydrate|T1ake, @drink) = 1 1O JO01 ay 0L Qhydrate

felai|zaz, apickup) = 1 1 oN Ao

100 010 001

fg(02‘3721~ aPick—Up) =1 > ae Null-action

f < ‘) 1 Eh a2 foy <. S "

[(Q3]To, apiaUp) = ; .

g(Q3]Z0; APick-Up o0 ‘o0 N .
fe(Ydeath) = »[1% Death State

felas|zo, apickup) =1 LT e(0nyalrake; darini) = 1| Goal-availability function
“bfe(Thren) =0 Obstacle-constraint function

Figure 1: The agent must regulate internal states, find 3 keys to unlock the door, and meet a friend.

When optimizing a policy with Ps, reward functions are a problem because they are difficult to define
in high-dimensions and they link an agent’s representations to a fixed normative quantity, e.g. value
functions on a product-space are brittle if the reward- or world-model changes. However, reality is
dynamic, new systems can become known for an agent to control, and different goals and constraints
may become relevant. States in an internal need space) could make logic states in 3 and low-level
goals on X salient. Agents need to flexibly reason about solutions to new complex goals and constraints
(i.e. tasks) (Lake et al., 2017), and the feasibility that they can be satisfied across high-dimensional
world-models. This is especially true if the agent is deployed in a safety-critical context which
requires verification that task specifications are met (Dalrymple et al., 2024). Given recent discussion

Under review for the Reinforcement Learning Conference (RLC)

about the generality of reward-maximization to subserve a theory of general intelligence and express
notions of goal and purpose (Sutton & Barto, 1998; Silver et al., 2021; Vamplew et al., 2022; Skalse
& Abate, 2023; Bowling et al., 2023; Ringstrom, 2022; Abel et al., 2021), it is important to critically
investigate whether reward-maximization actually facilitates the properties of interpretability and
compositionality characteristic of general intelligence and essential for verification. In this paper, we
advocate for eliminating the reward function because reward maximization destroys interpretability.
Instead, we let goals, constraints, and the world-model dictate the optimization of flexible predictive
planning representations and policies, compatible with the Options framework in RL (Sutton et al.,
1999). Expanding on Ringstrom (2023), we develop new Markov Decision Processes (MDPs) and
reward-free Bellman Equations (Bertsekas, 2012; Bellman, 1957) that produce feasibility functions
which propagate information about an Option’s goal and constraint satisfaction events across a
hierarchical world-model for verifiable, high-dimensional planning. Our work differs from Ringstrom
in that we introduce constraint functions, an improved failure STFF, and use Options explicitly.

1 The Task Markov Decision Process

We start by introducing a decision process called the Task MDP, where tasks are goals and constraints:

Definition 1.1 (Task MDP (TMDP)). A TMDP is defined as # = (X, A, T, Py, fq, fc), where X is a
set of discrete states, A is a set of discrete actions, T is a set of discrete times, Py : (X X AXT)x X —
[0,1] is a transition operator, fg: (X x AXx T) x {ag} — [0,1] is the goal-availability function, and
fe: X X AX T —[0,1] is the obstacle-constraint function.

Before giving the Bellman equations for the TMDP, we discuss some important functions.

Goal-availability Function: The goal availability function, fs(ag|x,a,t), specifies the probability
that a singleton goal-action oy is available to be caused by a low-level state, action, and time (« is
not a free variable in an optimization like an action “a”). The function f, is not like an arbitrary
reward model and it is not a full probability distribution like F' in equation (1), rather, it is directly
derived from F, and will take the form f,(ag|z,a,t) = F(og|x,a,t) for one of N a, variables in F'.
Thus, like we could solve for a family of regular MDPs for N reward functions {R, , ..., Ry, }, we can
also solve a family of N individual TMDPs {fg , ..., fg, } (indexed by goals G = {gy, ..., gx}) when
we create sets of Options. We will often write the function as fg. (z,a,t), and drop ag for simplicity.

We call goal-availability functions which are a functions of actions, action-dependent
(felaglz,a,t), fo(aglz,t), and fe(z,a,t)), and ones that are not function of actions are action-
independent (fq(z,t)). As we will explain in section 2.4, these distinctions are important when
sequentially chaining Option-policies together because action-dependent functions commit the agent
to an action at the terminal state, requiring a state-update before another Option can be initiated.

Obstacle Constraint Function: We also defined an obstacle constraint function f., where a
constraint is violated with probability 1 — f.(z, a,t) (zeros encode hard constraints). We will not use
aleatoric probabilities for obstacles. We consider goals to be achievement conditions, and tasks to be
goal-achievement conditions and task-constraints, which can be potentially violated (see Fig. 1). We
define f. assuming that the set of goal state-time-actions is disjoint with the set of state-time-action
obstacles, so that a task can’t be simultaneously achieved and violated.

State-time Feasibility Function: We now discuss the concept of feasibility, which we will be
optimizing in our Bellman equations. Let xt = ((24,,t0), ..., (x7,,T})) be a state-time trajectory
over X. We can calculate the feasibility that a sub-trajectory of xt satisfies the task by choosing
starting state and time (z,,t;) € xt and final state-time (z,tf) € xt. Since task-completion is
an event, we can introduce event logic for a given sub-trajectory of xt. Consider a Bernoulli R.V.
indicating a goal-success event, S ~ Bern(fy(x,t)), and a Bernoulli R.V. for constraint-violation
events, V ~ Bern(l — f.(z,t)). A task is completed if (ST,V ™) (using capitalized realizations
to avoid notational conflict), and is uncompleted if (S7,V ™). We define a state-time feasibility
function (STFF) nt : (X x T) x (X x T) — [0,1], which outputs the probability that the first
task-success event is at state-time (27, ty) without a preceding failure event (S~, V™) when starting

Under review for the Reinforcement Learning Conference (RLC)

from (z,15): n:t(xf’tf‘xts’tS) = PT((SzgthS_)v (St;-i—lvvt:-&-l)? ey (1;—17 tf 1) (Stfvvt;)) This is
the logical form of 7. We can express this with f, and f., which leads to a recursive form in equation

(3). Defining fi = fofc and fo = (1 — fi) fe, we have:
n:t(xfy tf|xt5ats) = (Hf—f tl(l - fg(xTvT))fc(x‘ra 7)) fg(xf7tf)fc(mf’ tf)a

= (I folern)) Alepty) = ol ts) (TS folerim) fulagty), (2)
Mat(Tf |7, ts) = fo(@e,, to) i (T, tplwe 11, ts + 1), where: nf(zy,tylag,ty) = fi(zs,tp) (3)

Achievement and Continuation Functions: We combined the goal-availability and obstacle-
constraint functions into two different functions: the Achievement Function, fi(x,a,t) =
felz,a,t)fe(x,a,t) and the Continuation Function, fa(x,a,t) = (1 — fo(z,a,t))fe(z,a,t). Here
we show this with actions for generality. The achievement function captures both goal-success termi-
nation events and the absence of a constraint-violation termination event, whereas the continuation
function represents the absence of both goal-success and constraint-violation events (i.e. the agent
can continue the task). It is important to understand that while goal-success and constraint-violation
events will terminate the use of a control policy, so too will the event of the agent entering a
state-time from which the goal is known to be infeasible, which is policy-dependent, depending on
the feasibility of a goal under a policy (represented by r, defined in the next subsection). This third
policy termination condition will be found in the Operator Bellman Equations (equations (9,11)).

Cumulative Feasibility Function: Summing over z; and t; gives us the total cumulative
probability of achieving the goal while not violating the constraints. This is represented by & :
X x T — [0,1], the cumulative feasibility function (CFF) (4). We can substitute the R.H.S. of (2)
into (4), and with some additional manipulations (not shown) we obtain a recursion for in (5):

Kxt (Tt,,ts) = th =t, th nit(xtfvtﬂxtsvtS) (4)
kxt (Te,,ts) = f1(@e,, ts) + fa(we,, ts)hixe (Te, 41, ts + 1), where: wixg(ze,,t7) = fi(ze,,tp) (5)

We can see that k¢ summarizes all possible events up to Ty that could complete the goal. By having
a recursive form of k and 7, we will show next that we can link the recursion to a transition operator
P, to define a Bellman equation. As of now, we computed k and 7 on a single trajectory xt, but
when we move to a Bellman equation, we will optimize a policy 7, and so xk and n will summarize the
feasibility over distributions of trajectories induced by a policy. This will be important for stitching
together policies, because the STFF distributions for policies will compose with each other.

1.1 Operator Bellman Equations

Now we introduce a transition operator to our goal-availability and constraint functions and compute
the policy which maximizes goal-feasibility by maximizing over the actions. These equations are
called the Operator Bellman Equations (OBEs), defined with the TMDP .# = (X, A, T, Py, fq, fc):

Policy Optimization: Optimize cumulative goal success and time-minimization,

Kg(z,t) = max lfl(sc,a,t) + fa(z,a,t) ZP "z, a,t)rg(a’ t+ 1), (6)

x!

(7)

¢ (z,t) = argmin |tf1(z,a,t) + fa(z,a,t) Zt+n;r(a+,a+,x+’t+|z”t+ 1)
GGA* z’ P:fclt +

Prediction Functions: Record of where and when success and failure events occur,

n;(aga a+,x+,t+|:c,t) = fQ(Ivaght) ZPT(Zl‘xaagtvt)n;(a@ a+,x+,t+|z’,t + 1)a (8)
g (ayam oot fwt) = Lo(2,8) Y Pl o, afy, tng (@, a,z t[a',t 4 1), (9)

Under review for the Reinforcement Learning Conference (RLC)

where af, = m;*(x,t), and 1, (x,t) = {1 if: £*(x,t) > 0; 0if: £*(x,1) = 0}, is the feasibility indicator
function, outputting 1 if the task is feasible from (z,t), 0 if not. Like equation (3), the above 7-OBEs
are defined for all t4,t_ € [t+1:Ty], and if t =t and t =¢_, then 77; and 7, are defined as,

ng(a+vagt7$7t|x,t) = fg(:r,a;rt,t), (10)
ng(a,7agt,x7t\m,t) = 1u(z,t)(1 = fo(x,al,, 1)) + Le(a,t), (11)

where 1,(z,t) = |1 — 1,(z,t)| is the infeasibility indicator function, outputting 1 if the task is
infeasible at (z,t), and 0 if not. Note that + and — are task success and failure tags where tasks are
goals and constraints, and a, can be written as oy, but we use g to emphasize a specific goal-variable
we are optimizing for. In equation (9), the term 1,(z,t) makes the probability of future failure
state-times (x_,t_) equal to 0 if x3(z,t) = 0 because the failure occurs now at (z,t), as covered
in (11). But, if the goal is currently feasible, 1.(z,t) = 1, and the final failure spatiotemporal
distribution for Mg, backward-propagates to the current time-step through transition dynamics P,.
The functions x and 7 in the OBEs are undefined past 7%, and naturally we assume they default to 0
in the OBEs (see Appx.1 for horizon conditions). For the STFF n(ay,ar,xy, tr|z,t) we will often
omit the final action ay because it is directly determined by the policy, state, and time. The OBEs
can be solved with a dynamic programming algorithm called feasibility iteration (see algorithm 1).

Equations (6) and (?7?)-(9) are extensions of (5) and (3), respectively, but now with transition
operators. In the k-OBE k(z,t) has the logical interpretation: the probability of completing the goal
AND NOT violating the obstacle constraint now, OR (+), NOT completing the goal AND NOT violating the
constraint now, AND completing the goal while NOT violating the constraint in the future. 7-OBEs
preserve event probabilities, and are therefore interpretable; the STFF, 17g+7 records when and where
goals are satisfied, and 7, records when and where constraints are violated—this is essential for
verification.

In the OBEs, aj, = m;*(z,t) where two stars, *x, indicate optimality with respect to cumulative
feasibility and expected time minimization conditioned on optimal cumulative feasibility. The set A% ,
under the argmin is the set of maximizing arguments from equation (6) used for time-minimization.
Note that the formula inside the min-function of the 7-OBE, equation (7), is simply the expectation
over final success times ¢ in two parts, ty =t and t; € [t+1: Ty], so optimizing over A} ; minimizes
expected time conditioned on maximizing cumulative feasibility.

1.1.1 Relationship between s and n

The CFF and the partial STFFs are simply related through summation, (proof is given in .2):

KZ(Z‘7t) = Za+7w+7t+ 77;(04+a$+7t+|$at)7 1- KZ(J?,t) = Ea,,z,ﬂt, n;(a—vx—at—|xvt)'

Since 77;,r and 7, share the same domain, and because goal-success and goal-failure events are disjoint,
these partial STFFs can be combined into the full STFF function, n;‘r;‘,

M (g, aptple,t) = ng (g, ap tyle,t) +ng (ap,xp,tyla,t)

which sums to 1: > n3"(ag, zp,tflz,t) = ky(2,t) + 1 — ky(x,t) = 1.. The subscript f tags a final
variable, which can be g, + or —. Technically, n:* can be thought of as a transition operator with one
action, m, which could be written as n:* (o, s, ty|x,t,), where 7 is the only possible conditioning
policy. As we will see, we can aggregate an ensemble of state-time feasibility functions along with
an associated set of policies for decomposing a high-dimensional OBEs with Options. Notice that
77;;‘ expresses a distribution over interpretable termination events, which occur at goal-failure events,
constraint-violation events, and goal-success events. Because of this, they are compositional functions:
Np1z = Ny © Ny = Tpaz (xf2 st |z,t) = Za}fl sty T ('rfz st |xf1) tf1)77771 ($f1 st |z,t), and this will be
important for creating Goal Operators for mapping from goal to goal in a product-space.

Under review for the Reinforcement Learning Conference (RLC)

1.1.2 Formalizing a TMDP Solution as an Option

The Options framework in RL is a form of semi-Markov planning (Sutton et al., 1999). An option
o= (Z,w,p) has a set of initiation conditions Z C X, a policy 7 which can only be followed from
states x € 7 to a termination event, and a termination function 5 : X — [0, 1], returning a probability
of a termination event at state z € X'. Options are instruction sets for using a policy. In the case of
the TMDP, our formalism can be cast in the Options framework, where the initiation conditions are
entire state-space, i.e. Z = X. For termination, in equation (11), the goal-failure event of a policy is
deterministic at kg(x,t) = 0, the constraint-violation termination condition is given by f., and the
goal-success event terminates a policy with the probability given by the goal-availability function f,
in equation (10). Thus, a termination function is defined by kg, fg, and f. as:

ﬁﬁg7.fg7.fc (.’L‘, a, t) =]lng(xv t)(fg‘(xa a, t) + (1 - fc(x, a, t))) + img(xv t)
For a single task with goal-index g;, a TMDP option oy, is defined as:
0g, = (X,ﬂ;j,ﬂgi) +— create_option(/'\f,ﬂ'gj, Ii;, feir Je)s

using f3,, instead of Bﬁgi’ Foirfe for simplicity. In this paper, we will be directly optimizing open-loop
meta-policies (sequences of option). In section 2.4, we will use many options to plan though goal-space.

2 Compositional Task Markov Decision Processes

We now formalize the construction of modular, composite product-space transition operators, and
then use them to define a high-dimensional version of the TMDP and OBEs.

Affordance Function: We can couple transition operators together to form a product-space
operator with an affordance function. This function communicates the ability of a low-level state-
action-time to cause transformations on another state-space through its action space:

Definition 2.1 (Affordance Function). An affordance function F : (X x AX T) x A, — [0,1] is a
conditional joint distribution, F(a|x,a,t) = F(ay,...,a.|x,a,t), on a set of high-level conditioning
"actions" A, = (A X ... X A,), where a = (au, ..., az) € A, is a high-level action-vector.

The affordance function outputs vectors a from A, with a given probability. Each component of the
vector corresponds to an action from a higher-level transition operators. For example the variable
QI 0 = (@i, ayy, ...) is an action in set A,, for a transition operator P,. Note that the affordance
function links features vectors e, so (e.g.) drinking at a lake feature, will induce hydration dynamics
in thirst-space. A null-variable (null-action) «., represents the dynamics of a space in the absence of
an action induced from the low-level state-space (e.g. getting thirstier over time).

We can use the affordance function to link low-level and high-level transition operators, P.(r'|r, &) =
P,(o'|o,05)Py(y' |y, ory) one for R = ¥ x Y and one for X, to create a composite transition operator
on R x X. We compose two transition operators with a composition function, Ap:

Definition 2.2 (Composition Functions). A composition function, Ap, takes two transition operators
along with an affordance function F and produces a composite product-space operator Ps,

Pt 2’ |r,z,a,t) = \p(P,, F, P,,) := ZaGAT P.(r'|r,) F(alz, a,t)Py(2' |2, a,t), (o,y)=r€R

We can see an illustration of the composition function in figure 2, where the full factorization of P; is
shown. The definition of Ap we gave is unidirectional because X influences R through F' but R does
not influence X'. There can also have a bidirectional compositions where both state-spaces influence
each other, not found in this paper. We are now ready to introduce a Compositional MDP.

We now define a Compositional Task MDP with the product-space transition operator Pj:

Definition 2.3 (Compositional Task MDP). A Compositional Task MDP (CTMDP) is a TMDP
M= (X X R, Ay, Ps, fg, fc), where Py = Ap(P,, F, Py) is the product-space operator.

The problem with the CMDP is that it is of size X x R, but we now show how to decompose it into a
set of goal-conditioned Options and STFFs which are derived in part from the affordance function F.

Under review for the Reinforcement Learning Conference (RLC)

Produce-Space ‘ 3 Task Logic groduct—Space)\P((Pa-,Py)-,E Px) . .
¢) Hydration perator N Task Logic Hydration Affordance World
e r il
(. P’y @ o yatia) = Y Polo’|o,a0)Py(y |y,) Flag, ayle, a. t) Py (|2, a, 1)
3 a. o o ao,ay
hydrate [7| a2 A Product-space Option Decomposition 04 =(X.ma.84) op=(X.7p,5)
. Rl Og YV [~<+] [F==¥]<
Lake (L) ...<. «| |-~
—_—
ttytit] |ttt t
n X World faulaalz, a,t) —> {kg, Teamg b —> OA ta<Hl«| -~
—— fealoalrat) — {Kg,.mg, g} —> OB titlelele] ===t
. F(ay, ag|z, a,t) .
Option feo(asla,a,t) —> {Fges Taes e} —> OC =~ ==+
Breadth Affordance for (Qnyaratela, a,t) —> {kg, , 7, g, } —> O ‘EH-E-| -E-l
First Search function IR O
Goal-availability Solved Create <l |-e-E-
functions OBEs Options St << [S=>=|t]+=
o, = (X,7,8L) oc=(X,7c.fc)

Figure 2: The affordance function F' links the base-space transition operators P, with the logical
task-space P, and hydration space P,. The null-action a. variable causes the agent to become
thirstier over time, whereas anyq makes the agent fully hydrated by drinking at the lake (L). We
can decompose F' into a set of goal-availability functions f,. These functions can then be used to
solve OBEs and create feasibility functions and policies defining a set of goal-conditioned options:
Og = {o4,0B,00,0r}. Breadth first search can solve for optimal sequences of options.

2.1 Time-to-Constraint-Violation

A necessary piece of information an agent needs to plan with high-level constraints is the time until a
constraint violation event occurs in another space. For instance, our agent might die of dehydration
if it tries an ambitions journey. Fortunately, an agent can compute the time-to-constraint-violation
(TCV) by using the null-Markov chain (e.g.) Py,e obtained from clamping the action of P, to a.
where the bar indicates that we delete the rows and columns of the constraint states. We compute
ty = (I — P,)~ '1. The matrix M = (I — P,)~ is the Fundamental Matrix of an absorbing Markov
chain where M (i, j) and represents the expected occupancies of state x; starting from z; (under
determinism this is exact) (Brémaud, 2013). When rows of M are summed (i.e. M1) we obtain the
TCV. The vector t¥ is an TCV vector (unknown) where t¥(i) indexes state y;. We can solve for t¥
as a linear system. If an Option were called that had a STFF time duration ¢t; — ¢ that was greater
than the TCV, then the Option would fail to complete because the task fails. Thus we can cull the
invalid Options from state z; if the time-inequality ¢t; — ¢ > t¥(4) is true. If the agent has multiple
high-level constraints and TCV vectors, T. = {t¥,...,t2}, (e.g. starvation, dehydration, etc.), then
the smallest TCV determines the (in)validity of an Option, written t; —¢ > mingcer, t4(x;). We will
use this for the STFF decomposition theorem. In Fig. 3 we show how TCV determines the validity
of an Option. The red region is where an Option will violate a high-level constraint in a given space.
Blue and green regions show the acceptable final states specific to a given space (W or))). The most
restrictive region (blue) determines the validity of an Option through the inequality.

2.2 STFF Factorization

A key property of the OBE is that it has a factorization for a product-space STFF which allows us
to break down the STFF into factors that we can solve individually, thereby avoiding the prohibitive
complexity of solving high-dimensional OBEs with dynamic programming in X x R.

Let us call an affordance function and constraint function pair (F, f&) homogeneous if f& encodes
all other non-null goal-actions Qg € A\ {ag, } in F as constraints. Homogeneity implies that all
policies are going to have a guaranteed equivalent effect on higher-level state dynamics. This will
be relevant in the STFF decomposition because it means that we can make policy-independent
predictions of high-level state-dynamics (with w,) independent of states in X'. Now the theorem:

Theorem 2.1 (Unidirectional STFF Decomposition). Let 4 = (¥ x ... x 2 x X, Ay, Py, fo , f&)
be a CTMDP with Ps = Ap(Py, ..., P,, F,P,), and Q = {wy, ...,w. } is derived from {P,,...,P,}. If
(F, fc') is homogeneous, fc' is multiplicatively separable, fg, is not a function of high-level states

Under review for the Reinforcement Learning Conference (RLC)

r=(y,..,z), and t; —t < mingee7, t'(x;), then the optimal product-space STFF 7** is equivalent to:

ﬁjr*(aga Ty, $f7tf|r7xat) = n;kr*(aga l'f,tfle,t) H wf("|'7tf —t)= wT(rf|rvtf - t)n:*(ay vatf|$7t)
wp€EN

where (e.g.) P, is the null-action Markov chain obtained from clamping the action of P, to a.,
wy(Yrlyi, ty—t) = P;,fe_t(i, f) is a prediction operator obtained by raising the null-Markov chain to the
power of the time-duration, predicting the final state to be yy after timety—t from y;, wy(rylr,ty—t) =
wy(yrly. ty —t)..w.(zf|2,t; —t), and nz* is the STFF of TMDP M = (X, A, Py, [, f&').

The theorem, proved in A.3 and visualized in figure 3, says if we know the policy has a consistent
(homogeneous) effect on the dynamics of other spaces we can use the prediction operators w of
high-level spaces along with a low-level STFF 7, as the full product-space STFF. We can use this
factorization for planning.

3 Time-to-Dehydration Time-to-Starvation Time to Constraint Violation
] D -1
I (2g,,t7,) Qf? tp—t, > t2() =5 (g, tp) o tqcU = (I - Pfaw) 1
" ty = (I—P.,)""1
w0 * ¢ == Fey)

2 gt To= {tZ“’ti’}

®

/54.

Vo
5
f.

q
[] °
@E

Option oy is valid if:

9
4

tp—t <t =7 Nar ty—ts < I[IliIl tf((L‘,‘) (V]
tleTe.

JJ b2 o I - (ot | TR (za.te) Option o, is invalid if:

_ in t4(r.
173 tsZtrglel%tc(rl) (<)

STFF Factorization
—kk f/-\ (/\ * %k
Nr (ag7 We,Yg, Tf, tf'l’, t) = ww(wf|w7 tf - t)wy(yf‘yv tf - t)Tln (ag'v Zf, tf‘(L', t)

Figure 3: The STFF decomposition. Blue and Green are the acceptable regions of w; and y;. Options
are valid if they are to states outside the red region for both maps, computed with the inequality.

2.3 Options from CMDP Ensembles

Given that we have defined a CMDP .# = (X x R, A, A\p(P,, F, P,), fa» fe), we can solve for a set
of options O. To do this we take the operator Ps = Ap(P,, F, P,), and, using the STFF factorization,
we solve for a set of low-level STFFs for each non-null goal o, in the affordance function F' by
converting it into a set Fg of goal-availability functions for goal indices G = {gy, ..., gnv }:

Fg = {fgpfgy -~-ang}a where: fgi<$aaat) = F(agi\x,a,t), V(Xg,- €A, \ {ae}'

Now we solve STFFs .#, = (X, A, P,, fg,, f) for each goal-availability function f, € Fg along on
the low-level operator P,, which is the obstacle constraint function restricted to variables:

KIIHg < affordance_ensemble_solutions(.#), (kg , 7, ,1g) € KIIHg, Vg; € G
where: (kg,, 7y, ,7g,) < feasibility_iteration(.#, = (X, A, P., fg., f§))
ICg = {K/glﬂﬁ;gw"'al{gn}ﬂ Hg = {7Tg1771'g27...,71'gn}, Hg = {ng17ng27”'u,’7gn}'
We will use the convention that the function affordance_ensemble_solutions returns KIIHg, a
set of solution tuples, which can be split into individual sets Kg, Ilg, and Hg. By combining elements
(kg Tg,, fg,) from Kg, llg, and Fg, grouped by indices g;, a set of Options Og is defined as:
Og = {0g,,04,, .-, 0g, } < create_option_set(X,Kg,lg, Fg, f&)

where: oy, = (X, 7y, B,) < create_option(X, kg , 7y, fg . [E)

We now have a set of Options for each high-level goal-action variable in the original CMDP ..

Under review for the Reinforcement Learning Conference (RLC)

Success! @
)

P

TR<<< TN<<<

. SH-E- S E-E- VE-E- ~E-H
Option Sequence: op [t tét ¢ 04 [ttt 4 oL |+ v+ + oc|vvds v
-»Q-».} Fyry 4..4. - & <-.<- -»Q-»-«

> > > 4 4 44 - -« - - - > > > 4 -

-

~,
Gparc(Shtylsito) = > D Y Gy, b, I8}ty 00)G (S}, |85, . 1, 00) G, 1, |8, £, 04)G(S),), |8, to, 03)

St Storlla Syt

Figure 4: The honey badger completes the Boolean task of reaching o111 and not entering the
dehydrated state (skull) while respecting the rule A < C encoded in P,. The solution, computed
with BFS, is a sequence of goal-conditioned options pparx = (0B,04,0r,0¢), each displayed.

2.4 Goal Operators

Having defined options from CMDP ensemble solutions, we will now define the Goal Operator, which
is an operator that maps from initial state-time to final state-time under an option as an action. For
Goal Operators with options derived from action-dependent goal-availability functions, we have to
evolve the dynamics forward one-step from the boundary action of the problem. Using the sets H,
O, and relevant operators (P, P.,), the Goal Operator definition is given as:

G(ry o), tylr 2.t 00) = > Po(tlry, o) Po(allog, mg (g tr) tp)wp(xslr, ty — t)nm, (tp, s, ts |2,)
Qfrf,xfty

where t’f =ty +1,r=(0,y), Tz € 0g, and G is defined for all oy, = (X, 7g,, Bg,) € Og, 7r, € H.

Generally, dynamic programming using G is intractable, but we can optimize sequence of options
with breadth first search (BFS, figure 2) by forward-propagating state-vectors through G to predict
the resulting state-vectors. Figure 4 shows the optimized solution to BFS where an agent has to
finish a logical task (with a precedence rule) in a non-dehydrated state (y # yo) while avoiding fire.
The forward objective computed with BFS in algorithm (2) is given as:

p* = argmax k,(s, t,m) = argmax (fl (s,t) + fa(s,t) . E Kp (s, ts,m + 1)),
pEOM pEOM 8%t ~Gp(m)

where s = (0,9, z) and m indexes the option sequence p in the set O™ of sequences of length M.

3 Discussion

We presented a new decision processes (the TMDP and CTMDP) and showed how they can be used
to define an Operator Bellman Equation which creates factorized predictive planning representations
called STFFs. This is possible because the structure of the Bellman equation and its functions (fg
and f.) are critical to preserving the interpretation goal and constraint events. This is in contrast
to reward-maximization objectives which aggregate events of obtained reward into the expectation
of a running total, thereby losing interpretability of the optimized value function. Consequently,
the STFF decomposition allows us to construct factorized Goal Operators to use for verifiable high-
dimensional planning. Also, OBE solutions are very risk-sensitive in the canonical form. Creating a
risk-calibrated basis of STFFs and Options for multi-goal problems is a very important theoretical
problem. We anticipate that further research into this topic will reveal fundamental insights into
making risk-calibrated verifiable planning scale to high-dimensional world-models.

Under review for the Reinforcement Learning Conference (RLC)

References

David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael Littman, Doina Precup, and
Satinder Singh. On the expressivity of markov reward. Advances in Neural Information Processing
Systems, 34:7799-7812, 2021.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679-684,
1957.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 1. Athena scientific,
2012.

Michael Bowling, John D Martin, David Abel, and Will Dabney. Settling the reward hypothesis. In
International Conference on Machine Learning, pp. 3003-3020. PMLR, 2023.

Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, volume 31.
Springer Science & Business Media, 2013.

David Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell, Max Tegmark, Sanjit Seshia, Steve
Omohundro, Christian Szegedy, Ben Goldhaber, Nora Ammann, et al. Towards guaranteed safe ai:
A framework for ensuring robust and reliable ai systems. arXiv preprint arXiv:2405.06624, 2024.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:€253, 2017.

Thomas J. Ringstrom. Reward is not necessary: How to create a modular & compositional self-
preserving agent for life-long learning. arXiv preprint arXiv:2211.10851, 2022.

Thomas J. Ringstrom. Reward Is Not Necessary: Foundations for Compositional Non-Stationary
Non-Markovian Hierarchical Planning and Intrinsically Motivated Autonomous Agents. PhD thesis,
University of Minnesota, 2023.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial
Intelligence, 299:103535, 2021.

Joar Skalse and Alessandro Abate. On the limitations of markovian rewards to express multi-objective,
risk-sensitive, and modal tasks. In Uncertainty in Artificial Intelligence, pp. 1974-1984. PMLR,
2023.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Cambridge, MA, 1998.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.

Peter Vamplew, Benjamin J Smith, Johan Kéllstrom, Gabriel Ramos, Roxana Radulescu, Diederik M
Roijers, Conor F Hayes, Fredrik Heintz, Patrick Mannion, Pieter JK Libin, et al. Scalar reward
is not enough: A response to silver, singh, precup and sutton (2021). Autonomous Agents and
Multi-Agent Systems, 36(2):41, 2022.

Under review for the Reinforcement Learning Conference (RLC)

Appendix

.1 Boundary conditions of OBEs

Because function in the OBE are undefined past T, we assume they are zero. Thus, the boundary
conditions for the OBEs defined as:

52(‘7"’ Tf) = m(‘;ix [fg(x’ a, Tf)(l = fe(z, a, Tf))] = fg(«%', a;}-’Tf)(l — fe(z, a;f7Tf)’

mg (2, Ty) = argmax [fg(z,a, Tf)(1 = fe(2, a,Ty))] = a7,

n;r(aga a+ax+7Tf“r+va) = fg(x+aa;“fan)a
ng_(ag7a—’x—’rf|x—va) = lﬂ'(x—’Tf)(fC(m—va;fan) +(1- fg(x_7a/§—‘f7Tf))) +]Iﬁ(x—an>7

.2 Derivation of relationship between « and 7

Assume that we compute an optimal «*, 7**, and n**. Using the ¢t = ¢; condition of equation (10),
we can substitute 77; in for f, in the recursion (6) but with the maximization dropped (since we have
already optimized the three main equations), resulting in:

’%;krg (xtat) = ng(a7$t>t|$t7t) + fZ(xhaat) Z Px(xt+1|xtu a7t)"<‘./;g (xt+17t+ 1) (12)

Tt41

Focusing on the right side of the addition, we can unroll £ another time-step, again substituting in n
in for f, for the boundary condition:

(1 — felze,a,)) ZPx(ﬂft+1|1’t,a,t) Mg (@ Tpp1,t 4+ zer, t+1)

x

+ fo(®i1,a,t+ 1) sz($t+2|$t+1; a,t+ 1)/€;g (g2, t +2)].

x!

After distributing we have,

fQ(xta avt) Z P:E(xt+l‘xt7 a;t)n;(aga xt+1at+ 1|$t+17t + 1)
Tt41
+f2(mtaa7t) E fZ(xt+1aa,t+1) E H:g(xt+27t+2)a

Tip1~ Py Tpya~ Py

where the first term is equal to the definition of the feasibility function ng(a, x¢y1,t + 1|a¢, t) defined
by the OBE equation (8). Substituting, we have:

= 1y (g, Trpr, t + 1]a, 1) (13)
+f2(xt)a/7t) E f2(l‘t+1,a,t+1)]E K;g(xt+2,t+2).
Tip1~Py Tipo~Py

Note that (8) implies that for any start state-time (x,¢) and final state-time (zs,t;) we can expand
n;r into a sequence of expectations of not achieving the goal under the policy, multiplied by the
probability of achieving the goal:

n;(agaxtfvtf|$t7t) :fg(.lft,a,ﬂ—,t) E fQ(xt+1’aTr’t+1))
Tty1~ g
E folz,—oan,ty —2) E ot (ag e, trleg 1ty —1). (14)

Tpp—2~ Py Typp—1~Py

Recall that (13) is the right side of the addition in (12), and every time we expand x and distribute,
we get a term which can be written as an extended 77; function, plus the expectation of a future x

10

Under review for the Reinforcement Learning Conference (RLC)

term. Therefore, we can keep unrolling (13) out until 7, and apply (14) each time, resulting in the
sequence:

K/Z‘(x7 t) = W;(Oég, T, t|l‘, t) + n;(aga Tt+1, t+ 1|.13, t) +.t ng—(ag7 TTy,s Tf|l’, t)a
which can be written as a sum over final state-times, leading to the relationship between x and ng‘:
KZ(ivt) = Z 77;(04+»$+,t+|$»t)~
Qs Top st 4

The cumulative feasibility function (which is the cumulative probability of completing the task) is
simply the sum of the first goal-satisfaction state-time events of the state-time feasibility function for
a policy mg.

A series of steps similar to those above for 7 can be carried out to prove (not shown):

1 —kg(z,t) = Z g (a—,z_ t_|z,1),

a_,x_,t_

and so when added together we have:

Z ng (a—,z_ t_|z,t) + Z N (o, zp oo, t) =1 — ki(a,t) + wy(z,t) = 1.

Qb ap,apty
This means that when both 7;* and 7, are considered as one function, 1",
0y (g g tyla,t) = ng (ap,op, tylo) + g (ap,op, |2,),
and it sums to one:

Z (o, zp,tela,t) =1
ap,xfity

Therefore n%* is a transition operator over state-action-times.

11

Under review for the Reinforcement Learning Conference (RLC)

.3 STFF Decomposition Theorem

.3.1 Preliminaries 1: Definitions and Theory Review

Recall f1 = fofe, fo=(1— fo)fe.
Recall, f. is multiplicatively separable if

fe(w, .., z,x,0,t) = fer(r) feu(ma,t) = few(w)...fe.(2)fee(z,a,t).

This is relevant for computing constraint-violation events efficiently in multiple spaces. We do not
care that f.,(z,a,t) is not separable because z, a,t variables are typically all used in a single “flat
OBE" optimization.

Recall f£5(x, a,t) encodes state-action-times of non-null goals ag in F' that are not a,, as constraints.
The TMDPs with the pair (F, f&%,) to be homogeneous, which means any policy derived from this
pair implies that a "live" trajectory (not task-invalidating) produced by 7 induces only null-goal
variables a. through F.

The multiplicatively separable function f&'(r,x,a,t) = feu(W)...fe.(2) fEu(z, a,t) will always have
&i.(r,a,t) be the function where the constraints on the non-null goals are encoded.

.3.2 Preliminaries 2: Computing the Time to Constraint Violation

If Pye(y'|ly) is the null Markov chain, then we can compute the first hitting time by calling the set
of non-constraint states N'= Y \ V. (i.e. the non-terminal states) and the set of constraint states
T = Y. (i.e. terminal states). When we rearrange P, . to segregate terminal and non-terminal
indices, the block matrix of the controlled Markov dynamics P, . is:

p | Pvwv | PaT
e Pry | Prr |7

The probability distribution of hitting a mode-inconsistent terminal state y; € T for the first time at
time 7 when starting from y; € N is:

Pyr(yj7T|yi) = (Pj(\;,/_/l)PNT)(Zvj)a

where P/S[Tj\?l) evolves the chain 7 — 1 time-steps to drain out the probability mass that hits a
mode-inconsistent state prior to time 7, followed by a one-step evolution by multiplying with Pprr
to capture the probability of being at a mode-inconsistent state z; € 7.

P,; is a PMF over state-times. Let ¢y y, ~ Z PyT (y;,tly;) be the TCV from the state y;. The

conditional CDF over TCV times is Sy (7|y;) = ZKT >y, Pyr(yj,t[yi). The probability that a time
duration of a goal ty —t is less than the TCV is obtalneci from evaluating the CDF:

Pr(ty —t <ticoy) = Syt —tly:)

If we have determinism in P, ., then the Neumann series M, = > _ Pl = (I —P,.)~*, where
M, (i,) represents the expected state-occupancies of y; before hitting the boundary (constraint)
states (where the expectation is exact under determinism) Brémaud (2013). We can sum each row
by multiplying M, . by a column vector of ones 1 to obtain the PMF of the first-hit time Py, (7|y;)
and the CDF S, (7|y;):

P, (lez) t¥(i), where: Py (tly;) =0 if: y; €T,
Sy(7lyi) = ZPyT (tlys)

t<rt

12

Under review for the Reinforcement Learning Conference (RLC)

.3.3 Theorem

To restate the Theorem:

Theorem .1 (Unidirectional STFF Decomposition). Let 4 = (¥ x ... x Z x X, A, Py, fq,, f5%) be
a CTMDP where R =Y x ... x Z, P, = A\p(P,, F, P,), {5 is multiplicatively separable, (F, f&..) is
homogeneous, P, is deterministic, and where fq(x,a,t) is not a function of r= (w, ..., z). Let the set
of TCV be T, = {t¥,...,t2}, and prediction operators be Q. = {wWy, ..., wy }.

Ifty —t < ming e, t;(r;), then the optimal STFF i** is equivalent to:

N (o, rp,wp,ap, ty|m @, t) =0 (ag, ap, x5, tylz, 1) H we(:|-ty —1)
we€EN,.

= n;*(aga xf7af7tf|z7t)w?”(rf|r’ tf - t)?

where wy(rf|r,tq) = wy(wrlw, tq)..w.(2¢|2,ta), and the STFF nt* is the solution to the TMDP
%: (X7V47szfg7 ffz)-

Proof sketch (this proof is under review): Remark: notice that this theorem gives an equivalence for
the condition if: ¢4 < ming, 7, t;(r;), which is saying the time that it takes to complete the goal is
less than the time that it takes hit a constraint under P,. In this proof we will point out where we
enforce this condition.

For this proof, we will be using the time-variable 7; where ¢ indexes the number of steps away from
the final time T%. So, 70 = Ty, 1 = Ty — 1 and 7; = T — 4, so keep in mind that the subscript
on 7 is not counting up from ¢y = 0 (which will be referred to as 75 =). Also, all variables with
subscript f like zy are equivalent to z-, or zr,.

Assume we are compute an optimal CFF x; and policy m;* at the boundary and step backwards
iteratively through time. We will analysis the STFF as we go backwards in time and assume we
compute the k-OBE and m-OBE concurrently.

The horizon is defined as 77 (o, vy, 27, tf|rp, x5, t5) = folz, 7 (x,t), Tf). Again, letting 7 =Ty —1,
we can start by substituting the product-space 7 with the 7 restricted to X:

ﬁ;(a@ rfvvatf|r7x’7—1) = fQ(rvxvale) Z PS(r,7$l|r7$a ajr*le)ﬁ;(agv rfvxfatf‘r,vxlle + 1015)

x’,r’

My (ag, vy, xp,tylr,z,) = fa(r,x,a,7) Z Py(r' 2|,z 0l m)0t (o, wp, tpla!, 7 + 1),

z/,r’

where: n;(agm,x,ﬂr,xml) = fq(r,z,al,,7), when: 7=ty

From now on, the last line for when 7 = ¢; will always be implicit throughout this derivation, we
will not keep re-writing it. Substituting Ps(r', 2'|r,z,a,t) := > P-(r'|r,a)F(alz, a,t) Py (2’ |z, a,t)
and pulling out the summations over «, and by separability of fo (and f.), we can move fs, out of
the parentheses:

ﬁg_(ag,r‘f,l‘f,tf|r7-17.'1,',7'1) f27‘ r‘rl ZP |I'7—1, (a|x,a, Tl)

* ngfx(:E,a,Tl) sz(z/\%a;*vﬁ)n:f(aga xfatf|x/77—1 +1),

13

Under review for the Reinforcement Learning Conference (RLC)

By homogeneity, F' will only output a. and so it can be dropped and we substitute in P, ((rs|r;,)
conditioned only on a:

My (g, vy, @y, tples,, o, 1) (16)

= Z for(¥) Pre(rylrr,) for(rr,) <f2gfq«($a a, i) ZP@.(JS'M, ajr*le)ng(aga xp tyla’ o+ 1)) .

= 77; (agwy,tylw,m1)

The term in the large parentheses of equation (16) is the definition of an STFF .# =

(X, A, T, Py, fgi,ff@) computed only on P, and fs ,. which we call 77; (no bar). Substituting this

new STFF in and continuing from 77 using the same goal-availability function, we have:
ﬁ;(ag,rf,xﬂtﬂr,x,ﬁ) = fg’r(rﬁ)Pr’e(rf|rﬁ)77g(ag,xf,tf\x,Tl). (17)
where: ﬁ;(ag,r,m,ﬂr,x,rl) = fo(r,z,al,,7), when: 1 =ty

Note that 4 =Ty — 1 and so ' =ry.

Equation (17) as it currently stands, has two separable parts, we have two terms that only depends
on r, and one term that depends on (z,a,t), and so each of these two terms can be computed
independently of one another.

Notice that when we arrive at (17), we can substitute (17) for equation (15) but for one time-step

backwards in time, 75 <— 73 — 1 (recall 74 = Ty — 1 so the subscript is counting backwards in time,

ie. 7o =Ty —2). When we go through (15) to (17) again, starting with the substitution:
ﬁ;(agarfv ZTf, tf|r7 x, 7-2)

= f277"(r7'2)f2733(x’ a7T1) Z Pr,g(rf|r-,-1)Ps(I‘/7$/|I‘7JC, a’;kr*a 72)77;(0‘@ Zf, tf|3:77—1)7

w/:r71

and following the same steps to (17), we end at:

ﬁ;(agv rfvvatf‘ra T,Tp) = Z Pr,e(rf|rT1)f2,r(r'rl)Pr,e(r'rl IrTQ)f2,’l"(rT2) n;r(ag, :L'fatflx»'@)

Try,Crgy

Mz (rr2)

= M(’?(r‘lﬂ)n;(a& l’f,tf|17,7'2)

This series acts as an absorbing Markov chain. To see how, we can represent the constraint function
as a diagonal matrix D, = diag(vec(f.,)), and P, will be the Markov matrix:

Mc,n = Pr,eDc n:2 Pr,eDc = (Pr,eDc)n
where M. (i, j) is a PDF equivalent to Pr(r;,t|r;) = M. (¢,7). We can get a CDF of the probability
that the trajectory has been absorbed Sy (7|yi) = >, <, > ; Mc (4, j). Furthermore, 1 — M (4, j) is
the probability that, starting at state r;, the final state is r; without hitting a constraint. Thus, we

can see that 1 — M., (i, j) represents the probability that a constraint has not been violated up to n
time-steps (i.e.) the probability that the option or policy is valid.

As we keep repeating this process and we obtain the general form:
Mg (Qg, vy @y, tylr, @, 75) = Se(tylys) Pre(rylrr, ty — mi)n) (g, g, tylz,)
where we rename P; ((rf|r,,,ty — 7;) = wr(rf|r,t5 — 1),

My (ag, vy, @y, tylr e, 1) = Se(tylrs)wr (rplr, tp — t)nf (o, xp, tyle, 7)

14

Under review for the Reinforcement Learning Conference (RLC)

The term Sy (tf|r;) acts to validate or invalidate the dynamics operator w,, as Sy(tf|r;) is

A couple things to note, since r = (w,...,2), and fo,(r) is multiplicatively separable, we can
break w, into w,(r¢|r,tq) = ww(wyrlw,tq)..w,(2f|z,tq), and break down Sy(t¢|r;) into Sy(tf|r;) =
Sw(tf|w;)...S.(t¢|z;). Furthermore, if the high-level dynamics are deterministic, then the CDF (e.g.)
S, (tr|z) is the same thing as the inequality:

ty —t <t..(i), where: t,=(— PZ’E)_ll.
we then have the set T. = {t,...,t.}, and (assuming determinism in R):

Sty — i) = min ()
Therefore, we now have the premise, that is if t; — ¢ < ming, e, t;(r;),:

ﬁ;—(ag7 rf?‘rf7tf‘r’ T,Ti) = w?‘(rf|r7tf - t)n;(agv xf7tf|x77—i)a
assuming determinism in P,.

Since the entire proof can be done with for the goal-success distribution, one can apply the exact
same steps to the goal-failure distribution (not shown), resulting in:

N-(a_,r_,x_,t_|r,x,t) = w.(r_|r,t- —t)n(a_,z_,t_|z,1).

O

A couple things to note: This proof assumes P, is deterministic, so the above calculation is for
the average hitting time, which must also be the exact hitting time. If one were to prove this for
stochastic P, one would have to compute the joint probability that any of the components change
the environment variable, which would involve forward-evolving each the Markov chain dynamics.
One would have to compute this probability for all combinations of high-level states, which would be
possible, but computationally expensive. Furthermore, if { were not element-independent, then we
would have to compute the hitting time and probabilities on the full Markov chain P,

t, = (I — P,) 1,

which is computationally prohibitive, unless alternative techniques were possible to be developed. It
is also worth noting that this proof assumed that the high-level states were deterministic. A similar
proof could potentially be given assuming stochasticity if one computes the probability of arriving
at a specific state before a given time under the controlled Markov dynamics, but would likely not
have a simple solution (e.g. in the form of a linear system) and would involve forward-evolving the
probability distributions under the Markov chain.

15

© 0 N O bk W N K

=
N = O

13

14
15
16
17
18
19
20
21
22
23
24
25

Under review for the Reinforcement Learning Conference (RLC)

.4 Feasibility Iteration

Algorithm 1: Feasibility Iteration

input :Dynamics P, goal-availability function fg, fc constraint function, final time T’
output : Cumulative feasibility function x, Policy 7, State-time feasibility function
define nx as the number of states

define fi = (1 = fo)(1 = fe), f2 = fo(1 = [e)

initialize n,ng « zeros([nz x Ty, nz = Ty))

initialize k < zeros([nx, T¥])

k(zy, Ty) < maxq fg(zs,a,Tf) Yoy € X, #CFF Boundary Conditions

m(xyg, Ty) < argmax, fe(zs,a,Tf) Voy € X, #Policy Boundary Conditions

nf (xg, Trlag, Ty) < folzs, w(xy, Ty), Ty), Yoy € X #Success Boundary Conditions

Ng (@g, Trley, Tp) 1 — fo(xy,m(xy,Ty),Ty), Va5 € X #Failure Boundary Conditions
for ¢t from Ty — 1 to 0 do

for z € X\ X. do

(maz_k, Ay ;) < argmax 4 [f1(z, a,t) + fo(z,a,t) By p, £(2', ¢+ 1)]

k(z,t) + maz_k

7l'(£l,'7 t) — a’:: — argminaGAf ¢ tfl ($, a, t) + fZ(xv a, t) EPI E’y]; t+

ng (xp,tles,t) < fi(z,azi,t), Yoy e X
e (T ts|w,t) < fa2(a,aii,) Barmp, md (Tg,trl2’,8),¥(2p, ty) € X X To
#Optional computation of failure probability for stochastic dynamics
if k(z,t) > 0 then

| e (g gl t) < Batmpy (lasazs. e (@, tpla’ 4+ 1),V (s,) € X X Toy
else

‘ ng (z,t]z,t) 1
end

end

end
n « Combine(n; ,n;)
return k,m,n

16

Under review for the Reinforcement Learning Conference (RLC)

.5 Option Sequence Breadth First Search

Algorithm 2: Breadth_First_ Plan_ Search

input :7e, He = {Ne1,g915Me1,905 -} r = {Wa, oo, wz }, Pr = {Puw, ..o, P2}, P, Po, -
He,g = {Te1.91> Ter,g25 -+ Tegagi b O = {01,915 Oc1,g55 -+ Ocy gy, }, max_horizon M, fi
output :tree

1 let Stinit < (Tinit, Tinit, Tinit, Einit, to)
2 let Kinit < f1(Stinit)
3 let root < Node(stinit, p = (), kKp = Kinit,leaf < False, parent < none) be an initial node
4 define wy(ryf|r, tq) := Hweﬂ we(-]5ta)
5 tree < initialize__tree(root)
6 Queue.push(root)
7 while not__empty(Queue) do
8 node < Queue.pop()
9 (o,r,z,t) < node.st
10 e+ ((r,o)
11 for w4 in Il CII do
12 if (kr, ,(x,t) > 0) then
13 (a, 2",) + Ne(e, 2, |2, 8,1, 70)
14 v’ we(c|r, ' —¢)
15 2" Pu(z"|2, m(2', 1), 1)
16 r” < one_step_internal_update(r’, o, P,)
17 0" + P,(o"|o,)
18 V't +1
19 St// — (0_//’ r//’w//’t//)
20 cur__feas « (node.k,) x fa(o,r,z,t) + fi(o”, v " t")
21 if len(node.p) < M then
22 new_node < Node(st”, K, < cur__feas,leaf < False, parent < node)
23 tree < add_to_tree(tree, new_node)
24 Queue.push(new_node)
25 else
26 new_node < Node(s”,leaf < True, parent < node)
27 tree < add_to_tree(tree, new_node)
28 end
29 end
30 end
31 end

32 Pf mas ¢ get_feasibility_maximizing_plans(tree.leaves)
33 Pf maz_t min < get_time_minimizing_plans(Pf max)
34 Return(,])fi'ma:l:iti'min)

17

