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ABSTRACT

Large Language Models (LLMs) have become very widespread and are used to
solve a wide variety of tasks. To successfully handle many of these tasks, LLMs
require longer training times and larger model sizes. This makes LLMs ideal
candidates for pruning methods that reduce computational demands while main-
taining performance. Previous methods require a retraining phase after pruning
to maintain the original model’s performance. However, state-of-the-art pruning
methods, such as Wanda, prune the model without retraining, making the pruning
process faster and more efficient. Building upon Wanda’s work, this study pro-
vides a theoretical explanation of why the method is effective and leverages these
insights to enhance the pruning process. Specifically, a theoretical analysis of the
pruning problem reveals a common scenario in Machine Learning where Wanda
is the optimal pruning method. Furthermore, this analysis reveals cases where
Wanda is no longer optimal. To tackle those cases, we develop a new method,
STADE, based on the standard deviation of the input. From a theoretical and em-
pirical standpoint, STADE demonstrates better generality across different scenar-
i0s. Finally, extensive experiments on Qwen, Llama and Open Pre-trained Trans-
formers (OPT) models validate these theoretical findings, showing that depending
on the training conditions, Wanda’s optimal performance varies as predicted by
the theoretical framework.

1 INTRODUCTION

Large Language Models (LLMs) (Radford et al.l 2018} 2019; Brown et al., 2020) have revolution-
ized not only the field of Natural Language Processing (NLP) but also numerous real-world appli-
cations that affect everyday life. Their ability to generate coherent text, perform complex reasoning,
and support a variety of conversational and decision-making tasks has led to widespread adoption
in both research and industry. With the advent of increasingly autonomous systems (Durante et al.,
2024; [junyou li et al [2024; Wu et al [2024), these models now assist with tasks ranging from
content creation and translation to automated customer support and strategic decision making.

Despite these impressive capabilities, LLMs are notorious for their substantial computational re-
quirements (Kaplan et al.||2020a). The high memory footprint, extensive processing power, and sig-
nificant energy consumption often limits their deployment on devices with limited resources, such
as mobile phones or embedded edge devices. In addition, the large-scale training of these models
contributes to increased operational costs and a non-negligible environmental impact. Consequently,
the drive to reduce the computational and storage demands of LLMs has become a central focus in
the field (Sevilla et al., [2022).

To mitigate these computational challenges, a variety of approaches have been explored. One promi-
nent strategy involves reducing the storage requirements of model weights through quantization (Ma
et al.| [2024;|Wu et al.| [2020). Quantization techniques lower the numerical precision of weights and
activations, resulting in reduced memory usage and accelerated inference speeds, often with minimal
degradation in performance. Another effective approach is to remove unimportant weight parame-
ters through pruning (LeCun et al} [1989). Pruning methods seek to eliminate redundancies in the
network by removing weights that contribute little to overall model performance, thereby decreasing
both the computational load and the inference latency.
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Pruning techniques can be applied during training (Sanh et al.l 2020) or after the model has been
fully trained, in what is known as post-training pruning (Ashkboos et al.,2024). The latter approach
is particularly appealing when the goal is to adapt a pre-trained model for deployment on resource-
constrained devices, as the main challenge is not the training process but rather fitting the model
into a limited hardware environment. Although some post-training pruning strategies involve costly
retraining steps (Agarwal et al., [2024} |Xu et al., [2024)), previous studies (Sun et al., 2024} [Fran-
tar & Alistarh, 2023)) have demonstrated that a model can maintain a large fraction of its original
performance even when 50% of its weights or more are pruned without any retraining.

A notable pruning method is Wanda (Sun et al.||2024), which employs a simple yet effective strategy
based on the Ls-norm to guide weight removal. Despite its empirical success, the fundamental
reason for the superior performance of the Ly-norm over alternative norms (e.g., L1 or L) was
neither formally analyzed or fully understood. As noted in the original paper: "We find that Lo-
norm tends to work better than other norm functions (e.g., L1 and L) in measuring activation
magnitudes. This is possibly because Lo-norm is generally a smoother metric” (Sun et al., [2024)).
Such observations have motivated deeper theoretical investigations into pruning criteria.

This work aims to provide a comprehensive analysis of the pruning problem. The contributions are
as follows:

* A theoretical analysis of the pruning problem is presented, revealing a characterization of
machine learning scenarios where Wanda emerges as the optimal pruning method.

* The analysis is extended to cases where Wanda’s approach is suboptimal, thereby motivat-
ing the development of a new method, STADE.

* Multiple experiments with different LLM model families validate empirically the theoreti-
cal analysis.

* Additionally, an ablation of layer-specific characteristics demonstrates that different layers
benefit more from using different pruning metrics depending on the input characteristics.
To the best of our current knowledge, this is the first work to apply distinct pruning metrics
to different layers, resulting in improved overall pruning effectiveness.

Extensive experiments have been performed across multiple models and configurations to validate
the theoretical insights and assess the performance of the proposed STADE method. The experiments
evaluate perplexity and zero-shot capabilities for various models with different pruning metrics, and
reveal that the impact of pruning is highly dependent on the statistical properties of the input at each
layer.

2 RELATED WORK

The study of sparse subnetworks within large neural networks has been an area of intense investi-
gation, particularly following the introduction of the Lottery Ticket Hypothesis (Frankle & Carbin,
2019). This hypothesis proposes that within a randomly initialized neural network there exist sub-
networks (or “winning tickets”) that, when trained in isolation, can achieve performance on par
with the full network. Subsequent investigations (Morcos et al., 2019; |[Frankle et al., |2020) have
further elucidated the generalization capabilities and connectivity properties of these subnetworks,
providing a theoretical basis for pruning methods.

Pruning strategies have evolved significantly over the past decade. Early methods relied on simple
heuristics such as magnitude-based pruning (Zhu & Gupta, [2017), which removes weights with the
smallest absolute values under the assumption that these contribute least to network performance.
This basic approach laid the groundwork for more sophisticated techniques that consider additional
information about the network. For instance, the work in (Han et al.| [2015)) utilized the Ly-norm to
evaluate the importance of weights, demonstrating that many redundant parameters could be pruned
without significant loss in accuracy.

Advancements in pruning have also led to the development of methods that incorporate second-
order information. The Optimal Brain Surgeon (OBS) algorithm (Dong et al., 2017) leverages the
Hessian matrix of the loss function to estimate the impact of removing individual weights. Although
OBS provides more refined pruning decisions, its high computational complexity has restricted its
practical application in large-scale models.
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More recent approaches have shifted focus to dynamic pruning strategies that are integrated into
the training process (Sanh et al.| 2020; |Chen et al.l |2021). These methods progressively reduce the
number of active parameters during training, often resulting in models that are sparser and more
computationally efficient. However, such strategies may conflict with the scaling laws observed
for LLMs (Kaplan et al., |2020b), where performance improvements are closely tied to increases in
model size, computational resources, and data availability. As a consequence, post-training pruning
techniques have emerged as a pragmatic solution for adapting large pre-trained models to resource-
limited environments.

A wide range of post-training pruning techniques has been proposed in recent years. Some meth-
ods, such as LoRA-based pruning (Zhou et al., 2024)), incorporate low-rank adaptations to guide
the pruning process. However, retraining the pruned model often incurs significant computational
overhead. Others, like SparseGPT (Frantar & Alistarh| [2023), use Hessian-based metrics to care-
fully select which weights to remove, and adjusting the remaining parameters accordingly, thereby
preserving critical network functionality. Additionally, strategies that minimize local reconstruc-
tion errors within individual blocks (Agarwal et al.| 2024} Bai et al., [2024) or layers (Hubara et al.,
2021a)) of Transformer-based architectures have been investigated, underscoring the notion that dif-
ferent layers may require tailored pruning criteria. Some layer-wise pruning techniques employ
structured sparsity, assigning a learned importance weight to each matrix, thereby determining its
optimal sparsity level (Li et al.,|2024). Others adopt a block-wise grouping strategy, optimizing sets
of layers collectively (Xu et al., [2024)) to balance sparsity and accuracy.

A central aspect of all pruning methodologies is the selection of an appropriate pruning metric that
accurately distinguishes between essential and redundant weights. The metric adopted in Wanda
(Sun et al., 2024)—which involves computing the Ly-norm of the input and multiplying it by the
absolute value of the corresponding weight—has garnered considerable attention for its simplicity
and effectiveness. This approach provides a smooth, continuous measure that captures the contribu-
tion of each weight to the overall activations. In contrast, more elaborate metrics use second-order
derivatives and update the unpruned weights. These changes not only make it more complex but
also increases the computational time and memory required.

Overall, the evolution of pruning methods reflects a broader trend in machine learning towards
achieving a balance between model efficiency and predictive performance. Early heuristic meth-
ods are principled approaches that take into account the underlying statistics and structure of the
network. These previous studies serve as a valuable foundation for the enhancements presented in
this work, including the development of the STADE method, which refines pruning strategies by
incorporating the statistical characteristics of layer inputs.

3 METHODOLOGY

Consider a data matrix X € RV*M and a weight matrix W € RM>*H where N is the number
of instances in the dataset, M represents the number of features and H represents the number of
output features. In Wanda (Sun et al., [2024), the pruning of each column W. ; € RM is performed
according to the criterion:

min|lX ;2 Wi ()
where ||X. ;||2 is the Ly-norm of feature j in the dataset. In the following section, the pruning
problem is formalized and it is demonstrated that Wanda selection criterion is optimal for layers
with a centered inputs, i.e., inputs whose expected value in each coordinate is 0. With this insight, a
generalization to layers with uncentered inputs is derived, leading to the proposed method STADE.

3.1 PROBLEM DEFINITION

Let X € RM be a random multivariate variable with y1; = E[X;] and 02 = Var[X;], and consider
a linear layer with a weight matrix W € RM*H and a bias term B € R, The pruning process
for the m-th column will be focused on the weight vector (denoted by W = W._,,, € RM) and the
corresponding bias (denoted by B = B,,, € R). In this setting, the pruning problem aims to find the
optimal W* € RM and B* € R such that:



Under review as a conference paper at ICLR 2026

M M 2
min E[((B + ZX’LW’L) —(B"+ ZXsz*)> ] )
i=1

W+,B —
s.t. Vi€ {1,.., M\ {j}, W = W;, W =0

Note that the objective is to select the pruning weight W; so that the output remains almost un-
changed, while only allowing the bias term to be updated.

3.2 STADE DERIVATION

Starting from the formulation in Eq. [2] the objective function can be reformulated as follows:

M M 2

E[((B 3 XaW) - (B + ZX,-W;w) 1

:E[((B—B*)+Xjo)2} (3)
E[(B — B*)* +2(B — B*)(X;W;) + (X;W;)?

") +2(B — B)E[X;W;] + E[(X;W;)?]

)2 +2(B = B )W + (07 + p5)W?

—(B-B
—(B-B

To determine the optimal solution of the convex problem (with respect to B*) in Eq. [3] the derivative
is computed to obtain the stationary and minimum point:

d M M 2
FiiT [E[<(B +_XiWi) — (B* + ZXW;*)) 1

=1 =1

@)
d
= 5 l(B=B")? +2(B = B )W + (o] + 1)) W]

= 72(B*B*) 72,11,jo =0« B* :,ujo + B

Substituting the optimal bias in Eq. [3] yields the solution for TW*:

M M 2
WIQZIE*E[<(B + ZXsz) - (B* + Z;XZW:)> ]

i=1
:‘Ij}lei{l(BfB*)2+2(BfB*)ﬂjo + (07 + 2 )W? )
= min(B = (1;W; + B))* +2(B = (W, + B))us Wi + (o7 + uj) W}
= min(u;W5)* = 20, W5) s W + (07 + p5) W7 = minog W7

Since the goal is to find the weight W; that minimizes min; o W?, it is enough with finding

arg min; instead of the min;. Therefore we can simplify the problem as follows:

N e I g
argmin o W: =arg mjan]|Wj\

N
X5 — % Yonet Xnjll2

|Wj | (6)

/A argmin
J

]

=|

N
. 1
— argmin]|X.; — 5 3 Xoll2IW)|
n=1
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Since the our goal is to find the optimal j that minimizes the loss (argmin;), the factor ﬁ and
the squaring operation can be omitted.

3.3 WANDA DERIVATION

Many modern Transformers (Touvron et al., |2023aib; Dubey et al.| 2024) employ normalization
layers. This simplifies the original problem by enforcing the input X to be normalized (u; =
E[X;] = 0). This addition to the previous derivations (Egs. and leads to:

(7
min||X. ; — p5][2|Wj|= min[|X: ;112 W;]

This derivation results in the Wanda criterion, where the bias term doesn’t need to get updated.
Please notice that Wanda is optimal under the previous assumptions, i.e., it is only optimal for layers
with centered inputs.

3.4 STADE-W: USING DIFFERENT METRICS FOR DIFFERENT LAYERS
Based on the previous theoretical insight we introduce STADE-W, a pruning strategy that employs

different pruning criterions depending on whether the input is normalized. The pruning metrics
derived from the previous analysis are as follows:

Wanda criterion: || X. ;||2|W; ;

®)

N
1
STADE criterion: || X. ; -~ E X jll2|Wi ©)
n=1

STADE-W applies the STADE metric for biased inputs (such as the second layer of an MLP or the
output layer in multi-head attention) and the Wanda metric for unbiased inputs (such as the first
layer of an MLP or the queries, keys, and values in multi-head attention). In theory, STADE should
be able to identify that the mean is 0 and return the same output as Wanda. However, in practice the
dataset used for calibration might lead to a slightly different mean estimation and therefore, STADE
ends up underperforming.

Table 1: Comparison of pruning weight metrics across different methods. The column Centered
Input indicates whether the pruning method distinguishes between inputs with zero mean (Yes),
without zero mean (No), or treats them equivalently (Any).

Weight Centered

Method Update Tnput Pruning criterion
Magnitude (Zhu & Gupta, 2017) X Any |W; 1
Wanda (Sun et al.|[2024) X Any [1X: 5121 Wi 5
Sparsegpt (Frantar & Alistarh, [2023) v Any (W2 /diag[(XTX + A1) 1] ;
STADE X Any [[X oy S0l Xl Wiy
STADE-W X Yes \lX :,j]UﬂWi,jl
X No 1X:5 = % 2on=1 Xnjll2lWi;
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3.5 OPTIMAL PRUNING METRIC

In order to clarify which pruning metric to use in which linear layer we make the following distinc-
tions:

e Centered inputs: When the input distribution is centered the optimal method is Wanda.
This can only be assured when the previous layer is a normalization layer such as Batch-
norm (loffe & Szegedyl 2015), Groupnorm (Wu & Hel, 2018)) or Layernorm (Bal, 2016)),
but this is not certain for the RMSnorm layer (Zhang & Sennrich} 2019).

* Uncentered inputs: In this case, the input mean is no longer 0 and therefore Wanda is no
longer optimal. Therefore STADE should be use since it takes into account the non-zero
mean.

The experiments will follow this set-up unless specified otherwise. Notice that within the same
model, different layers could belong to different scenarios as mentioned before with STADE-W.

4 EXPERIMENTS

Models and Evaluation. Most experiments are conducted using the Llama (Touvron et al.,[2023azb;,
Dubey et al., [2024) and Qwen (Bai et al.| [2023 |Yang et al., 2024} |Qwen et al} [2025; [Yang et al.,
2025) models. In addition, the OPT family (Zhang et al., 2023) is also evaluated due to its archi-
tectural differences such as the usage of a bias term in the linear layers, the usage of Layernorm
(Bal 2016)) and the incorporation of positional embeddings instead of rotary position embeddings
(Su et al., [2024).

Following previous research (Sun et al.,2024), C4 dataset (Raffel et al.;|2019) is used for calibration,
while raw-WikiText2 dataset (Merity et al.| 2022)) is employed to evaluate model perplexity. More-
over, the zero-shot capabilities of the pruning methods are assessed with eight tasks using EleutherAl
LM Harness (Gao et al., 2024) package. These tasks include: Boolg (Clark et al.,[2019), a yes/no
question answering dataset containing 15,942 examples; the Recognizing Textual Entailment (RTE)
suite, which combines RTE-1 (Dagan et al.l [2006), RTE-2 (Dagan et al., 2005), RTE-3 (Delmonte
et al., [2007), and RTE-5 (Bentivogli et al.l 2009) challenges constructed from news and Wikipedia
text; HellaSwag (Zellers et al.| [2019), a challenging dataset for evaluating commonsense,; Wino-
Grande (Keisuke et al., |2019), a binary fill-in-the-blank task that requires commonsense reasoning;
Arc-Easy and Arc-Challenge (Clark et al.,[2018]), which consist of multiple-choice science questions
targeting grade-school level content and are split into easy and challenging subsets, OpenBookQA
(Mihaylov et al., |2018)), a dataset that involves questions requiring multi-step reasoning, additional
commonsense knowledge, and comprehensive text comprehension; and MMLU (Hendrycks et al.,
2021)), a multitask test consisting of multiple-choice questions from various branches of knowledge.

Baselines. The main experiments employ pruning methods that do not involve weight updates to
corroborate our theoretical analysis. These methods include Magnitude pruning (Zhu & Gupta,
2017) and Wanda (Sun et al., 2024). Furthermore, we also do an ablation on methods with weight
updates (SparseGPT (Frantar & Alistarh, 2023))) for further insights.

Pruning. The pruning strategy follows a layer-wise approach, which can be easily augmented with
more complex procedures that assign different weights to each layer (Xu et al.,[2024; Agarwal et al.}
2024). The main focus is on unstructured pruning, where any weight in a matrix may be pruned.
Additionally, the structured N:M pruning scenario will also be evaluated. In N:M structure pruning,
N weights must be pruned out of every M weights (Hubara et al.| 2021b). In particular, the 2:4 and
4:8 structured pruning schemes proposed by Nvidia (Mishra et al.l 2021) for faster inference are
adopted.

4.1 LARGE LANGUAGE MODELING PRUNING

Table 2]reports the perplexity of Llama and Qwen models with various pruning methods. Notice that
STADE outperforms the other methods consistently across the different pruning scenarios. These
results follow our formal analysis, validating our theoretical understanding. Notice that the LLMs
in Table@] use RMSNorm (Zhang & Sennrich, [2019) and therefore we do not use STADE-W. Since
no layer receives a normalized input, it is no different from standard STADE.
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Table 2: Perplexity on Wikitext2 for different Llama and Qwen models. C4 dataset is used as the
calibration dataset during the pruning process. 2:4 and 4:8 sparsity refers to a structure pruning
approach where 2/4 weights are pruned out of every 4/8 weights (Mishra et al.| 2021)

Methods  Sparsity Llama-1 Llama-2 Llama-3 Qwen3

7B 7B 13B 3.0-8B 3.1-8B 8B 14B 32B

Dense 0% 5.68 547 4.88 6.14 6.24 9.72 8.64 7.6
Magnitude 2:4 42.53 37.76  8.89 2401.18 792.83 29448 38.58 29.89
Wanda 2:4 11.52 12.12 898 2431 22.87 1641 13.14 10.33
STADE 2:4 11.38 10.82 842 2230 20.52 15.20 12.52 10.13
Magnitude 4:8 16.83 1591 732 18147 21246 11548 21.18 3649
Wanda 4:8 8.57 8.60 7.00 14.61 13.78 13.24  11.12 946
STADE 4:8 8.63 829 6.86 13.69 1293  12.62 10.69 9.29
Magnitude 50% 17.29 16.03 6.83 20545 13428 5456 1522 49.09
Wanda 50% 7.26 6.92 597 9.83 9.65 11.35 10.00 8.63
STADE 50% 7.43 697 5.95 9.63 9.47 11.19  9.60  8.65

4.2 PRUNING REQUIREMENTS OF DIFFERENT LAYERS

In order to see the effect of the normalization layers, we investigate OPT models which use Lay-
ernorm (Bal, |2016) instead of RMSNorm (Zhang & Sennrich, 2019). Since the linear layers that
receive the input after a Layernorm would be centered, a small ablation is done on the difference
when pruning a layer with a centered input vs an uncentered input (Fig. [T).

Figure 1: When pruning only a specified layer type, different pruning methods can performed better
depending on the layer selected, i.e., the pruning metric and the layer pruned are not independent.
In particular, we highlight the importance of the input’s statistics (such as the mean) when selecting
the pruning method.
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(a) Pruning mlp.f1 layer from OPT-125m (b) Pruning mlp.f2 layer from OPT-125m
(centered input) (uncentered input)

The experiment show that different layers benefit from different pruning methods. In particular,
when a layer receives a centered input (first layer of the MLP block), Wanda performs better since
it already assumes this scenario while STADE approximates the mean with the inputs. However,
whenever the input is not centered Wanda is not able to keep up with STADE (second layer of the
MLP block). This result is in line with our theoretical analysis and validates our characterization
of the pruning problem. With these finding we propose STADE-W, a method that combines both
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STADE and Wanda. It uses Wanda when the input is centered and STADE otherwise. The results
in Table |3| show that STADE-W improves model performance over STADE or Wanda when used
individually on the OPT family.

Table 3: Perplexity on Wikitext2 with C4 as the calibration dataset.

Methods  Sparsity OPT
125m  350m 1.3b 2.7b 6.7b 13b 30b
Dense 0% 27.65  22.00 14.62 12.47 10.86 10.13 9.56
Magnitude 2:4 34146 417.01 427.09 115292 264.04 484.64  1981.10
Wanda 2:4 80.24 113.54  28.23 21.20 15.89 15.52 13.44
STADE 2:4 109.68 100.16  27.19 24.08 16.44 17.61 15.35

STADE-W 2:4 76.08 99.82 27.55 20.68 15.64 15.57 12.40

Magnitude 4:8 169.09 160.73  240.13 16693  196.15  450.06 564.03
Wanda 4:8 53.18  58.49 22.15 16.77 13.56 13.37 10.88
STADE 4:8 68.19  57.62 21.34 17.38 13.79 14.98 11.42

STADE-W 4:8 52.64  56.69 21.93 16.66 13.41 13.34 10.85

Magnitude 50% 19335 9778 1713.49  265.17 968.77 11609.08  168.09
Wanda 50% 3894 3621 18.42 14.22 11.98 11.92 10.03
STADE 50% 49.04  37.51 17.75 14.36 11.87 13.10 10.19

STADE-W 50% 3922 36.15 18.38 14.20 11.97 11.96 10.05

4.3 ZERO-SHOT COMPARISON

While model perplexity serves as an important evaluation of pruning strategies, measuring prediction
accuracy is equally crucial for large language models and their pruned variants. To test the impact
of the different pruning methods on model accuracy, we evaluate on multiple zero-shot tasks across
different datasets. The summarized results are reported in Table[d]

Table 4: Zero shot accuracy averaged over 8 individual tasks (Arc-Challenge, Arc-Easy, Boolg,
HellaSwag, OpenBookQA, RTE-3, WinoGrande and MMLU. The results for each individual tasks
can be found in the appendix.

Method Sparsity Qwen3-0.6B  Qwen3-1.7B  Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 45.73% 56.42% 63.52% 66.63% 69.48%
Magnitude 50% 3291% 33.63% 35.40% 41.11% 60.65%
Wanda 50% 40.25% 49.85% 57.66 % 62.48% 67.23%
STADE 50% 40.36 % 50.38% 57.10% 62.99% 67.64 %
Magnitude 2:4 30.21% 33.09% 33.11% 33.62% 48.54%
Wanda 2:4 33.28% 38.57% 47.28 % 54.71% 59.81%
STADE 2:4 33.85% 39.72% 43.79% 56.62% 59.94%
Magnitude 4:8 31.17% 33.75% 35.43% 34.26% 54.53%
Wanda 4:8 35.49% 43.21% 53.85% 60.17% 63.33%
STADE 4:8 34.89% 43.26 % 47.99% 60.52% 63.69 %

The results on the zero-shot task align with those observed when evaluating perplexity (Table [2).
STADE method demonstrates competitive performance across a range of models and tasks.
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4.4 WEIGHT UPDATE IMPORTANCE

Pruning methods can also be improved by updating the unprunned weights, as done by SparseGPT.
Nevertheless, this makes the pruning process slower and more computationally demanding (Sec.
[A-T). In this section, we compare the performance of SparseGPT against STADE, with a particular
focus on the critical importance of its weight update mechanism.

Table 5: Perplexity comparison with pruning methods that update weights (SparseGPT).

Model \ Sparsity \ Magnitude Wanda SparseGPT  SparseGPT (w/oupd.) STADE

Qwen3-1.7B | 0% | 16.67
Qwen3-1.7B | 2:4 1808.24  61.63 3174 51.75 46.90
Qwen3-1.7B |  4:8 61471 3262 2538 28.80 27.76
Qwen3-1.7B | 50% 17410 2063 2373 22.89 18.67
Qwen3-8B | 0% | 9.72
Qwen3-8B | 2:4 29448 1641 14.48 14.99 15.20
Qwen3-8B | 4:8 11548 1324 12,65 13.02 12.62
Qwen3-8B | 50% 5456 1135 11.49 11.80 11.19

Table [5] shows that SparseGPT and STADE are the best performing method. Nevertheless, when
SparseGPT is not allowed to update the unprunned weights (SparseGPT (w/o upd.)), the perfor-
mance drops below of STADE, showing that STADE has better performance than any other method
when the unnpruned weights are frozen, following the theoretical results (Sec. [3).

5 CONCLUSION

This work presents a comprehensive analysis of optimal weight pruning in neural networks and pro-
vides a theoretical framework that explains why Wanda is effective in many common deep learning
scenarios. It demonstrates that while Wanda performs optimally in layers with centered inputs, its
effectiveness diminishes in layers that receive uncentered inputs. In response to these observations,
we propose a new pruning criterion (STADE) that handles this scenario. We demonstrate theoreti-
cally and empirically that STADE outperforms Wanda for uncentered inputs.

We also observe that different layers have different input statistics and therefore the optimal pruning
criterion might change between layers. Building upon these insights, we introduce STADE-W, which
dynamically combines Wanda and STADE based on the input statistics of each layer, making it, to
the best of current knowledge, the first pruning method that employs different pruning criterions for
different layers. We do extensive experiments on Qwen, Llama and Open Pre-trained Transformers
models. We not only evaluate perplexity but also zero-shot performance. The results validate our
theoretical analysis and reveal that pruning effectiveness varies according to the input characteris-
tics of each layer. In particular, we show how layers with normalized inputs are better pruned with
Wanda criterion while wuth uncentered inputs STADE outperforms Wanda. Moreover, our exper-
iments demonstrate that incorporating weight update mechanisms (as exemplified by SparseGPT)
can improve performance, further highlighting the benefits of updating the unpruned weights and a
future research direction.

All together, these contributions not only advance the understanding of pruning strategies but also
offer a new robust method for reducing the computational demands of large language models with-
out significant performance loss. The insights provided herein pave the way for more efficient
deployment of large-scale models in resource-constrained environments.
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A APPENDIX

A.1 PRUNING TIME

Different pruning methods take different time to calculate their corresponding pruning scores. We
report in Table[6] the pruning time for the different methods in different pruning scenarios.

Table 6: Pruning time comparison in seconds for different methods on Llama-3.2-1B.

Sparsity \ Wanda STADE STADE-W  SparseGPT

50% 72,89 72,02 74,55 222,31
2:4 77,87 74,80 73,04 204,52
4:8 70,10 73,39 71,51 215,36

Notice that Table [6] shows how SparseGPT triples the pruning time. This is due to the unpruned
weight update which requires inverse matrix calculation which would become more expensive as
the layers becomes wider.
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A.2 IMPLEMENTATION DETAILS

When estimating the mean and the standard deviation, loading the full data requires a huge amount
of memory resources. Therefore, the mean and standard deviation is calculated in a dynamic
manner with 1 mini-batch of data at a time.

Calculating the sum of squares results in high values which lead to values that are no longer updated
for updates that fall outside of the mantisa range for floating point numbers. In order to avoid that,
the mean and standard deviation is calculated in each iteration as follows:

Algorithm 1 Mean and variance calculation

Input: dataloader D

Output: mean p, var V
1: Let N=0,u=0and V = 0.
2: for xpyicn, in D do

30 Npew = N+ len(Tpatehn)
px N + sum(x_batch)

4 new = 3, Novew

5. Y= (N—l)*V+ Nxp?  Nucwtflew | SUm(Tpaien)
Npew—1 (Nnew—1) (Nnew—1) Npew—1

6: N = Npew

7 M= Hnew

8: end for

9: return p, V

A.3 TRAINING DETAILS

While the pruning methods shown don’t have hyperparameter to tuned, there are some training
details that we would like to mention:

e C4 calibration dataset: Following Wanda, when using C4 dataset only the file ’en/c4-
train.00000-0f-01024.json.gz’ is used during pruning to speed up the process. the full
dataset can be fined in 'https://huggingface.co/datasets/allenai/c4/tree/main/en’.

* Sequence length: Some LLMs allow over 10k context window. In order to run the models
in hardware constrains scenarios, the sequence length is cropped to 2048 experiment on
more models. This is both applied during pruning and evaluation.

A.4 INTUITIVE EXPLANATION OF STADE

In this section a simplified explanation for STADE will be shown. We will assume that the input
multivariate distribution X € R? is normally distributed, i.e., X; ~ N(u;, o;). Notice that STADE
does not require the input to be normally distributed, this is just a simplification for the sake of
the explanation. In the same way as in the Methodology section, we will consider the pruning prob-
lem for one column. In this case the corresponding output of the linear layer () can be calculated
as:

=B+ x1W1 + x22W>
:B—l—(,ul—i—elal)Wl +(,u2+620'2)W2 (10)
= (B+ p1 + p2) + o1 Wier + 0aWaes

Notice that €1,e2 ~ N(0,1) and therefore will affect the same way when pruning the weight.
However, when deciding whether to prune W7 or W, it’s not only about the value of the weight but
also about the standard deviation of the corresponding input. This is due to the fact that the mean of
the input can be added to the bias and therefore omitted when pruning the weights.
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A.5 BIAS USAGE ABLATION

STADE method updates the bias term when pruning the models. In models like OPT which already
have bias, this a is reasonable assumption. However, Llama and Qwen models do not have a bias
term and therefore. Applying STADE on those models would result in adding a new bias term
which could be considered as adding an extra weight variable. This could be considered an unfair
advantage when compared to the other methods. To investigate this, a small ablation is done where
the bias term is not update.

Table 7: Ablation on the importance of the bias update in STADE algorithm.

STADE STADE STADE
Method STADE (w/o bias) STADE (w/o bias) STADE (w/o bias)
Sparsity | 0.5 \ 2:4 \ 4:8
Llama-7B 7.43 7.43 11.38 11.38 8.63 8.63
Llama2-7B 6.97 6.97 10.82 10.82 8.29 8.29
Llama2-13B 5.95 5.95 8.42 8.42 6.86 6.86
Llama3-8B 9.63 9.63 22.30 22.37 13.69 14.55
Llama3.1-8B 9.47 9.47 20.52 20.52 12.93 1291

The results shown in Tab. [7] and [§] demonstrate that there is little to no difference when adding
the bias term and if one wants to remove this term the results are almost identical. Empirically we
observe that for any layer, the sum of the absolute terms of the bias is always smaller than 1072,
which explains why removing it has little to no impact.

A.6 STADE?* VARIATION DERIVATION

Following the results from Sec. [A.5]and taking into acount the fact that not all models use a bias term
in their linear layers, a variation of STADE can be formulated without the possibility of updating
the bias (STADE¥), i.e., the linear layer to prune has no bias term and the pruning method is not
allowed to add a bias term in order to keep the model structure. To do so we expand on the previous
derivations from the main paper as follows:

M M 2
$}%E[<(B + ;szz) —(B*+ ;X'LWZ )) ]

=min(B — B")* + 2(B = B);W; + (07 + 1) Wy
Js

S ST N an
= min(o; + p;)W;
J
1 & 1 &
~ [|X:,j N ZijH%*-(N ZXn,j)Q] Wi s
n=1 n=1

Standard STADE had better performance than STADE* even when not updating the bias, i.e., the
pruning criterion even though locally optimal (optimal for the linear layer pruning) is not optimal
globally (for the model pruning). This can be observed in tables [§] to [T6] The only cases where
STADE* outperforms STADE is when STADE has a big spike/jump on the perplexity. It seems
that it is performing worse in general, but it has always consistent results avoiding the huge spikes.
Future research should investigate this phenomena to further improve the pruning methodology.

A.7 LLM USAGE FOR PAPER WRITING

In the writing of this paper LLMs were used to polish existing text to be more cohesive and coherent.
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A.8 ADDITIONAL EXPERIMENTS

Tables |8] to [16] show experiments on more models and additional pruning metrics measuring both
perplexity and zero-shot performance.

Table 8: Wikitext perplexity for the Qwen family. Notice that STADE-W here is applied after the
RMSnorm layers. As explained in the Methodology, Qwen3 uses RMSnorm which does not nor-
malize the inputs and therefore it is not applicable as it was with the OPT family. We observe huge
spikes for Qwen3-0.6B and Qwen3-4B. To the best of our knowledge the only difference with the
other models is the usage of tie-embeddings. Nevertheless, Qwen3-1.7B also uses them and doesn’t
exhibit those spikes. We were not able to identify the source behind these spikes.

Methods Sparsity Qwen3
0.6B 1.7B 4B 8B 14B
Dense 0% 20.95 16.67 13.64 9.72 8.64
Magnitude 2:4 85481.66 1808.24 1970.45 29448 38.58
Wanda 2:4 190.03 61.63 30.17 1641 13.14
STADE 2:4 13785.28  46.90 133.17 1520 12.52
STADE (w/o bias) 2:4 13785.28  46.90 131.50  15.20 12.51
STADE* 2:4 193.29 60.66 30.25 1641 13.10
STADE-W 2:4 171.60 47.24 32.37 15.54  12.57
SparseGPT 2:4 91.05 31.74 21.32 1448 1247
SparseGPT (no update) 2:4 6278.69 51.75 86.57 1499 12.18
Magnitude 4:8 99815.32  614.71 15043 11548 21.18
Wanda 4:8 73.71 32.62 22.25 13.24  11.12
STADE 4:8 304.30 27.76 51.13 12.62 10.69
STADE (w/o bias) 4:8 304.30 27.79 52.95 12.63 10.68
STADE* 4:8 74.73 32.46 22.50 13.24  11.12
STADE-W 4:8 77.89 28.67 22.57 12.71  10.67
SparseGPT 4:8 60.55 25.38 18.64 12.65 11.16
SparseGPT (no update) 4:8 513.65 28.80 51.60 13.02  10.71
Magnitude 50% 1455.57 17410 11122 5456 15.22
Wanda 50% 34.20 20.63 16.39 11.35 10.00
STADE 50% 34.01 18.67 16.90 11.19 9.60
STADE (w/o bias) 50% 34.04 18.66 16.90 11.19  9.60
STADE* 50% 34.06 20.57 16.39 11.35 10.01
STADE-W 50% 33.96 18.98 16.04 11.10  9.54
SparseGPT 50% 34.14 23.73 17.39 1149 10.08

SparseGPT (no update) 50% 89.12 22.89 20.03 11.80  9.95

16



Under review as a conference paper at ICLR 2026

Table 9: Zero-shot performance on Arc Challenge (Clark et al., 2018).

Method Sparsity Qwen3-0.6B Qwen3-1.7B  Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 31.40% 39.76% 50.77% 55.80% 58.62%
Magnitude 50% 20.90% 19.11% 22.70% 28.07% 48.81%
Wanda 50% 23.38% 30.46% 39.76% 50.85% 55.20%
STADE 50% 23.98 % 33.53% 41.72% 51.88% 55.03%
Magnitude 2:4 20.65% 20.56% 22.44% 18.69% 37.12%
Wanda 2:4 19.71% 19.71% 32.17% 38.65% 42.24%
STADE 2:4 21.67% 20.90% 29.86% 42.32% 44.54%
Magnitude 4:8 20.56% 21.50% 23.46% 19.45% 44.37%
Wanda 4:8 19.71% 24.91% 38.05% 46.16% 50.60%
STADE 4:8 21.25% 26.37% 33.11% 47.95% 51.96 %

Table 10: Zero-shot performance on Arc Easy (Clark et al., 2018).

Method Sparsity Qwen3-0.6B  Qwen3-1.7B  Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 60.90% 72.22% 80.51% 83.46% 84.22%
Magnitude 50% 28.75% 34.01% 47.94% 58.12% 76.47%
Wanda 50% 48.65% 62.12% 72.90 % 80.09% 81.31%
STADE 50% 48.70% 64.31% 72.39% 80.43% 81.94%
Magnitude 2:4 26.52% 28.91% 33.46% 36.57% 63.09%
Wanda 2:4 32.79% 47.35% 59.26 % 72.69% 72.47 %
STADE 2:4 27.86% 49.71% 50.17% 74.03 % 71.42%
Magnitude 4:8 27.48% 30.51% 42.63% 40.32% 72.35%
Wanda 4:8 40.74% 56.65% 67.89% 77.23% 78.41%
STADE 4:8 31.65% 58.25% 57.58% 77.78% 78.87 %

Table 11: Zero-shot performance on Boolq (Clark et al., [2019).

Method Sparsity Qwen3-0.6B  Qwen3-1.7B  Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 64.53% 77.46% 85.11% 86.64% 89.33%
Magnitude 50% 46.36% 46.94% 38.32% 52.32% 79.60%
Wanda 50% 62.20% 73.61% 82.51% 84.86 % 88.07%
STADE 50% 62.08% 73.43% 80.52% 84.68% 88.20%
Magnitude 2:4 38.65% 50.28% 46.94% 43.33% 65.78%
Wanda 2:4 46.76% 63.85% 73.39% 82.17% 85.81%
STADE 2:4 52.75% 67.22% 70.18% 81.68% 86.64 %
Magnitude 4:8 42.51% 51.10% 42.08% 41.28% 68.59%
Wanda 4:8 48.44% 70.83 % 78.41% 85.11% 87.43%
STADE 4:8 57.68 % 66.33% 74.50% 84.92% 87.43%
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Table 12: Zero-shot performance on HellaSwag (Zellers et al., 2019).

Method Sparsity Qwen3-0.6B Qwen3-1.7B  Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 37.55% 46.12% 52.27% 57.14% 60.97%
Magnitude 50% 26.07% 28.16% 29.79% 34.51% 49.76%
Wanda 50% 32.24% 38.56% 45.03% 50.08% 55.11%
STADE 50% 32.86 % 40.26 % 45.92% 51.65% 56.66 %
Magnitude 2:4 25.70% 26.56% 27.03% 26.98% 42.16%
Wanda 2:4 27.17% 29.90% 37.46 % 42.35% 48.00%
STADE 2:4 26.51% 31.08% 36.22% 43.76 % 49.53%
Magnitude 4:8 26.21% 26.89% 30.43% 28.04% 45.68%
Wanda 4:8 29.09% 33.91% 41.22% 46.26% 51.69%
STADE 4:8 28.27% 35.16% 40.10% 47.91% 53.08 %

Table 13: Zero-shot performance on OpenbookQA (Mihaylov et al.|[2018]).

Method Sparsity Qwen3-0.6B  Qwen3-1.7B  Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 21.00% 28.40% 29.20% 31.00% 35.00%
Magnitude 50% 15.00% 13.40% 13.80% 18.60% 30.40%
Wanda 50% 16.60% 21.20% 26.20% 28.60% 33.00%
STADE 50% 18.00% 22.80% 26.80% 30.60% 33.60%
Magnitude 2:4 14.00% 13.80% 13.00% 14.80% 26.20%
Wanda 2:4 13.00% 13.60% 22.20% 23.00% 28.60%
STADE 2:4 15.40% 15.40% 22.80% 23.20% 30.20%
Magnitude 4:8 13.20% 14.40% 14.20% 15.40% 28.20%
Wanda 4:8 15.60% 17.40% 24.80% 26.40% 31.40%
STADE 4:8 15.80% 17.80% 22.80% 28.40% 31.60%

Table 14: Zero-shot performance on RTE (Bentivogli et al., 2009).

Method Sparsity Qwen3-0.6B  Qwen3-1.7B  Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 54.15% 70.76% 75.81% 78.34% 77.62%
Magnitude 50% 51.26% 52.71% 51.62% 52.71% 69.31%
Wanda 50% 54.15% 70.04 % 72.92% 70.04% 81.23%
STADE 50% 51.26% 67.15% 67.51% 70.76 % 82.31%
Magnitude 2:4 42.96% 49.46% 47.29% 52.711% 48.74%
Wanda 2:4 51.62% 52.35% 55.96 % 61.73% 70.40 %
STADE 2:4 53.07 % 52.71% 54.87% 69.31% 65.70%
Magnitude 4:8 46.21% 51.26% 52.71% 52.35% 54.87%
Wanda 4:8 53.07% 52.35% 71.12% 72.92% 70.04 %
STADE 4:8 47.65% 53.07 % 55.23% 70.76% 69.68%
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Table 15: Zero-shot performance on Winogrande (Keisuke et al., 2019).

Method Sparsity Qwen3-0.6B  Qwen3-1.7B  Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 56.20% 60.93% 66.06% 67.72% 72.85%
Magnitude 50% 49.88% 51.62% 51.62% 55.09% 64.80%
Wanda 50% 54.06% 57.38% 62.12% 69.61% 72.77%
STADE 50% 55.41% 56.91% 62.19% 68.35% 71.82%
Magnitude 2:4 48.78% 52.09% 51.30% 51.78% 61.01%
Wanda 2:4 52.25% 53.67% 56.98% 62.43% 68.27%
STADE 2:4 50.12% 52.33% 53.75% 63.85% 68.75%
Magnitude 4:8 49.80% 50.20% 51.38% 51.93% 64.33%
Wanda 4:8 52.80% 53.99 % 61.01% 66.61% 69.85%
STADE 4:8 52.09% 53.75% 56.98% 65.43% 69.22%

Table 16: Zero-shot performance on MMLU (Hendrycks et al., 2021).

Method Sparsity Qwen3-0.6B  Qwen3-1.7B  Qwen3-4B Qwen3-8B Qwen3-14B

Dense 0% 56.20% 60.93% 66.06% 67.72% 72.85%
Magnitude 50% 49.88% 51.62% 51.62% 55.09% 64.80%
Wanda 50% 54.06% 57.38% 62.12% 69.61% 72.77%
STADE 50% 55.41% 56.91% 62.19% 68.35% 71.82%
Magnitude 2:4 48.78% 52.09% 51.30% 51.78% 61.01%
Wanda 2:4 52.25% 53.67 % 56.98 % 62.43% 68.27%
STADE 2:4 50.12% 52.33% 53.75% 63.85% 68.75 %
Magnitude 4:8 49.80% 50.20% 51.38% 51.93% 64.33%
Wanda 4:8 52.80% 53.99% 61.01% 66.61% 69.85%
STADE 4:8 52.09% 53.75% 56.98% 65.43% 69.22%
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