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Abstract

Large Language Models (LLMs) have revolu-
tionized various domains, including everyday
applications and scientific research. However,
adapting LLMs from general-purpose models
to specialized tasks remains challenging, par-
ticularly in resource-constrained environments.
Parameter-Efficient Fine-Tuning (PEFT), es-
pecially Low-Rank Adaptation (LoRA), has
emerged as a promising approach to fine-tuning
LLMs while reducing computational and mem-
ory overhead. Despite its advantages, existing
LoRA techniques still struggle with computa-
tional inefficiency, complexity, and instability,
limiting their practical applicability. To ad-
dress these limitations, we propose Sensitivity-
LoRA, an efficient fine-tuning method that dy-
namically allocates ranks to weight matrices
based on both their global and local sensitivi-
ties. It leverages the second-order derivatives
(Hessian Matrix) of the loss function to ef-
fectively capture weight sensitivity, enabling
optimal rank allocation with minimal compu-
tational overhead. Our experimental results
have demonstrated robust effectiveness, effi-
ciency and stability of Sensitivity-LoRA across
diverse tasks and benchmarks.

1 Introduction

Large language models (LLMs) have emerged
as revolutionary tools, delivering state-of-the-art
(SOTA) performance across a wide spectrum of
tasks and applications (Ding et al., 2022; Qin et al.,
2023; Zhu et al., 2023b,a; Li et al., 2023; Zhang
etal., 2023a; Huang et al., 2023; Wang et al., 2023).
Despite these advancements, fine-tuning remains
a critical technique for effectively adapting LLMs
from general-purpose models to specialized appli-
cations, especially in resource-constrained environ-
ments. However, full-parameter fine-tuning can
be prohibitively resource-intensive, requiring sig-
nificant computational power and GPU capacity.
To address this limitation, the research community

introduced parameter-efficient fine-tuning (PEFT)
(Houlsby et al., 2019; Lester et al., 2021; Li and
Liang, 2021; Zaken et al., 2022; Hu et al., 2022a),
which aims to balance accuracy and efficiency by
selectively updating a subset of model parameters.
A decent amount of PEFT methods have been vali-
dated to be effective across a variety of models and
tasks, often achieving results comparable to those
of full-parameter fine-tuning (Lester et al., 2021;
Zaken et al., 2022; Hu et al., 2022a).

Among these PEFT methods, the Low-Rank
Adaptation (LoRA) method based on reparame-
terization (Hu et al., 2022b) is considered one of
the most efficient and effective approaches. It uti-
lizes low-rank decomposition to approximate the
updates of model weights. This strategy draws
from prior research demonstrating that the learned
over-parametrized models in fact reside on a low in-
trinsic dimension (Li et al., 2018; Aghajanyan et al.,
2020). During the training process, the update of
the weight matrix (AW), can be approximated as
the product of two smaller matrices B and A, that
is:

AW ~ B - A (1)

where AW € R%xd2 A ¢ R'™™d apnd B €
RM*" with r < {dy,ds}. Through this method,
it can approximate the update of the weight ma-
trix with fewer parameters, thereby improving the
parameter efficiency of the model. However, the
full potential of LORA remains constrained by its
inherent design limitations. Specifically, it assumes
a uniform rank r for each incremental matrix, not
accounting for the varying significance of weight
matrices across different modules and layers (Hu
et al., 2023; Zhang et al., 2023b).

To address this limitation, dynamic rank alloca-
tion has emerged as a key solution by allocating
the rank r to each different module or layer ac-
cording to its specific requirements. Existing meth-
ods achieve this through three main approaches:
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Figure 1: Pipeline of the Sensitivity-LoRA Method: Step 1 - Sensitivity detection via Hessian-based metrics,
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singular value decomposition (SVD), single-rank
decomposition (SRD), and rank sampling. SVD-
based methods (Zhang et al., 2023c; Hu et al., 2023;
Zhang et al., 2023b) decompose matrix BA into
an SVD form and selectively truncate the singular
values in order to allocate the matrix rank. How-
ever, this process is computationally expensive and
requires additional memory to store singular val-
ues and vectors. SRD-based methods (Mao et al.,
2024; Zhang et al., 2024; Liu et al., 2024) decom-
pose matrix BA into single-rank components and
allocate the ranks by selecting the proper compo-
nents. However, optimizing single-rank compo-
nents and the pruning process can increase compu-
tational complexity, potentially offsetting efficiency
gains. Rank sampling-based methods (Valipour
et al., 2022) allocate ranks directly by random sam-
pling. However, the randomness introduced by
sampling could increase potential instability in the
training.

In view of these challenges and opportunities,
we propose Sensitivity-LoRA, which can rapidly
allocate rank to the weight matrix based on the
sensitivity of the parameters, without incurring a
significant computational load. Specifically, we uti-
lize the second derivatives of the loss function with
respect to the parameters (Hessian matrix) to as-
certain the sensitivity of each parameter within the
weight matrix. To comprehensively evaluate the
sensitivity of the parameter matrix, we employ met-
rics such as the trace of the Hessian matrix, Topk
and Effective Rank to measure its global and local
sensitivities respectively. By integrating various

metrics, we determine the rank allocation weights
corresponding to the weight matrices to achieve
rank allocation. The efficiency, stability, and gener-
ality of our approach have been validated through
extensive experiments on various tasks, such as sen-
timent analysis, natural language inference, ques-
tion answering, and text generation.

In summary, the main contributions of our paper
are listed as follows:

* We introduce the second derivatives of the loss
function with respect to the weight matrix to
measure their sensitivity.

* We achieve rank allocation by taking into ac-
count both the global and local sensitivity of
the weight matrix.

* Extensive experiments demonstrate the ef-
fectiveness, stability, and efficiency of our
method.

2 Related Work

Existing PEFT approaches can be classified into
four main types in terms of memory efficiency, stor-
age efficiency, and inference overhead, as follows:

2.1 Additive PEFT

Additive PEFT introduces lightweight modules into
the model architecture, such as adapters and soft
prompts, while keeping the pre-trained backbone
frozen. Adapters add small networks with down-
projection and up-projection matrices, enabling
task-specific learning with minimal parameter up-
dates (Houlsby et al., 2019; Lester et al., 2021).



Soft prompts prepend learnable embeddings to the
input sequence, allowing fine-tuning by modifying
input activations only (Li and Liang, 2021; Zaken
et al., 2022). These methods typically require up-
dating less than 1% of the total parameters, signif-
icantly reducing computation and memory costs,
making them ideal for resource-constrained envi-
ronments (Hu et al., 2022a).

2.2 Selective PEFT

Selective PEFT fine-tunes a subset of the exist-
ing parameters in a pre-trained model, rather than
adding new modules. It employs binary masks to
identify and update only the most important pa-
rameters while keeping the majority frozen. Tech-
niques like Diff pruning and FishMask leverage
Fisher information or parameter sensitivity anal-
ysis to select critical parameters for fine-tuning
(Zaken et al., 2022; Li and Liang, 2021). This ap-
proach avoids increasing model complexity and is
particularly suited for scenarios where only a small
fraction of the model contributes significantly to
performance.

2.3 Reparameterized PEFT

Reparameterized PEFT utilizes low-rank parame-
terization techniques to represent model weights
in a reduced form during training. LoRA (Low-
Rank Adaptation) is a prominent example, introduc-
ing low-rank matrices to fine-tune specific weights
while maintaining high inference efficiency (Hu
et al., 2022a). Other methods, such as Compacter,
use the Kronecker product for parameter reparame-
terization, further reducing memory requirements
and computational costs (Houlsby et al., 2019).
Reparameterized PEFT is highly effective for large-
scale models where resource constraints are criti-
cal.

2.4 Hybrid PEFT

Hybrid PEFT combines the strengths of Additive,
Selective, and Reparameterized PEFT methods into
a unified framework. For example, UniPELT in-
tegrates LoRA, adapters, and soft prompts, allow-
ing dynamic selection of the most suitable module
for specific tasks through gating mechanisms (Za-
ken et al., 2022). This hybrid approach enhances
adaptability and task performance by leveraging
the complementary advantages of different PEFT
strategies (Li and Liang, 2021; Hu et al., 2022a).

3 Methodology

In this section, we firstly introduce the concept of
weight sensitivity, followed by a formal definition
of global and local sensitivity metrics of weight
matrices. Next, we propose effective allocation
strategies to optimize the dynamic rank allocation
process based on these sensitivity metrics. The
pipeline of our method is presented in figure 1.

3.1 Weight Sensitivity

Consider a neural network whose dynamics is
driven by a collection of parameters w and a loss
function F, which guides its learning dynamics.
When a small perturbation dw is introduced to the
parameters, the resulting change in the loss func-
tion can be expressed using a Taylor series expan-
sion up to the second-order term, with higher-order
terms captured by O(||dw||?) as follows:

E(w+ow) = E(w)+gT5w+%5wTH5w+O( |6w]?)

2)
where g denotes the gradient vector of the loss func-
tion F with respect to the parameters w, indicating
the rate of change of the loss function in the direc-
tion of each parameter. H represents the Hessian
matrix of the loss function E, which is a matrix of
second-order partial derivatives and contains infor-
mation about the curvature of the loss function at
the current parameter point. The change in the loss
function AE can be represented by the following
expression:

1
AE = g ow + 0w How + O([5u]*) ()

By expanding the components of AF, we have:

1 )
AE =" gidw; + 5 > higdwidw; + O(]|6w|[)

ij

“)
where g; and h;; are the gradient and Hessian ele-
ments, respectively.

For a well-trained neural network, when the pa-
rameter w is located at a local minimum of the loss
function, the gradient g becomes zero. Then, the
above equation can be simplified to

1
AE = > higdwidw; + O(||6w]*)  (5)
1,J
Additionally, the parameters w are nearly inde-

pendent at the minimum, the Hessian matrix H
tends to be diagonal-dominant, meaning that the



off-diagonal elements, which represent interactions
between different parameters, become negligible.
Then, the above equation can be simplified to

~ 1 2 3
AE §Zhii5wi+0(\|5w!\ ) (6)

Given that the perturbation in the weights (dw) is
sufficiently small, the higher-order term becomes
negligible compared to the quadratic term, and
therefore can be disregarded. Consequently, the
above formula can be further simplified to

1 2
AE EE:m@W (7)

Consequently, the diagonal elements of the Hes-
sian matrix serve as a reliable indicator of weight
sensitivity. Specifically, the diagonal elements of
the Hessian matrix represent the local curvature of
the loss function in the direction of each parameter.
Larger diagonal elements indicate more dramatic
changes in the loss function in that parameter di-
rection, thereby showing that the parameter has
a more significant impact on model performance.
Furthermore, the methods for approximating the
Hessian matrix have become increasingly sophisti-
cated, ensuring that they do not place a substantial
load on computational resources.

3.2 Rank Allocation Metric
3.2.1 Global Metric

The global sensitivity measurement aims to eval-
uate the overall impact of an entire parameter (or
weight) matrix on model output. It quantifies how
variations in this weight matrix affect the loss func-
tion. To capture this dynamics, the Hessian matrix,
which consists of the second-order partial deriva-
tives of the loss function with respect to the weight
matrix, is used. Given that the Hessian matrix tends
to be diagonal-dominant at the minimum, its trace
can serve as an effective global sensitivity indicator.

Formally, the global sensitivity S ., of weight
matrix w can be defined as:
S;;iobal = tI‘(Hw) = Z hfé ®)
i

where A7 is the i-th diagonal element of the Hes-
sian matrix H", and tr(H") denotes the trace of
H™. Since the diagonal elements reflect the impact
of individual parameter changes on the loss func-
tion, a larger trace value indicates that the model is
more sensitive to its changes. This suggests more

parameters make significant contributions to the
changes in the loss function, emphasizing their role
in model performance.

3.2.2 Local Metric

While certain weight matrices might have low over-
all sensitivities, specific weight elements within
these matrices can still have high sensitivity, signif-
icantly impacting model performance. As such, it
is essential to account for local sensitivity to cap-
ture finer-grained variations in parameter influence
on the loss function. To address this, we introduce
two metrics: Topk and Efficient Rank.

The Topk metric approximates local sensitivity
of a weight matrix by averaging its largest k£ di-
agonal elements of Hessian matrix, based on the
assumption that most of the matrix’s energy or sen-
sitivity is concentrated in these large values. By fo-
cusing on Top k diagonal elements, the Topk metric
can guide us to prioritize these critical weights dur-
ing weight pruning or optimization processes. It re-
duces computational complexity while preserving
the most impactful weights for model performance.
The computation formula for the Topk metric of
weight matrix w is as follows:

k
1
S%*:%EZM” )

i=1

where A}’ represents the diagonal elements of Hes-
sian matrix H" sorted in descending order, and &
denotes the number of diagonal elements selected.

The Effective Rank metric determines the min-
imum rank that captures most of the energy of a
weight matrix based on the cumulative contribution
of the diagonal elements of its Hessian matrix. By
establishing a threshold for the cumulative contri-
bution rate (such as 0.9 or 0.95), the Effective Rank
metric identifies the minimum number of eigen-
values needed to achieve this threshold, thereby
appropriately ranking the weight matrix. The key
benefit of this metric is ensuring the stability of the
rank allocation process. The formula for Effective
Rank of weight matrix w is as follows:

S

Sll?L]}j‘"ectiveRank = mn {k; ‘ z:]mifu > a} (10)

J=17

where A7 is the j-th diagonal element of H" in

non-increasing order, m is the total number of di-

agonal elements, and k is the minimum number

of diagonal elements required for the cumulative
contribution rate to reach the threshold a.



Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
LoRA 87.26 9346 87.01 5883 9295 9050 7942 91.03 85.06
Sg-LoRA  87.15 9461 83848 60.83 93.08 90.54 79.78 91.03 85.69
Sr-LoRA 8694 93.81 8848 60.82 9275 90.61 79.06 91.20 85.46
Sg-LoRA 8754 94.04 89.46 63.07 9277 9058 80.51 91.16 86.14
Ours 87.84 95.11 89.53 63.21 93.08 90.72 80.64 91.31 86.43

Table 1: The comparative results of Sensitivity-LoRA and baseline methods for fine-tuning RoBERTa-base on the
eight datasets of the GLUE benchmark. The bolded values represent the optimal outcomes. We reported the overall
accuracy for MNLI (both matched and mismatched), the Matthew’s correlation for CoLA, the Combine Score for
STS-B, and the accuracy for the other tasks. (S4-LoRA, S7-LoRA and Sg-LoRA represent LoRA fine-tuning using
the global metric, Topk metric, and Efficient Rank metric for rank allocation, respectively.)

To ensure the effectiveness and stability, we in-
tegrate Topk and Efficient Rank metrics together to
define the local sensitivity metric S}, of weight
matrix w as follows:

1D

Sllgcal =P S%pk + B2 - Sgﬁ‘ectiveRank
where 31 + G2 = 1.

3.3 Rank Allocation Strategy

Taking into account both global and local metrics,
we define a refined rank allocation strategy to de-
termine the rank allocation weights 8% of weight
matrix w by integrating global and local sensitivi-
ties:

0% = - S;Léobal +72 - Sl?f)cal (12)

subject to the constraints v; + v2 = 1. Hence,
we can derive the formula for rank allocation as
follows:
Qw
w __
r= w * T'total (13)
w

where " denotes the rank allocated to weight ma-
trix w, and . represents the total rank of all
weight matrices in the model.

4 [Experiments

4.1 Experimental Setup

Benchmarks We evaluate the performance of
Sensitivity-LoRA across diverse tasks, including
NLG (Natural Language Generation) and NLU
(Natural Language Understanding). Specifically,
for the NLU tasks, we select RoOBERTa-base (Liu,
2019) as the base model and evaluate its perfor-
mance on eight sub-tasks of the GLUE (General
Language Understanding Evaluation) benchmark
(Wang, 2018): MNLI (Williams et al., 2017), SST-
2 (Socher et al., 2013), MRPC (Dolan and Brockett,
2005), CoLA (Warstadt, 2019), QNLI (Rajpurkar

etal., 2018), QQP !, RTE (Wang, 2018), and STS-
B (Cer et al., 2017). For the NLG tasks, we assess
the performance of the proposed method with GPT-
2 Large (Radford et al., 2019) on E2E benchmark
(Novikova et al., 2017).

Baselines The LoRA (Hu et al., 2022b) with
a uniform rank allocation is adopted as the base-
line for comparison with the proposed Sensitivity-
LoRA. We maintain the same hyperparameter set-
tings as those used in LoRA, varying only the rank
allocation method. We further compare the fine-
tuning methods that allocate ranks based solely
on global or local sensitivity metrics with the pro-
posed Sensitivity-LoRA to highlight its effective-
ness. Specifically, S;,-LoRA, S7-LoRA and Sg-
LoRA represent LoRA fine-tuning methods that
allocate ranks using the global metric, Topk metric,
and Efficient Rank, respectively.

Implementation Details Our code is imple-
mented using the PyTorch (Paszke et al., 2019)
framework and Transformers (Wolf, 2020) libraries,
with all experiments conducted on four NVIDIA
A100 GPUs. We fine-tune GPT-2 Large (36 layers)
and RoBERTa-base (12 layers) using Sensitivity-
LoRA. For a fair comparation, we adhere to the
same total rank ;. as specified in LoRA. Specif-
ically, for GPT-2 Large, we set 74,11 = 144 , while
for RoBERTa-base, we set ryotq; = 96. We des-
ignate the local metric St,,;, with k set to half of
the total number of diagonal elements, and set the
parameter « in the Efficient Rank metric to 0.8.
Considering the scale characteristics of the differ-
ent metrics, we set the parameter 31 to 0.45, 55 to
0.55, 1 to 0.005, and 5 to 0.095.

"https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs



Method BLEU NIST MET ROUGE-L CIDEr
LoRA 67.15 8.58 46.27 69.02 2.39
Sg-LoRA  67.61 861 4624 69.34 2.38
Sr-LoRA 6737 8.60 46.14 69.47 241
Sp-LoRA 6794 8.64 46.14 69.40 2.40
Ours 67.99 8.65 46.58 69.64 241

Table 2: The results of GPT-2 Large on the E2E dataset for the baseline and Proposed method. For all metrics,
higher values indicate better performance, and the bold values represent the best results. (S;-LoRA, Sr-LoRA
and Sg-LoRA represent LoRA fine-tuning using the global metric, Topk metric, and Efficient Rank metric for rank

allocation, respectively.)

4.2 Main Result

At first, we assess the performance of Sensitivity-
LoRA on NLU tasks by fine-tuning the RoBERTa-
base model on the eight tasks of the GLUE
benchmark. The overall accuracy for MNLI, the
Matthew’s correlation for CoLLA, the Combined
Score for STS-B, and the accuracy for the other
tasks are reported in table 1. Sensitivity-LoRA
demonstrates outstanding performance in a vari-
ety of natural language understanding tasks. Com-
pared to baseline methods, our approach achieve
an average score of 86.43 over the eight datasets,
representing a gain of 1.37 over the LoRA. The
evaluation metrics of each dataset also significantly
surpass those of other methods. Sensitivity-LoRA
leverages the second-order derivatives of the loss
function to extract weight-wise importance met-
rics, incorporating both local and global sensitivity.
Based on these metrics, it dynamically determines
the optimal rank allocation, thereby achieving ex-
ceptional performance.

Next, we fine-tune the GPT-2 Large model on
the E2E (Novikova et al., 2017) datasets for NLG
task evaluation. The E2E dataset is commonly
employed for end-to-end data-to-text generation
tasks. We train the model on 42,000 data-to-text
pairs from the restaurant domain. To compre-
hensively evaluate both the baseline methods and
Sensitivity-LoRA, we utilized five evaluation met-
rics: BLEU (Papineni et al., 2002), NIST (Lin
and Och, 2004), METEOR (Banerjee and Lavie,
2005), ROUGE-L (Lin, 2004), and CIDEr (Vedan-
tam et al., 2015). Table 2 presents the experimental
results of Sensitivity-LoRA on the E2E dataset.
We evaluate the impact of global and local met-
rics for rank allocation, alongside a combined rank
allocation strategy incorporating both types of in-
formation. The experimental results indicate that
our proposed rank allocation strategy, achieve su-

MNLI [ | SRA(Avg.89.75)
08 [ IPRA(Avg.89.60)

STS-B o SST-2

RTE MRPC

QQP

QNLI

Figure 2: Comparison of the evaluation metrics for
RoBERTa-base fine-tuned on seven datasets from the
GLUE benchmark, using both PRA and SRA rank as-
signment methods.

perior performance across all evaluation metrics.
Although relying solely on global or local informa-
tion for rank allocation can improve model perfor-
mance to some extent, its performance on several
metrics (METEOR and CIDEr) still falls slightly
short of the LoRA model. This may be because
an overemphasis on either global or local informa-
tion diminishes the importance of certain critical
weights, thereby affecting the overall performance
of the model.

4.3 Comparison of Rank Assignment Methods

In this section, we compare two rank allocation
methods for model weights, based on global or
local sensitivity metrics. The Progressive Rank As-
signment (PRA) method first sorts the global or
local sensitivity metrics in descending order, sub-
sequently allocating ranks progressively within a
specified range. Weights with higher sensitivity
are assigned higher ranks, with rank decrement-
ing in 20% intervals. The rank ranges for GPT-2
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Figure 3: The rank allocation for each layer of GPT-2 Large and RoBERTa-base under different rank allocation
strategies. Different colors represent different allocation strategies, and the height of each bar in the histogram
corresponds to the rank allocated to that layer by the respective strategy.

Large and RoBERTa-base are 2~6 and 6~10, re-
spectively. The Scaled Rank Assignment (SRA)
method (mentioned in section 3.3) allocates ranks
according to the proportion of each weight’s global
or local sensitivity relative to the model’s total sen-
sitivity. To visually compare the effectiveness of
these two allocation methods, we apply both strate-
gies to the global and local sensitivity metrics and
subsequently combine them using the correspond-
ing rank allocation strategy. We then fine-tune
RoBERTa-base on seven datasets from the GLUE
benchmark. As depicted in figure 2, the evaluation
metrics for both allocation methods are compared
across datasets. SRA and PRA achieve average
scores of 89.75 and 89.60, respectively. Although
SRA perform marginally worse than PRA on the
RTE dataset, it surpass PRA on all other datasets.
This highlights the effectiveness of the SRA allo-
cation strategy. Consequently, we adapt the SRA
method for rank allocation in this paper.

4.4 Optimized Rank Allocation

As shown in figure 3, we visualize the global and
local rank allocation results for GPT-2 Large and
RoBERTa-base under the SRA rank assignment
method described in section 3.3. From the figure
3, itis clear that the global sensitivity metric, Hes-
sian Trace, allocates a larger rank budget to the
intermediate and deeper layers of the model, with
less emphasis on the initial layers. The local sen-
sitivity metric, Topk, primarily allocates rank to
the middle layers of the model. In contrast, the
Efficient Rank approach assigns higher ranks to the
initial layers, while exhibiting a decreasing trend

in rank allocation for subsequent layers. Each of
these three sensitivity metrics emphasizes different
aspects, indicating that relying on a single source
of information for decision-making is insufficient.
This underscores the necessity of Sensitivity-LoRA
in integrating these diverse information sources for
dynamic rank allocation.

4.5 Analysis of Different Rank Budgets

We further analyze the performance of Sensitivity-
LoRA and the baseline method, LoRA, under vari-
ous rank budget scenarios. Figure 4 illustrates the
changes in evaluation metrics for ROBERTa-base
on the SST-2 and CoLA datasets for different rank
budgets. We evaluate the model’s performance un-
der eight rank budgets, ranging from 4 to 11. For
Sensitivity-LoRA, the ranks in the figure 4 repre-
sent the average rank of each model layer. As seen
in the figure 4, the proposed Sensitivity-LoRA con-
sistently outperforms LoRA across different rank
budget scenarios on both datasets. On the SST-2
dataset, as the rank budget increases, the model per-
formance exhibits an overall upward trend, with a
notable improvement at » = 5 and a peak at r = 8.
On the CoLLA dataset, however, as the rank budget
increases from 4, the model performance for the
baseline method LoRA decreases after fine-tuning,
while Sensitivity-LoRA initially declines slightly
before increasing again. Despite some fluctuations,
Sensitivity-LoRA consistently outperforms LoRA.

4.6 Case study

Figure 5 illustrates the performance of the GPT-2
Large and RoBERTa-base models, fine-tuned using
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Figure 4: The evaluation metric changes for ROBERTa-base fine-tuned on the SST-2 and CoLLA datasets under
different rank budget scenarios for Sensitivity-LoRA and LoRA.

GPT-2 Large (E2E)
Input: name : Blue Spice | Type : coffee shop |
customer rating : 5 out of 5 | near : Crowne Plaza
Hotel

Reference: The coffee shop Blue Spice is based near
Crowne Plaza Hotel and has a high customer rating
of 5 out of 5.

Output: The Blue Spice is a coffee shop near the
Crowne Plaza Hotel with a customer rating of 5 out
of 5.

Roberta-base (SST-2)

Input: Director rob marshall went out gunning to
make a great one.

GT: Positive

Output: Positive.

Figure 5: The Case Study of the GPT-2 Large and
RoBERTa-base models. The blue boxes represent the
input test data, the green boxes indicate the reference
text or ground truth output, and the red boxes highlight
the model’s actual output.

the dynamic rank allocation method (Sensitivity-
LoRA) on the E2E and SST-2 datasets. For the E2E
dataset, the output of the GPT-2 Large model re-
tains the input information while generating fluent
and grammatically correct natural language text
that closely aligns with the reference text. This
suggests that the model effectively processes struc-
tured input data and excels in generating accurate
and fluent natural language descriptions. For the
SST-2 dataset, the RoBERTa-base model demon-
strates strong performance in sentiment classifi-

cation tasks, accurately classifying input text as
"Positive". This outcome validates the efficacy of
the Sensitivity-LoRA method in improving model
performance on text classification tasks.

5 Conclusion

In this work, we introduce Sensitivity-LoRA, a
method that efficiently allocates ranks to weight
matrices based on their sensitivity, without a sig-
nificant computational burden. Sensitivity-LoRA
first performs sensitivity detection by analyzing
both global and local sensitivities. It utilizes the
second-order derivatives (Hessian matrix) of the
loss function to accurately capture parameter sen-
sitivity. Next, it optimizes rank allocation by ag-
gregating global and local sensitivities, ensuring a
comprehensive and fair evaluation metric. Exten-
sive experiments consistently demonstrate the effi-
ciency, effectiveness and stability of our method.

6 Limitations

In this study, we opt for predefined parameters
(71, 72, etc.) when integrating global metrics and
local metrics. While our approach effectively
guides the rank allocation process, it does not guar-
antee an optimal solution for fine-tuning. Although
dynamically adjusting parameters through heuris-
tic learning could be a potential solution, it may
significantly extend training time and increase re-
source consumption. Given that our core design
principle is to maintain a low computational load,
we ultimately decide to use predefined parameters
to ensure the efficiency and simplicity of the sys-
tem. In the future, we aim to explore an effective



solution for dynamically modifying predefined pa-
rameters.
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