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Abstract001

Large Language Models (LLMs) have revolu-002
tionized various domains, including everyday003
applications and scientific research. However,004
adapting LLMs from general-purpose models005
to specialized tasks remains challenging, par-006
ticularly in resource-constrained environments.007
Parameter-Efficient Fine-Tuning (PEFT), es-008
pecially Low-Rank Adaptation (LoRA), has009
emerged as a promising approach to fine-tuning010
LLMs while reducing computational and mem-011
ory overhead. Despite its advantages, existing012
LoRA techniques still struggle with computa-013
tional inefficiency, complexity, and instability,014
limiting their practical applicability. To ad-015
dress these limitations, we propose Sensitivity-016
LoRA, an efficient fine-tuning method that dy-017
namically allocates ranks to weight matrices018
based on both their global and local sensitivi-019
ties. It leverages the second-order derivatives020
(Hessian Matrix) of the loss function to ef-021
fectively capture weight sensitivity, enabling022
optimal rank allocation with minimal compu-023
tational overhead. Our experimental results024
have demonstrated robust effectiveness, effi-025
ciency and stability of Sensitivity-LoRA across026
diverse tasks and benchmarks.027

1 Introduction028

Large language models (LLMs) have emerged029

as revolutionary tools, delivering state-of-the-art030

(SOTA) performance across a wide spectrum of031

tasks and applications (Ding et al., 2022; Qin et al.,032

2023; Zhu et al., 2023b,a; Li et al., 2023; Zhang033

et al., 2023a; Huang et al., 2023; Wang et al., 2023).034

Despite these advancements, fine-tuning remains035

a critical technique for effectively adapting LLMs036

from general-purpose models to specialized appli-037

cations, especially in resource-constrained environ-038

ments. However, full-parameter fine-tuning can039

be prohibitively resource-intensive, requiring sig-040

nificant computational power and GPU capacity.041

To address this limitation, the research community042

introduced parameter-efficient fine-tuning (PEFT) 043

(Houlsby et al., 2019; Lester et al., 2021; Li and 044

Liang, 2021; Zaken et al., 2022; Hu et al., 2022a), 045

which aims to balance accuracy and efficiency by 046

selectively updating a subset of model parameters. 047

A decent amount of PEFT methods have been vali- 048

dated to be effective across a variety of models and 049

tasks, often achieving results comparable to those 050

of full-parameter fine-tuning (Lester et al., 2021; 051

Zaken et al., 2022; Hu et al., 2022a). 052

Among these PEFT methods, the Low-Rank 053

Adaptation (LoRA) method based on reparame- 054

terization (Hu et al., 2022b) is considered one of 055

the most efficient and effective approaches. It uti- 056

lizes low-rank decomposition to approximate the 057

updates of model weights. This strategy draws 058

from prior research demonstrating that the learned 059

over-parametrized models in fact reside on a low in- 060

trinsic dimension (Li et al., 2018; Aghajanyan et al., 061

2020). During the training process, the update of 062

the weight matrix (∆W ), can be approximated as 063

the product of two smaller matrices B and A, that 064

is: 065

∆W ≈ B ·A (1) 066

where ∆W ∈ Rd1×d2 , A ∈ Rr×d2 and B ∈ 067

Rd1×r with r ≪ {d1, d2}. Through this method, 068

it can approximate the update of the weight ma- 069

trix with fewer parameters, thereby improving the 070

parameter efficiency of the model. However, the 071

full potential of LoRA remains constrained by its 072

inherent design limitations. Specifically, it assumes 073

a uniform rank r for each incremental matrix, not 074

accounting for the varying significance of weight 075

matrices across different modules and layers (Hu 076

et al., 2023; Zhang et al., 2023b). 077

To address this limitation, dynamic rank alloca- 078

tion has emerged as a key solution by allocating 079

the rank r to each different module or layer ac- 080

cording to its specific requirements. Existing meth- 081

ods achieve this through three main approaches: 082
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Figure 1: Pipeline of the Sensitivity-LoRA Method: Step 1 - Sensitivity detection via Hessian-based metrics,
including global and local sensitivity measures. (hw

ij =
∂2Ew

∂wi∂wj
, hii =

∂2Ew

∂w2
i

, where Ew denotes the change in loss
function regarding weight matrix w; tr(Hw) denotes the trace of Hw.) Step 2 - Dynamic rank allocation based on
global and local sensitivity. (rw denotes the allocated rank of weight matrix w, rtotal denotes the total rank of all
weight matrices in the model.)

singular value decomposition (SVD), single-rank083

decomposition (SRD), and rank sampling. SVD-084

based methods (Zhang et al., 2023c; Hu et al., 2023;085

Zhang et al., 2023b) decompose matrix BA into086

an SVD form and selectively truncate the singular087

values in order to allocate the matrix rank. How-088

ever, this process is computationally expensive and089

requires additional memory to store singular val-090

ues and vectors. SRD-based methods (Mao et al.,091

2024; Zhang et al., 2024; Liu et al., 2024) decom-092

pose matrix BA into single-rank components and093

allocate the ranks by selecting the proper compo-094

nents. However, optimizing single-rank compo-095

nents and the pruning process can increase compu-096

tational complexity, potentially offsetting efficiency097

gains. Rank sampling-based methods (Valipour098

et al., 2022) allocate ranks directly by random sam-099

pling. However, the randomness introduced by100

sampling could increase potential instability in the101

training.102

In view of these challenges and opportunities,103

we propose Sensitivity-LoRA, which can rapidly104

allocate rank to the weight matrix based on the105

sensitivity of the parameters, without incurring a106

significant computational load. Specifically, we uti-107

lize the second derivatives of the loss function with108

respect to the parameters (Hessian matrix) to as-109

certain the sensitivity of each parameter within the110

weight matrix. To comprehensively evaluate the111

sensitivity of the parameter matrix, we employ met-112

rics such as the trace of the Hessian matrix, Topk113

and Effective Rank to measure its global and local114

sensitivities respectively. By integrating various115

metrics, we determine the rank allocation weights 116

corresponding to the weight matrices to achieve 117

rank allocation. The efficiency, stability, and gener- 118

ality of our approach have been validated through 119

extensive experiments on various tasks, such as sen- 120

timent analysis, natural language inference, ques- 121

tion answering, and text generation. 122

In summary, the main contributions of our paper 123

are listed as follows: 124

• We introduce the second derivatives of the loss 125

function with respect to the weight matrix to 126

measure their sensitivity. 127

• We achieve rank allocation by taking into ac- 128

count both the global and local sensitivity of 129

the weight matrix. 130

• Extensive experiments demonstrate the ef- 131

fectiveness, stability, and efficiency of our 132

method. 133

2 Related Work 134

Existing PEFT approaches can be classified into 135

four main types in terms of memory efficiency, stor- 136

age efficiency, and inference overhead, as follows: 137

2.1 Additive PEFT 138

Additive PEFT introduces lightweight modules into 139

the model architecture, such as adapters and soft 140

prompts, while keeping the pre-trained backbone 141

frozen. Adapters add small networks with down- 142

projection and up-projection matrices, enabling 143

task-specific learning with minimal parameter up- 144

dates (Houlsby et al., 2019; Lester et al., 2021). 145

2



Soft prompts prepend learnable embeddings to the146

input sequence, allowing fine-tuning by modifying147

input activations only (Li and Liang, 2021; Zaken148

et al., 2022). These methods typically require up-149

dating less than 1% of the total parameters, signif-150

icantly reducing computation and memory costs,151

making them ideal for resource-constrained envi-152

ronments (Hu et al., 2022a).153

2.2 Selective PEFT154

Selective PEFT fine-tunes a subset of the exist-155

ing parameters in a pre-trained model, rather than156

adding new modules. It employs binary masks to157

identify and update only the most important pa-158

rameters while keeping the majority frozen. Tech-159

niques like Diff pruning and FishMask leverage160

Fisher information or parameter sensitivity anal-161

ysis to select critical parameters for fine-tuning162

(Zaken et al., 2022; Li and Liang, 2021). This ap-163

proach avoids increasing model complexity and is164

particularly suited for scenarios where only a small165

fraction of the model contributes significantly to166

performance.167

2.3 Reparameterized PEFT168

Reparameterized PEFT utilizes low-rank parame-169

terization techniques to represent model weights170

in a reduced form during training. LoRA (Low-171

Rank Adaptation) is a prominent example, introduc-172

ing low-rank matrices to fine-tune specific weights173

while maintaining high inference efficiency (Hu174

et al., 2022a). Other methods, such as Compacter,175

use the Kronecker product for parameter reparame-176

terization, further reducing memory requirements177

and computational costs (Houlsby et al., 2019).178

Reparameterized PEFT is highly effective for large-179

scale models where resource constraints are criti-180

cal.181

2.4 Hybrid PEFT182

Hybrid PEFT combines the strengths of Additive,183

Selective, and Reparameterized PEFT methods into184

a unified framework. For example, UniPELT in-185

tegrates LoRA, adapters, and soft prompts, allow-186

ing dynamic selection of the most suitable module187

for specific tasks through gating mechanisms (Za-188

ken et al., 2022). This hybrid approach enhances189

adaptability and task performance by leveraging190

the complementary advantages of different PEFT191

strategies (Li and Liang, 2021; Hu et al., 2022a).192

3 Methodology 193

In this section, we firstly introduce the concept of 194

weight sensitivity, followed by a formal definition 195

of global and local sensitivity metrics of weight 196

matrices. Next, we propose effective allocation 197

strategies to optimize the dynamic rank allocation 198

process based on these sensitivity metrics. The 199

pipeline of our method is presented in figure 1. 200

3.1 Weight Sensitivity 201

Consider a neural network whose dynamics is 202

driven by a collection of parameters w and a loss 203

function E, which guides its learning dynamics. 204

When a small perturbation δw is introduced to the 205

parameters, the resulting change in the loss func- 206

tion can be expressed using a Taylor series expan- 207

sion up to the second-order term, with higher-order 208

terms captured by O(∥δw∥3) as follows: 209

E(w+δw) = E(w)+gT δw+
1

2
δwTHδw+O(∥δw∥3)

(2) 210

where g denotes the gradient vector of the loss func- 211

tion E with respect to the parameters w, indicating 212

the rate of change of the loss function in the direc- 213

tion of each parameter. H represents the Hessian 214

matrix of the loss function E, which is a matrix of 215

second-order partial derivatives and contains infor- 216

mation about the curvature of the loss function at 217

the current parameter point. The change in the loss 218

function ∆E can be represented by the following 219

expression: 220

∆E = g⊤δw +
1

2
δw⊤Hδw +O(∥δw∥3) (3) 221

By expanding the components of ∆E, we have: 222

∆E =
∑

i

giδwi+
1

2

∑

i,j

hijδwiδwj +O(∥δw∥3)

(4) 223

where gi and hij are the gradient and Hessian ele- 224

ments, respectively. 225

For a well-trained neural network, when the pa- 226

rameter w is located at a local minimum of the loss 227

function, the gradient g becomes zero. Then, the 228

above equation can be simplified to 229

∆E =
1

2

∑

i,j

hijδwiδwj +O(∥δw∥3) (5) 230

Additionally, the parameters w are nearly inde- 231

pendent at the minimum, the Hessian matrix H 232

tends to be diagonal-dominant, meaning that the 233

3



off-diagonal elements, which represent interactions234

between different parameters, become negligible.235

Then, the above equation can be simplified to236

∆E ≈ 1

2

∑

i

hiiδ
2
wi

+O(∥δw∥3) (6)237

Given that the perturbation in the weights (δw) is238

sufficiently small, the higher-order term becomes239

negligible compared to the quadratic term, and240

therefore can be disregarded. Consequently, the241

above formula can be further simplified to242

∆E ≈ 1

2

∑

i

hiiδ
2
wi

(7)243

Consequently, the diagonal elements of the Hes-244

sian matrix serve as a reliable indicator of weight245

sensitivity. Specifically, the diagonal elements of246

the Hessian matrix represent the local curvature of247

the loss function in the direction of each parameter.248

Larger diagonal elements indicate more dramatic249

changes in the loss function in that parameter di-250

rection, thereby showing that the parameter has251

a more significant impact on model performance.252

Furthermore, the methods for approximating the253

Hessian matrix have become increasingly sophisti-254

cated, ensuring that they do not place a substantial255

load on computational resources.256

3.2 Rank Allocation Metric257

3.2.1 Global Metric258

The global sensitivity measurement aims to eval-259

uate the overall impact of an entire parameter (or260

weight) matrix on model output. It quantifies how261

variations in this weight matrix affect the loss func-262

tion. To capture this dynamics, the Hessian matrix,263

which consists of the second-order partial deriva-264

tives of the loss function with respect to the weight265

matrix, is used. Given that the Hessian matrix tends266

to be diagonal-dominant at the minimum, its trace267

can serve as an effective global sensitivity indicator.268

Formally, the global sensitivity Sw
global of weight269

matrix w can be defined as:270

Sw
global = tr(Hw) =

∑

i

hwii (8)271

where hwii is the i-th diagonal element of the Hes-272

sian matrix Hw, and tr(Hw) denotes the trace of273

Hw. Since the diagonal elements reflect the impact274

of individual parameter changes on the loss func-275

tion, a larger trace value indicates that the model is276

more sensitive to its changes. This suggests more277

parameters make significant contributions to the 278

changes in the loss function, emphasizing their role 279

in model performance. 280

3.2.2 Local Metric 281

While certain weight matrices might have low over- 282

all sensitivities, specific weight elements within 283

these matrices can still have high sensitivity, signif- 284

icantly impacting model performance. As such, it 285

is essential to account for local sensitivity to cap- 286

ture finer-grained variations in parameter influence 287

on the loss function. To address this, we introduce 288

two metrics: Topk and Efficient Rank. 289

The Topk metric approximates local sensitivity 290

of a weight matrix by averaging its largest k di- 291

agonal elements of Hessian matrix, based on the 292

assumption that most of the matrix’s energy or sen- 293

sitivity is concentrated in these large values. By fo- 294

cusing on Top k diagonal elements, the Topk metric 295

can guide us to prioritize these critical weights dur- 296

ing weight pruning or optimization processes. It re- 297

duces computational complexity while preserving 298

the most impactful weights for model performance. 299

The computation formula for the Topk metric of 300

weight matrix w is as follows: 301

Sw
Topk =

1

k

k∑

i=1

λw
i (9) 302

where λw
i represents the diagonal elements of Hes- 303

sian matrix Hw sorted in descending order, and k 304

denotes the number of diagonal elements selected. 305

The Effective Rank metric determines the min- 306

imum rank that captures most of the energy of a 307

weight matrix based on the cumulative contribution 308

of the diagonal elements of its Hessian matrix. By 309

establishing a threshold for the cumulative contri- 310

bution rate (such as 0.9 or 0.95), the Effective Rank 311

metric identifies the minimum number of eigen- 312

values needed to achieve this threshold, thereby 313

appropriately ranking the weight matrix. The key 314

benefit of this metric is ensuring the stability of the 315

rank allocation process. The formula for Effective 316

Rank of weight matrix w is as follows: 317

Sw
EffectiveRank = min

{
k |

∑k
j=1 λ

w
j∑m

j=1 λ
w
j

≥ α

}
(10) 318

where λw
j is the j-th diagonal element of Hw in 319

non-increasing order, m is the total number of di- 320

agonal elements, and k is the minimum number 321

of diagonal elements required for the cumulative 322

contribution rate to reach the threshold α. 323
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Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
LoRA 87.26 93.46 87.01 58.83 92.95 90.50 79.42 91.03 85.06

Sg-LoRA 87.15 94.61 88.48 60.83 93.08 90.54 79.78 91.03 85.69
ST -LoRA 86.94 93.81 88.48 60.82 92.75 90.61 79.06 91.20 85.46
SE-LoRA 87.54 94.04 89.46 63.07 92.77 90.58 80.51 91.16 86.14

Ours 87.84 95.11 89.53 63.21 93.08 90.72 80.64 91.31 86.43

Table 1: The comparative results of Sensitivity-LoRA and baseline methods for fine-tuning RoBERTa-base on the
eight datasets of the GLUE benchmark. The bolded values represent the optimal outcomes. We reported the overall
accuracy for MNLI (both matched and mismatched), the Matthew’s correlation for CoLA, the Combine Score for
STS-B, and the accuracy for the other tasks. (Sg-LoRA, ST -LoRA and SE-LoRA represent LoRA fine-tuning using
the global metric, Topk metric, and Efficient Rank metric for rank allocation, respectively.)

To ensure the effectiveness and stability, we in-324

tegrate Topk and Efficient Rank metrics together to325

define the local sensitivity metric Sw
local of weight326

matrix w as follows:327

Sw
local = β1 · Sw

Topk + β2 · Sw
EffectiveRank (11)328

where β1 + β2 = 1.329

3.3 Rank Allocation Strategy330

Taking into account both global and local metrics,331

we define a refined rank allocation strategy to de-332

termine the rank allocation weights θw of weight333

matrix w by integrating global and local sensitivi-334

ties:335

θw = γ1 · Sw
global + γ2 · Sw

local (12)336

subject to the constraints γ1 + γ2 = 1. Hence,337

we can derive the formula for rank allocation as338

follows:339

rw =
θw∑

w
θw

· rtotal (13)340

where rw denotes the rank allocated to weight ma-341

trix w, and rtotal represents the total rank of all342

weight matrices in the model.343

4 Experiments344

4.1 Experimental Setup345

Benchmarks We evaluate the performance of346

Sensitivity-LoRA across diverse tasks, including347

NLG (Natural Language Generation) and NLU348

(Natural Language Understanding). Specifically,349

for the NLU tasks, we select RoBERTa-base (Liu,350

2019) as the base model and evaluate its perfor-351

mance on eight sub-tasks of the GLUE (General352

Language Understanding Evaluation) benchmark353

(Wang, 2018): MNLI (Williams et al., 2017), SST-354

2 (Socher et al., 2013), MRPC (Dolan and Brockett,355

2005), CoLA (Warstadt, 2019), QNLI (Rajpurkar356

et al., 2018), QQP 1, RTE (Wang, 2018), and STS- 357

B (Cer et al., 2017). For the NLG tasks, we assess 358

the performance of the proposed method with GPT- 359

2 Large (Radford et al., 2019) on E2E benchmark 360

(Novikova et al., 2017). 361

Baselines The LoRA (Hu et al., 2022b) with 362

a uniform rank allocation is adopted as the base- 363

line for comparison with the proposed Sensitivity- 364

LoRA. We maintain the same hyperparameter set- 365

tings as those used in LoRA, varying only the rank 366

allocation method. We further compare the fine- 367

tuning methods that allocate ranks based solely 368

on global or local sensitivity metrics with the pro- 369

posed Sensitivity-LoRA to highlight its effective- 370

ness. Specifically, Sg-LoRA, ST -LoRA and SE- 371

LoRA represent LoRA fine-tuning methods that 372

allocate ranks using the global metric, Topk metric, 373

and Efficient Rank, respectively. 374

Implementation Details Our code is imple- 375

mented using the PyTorch (Paszke et al., 2019) 376

framework and Transformers (Wolf, 2020) libraries, 377

with all experiments conducted on four NVIDIA 378

A100 GPUs. We fine-tune GPT-2 Large (36 layers) 379

and RoBERTa-base (12 layers) using Sensitivity- 380

LoRA. For a fair comparation, we adhere to the 381

same total rank rtotal as specified in LoRA. Specif- 382

ically, for GPT-2 Large, we set rtotal = 144 , while 383

for RoBERTa-base, we set rtotal = 96. We des- 384

ignate the local metric STopk with k set to half of 385

the total number of diagonal elements, and set the 386

parameter α in the Efficient Rank metric to 0.8. 387

Considering the scale characteristics of the differ- 388

ent metrics, we set the parameter β1 to 0.45, β2 to 389

0.55, γ1 to 0.005, and γ2 to 0.095. 390

1https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs
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Method BLEU NIST MET ROUGE-L CIDEr
LoRA 67.15 8.58 46.27 69.02 2.39

Sg-LoRA 67.61 8.61 46.24 69.34 2.38
ST -LoRA 67.37 8.60 46.14 69.47 2.41
SE-LoRA 67.94 8.64 46.14 69.40 2.40

Ours 67.99 8.65 46.58 69.64 2.41

Table 2: The results of GPT-2 Large on the E2E dataset for the baseline and Proposed method. For all metrics,
higher values indicate better performance, and the bold values represent the best results. (Sg-LoRA, ST -LoRA
and SE-LoRA represent LoRA fine-tuning using the global metric, Topk metric, and Efficient Rank metric for rank
allocation, respectively.)

4.2 Main Result391

At first, we assess the performance of Sensitivity-392

LoRA on NLU tasks by fine-tuning the RoBERTa-393

base model on the eight tasks of the GLUE394

benchmark. The overall accuracy for MNLI, the395

Matthew’s correlation for CoLA, the Combined396

Score for STS-B, and the accuracy for the other397

tasks are reported in table 1. Sensitivity-LoRA398

demonstrates outstanding performance in a vari-399

ety of natural language understanding tasks. Com-400

pared to baseline methods, our approach achieve401

an average score of 86.43 over the eight datasets,402

representing a gain of 1.37 over the LoRA. The403

evaluation metrics of each dataset also significantly404

surpass those of other methods. Sensitivity-LoRA405

leverages the second-order derivatives of the loss406

function to extract weight-wise importance met-407

rics, incorporating both local and global sensitivity.408

Based on these metrics, it dynamically determines409

the optimal rank allocation, thereby achieving ex-410

ceptional performance.411

Next, we fine-tune the GPT-2 Large model on412

the E2E (Novikova et al., 2017) datasets for NLG413

task evaluation. The E2E dataset is commonly414

employed for end-to-end data-to-text generation415

tasks. We train the model on 42,000 data-to-text416

pairs from the restaurant domain. To compre-417

hensively evaluate both the baseline methods and418

Sensitivity-LoRA, we utilized five evaluation met-419

rics: BLEU (Papineni et al., 2002), NIST (Lin420

and Och, 2004), METEOR (Banerjee and Lavie,421

2005), ROUGE-L (Lin, 2004), and CIDEr (Vedan-422

tam et al., 2015). Table 2 presents the experimental423

results of Sensitivity-LoRA on the E2E dataset.424

We evaluate the impact of global and local met-425

rics for rank allocation, alongside a combined rank426

allocation strategy incorporating both types of in-427

formation. The experimental results indicate that428

our proposed rank allocation strategy, achieve su-429

Figure 2: Comparison of the evaluation metrics for
RoBERTa-base fine-tuned on seven datasets from the
GLUE benchmark, using both PRA and SRA rank as-
signment methods.

perior performance across all evaluation metrics. 430

Although relying solely on global or local informa- 431

tion for rank allocation can improve model perfor- 432

mance to some extent, its performance on several 433

metrics (METEOR and CIDEr) still falls slightly 434

short of the LoRA model. This may be because 435

an overemphasis on either global or local informa- 436

tion diminishes the importance of certain critical 437

weights, thereby affecting the overall performance 438

of the model. 439

4.3 Comparison of Rank Assignment Methods 440

In this section, we compare two rank allocation 441

methods for model weights, based on global or 442

local sensitivity metrics. The Progressive Rank As- 443

signment (PRA) method first sorts the global or 444

local sensitivity metrics in descending order, sub- 445

sequently allocating ranks progressively within a 446

specified range. Weights with higher sensitivity 447

are assigned higher ranks, with rank decrement- 448

ing in 20% intervals. The rank ranges for GPT-2 449

6



Figure 3: The rank allocation for each layer of GPT-2 Large and RoBERTa-base under different rank allocation
strategies. Different colors represent different allocation strategies, and the height of each bar in the histogram
corresponds to the rank allocated to that layer by the respective strategy.

Large and RoBERTa-base are 2~6 and 6~10, re-450

spectively. The Scaled Rank Assignment (SRA)451

method (mentioned in section 3.3) allocates ranks452

according to the proportion of each weight’s global453

or local sensitivity relative to the model’s total sen-454

sitivity. To visually compare the effectiveness of455

these two allocation methods, we apply both strate-456

gies to the global and local sensitivity metrics and457

subsequently combine them using the correspond-458

ing rank allocation strategy. We then fine-tune459

RoBERTa-base on seven datasets from the GLUE460

benchmark. As depicted in figure 2, the evaluation461

metrics for both allocation methods are compared462

across datasets. SRA and PRA achieve average463

scores of 89.75 and 89.60, respectively. Although464

SRA perform marginally worse than PRA on the465

RTE dataset, it surpass PRA on all other datasets.466

This highlights the effectiveness of the SRA allo-467

cation strategy. Consequently, we adapt the SRA468

method for rank allocation in this paper.469

4.4 Optimized Rank Allocation470

As shown in figure 3, we visualize the global and471

local rank allocation results for GPT-2 Large and472

RoBERTa-base under the SRA rank assignment473

method described in section 3.3. From the figure474

3, it is clear that the global sensitivity metric, Hes-475

sian Trace, allocates a larger rank budget to the476

intermediate and deeper layers of the model, with477

less emphasis on the initial layers. The local sen-478

sitivity metric, Topk, primarily allocates rank to479

the middle layers of the model. In contrast, the480

Efficient Rank approach assigns higher ranks to the481

initial layers, while exhibiting a decreasing trend482

in rank allocation for subsequent layers. Each of 483

these three sensitivity metrics emphasizes different 484

aspects, indicating that relying on a single source 485

of information for decision-making is insufficient. 486

This underscores the necessity of Sensitivity-LoRA 487

in integrating these diverse information sources for 488

dynamic rank allocation. 489

4.5 Analysis of Different Rank Budgets 490

We further analyze the performance of Sensitivity- 491

LoRA and the baseline method, LoRA, under vari- 492

ous rank budget scenarios. Figure 4 illustrates the 493

changes in evaluation metrics for RoBERTa-base 494

on the SST-2 and CoLA datasets for different rank 495

budgets. We evaluate the model’s performance un- 496

der eight rank budgets, ranging from 4 to 11. For 497

Sensitivity-LoRA, the ranks in the figure 4 repre- 498

sent the average rank of each model layer. As seen 499

in the figure 4, the proposed Sensitivity-LoRA con- 500

sistently outperforms LoRA across different rank 501

budget scenarios on both datasets. On the SST-2 502

dataset, as the rank budget increases, the model per- 503

formance exhibits an overall upward trend, with a 504

notable improvement at r = 5 and a peak at r = 8. 505

On the CoLA dataset, however, as the rank budget 506

increases from 4, the model performance for the 507

baseline method LoRA decreases after fine-tuning, 508

while Sensitivity-LoRA initially declines slightly 509

before increasing again. Despite some fluctuations, 510

Sensitivity-LoRA consistently outperforms LoRA. 511

4.6 Case study 512

Figure 5 illustrates the performance of the GPT-2 513

Large and RoBERTa-base models, fine-tuned using 514

7



(a) SST-2 (b) CoLA

Figure 4: The evaluation metric changes for RoBERTa-base fine-tuned on the SST-2 and CoLA datasets under
different rank budget scenarios for Sensitivity-LoRA and LoRA.

Figure 5: The Case Study of the GPT-2 Large and
RoBERTa-base models. The blue boxes represent the
input test data, the green boxes indicate the reference
text or ground truth output, and the red boxes highlight
the model’s actual output.

the dynamic rank allocation method (Sensitivity-515

LoRA) on the E2E and SST-2 datasets. For the E2E516

dataset, the output of the GPT-2 Large model re-517

tains the input information while generating fluent518

and grammatically correct natural language text519

that closely aligns with the reference text. This520

suggests that the model effectively processes struc-521

tured input data and excels in generating accurate522

and fluent natural language descriptions. For the523

SST-2 dataset, the RoBERTa-base model demon-524

strates strong performance in sentiment classifi-525

cation tasks, accurately classifying input text as 526

"Positive". This outcome validates the efficacy of 527

the Sensitivity-LoRA method in improving model 528

performance on text classification tasks. 529

5 Conclusion 530

In this work, we introduce Sensitivity-LoRA, a 531

method that efficiently allocates ranks to weight 532

matrices based on their sensitivity, without a sig- 533

nificant computational burden. Sensitivity-LoRA 534

first performs sensitivity detection by analyzing 535

both global and local sensitivities. It utilizes the 536

second-order derivatives (Hessian matrix) of the 537

loss function to accurately capture parameter sen- 538

sitivity. Next, it optimizes rank allocation by ag- 539

gregating global and local sensitivities, ensuring a 540

comprehensive and fair evaluation metric. Exten- 541

sive experiments consistently demonstrate the effi- 542

ciency, effectiveness and stability of our method. 543

6 Limitations 544

In this study, we opt for predefined parameters 545

(γ1, γ2, etc.) when integrating global metrics and 546

local metrics. While our approach effectively 547

guides the rank allocation process, it does not guar- 548

antee an optimal solution for fine-tuning. Although 549

dynamically adjusting parameters through heuris- 550

tic learning could be a potential solution, it may 551

significantly extend training time and increase re- 552

source consumption. Given that our core design 553

principle is to maintain a low computational load, 554

we ultimately decide to use predefined parameters 555

to ensure the efficiency and simplicity of the sys- 556

tem. In the future, we aim to explore an effective 557
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solution for dynamically modifying predefined pa-558

rameters.559

References560

Armen Aghajanyan, Luke Zettlemoyer, and Sonal561
Gupta. 2020. Intrinsic dimensionality explains the562
effectiveness of language model fine-tuning. arXiv563
preprint arXiv:2012.13255.564

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An565
automatic metric for mt evaluation with improved cor-566
relation with human judgments. In Proceedings of567
the acl workshop on intrinsic and extrinsic evaluation568
measures for machine translation and/or summariza-569
tion, pages 65–72.570

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-571
Gazpio, and Lucia Specia. 2017. Semeval-2017572
task 1: Semantic textual similarity-multilingual and573
cross-lingual focused evaluation. arXiv preprint574
arXiv:1708.00055.575

G. Ding et al. 2022. Efficient fine-tuning for resource-576
constrained systems. Proceedings of the Machine577
Learning Conference.578

Bill Dolan and Chris Brockett. 2005. Automati-579
cally constructing a corpus of sentential paraphrases.580
In Third international workshop on paraphrasing581
(IWP2005).582

N. Houlsby, A. Giurgiu, S. Jastrzebski, et al. 2019.583
Parameter-efficient transfer learning for nlp. Proceed-584
ings of the 2019 Conference on Empirical Methods in585
Natural Language Processing (EMNLP), 2019:279–586
285.587

E. J. Hu, Y. Shen, P. Wallis, et al. 2022a. Lora: Low-588
rank adaptation of large language models. Inter-589
national Conference on Learning Representations590
(ICLR).591

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan592
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and593
Weizhu Chen. 2022b. LoRA: Low-rank adaptation of594
large language models. In International Conference595
on Learning Representations.596

Yahao Hu, Yifei Xie, Tianfeng Wang, Man Chen, and597
Zhisong Pan. 2023. Structure-aware low-rank adapta-598
tion for parameter-efficient fine-tuning. Mathematics,599
11(20):4317.600

E. Huang et al. 2023. Evaluating large language models601
in complex scenarios. Journal of Computational602
Linguistics.603

B. Lester, R. Al-Rfou, and N. Constant. 2021. The604
power of scale for parameter-efficient prompt tuning.605
Proceedings of the 2021 Conference on Empirical606
Methods in Natural Language Processing (EMNLP),607
2021:3045–3061.608

C. Li et al. 2023. Fine-tuning techniques for efficient 609
model adaptation. AI Research Journal. 610

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Ja- 611
son Yosinski. 2018. Measuring the intrinsic di- 612
mension of objective landscapes. arXiv preprint 613
arXiv:1804.08838. 614

X. Li and P. Liang. 2021. Prefix-tuning: Optimizing 615
continuous prompts for generation tasks. Proceed- 616
ings of the 59th Annual Meeting of the Association for 617
Computational Linguistics (ACL), 2021:4582–4597. 618

Chin-Yew Lin. 2004. Rouge: A package for automatic 619
evaluation of summaries. In Text summarization 620
branches out, pages 74–81. 621

Chin-Yew Lin and Franz Josef Och. 2004. Auto- 622
matic evaluation of machine translation quality using 623
longest common subsequence and skip-bigram statis- 624
tics. In Proceedings of the 42nd annual meeting of 625
the association for computational linguistics (ACL- 626
04), pages 605–612. 627

Yinhan Liu. 2019. Roberta: A robustly opti- 628
mized bert pretraining approach. arXiv preprint 629
arXiv:1907.11692, 364. 630

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and 631
Yvette Graham. 2024. Alora: Allocating low-rank 632
adaptation for fine-tuning large language models. 633
arXiv preprint arXiv:2403.16187. 634

Yulong Mao, Kaiyu Huang, Changhao Guan, Ganglin 635
Bao, Fengran Mo, and Jinan Xu. 2024. Dora: En- 636
hancing parameter-efficient fine-tuning with dynamic 637
rank distribution. arXiv preprint arXiv:2405.17357. 638

Jekaterina Novikova, Ondrej Dušek, and Verena Rieser. 639
2017. The E2E dataset: New challenges for end- 640
to-end generation. In Proceedings of the 18th 641
Annual Meeting of the Special Interest Group on 642
Discourse and Dialogue, Saarbrücken, Germany. 643
ArXiv:1706.09254. 644

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 645
Jing Zhu. 2002. Bleu: a method for automatic evalu- 646
ation of machine translation. In Proceedings of the 647
40th annual meeting of the Association for Computa- 648
tional Linguistics, pages 311–318. 649

Adam Paszke, Sam Gross, Francisco Massa, Adam 650
Lerer, James Bradbury, Gregory Chanan, Trevor 651
Killeen, Zeming Lin, Natalia Gimelshein, Luca 652
Antiga, et al. 2019. Pytorch: An imperative style, 653
high-performance deep learning library. Advances in 654
neural information processing systems, 32. 655

A. Qin et al. 2023. Advances in state-of-the-art natural 656
language processing. Journal of NLP Research. 657

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 658
Dario Amodei, Ilya Sutskever, et al. 2019. Language 659
models are unsupervised multitask learners. OpenAI 660
blog, 1(8):9. 661

9

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254


Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.662
Know what you don’t know: Unanswerable questions663
for squad. arXiv preprint arXiv:1806.03822.664

Richard Socher, Alex Perelygin, Jean Wu, Jason665
Chuang, Christopher D Manning, Andrew Y Ng, and666
Christopher Potts. 2013. Recursive deep models for667
semantic compositionality over a sentiment treebank.668
In Proceedings of the 2013 conference on empiri-669
cal methods in natural language processing, pages670
1631–1642.671

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan672
Kobyzev, and Ali Ghodsi. 2022. Dylora: Parameter673
efficient tuning of pre-trained models using dynamic674
search-free low-rank adaptation. arXiv preprint675
arXiv:2210.07558.676

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi677
Parikh. 2015. Cider: Consensus-based image de-678
scription evaluation. In Proceedings of the IEEE679
conference on computer vision and pattern recogni-680
tion, pages 4566–4575.681

Alex Wang. 2018. Glue: A multi-task benchmark and682
analysis platform for natural language understanding.683
arXiv preprint arXiv:1804.07461.684

F. Wang et al. 2023. Practical applications of llms in685
specialized domains. Specialized AI Applications.686

A Warstadt. 2019. Neural network acceptability judg-687
ments. arXiv preprint arXiv:1805.12471.688

Adina Williams, Nikita Nangia, and Samuel R Bow-689
man. 2017. A broad-coverage challenge corpus for690
sentence understanding through inference. arXiv691
preprint arXiv:1704.05426.692

Thomas Wolf. 2020. Transformers: State-of-the-693
art natural language processing. arXiv preprint694
arXiv:1910.03771.695

E. Zaken, Y. Goldberg, and S. Ravfogel. 2022. Bitfit:696
Simple parameter-efficient fine-tuning for transform-697
ers. Transactions of the Association for Computa-698
tional Linguistics (TACL), 10:1–16.699

D. Zhang et al. 2023a. Parameter-efficient fine-tuning700
methods for llms. Journal of Machine Learning Re-701
search.702

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang703
Jiang, Bowen Wang, and Yiming Qian. 2023b. In-704
crelora: Incremental parameter allocation method705
for parameter-efficient fine-tuning. arXiv preprint706
arXiv:2308.12043.707

Qingru Zhang, Minshuo Chen, Alexander Bukharin,708
Nikos Karampatziakis, Pengcheng He, Yu Cheng,709
Weizhu Chen, and Tuo Zhao. 2023c. Adalora: Adap-710
tive budget allocation for parameter-efficient fine-711
tuning. arXiv preprint arXiv:2303.10512.712

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and713
Pengtao Xie. 2024. Autolora: Automatically tuning714
matrix ranks in low-rank adaptation based on meta715
learning. arXiv preprint arXiv:2403.09113.716

B. Zhu et al. 2023a. Expanding frontiers in large lan- 717
guage models. AI Frontier Research. 718

B. Zhu et al. 2023b. Large language models: Progress 719
and applications. Advances in NLP. 720

10


	Introduction
	Related Work
	Additive PEFT
	Selective PEFT
	Reparameterized PEFT
	Hybrid PEFT

	Methodology
	Weight Sensitivity
	Rank Allocation Metric
	 Global Metric
	Local Metric

	Rank Allocation Strategy

	Experiments
	Experimental Setup
	Main Result
	Comparison of Rank Assignment Methods
	Optimized Rank Allocation
	Analysis of Different Rank Budgets
	Case study

	Conclusion
	Limitations

