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Abstract

Recent advances in text-to-image generation have enabled the creation of high-
quality images with diverse applications. However, accurately describing desired
visual attributes can be challenging, especially for non-experts in art and
photography. An intuitive solution involves adopting favorable attributes from
source images. Current methods attempt to distill identity and style from source
images. However, "style" is a broad concept that includes texture, color, and artistic
elements, but does not cover other important attributes like lighting and dynamics.
Additionally, a simplified "style" adaptation prevents combining multiple attributes
from different sources into one generated image. In this work, we formulate a more
effective approach to decompose the aesthetics of a picture into specific visual
attributes, letting users apply characteristics like lighting, texture, and dynamics
from different images. To achieve this goal, we constructed the first fine-grained
visual attributes dataset (FiVA) to the best of our knowledge. This FiVA dataset
features a well-organized taxonomy for visual attributes and includes 1 M high-
quality generated images with visual attribute annotations. Leveraging this dataset,
we propose a fine-grained visual attributes adaptation framework (FiVA-Adapter) ,
which decouples and adapts visual attributes from one or more source images into
a generated one. This approach enhances user-friendly customization, allowing
users to selectively apply desired attributes to create images that meet their unique
preferences and specific content requirements. The data and models will be released
at https://huggingface.co/datasets/FiVA/FiVA.

1 Introduction

Imagine an artist drawing a picture; he or she not only exhibits unique styles, identities, and
spatial structures but also frequently integrates personal elements such as brushstrokes, composition,
and lighting effects into their creations. These detailed visual features capture profound personal
emotions and artistic expressions. However, despite the capability of current text-to-image models to
generate high-quality images from textual or visual prompts, they encounter substantial challenges in
effectively controlling these fine-grained visual concepts, which vary widely across different artistic
domains. This limits the practical applications of text-to-image models in various fields.

Recently, significant research efforts have been made to advance controllable image generation. In
particular, numerous studies have explored the use of personalization techniques to preserve the
identity of an object or person across different scenarios [23, 34]. On the other hand, there have
been attempts to control the generation process by conditioning on the style and spatial structure of
reference images [6, 28, 31, 7, 35], which involves mimicking abstract styles or leveraging spatial
cues such as edge maps, semantic masks, or depth. Yet, these methods are limited to specific aspects
and fall short in terms of generalizability. These methods use complex images as unified references
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Figure 1: Overview. We propose the FiVA dataset and adapter to learn fine-grained visual attributes
for better controllable image generation.

without adequately disentangling visual attributes, resulting in a lack of control over generation
based on specific attributes of the conditional images. This underscores the importance of extracting
fine-grained visual concepts from images to achieve controllable generation. However, achieving
this requires a well-annotated image dataset that displays various fine-grained attributes within the
images and a unified framework to adapt these different attributes to facilitate generation.

In this paper, we present a comprehensive fine-grained visual attributes dataset (FiVA), featuring
image pairs that meticulously delineate a variety of visual attributes, as shown in Figure 1. Instead
of annotating the real-world images, we propose to leverage advanced 2D generative models within
an automated data generation pipeline for data collection. We develop a systematic approach that
includes attribute and subject definition, prompt creation, LLM-based filtering, and human validation
to construct a dataset annotated with diverse visual attributes across 1 M image pairs. Building on this
dataset, we introduce a fine-grained visual attributes adaptation framework (FiVA-Adapter) designed
to control the fine-grained visual attributes during the generation process. Specifically, we propose to
integrate a multimodal encoder, Q-former, into the image feature encoder before its insertion into the
cross-attention modules. This integration aids in understanding tags or brief instructions for extracting
image information. During inference, our approach allows for the isolation of specific visual attributes
from the reference image before applying them to a target subject, and even the combination of
different attribute types. This capability enables free and diverse user choices, significantly enhancing
the adaptability and applicability of our method.

We conduct extensive experiments across a variety of attribute types on both synthetic and real-world
test sets. Our results demonstrate that our method outperforms baseline methods in terms of precise
controllability in attribute extraction, high textual alignment regarding the target prompt, and the
flexibility to combine different attributes. This work aims to cater to an increasingly diverse array of
user needs, recognizing the rich informational content that visual media embodies. Our hope is that
it will pave the way for innovative applications that harness the full potential of visual attributes in
myriad contexts.
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2 Related Words

Image Generation with Diffusion Models Diffusion models have seen significant advancements
in the field of image generation, driven by their impressive generative capabilities. DDPM [8]
employs an iterative denoising process to transform Gaussian noise into images. The Latent Diffusion
Model [21] enhances traditional DDPMs by employing score-matching in the image’s latent space
and introducing cross-attention-based controls. Rectified flow [17] improves training stability and
enhances image synthesis by introducing flow matching. Another line of research focuses on
architectural variants of diffusion models. The Diffusion Transformer [18] and its variants [10, 2–4]
replace the U-Net backbone with transformers to increase scalability on large datasets.

Controllable Image Generation The ambiguity of relying solely on text conditioning often results
in weak control for image diffusion models. To enhance guidance, some works adopt the scene
graph as an abstract condition signal to control the visual content. To allow for more spatial control,
several attempts such as ControlNet [35] and IP-Adapter [34] propose to build adaptors for visual
generation by incorporating additional encoding layers, thus facilitating controlled generation under
various conditions such as pose, edge, and depth. Further research investigates image generation
under specified image conditions. Techniques like ObjectStitch [29], Paint-by-Example [33], and
AnyDoor [5] leverage the CLIP [20] model and propose diffusion-based image editing methods
conditioned on images. AnimateAnyone [9] suggests using a reference network to incorporate skeletal
structures for image animation. However, these methods primarily focus on the visual attributes
like identity and spatial structure of reference images. Other works such as DreamBooth [23],
CustomDiffusion [12], StyleDrop [27], and StyleAligned [7] approach controlled generation by
enforcing consistent style between reference and generated images. Yet even among these methods,
the definition of style is inconsistent. We propose a fine-grained visual attribute adapter that decouples
and adapts visual attributes from one or more source images into generated images, enhancing the
specificity and applicability of the generated content.

Datasets for Image Generation Datasets provide a foundation for the rapid progress of diffusion
models in image generation. MS-COCO [16] and Visual Genome [11], built with human annotation,
are limited in scale to 0.3 and 5 million samples, respectively. The YFCC-100M [30] dataset
scales up further, containing 99 million images sourced from the web with user-generated metadata.
However, the noisy labels from the web often result in text annotations that are unrelated to the
actual image content. The CC3M [26] and its variant CC12M [1] utilize web-collected images and
alt-text, undergoing additional cleaning to enhance data quality. LAION-5B [25] further scales up the
dataset to 5 billion samples for the research community, aiding in the development of foundational
models. DiffusionDB [32] leverages large-scale pre-trained image generation models to create a
synthetic prompt-image dataset, containing imaged generated by Stable Diffusion using prompts and
hyperparameters specified by real users. However, these datasets only provide a coarse description
of the images. DreamBooth [23] and CustomDiffusion [12], techniques focused on text-to-image
customization, also provide their own dataset, containing sets of images capturing the same concept.
However, such datasets focus only on individual concepts, and are limited in sample volume. Thus,
we propose the fine-grained visual attributes dataset (FiVA) with high-quality attribute annotations to
facilitate precise control of generative models with specific attribute instructions from users.

3 Dataset Overview

Visual attributes encompass the distinctive features present in photography or art. However, there
exists no dataset annotated with fine-grained visual attributes, making the fine-grained control in
generative models inapplicable. In the following, we present the details for how to construct the
FiVA dataset with fine-grained visual attributes annotation. We first introduce our taxonomy for the
fine-grained visual attributes. We then illustrate how to create large-scale text prompts with diverse
attributes, which are further used for generating image data pairs using state-of-the-art text-to-image
models. Considering the imperfect text-image alignment of current generative models, a data filtering
stage is implemented to further refine the precision. Additionally, we conduct thorough human
validation to ensure the quality of the dataset. We perform a comprehensive statistical analysis of the
compiled dataset in the supplementary material.
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Figure 2: Examples of visual consistency application range. Some visual attributes, such as ‘color’
and ‘stroke,’ are easily transferable across different subjects (left). However, other attributes, like
‘lighting’ and ‘dynamics,’ are range-sensitive, meaning they produce varying visual effects depending
on the domain (right), resulting in more fine-grained, subject-specific definitions of sub-attributes.

Table 1: Statistics and human validation results. We report the number of individual images
containing each specific visual attribute (some images could contain multiple attributes), along with
human validation accuracy and cross-agreement measured by standard deviation.

Attributes Color Stroke Lighting Dynamic Focus_and_DoF Design Rhythm Average

Number 429K 301K 370K 89K 107K 66K 52K 202K
Accuracy 0.96 0.92 0.76 0.81 0.85 0.89 0.73 0.84

Standard Deviation 0.12 0.15 0.19 0.14 0.12 0.14 0.18 0.15

3.1 Data Construction Pipeline

Taxonomy of Visual Attributes. Visual attributes are a broad concept, varying significantly
in different use cases. Therefore, we choose some of the most general types to cover a wide
range of application scenarios. Specifically, we categorize these attributes into the following
groups: color, lighting, focus and depth of field, artistic stroke, dynamics,
rhythm, and design. Within each group, we further refine them into comprehensive subcategories.
Initially, we reference examples from professional texts and then use GPT-4 to generate additional
entries. We manually filter out any redundant or unreasonable suggestions. (Please refer to the
supplementary material for more details). This comprehensive taxonomy enables us to encompass a
wide range of applications in photography, art, and design, ensuring that our dataset is versatile and
applicable across various visual domains.

Prompts and Paired Images Generation. We aim to construct image-image pairs with the
same specific visual attribute. However, achieving this by filtering existing text-image datasets,
LAION5B [24], etc. is very challenging due to the ambiguity in textual descriptions, which makes it
difficult to accurately select the image pairs from the datasets. Therefore, we opt to construct the
dataset using generative models: first, we generate prompts containing various visual attributes in
bulk, and then we use state-of-the-art text-to-image models to generate images with these prompts.

For prompt generation, we augment the attribute names and descriptions with GPT-4 based on our
taxonomy. Then, we combine each of the augment names or their combinations with specific objects
to generate the final prompts. However, this process is non-trivial, as a specific branch of visual
attributes may not be suitable for all kinds of random subjects. For example, “motion blur” can only
be applied to dynamic subjects, and “candle light” cannot be applied to landscapes. We employ
GPT-4 to construct a hierarchical subject tree, with parent nodes representing the primary categories
of subjects and child nodes denoting specific objects within these main categories. We also utilize
GPT-4 to associate visual attributes with the parent nodes in the subject tree to make the combination
of them into a reasonable case. When creating prompts, we select n (e.g., 1, 2, 3) attributes along with
one associated subject according to the subject tree. We construct over 1.5 million initial prompts in
total and used playground-v2.5 [14] to generate four images for each prompt. The generated images
with the same attribute are considered to be positive pairs. However, we observe some disparity
caused by the imperfect alignment with text as well as the different manifestations of the same
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attribute on different subjects. A further cleaning and filtering process is therefore needed to enhance
quality and precision.

Range-sensitive Data Filtering. Not all generated images with text prompts containing the same
attribute exhibit similar visual effects. Figure 2 illustrates examples of varying application ranges for
different attributes where visual consistency is present. To achieve attribute-consistent image pairs,
we define specific ranges for each attribute within which two images are highly likely to maintain
visual consistency. Utilizing our subject tree, we apply a range-sensitive data filtering approach
hierarchically: if an attribute shows high visual consistency across subjects at the parent node, we
record it as the range; if results are inconsistent, we proceed to its child nodes for further validation.
The validation process involves constructing a 3× 3 image grid generated with prompts containing
the attribute and subjects sampled from a specific node. Using GPT-4, we assess image consistency
for a given visual attribute by prompting: “I have a set of images and need to determine if they exhibit
consistent <major attribute> traits of <specific attribute>.” We ask GPT-4 to identify any inconsistent
image IDs. This sampling is repeated multiple times, and if the proportion of inconsistent images
remains below a predefined threshold, we consider the images consistent for the specified visual
attribute within the given range.For attributes that cannot maintain consistency even at the leaf nodes,
we simply remove them.

After filtering, we further compile statistics on the number of individual images for each major visual
attribute, as shown in Table 1. Note that these numbers do not add up to the total image count, as
each image can possess one or multiple different attributes.

3.2 Human Validation

After filtering the data, we randomly selected 1,400 image pairs (200 per attribute) for human
validation. Each pair was evaluated by three of eight trained annotators for attribute similarity, with
the final result determined by majority vote. These pairs were randomly matched based on shared
attribute descriptions, and annotators focused solely on judging the visual similarity of each pair’s
attributes—alignment with the original text prompt was not required.

Table 1 displays the accuracy for each attribute type, along with the overall average, underscoring
the dataset’s high precision and robustness for this study. To assess annotator agreement, all eight
annotators also evaluated a subset of 350 image pairs (50 per attribute). The table further includes the
standard deviation of these assessments, demonstrating strong consistency among annotators.

4 Method

In the following, we will show how we leverage FiVA dataset to build a fine-grained visual attribute
adapter (FiVA-Adapter) that enables controllable image generation using images as prompts for
specific visual attributes.

4.1 Preliminary

Image Prompt Adapter (IP-Adapter) [34] is crafted to enable a pre-trained text-to-image diffusion
model to generate images using image prompts. It comprises two main components: an image
encoder for extracting image features, and adapted modules with decoupled cross-attention to embed
these features into the pre-trained text-to-image diffusion model. The image encoder employs a
pre-trained CLIP [20] image encoder followed by a compact trainable projection network, which
projects the feature embedding into a sequence of features of length N . The projected image features
are then injected into the pre-trained U-Net model [22] via decoupled cross-attention, where different
cross-attention layers handle text and image features separately. The formulation can be defined as:

Znew = Softmax
(
QKT

√
d

)
V + Softmax

(
Q(K ′)T√

d

)
V ′, (1)

where Q = ZWq,K = FtWk, V = FtWv,K
′ = FvW

′
k, V

′ = FvW
′
v. Ft and Fv indicate the text

and image condition features, respectively. W ′
k and W ′

v represent the weight matrices in the new
cross-attention layer dedicated to the visual features. These matrices are the sole new parameters to
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Figure 3: FiVA-Adapter architecture and training pipeline. FiVA-Adapter has two key designs: 1)
Attribute-specific Visual Prompt Extractor, 2) Multi-image Dual Cross-Attention Module.

be trained within this module and are initialized from Wk and Wv to facilitate faster convergence. In
this paper, we follow the decoupled cross-attention mechanism for adapting image prompts.

Q-Former [15] was initially introduced as a trainable module designed to bridge the representation
gap between a image encoder and LLM. It comprises two transformer submodules: one functions as
an image transformer to extract visual features, and the other serves as a text encoder and decoder. It
takes learnable query tokens as input and associate with text via self-attention layers, and with frozen
image features through cross-attention layers, ultimately producing text-aligned image features as
output. Blip-Diffusion [13] utilizes Q-Former to derive text-aligned visual representations, allowing a
diffusion model to generate new subject renditions from these representations. DEADiff [19] employs
two Q-Formers, each focusing on ”style” and ”content” to extract distinct features for separate cross-
attention layers, thereby enhancing the disentanglement of semantics and styles. It makes the
Stylization Diffusion Model follow the ’style’ of reference images better. In this work, we propose
the FiVA-Adapter that focuses on fine-grained control of visual attributes. Thus, disentangling the
’content’ and ’style’ is not our goal.

4.2 Fine-grained Visual Attribute Adapter

Our goal is to generate the target image I following the attribute instruction of visual prompts and the
text condition. Specifically, the generation can be formulated as:

I = G(V,A, y), (2)

where G(·) is the generator, V = {Vk|k ∈ [1, N ]} represents the visual prompts, A = {ak|k ∈
[1, N ]} denotes the corresponding attribute instructions, and y is the text prompts.

To achieve our goal, our framework is composed of two key components: 1) Attribute-specific Visual
Prompt Extractor: A feature extractor that can extract the attribute-specific image condition feature
Fk from image Vk with respect to ak. 2) Multi-image Dual Cross-Attention Module: A module can
embed both text prompt conditions and multiple image conditions into U-Net with two dedicated
Cross-Attention Modules for multi-conditional image generation.

The overall pipeline of our method is illustrated in Figure 3.

Attribute-specific Visual Prompt Extractor. Inspired by BLIP-Diffusion [13], we employ the
Q-former module to extract the attribute-specific image condition features. Specifically, the Q-former
takes both image Vk and attribute instruction ak as inputs. It models the semantic relationship
between the image and the attribute instruction, expected to extract condition feature that aligned
with the given attribute. The extracted feature is then further projected by a projector comprises a
Linear Layer and LayerNorm into the image condition Fk to meet the input channel of the following
cross-attention module.

Multi-image Dual Cross-Attention Module. IP-Adapter [34] introduces a Dual Cross-Attention
Module where one cross-attention for text prompt condition and the other one for a single-image
condition. In our work, we extend this module to adapt to multi-image conditions, facilitating
multi-image controls. Specifically, we set a fixed number of attributes N to control the generated
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Figure 4: Qualitative comparisons on single attribute transferring.

image simultaneously. This allows us to use a fixed number of tokens as input for the cross-attention.
The image condition features Fk prepared by the Q-Former and channel projector are concatenated
into F = [F0,F1, . . . ,FN ]. Notably, since not all images in our dataset have N attributes, for a
target image I with fewer than N attributes, we use unconditional image features Fzero to pad the
sequence. The unconditional feature Fzero is generated by feeding a zero-image and an empty text
into the Q-Former and followed channel projector. To ensure the condition signals are invariant to
the order of prompts, we randomly shuffle the multi-image conditions during training. Finally, the
multi-image conditions are passed to the cross-attention module as described in Equation 1.

Image Prompts and Attribute Sampling . For a target image characterized by a series of visual
attributes and a specific subject, we randomly select reference images from the training set that share
the same attribute. We incorporate LLM-based data filtering to enhance data sampling. It ensures
that the subjects of sampled image prompts can share the attribute with the target image’s subject.
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Figure 5: The combination of multiple visual attributes enables the integration of specific
characteristics from different reference images into the target subject.

Table 2: User Study and CLIP Scores. Both quantitative results demonstrate our superior
performance over the baseline in terms of both subject and joint accuracy.

Metrics DB-Lora IP-Adapter DEADiff StyleAligned Ours

User-Study
Sub-Acc 0.393 0.163 0.605 0.520 0.817

Attr&Sub-Acc 0.240 0.150 0.260 0.298 0.348

CLIP-Score
in-domain 0.180 0.161 0.211 0.196 0.228

out-domain 0.177 0.135 0.205 0.189 0.229

Additionally, we enhance the flexibility of attribute instructions by implementing tag augmentation on
the attribute text, broadening the range of instructional keywords to accommodate various user inputs.
Specifically, we prepare a list of augmented tags for each attribute using GPT-4. The augmented
attribute text for prompt images is then randomly sampled from this candidate list of tags.

Training and Inference The training and inference setting of our framework are similar with the
IP-Adapter [34]. The learning rate is set to 2e-5 and weight decay is set to 1e-3 for stabling the
training. The Q-former, channel projector, and multi-image cross-attention are trained and other
parameters are frozen.

5 Experiment

5.1 Experimental Settings

Baselines We compare our method with the state-of-the-art methods for customized image generation,
including Dreambooth-Lora [23], IP-Adapter [34], DEADiff [19], and StyleAligned [7]. Please find
the implementation details of both our method and the baselines in the supplementary material.

Evaluation Metrics In order to evaluate the results systematically, we propose a small validation set
with 100 reference images covering the seven attributes, together with 4 target subjects for each of
them. The target subjects include 2 in-domain ones, which are randomly selected from the same major
category with the subject from the reference image, and 2 out-domain ones, which are randomly
selected from the other major categories. For the evaluation, we focus on two aspects: attribute-
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Figure 6: Attribute decomposition. One reference image can be decomposed into different attributes
via different tags.

Figure 7: Ablation on range-sensitive data filter. It helps improve the attribute accuracy and protect
the original generation capacity.

accuracy and subject-accuracy. Given the subjectivity of the issue and the lack of quantitative metrics,
we incorporate both user studies and GPT scoring on our proposed validation set. Specifically, both
users and GPT are instructed as follows: subject-accuracy is determined by whether the subject in
the generated image is correct, while attribute-accuracy is evaluated in conjunction with the subject,
referred to as attr&sub-accuracy, to eliminate the “image variance” solution that might artificially
inflate accuracy. Please refer to the supplementary materials for more details about the validation set,
metric implementation, and GPT scoring results.

5.2 Quantitative Evaluation

We show quantitative evaluation results in Table 2, where both the CLIP-Score and user study results
indicate that our method benefits from a higher subject accuracy. The user study further demonstrates
that our method also excels in the joint accuracy of both subject and attribute. However, it is important
to note that the joint accuracy is not high overall due to the challenging nature of this new task.

5.3 Qualitative Evaluation

Comparisons with previous methods. Figure 4 demonstrates that our method effectively transfers
the specific attribute to the target. In contrast, other methods exhibit various issues. The DB-Lora and
IP-Adapter usually tend to create image variations without accurately following the target subject.
While DEADiff follows the target subject better, its attribute accuracy is poor, and often resulting in
round images. Additionally, the StyleAligned model produces unstable image quality, with a high
risk of generating anomalous images.

Visual attributes decomposition from the reference image. Based on our method, the visual
information extracted from the same reference image can be different, depending on the tag
input. Figure 6 shows an example of this, demonstrating the effectiveness of fine-grained attribute
decomposition.

Combination of multiple visual attributes into the target subject. We demonstrate how multiple
reference images can be used to combine specific attributes from each into a new image with a target
subject. As shown in Figure 5, our method accurately extracts the specified attribute from two or even
three reference images and combines them with the target subject. To further validate the method’s
sensitivity to the input tags, we conducted experiments by exchanging the tags for the same reference
images. The results confirm that the visual attribute extraction is both valid and distinct for different
tag inputs, highlighting the method’s flexibility.
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Effect of range-sensitive data filter. The filter introduced in Section 3.1 is aimed for regularizing
the similarity application range of some attributes like lighting and dynamic modelling. In Figure 7,
we show some qualitative results of its effects. First, it slightly enhances the attribute accuracy rate
regarding the difficult visual attributes like lighting. What’s more important, it also helps protect the
generation capacity of the original pre-trained model from being harmed by the heavy noise in the
paired data without filtering, leading to highly image quality and lower rate in producing failure cases
like distorted human face and body.

6 Conclusion

In conclusion, our work addresses the limitations of current text-to-image models in controlling fine-
grained visual concepts by introducing a comprehensive dataset with fine-grained visual attributes,
FiVA dataset, and a novel visual prompt adapter along with it. Our approach enables precise
manipulation of specific visual attributes, offering greater flexibility and applicability across various
photography, artistic, and other practical domains. We believe that our contributions will pave the way
for more sophisticated and user-driven image generation technologies. We will discuss the limitations
and future works in the supplementary material.

Limitations and Future Works. The main limitation of the dataset is its heavy reliance on
the capacity of the generative model, which might constrain the realism, range of available
visual attributes, and attribute accuracy between paired data. For example, specific attributes like
photographic composition techniques or creative photography can hardly be created in this way.
This might also introduce some bias in appearance distribution introduced by the generative model.
In the future, we will consider collecting some high-quality data from platforms with professional
photographers and designers, and involve human annotation to create paired data, which can further
enhance the dataset with a more realistic data distribution and more complex visual attributes.
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In the supplementary material, we include links to the dataset, metadata, and documentation in
Section A. We then introduce additional details on dataset construction and statistics in Section B.
Further, we present more details on the experimental setup and additional experimental results in
Section C. Finally, please also find the datasheet for the dataset in Section D.

A Dataset Information

A.1 Dataset Link and Documentation

Our dataset, metadata, and its license are currently maintained on huggingface 1 for users to download:
https://huggingface.co/datasets/FiVA/FiVA. It contains the generated images and their
metadata, the the original taxonomy of visual attributes and subjects to create the prompts, and the
data filtering file. For each of the images, the main visual attribute type, keyword, subject, and prompt
is stored in the metadata. A detailed documentation of dataset structure and usage as well as an
example of the metadata can be found in the dataset card via the URL above. The Croissant link can
be find here https://huggingface.co/api/datasets/FiVA/FiVA/croissant.

A.2 Author Statement and Data License

The authors bear all responsibility in case of violation of rights and confirm that this dataset is
open-sourced under the Playground v2.5 Community License license. We will be adding more
generated images from other generative models and release them under the corresponding licenses.

B Additional Details on Dataset Construction

Details on attribute taxonomy and statistics. When constructing the attribute library, for color,
lighting, dynamics, artistic stroke, and focus and depth of field, we create a list of
short descriptions or keywords for each kind of subcategory together with a list of major subjects
that can fit into the description. When constructing the prompt, we simply link the attribute and
the subject with a comma. For two specific attribute types, namely rhythm and design, the visual
results can hardly be presented simply via short descriptions or keywords. We use long descriptions
with “[sks]” denoting the placeholder for subjects that might fit into the sentence. Prompts are created
by replacing “[sks]” with each of the subject candidates. We show the visualization of a rough
distribution of attributes and subjects in Figure S2, as well as an example of constructing a pair of
images that share similar lighting conditions. We also show some more examples of images with
different visual attributes in Figure S1.

Details on the Range-sensitive Data Filtering. To achieve attribute-consistent image pairs, we
need to establish a set of ranges for each attribute where any two images maintain consistency. We
organize images into a hierarchy of Set/Major-subject/Sub-subject, with the largest set being
the aforementioned “group of suitable subjects.” Figure S3a shows an example of the hierarchical
structure of images related to the attribute ‘lighting: moonlight’ featuring 7 major-subjects and over
100 sub-subjects. Within this hierarchy, each sub-subject corresponds to a list of images, where each
image belongs to that sub-subject and possesses the visual attribute of ‘lighting: moonlight’.

We apply Range-sensitive Data Filtering to this hierarchy: We first validate the consistency within
each specific Major-subject. Subsequently, we validate the Set encompassing all validated major-
subjects. For any major-subject that failed to pass the validation, we then check their Sub-subjects.

As shown in Figure S3b, from the range we want to verify, we sample 9 images and arrange them in
a grid. Using GPT-4V, we assessed image consistency for a specific visual attribute. In our example,
<major attribute> is lighting, and <specific attribute> is moonlight. For each range we want to verify,
this sampling is repeated multiple times. If the mean proportion of inconsistent images remains below
a predefined threshold of 0.1, we consider the images consistent for the selected visual attribute
within the specified range.

1https://huggingface.co/
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Figure S1: More image examples with different visual attributes.

C Additional Experimental Details

C.1 Details on Experimental Setup

Implementation Details. For our methods, our framework’s training and inference setting are similar
to the IP-Adapter [34]. The learning rate is set to 2e-5, and weight decay is set to 1e-3 for stabilizing
the training. The Q-former, channel projector, and multi-image cross-attention are trained, and other
parameters are frozen. The training images are resized to 512 × 512. The model is trained for three
epochs with the randomly shuffled training dataset. For each target image, the attribute images are
randomly sampled.
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Human Validation Accuracy

Prompt 1: soft light with bokeh, light blue, man

Prompt 2: soft light with bokeh, dark green, woman

lighting

Subjects Attributes Example

Figure S2: Statistics and Analysis. We visualize the rough distribution of visual attributes and
subjects on the left. On the right, we show an example pair of images that shares similar lighting
condition. We also visualize the attribute alignment accuracy via human validation here.

(a) Subject Tree of lighting: moonlight.

lighting:  moonlight

I have a set of images and need to 
ascertain if they exhibit consistent 
lighting traits of 'moonlight'.  Please 
provide a `yes' or `no' in the first line. 

If there are very noticeable 
differences, choose `no' and provide 
the red ID in the top-left corner of the 
images that deviate in the 3rd line and 
explain the reasons; if their lighting 
traits are similar, choose `yes'.

No

4

Image 4 deviates from the consistent lighting traits of 'moonlight'. The lighting in 
this picture is emanating from a large, orange-yellow moon (or celestial body), 
creating an intense warm glow that is not consistent with the cool,  often bluish or 
neutral silver lighting associated with natural moonlight. The other images exhibit 
either a blueish or neutral moonlight, creating a more natural, nocturnal atmosphere.

(b) GPT4V based Range-sensitive Data Filtering.

Figure S3: Range-sensitive Data Filtering. Taking the attribute lighting: moonlight as an example,
(a) demonstrates the hierarchy of Set/Major-subject/Sub-subject. It lists the "group of suitable
subjects" chosen for generating images with the visual attribute lighting: moonlight, along with
sub-subjects under each major-subject. The "group of suitable subjects" refers to the pre-defined
major-subjects that are applicable for the attribute. Due to space limitations, only 15 sub-subjects
are listed for each major-subject. (b) verifies whether the images under major-subject: architecture
exhibit consistent lighting traits of moonlight. The result shows that Image 4 exhibits inconsistencies,
with the reasons provided.

For the baseline methods, we adopt the official code base and hyper-parameters for IP-Adapter [34],
DEADiff [19], and Style-Aligned [7], and we use the implementation in diffusers 2 for Dreambooth-
Lora [23] with only the reference image as training source.

Details on Evaluation The validation set for the user study contains 100 reference images with
different visual attribute types. The distribution of the validation set reflects the inherent diversity
of each attribute. We involve three times more data for the GPT study under the same distribution,
thanks to its ability to scale up.

For the CLIP-Score, we use ViT-L-14 model, and report the cosine similarity between the text
feature of the target subject and the image feature of the generated image. For the user study,

2https://github.com/huggingface/diffusers
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w/ augmentation w/o augmentation w/ augmentation w/o augmentationV (stroke)V (color)

Figure S4: Ablation on attribute input augmentation. Models trained with tag augmentation
handle slight deviations in input text during inference, while those without augmentation would fail
in these cases.

V (stroke) T (“skyscrapers”) V (dynamic) T (“transport hubs”) V (rhythm) T (“woodworking”)

Figure S5: Examples with real-world images. We demonstrate that our adapter can be effectively
extended to real-world images, which have a different distribution from generated images.

we send questionnaires to 30 volunteers with randomly shuffled image options. We are using the
gpt-4-turbo-2024-04-09 model for GPT-4V API inference. Detailed instructions for GPT-4V
can be find in Figure S6.

C.2 More Results

GPT Study Results Multi-modal Large Language Models (e.g., GPT-4V(ision)) can offer a more
scalable alternative to user studies, providing comprehensive analysis and judgment simultaneously.
Specifically, we instruct the GPT-4V model to complete similar questionnaires as in the user study. An
example of the instruction and GPT’s output can be found in Figure S6. The GPT study results, shown
in Table R1, demonstrate that our method outperforms the baselines in most attributes. However, the
results for Design and Rhythm are not as strong, possibly due to the relatively small data scale for
these two attributes.

Effect of the input attribute augmentation. During inference, users may present visual information
in various ways. For example, “color” might be referred to as “hue” or “palette,” and “dynamic” as
“motion capture” or “action shot.” Therefore, we add attribute name augmentation during Q-former
training to accommodate diverse user inputs. As shown in Figure S4, when the input text slightly
differs from the standard attribute names during inference, models trained with tag augmentation can
still perform effectively, whereas those without augmentation fail to do so.

Results on real-world data. We show the generalization ability of the model to some real-world
data collected from Unsplash 3 to verify the model’s generation ability to some attributes beyond the
training set. Results in Figure S5 shows that our adapter can be effectively extended to real-world
images, which have a different distribution than generated images.

3https://unsplash.com/

16



Table R1: GPT study results on each attribute type. The Attr&Sub-Acc here denotes the accuracy
when both the attribute transferring and target subject are correct.

Methods
Attr&Sub-Acc

Color Stroke Lighting Focus&DoF Dynamic Design Rhythm Average

DB-Lora 0.516 0.478 0.358 0.485 0.480 0.600 0.607 0.503

IP-Adapter 0.323 0.403 0.340 0.364 0.520 0.440 0.500 0.413

DEADiff 0.161 0.209 0.245 0.485 0.400 0.080 0.357 0.277

Style-Aligned 0.581 0.552 0.396 0.606 0.600 0.660 0.571 0.567

Ours 0.780 0.647 0.396 0.727 0.560 0.510 0.521 0.592

In this row, there are 6 images, with the leftmost one being the reference image. Now We need to retain the “color
palette” attribute from the reference image and transfer it to the new subject “stage pyrotechnics”. 
Images 1 to 5 are the results from 5 different methods. Please determine two things:

1. Do these 5 images match my target subject “stage pyrotechnics”?
2. Do these 5 images satisfy the ”color palette" visual attribute from the reference image?

Please provide a simple analysis and then output the final answers in the last two lines. 
They will each contain a list, with the list saving the image numbers that meet the respective requirements. 
For example, if images 1, 3, and 5 match the subject, and image 1 matches the attribute, then the final output will be:

# Example
[2,3,5]
[3]

THE LAST TWO LINES SHOULD ONLY CONTAIN THESE TWO LISTS!!!

1. Image 1 contains fireworks integrated within a frame structure, not matching the pyrotechnic display often associated 
with stage pyrotechnics.
2. Image 2 depicts a fiery display within a heart-shaped structure, somewhat representing a pyrotechnic element but still 
not typical of a staged event.
3. Image 3 clearly shows a stage set with a pyrotechnics display, fitting the "stage pyrotechnics" description accurately.
4. Image 4 again features a stage with vibrant fireworks, closely matching what you'd expect from "stage pyrotechnics."
5. Image 5, while beautifully matching the helmet in the reference in terms of subjects, does not relate to "stage 
pyrotechnics."

Regarding the "same color palette" attribute from the reference image:
- The reference image features a dynamic and vivid color range with predominant reds, blues, greens, and touches of 
yellow.
1. Image 1 attempts to incorporate similar vibrant colors but the colors are less vivid and more subdued compared to the 
reference.
2. Image 2 features intense orange and yellow tones, lacking the broader color variety of the reference.
3. Image 3, while mostly featuring golden and warm tones, lacks the varied color palette of the reference.
4. Image 4 infuses a rich variety of colors, aligning well with the diverse palette of the reference.
5. Image 5 also diligently replicates the reference's color palette with the same rich, vivid colors.

Conclusively:

[3,4]
[4,5]

Figure S6: An example of the input, instruction, and output of the GPT study. GPT-4V shows
sufficient ability in understanding the problem and providing comprehensive analysis and judgement
to these questions that can hardly be evaluated by other pre-trained models.
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D Datasheet for Datasets

The following section contains answers to questions listed in datasheets for the dataset.

D.1 Motivation
• For what purpose was the dataset created?

The FiVA dataset is designed to facilitate research in fine-grained visual attributes, enabling
user-friendly customization. It allows users to selectively apply desired attributes to create
images that match their unique preferences and specific content requirements.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity
(e.g., company, institution, organization)?
The authors of this paper.

• Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.
Stanford, The Chinese University of Hong Kong, Shanghai AI Lab, NTU, and CPII supported
this work.

D.2 Composition
• What do the instances that comprise the dataset represent (e.g., documents, photos, people,

countries)?
The FiVA dataset consists of a number of pairs of images that share similar visual attributes
and corresponding meta data like attribute type and subject.

• How many instances are there in total (of each type, if appropriate)?
The FiVA dataset contains 1M images generated by Playground-V2.5. More examples from
other generative models are planned to be further added.

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set?
The FiVA dataset is a new dataset generated using existing 2D generative models.

• What data does each instance consist of?
Each instance contains an image with a prominent visual feature, such as color, stroke,
lighting, and so on.

• Is there a label or target associated with each instance?
Yes.

• Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text.
N/A.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)?
N/A.

• Are there recommended data splits (e.g., training, development/validation, testing)?
Yes. We provide a small subset for validation.

• Are there any errors, sources of noise, or redundancies in the dataset?
Yes.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?
The dataset is self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor– patient confidentiality, data that includes the content of
individuals’ non-public communications)?
N/A.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety?
N/A.
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• Does the dataset relate to people?
Yes.

• Does the dataset identify any subpopulations (e.g., by age, gender)?
N/A.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset?
N/A.

• Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or
union memberships, or locations; financial or health data; biometric or genetic data; forms
of government identification, such as social security numbers; criminal history)?
N/A.

D.3 Collection Process

• How was the data associated with each instance acquired?
We used the open-source 2D generative model, Playground-V2.5 [14] to generate the dataset.

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)?
We develop an attribute library and subject tree to create the prompts, generate the images,
and develop a range-sensitive filtering to enhance the pair-wise attribute alignment. We also
perform human validation to verify the accuracy of the attribute alignment.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?
N/A.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)?
The authors of the paper participated in the data collection and verification process.

• Over what timeframe was the data collected?
The data was collected during April and May of 2024.

• Were any ethical review processes conducted (e.g., by an institutional review board)?
N/A.

• Does the dataset relate to people?
Yes.

• Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)?
We generated the image data.

• Were the individuals in question notified about the data collection?
The data is not collected from individuals.

• Did the individuals in question consent to the collection and use of their data?
The data is not collected from individuals.

• If consent was obtained, were the consenting individuals provided with a mechanism to
revoke their consent in the future or for certain uses?
N/A.

• Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a
data protection impact analysis) been conducted?
Yes.

D.4 Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)?
Yes. We provide a data filter.
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• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)?
Yes.

• Is the software that was used to preprocess/clean/label the data available?
Yes, we use Python to preprocess/clean/label the data.

D.5 Uses

• Has the dataset been used for any tasks already?
Yes, for customized image generation.

• Is there a repository that links to any or all papers or systems that use the dataset?
No.

• What (other) tasks could the dataset be used for?
High-level perception tasks like aesthetic analysis.

• Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?
N/A.

• Are there tasks for which the dataset should not be used?
N/A.

D.6 Distribution

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created?
No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?
The dataset are released on Huggingface: https://huggingface.co/datasets/FiVA/FiVA/.

• When will the dataset be distributed?
The dataset will be gradually released starting from June 2024. Due to its large scale, it will
take some time for the dataset to be fully released, considering the uploading speed.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?
The dataset will be released under the Playground v2.5 Community License license.

• Have any third parties imposed IP-based or other restrictions on the data associated with the
instances?
No.

• Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances?
No.

D.7 Maintenance

• Who will be supporting/hosting/maintaining the dataset?
The authors of this paper.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
Please contact the first author of the paper.

• Is there an erratum?
No.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)?
Yes.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data would
be retained for a fixed period of time and then deleted)?
N/A
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• Will older versions of the dataset continue to be supported/hosted/maintained?
Yes.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so?
Please contact the authors of the paper.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section A in supplementary
meterial.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] All claims are supported with extensive quantitative
and qualitative experimental results.

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

supplementary material.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes]
See Section 3, Section 5 and supplementary material for details.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4 and supplementary material for details.

(c) Did you report error bars (e.g., with respect to the random seed after running
experiments multiple times)? [No] Due to extensive computation and time cost, we do
not report error bars for GPT-study, User-study and CLIP-Score.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See reference.
(b) Did you mention the license of the assets? [Yes] See supplementary material.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
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5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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