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Abstract

The videographic nature of ultrasound offers flexibility for defining the similarity1

relationship between pairs of images for self-supervised learning (SSL). In this2

study, we investigated the effect of utilizing proximal, distinct images from the3

same ultrasound video as pairs for joint embedding SSL. Additionally, we intro-4

duced a sample weighting scheme that increases the weight of closer image pairs5

and demonstrated how it can be integrated into SSL objectives. Named Intra-Video6

Positive Pairs (IVPP), the method surpassed previous ultrasound-specific con-7

trastive learning methods’ average test accuracy on COVID-19 classification with8

the POCUS dataset by ≥ 1.3%. Investigations revealed that some combinations of9

IVPP hyperparameters can lead to improved or worsened performance, depending10

on the downstream task.11

1 Introduction12

Deep learning has been extensively studied as a means to automate diagnostic tasks in medical13

ultrasound (US) [1–5]. Barriers to the development of such systems include lack of open access14

to large datasets, along with the cost and expertise required to label vast amounts of institutionally15

acquired examinations. Additionally, many US examinations in acute care are not archived or16

documented [6, 7]. Joint embedding self-supervised learning (SSL) has been explored as a means17

to leverage unlabelled data for representation learning with US [8–11]. A common way to define18

positive pairs for SSL is to apply two stochastic transformations to an image, producing two distorted19

views with similar content. Being a video-based examination, US offers a unique opportunity to20

compose alternative pairwise relationships. However, due to the dynamic nature of US, all frames in21

a US video may not possess the same label for all downstream US interpretation tasks. Moreover, US22

videos from the same examination or patient may bear a striking resemblance to each other.23

In this study, we examined the effect of proximity and sample weighting of intra-video positive pairs24

for common SSL methods applied to US. We evaluated on two tasks: one for B-mode US (i.e., US25

video composed from several scan lines) and M-mode US (i.e., images depicting the evolution of one26

US scan line over time). Our contributions are summarized as follows:27

• A method for sampling US intra-video positive pairs for joint embedding SSL.28

• A sample weighting scheme for joint embedding SSL methods that weighs positive pairs29

according to the temporal or spatial distance between them in their video of origin30

• A comprehensive assessment of intra-video positive pairs integrated with contrastive and31

non-contrastive SSL methods, as measured by downstream performance in B-mode and32

M-mode lung US classification tasks.33

Figure 1 summarizes the methods proposed in this study. Although previous studies have formulated34

contrastive learning methods with intra-video positive pairs for US [8, 10, 12, 13], the authors believe35
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there are no preceding studies that investigated the effect of sampling multiple images from the36

same US video in non-contrastive learning. More generally, we believe that this study is the first to37

integrate sample weights into non-contrastive objectives.38
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(a) For B-mode ultrasound, positive pairs are tempo-
rally separated images from the same video.
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(b) For M-mode ultrasound, positive pairs are spatially
separated images from the same video.

Figure 1: An overview of the methods introduced in this study. Positive pairs of images separated by
no more than a threshold are sampled from the same B-mode video (1). Sample weights inversely
proportional to the separation between each image (red bars) are calculated for each pair (2). Random
transformations are applied to each image (3). Images are sent to a neural network consisting of a
feature extractor (4) and a projector (5) connected in series. The outputs are used to calculate the
self-supervised objective LSSL (6).

2 Methods39

Datasets: As done in previous studies on on US-specific joint embedding methods [8, 10, 12, 13], we40

evaluate on the public POCUS lung US dataset [14]. This dataset contains 140 publicly sourced US41

videos (2116 images) labelled for three classes: COVID-19 pneumonia, non-COVID-19 pneumonia,42

and normal lung. Pretraining is conducted on the public Butterfly dataset, which contains 2243

unlabelled lung ultrasound videos [15]. We also utilize a private dataset of 25 917 parenchymal lung44

US videos (5.9 × 106 images), hereafter referred to as ParenchymalLUS. Of these videos, 20 00045

had no labels. We evaluated on two binary classification tasks: A-lines versus B-line classification46

(i.e., AB), and lung sliding classification (i.e., LS). Details on ParechymalLUS and descriptions of the47

downstream tasks can be found in Appendix A.48

Intra-video Positive Pairs (IVPP): Clinically relevant patterns commonly surface and disappear49

within the same US video as the US probe and/or the patient move. Without further knowledge of50

the US examinations in an unlabelled dataset, we conjectured that it may be safest to only assume51

that positive pairs are intra-video images that are close to each other. Our method distinguishes itself52

from prior work by only considering proximal frames to be positive pairs and disregarding distant53

intra-video pairs, treating them as neither positive nor negative pairs.54

For B-mode US videos, we define positive pairs as intra-video images x1 and x2 that are separated55

by no more than δt seconds (Figure 2a). To accomplish this, x1 is randomly selected from the video’s56

images, and x2 is randomly drawn from the set of images within δt seconds of x1. Videos with higher57

frame rates provide more positive pair candidates, potentially increasing the diversity of pairs due58

to naturally occurring noise. A similar sampling scheme is applied for M-mode US images. Like59

previous studies, we define M-mode images as vertical slices through the time axis of a B-mode video,60

taken at a specific x-coordinate [11, 16, 17]. Accordingly, M-mode images are columns of B-mode61

pixels for every frame, concatenated horizontally. We define positive pairs as M-mode images whose62

x-coordinates differ by no more than δx pixels (Figure 2b). To avoid resolution differences, B-mode63

videos are resized to the same dimensions prior to sampling M-mode images.64

Sample Weights: The chance that intra-video images are semantically related increases as temporal65

or spatial separation decreases. To temper the effect of unrelated positive pairs, we applied sample66

weights to positive pairs in the SSL objective according to their temporal or spatial distance. Sample67

weights were incorporated into each SSL objective trialled in this study: SimCLR [18], Barlow68

Twins [19], and VICReg [20]. Appendix B details how sample weights are calculated and integrated69

into the SSL objectives.70
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Figure 2: For B-mode ultrasound, positive pairs are frames in the same video that are within δt
seconds of each other. For M-mode ultrasound, positive pairs are M-mode images originating from
the same B-video that are no more than δx pixels apart. In the context of lung ultrasound, M-mode
images should intersect the pleural line (outlined in mauve).

3 Experiments & Evaluation71
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Figure 3: Average test accuracy across 5-fold cross
validation on the POCUS dataset, pretrained using
a variety of values for δt, with and without sample
weights. The dashed line indicates initialization
with ImageNet-pretrained weights.

Fine-tuning Performance: We evaluated our72

approach on each of the downstream tasks and73

report the mean cross-validation accuracy for74

COVID, along with the test set AUC for AB and75

LS. Pretraining and training protocols can be76

found in Appendix C. Multiple values of the77

threshold parameter were investigated, with and78

without sample weights. For the COVID and AB79

tasks, we examined δt ∈ {0, 0.5, 1, 1.5} sec-80

onds. For LS we explored δx ∈ {0, 5, 10, 15}81

pixels. As shown in Figure 3, mean cross-82

validation accuracy of each fine-tuned model83

peaked at nonzero values of δt. Sample weights84

decreased performance when δ = 0.5, but were85

helpful when δ = 1.0 and δ = 1.5. Figure 486

gives fine-tuning performance for AB and LS. We87

observed no discernible trend for the effect of88

sample weights that was consistent for any task,89

pretraining method, δt, or δx. A striking finding90

across AB and LS was that SimCLR consistently outperformed Barlow Twins and VICReg, which91

are both non-contrastive methods. Evaluation via linear classification was also conducted, revealing92

similar results (see Appendix D).93

Comparison to Baselines: We compared IVPP (with the best hyperparameter assignments) for94

each SSL objective against USCL [8] and UCL [10], which are preexisting US contrastive learning95

methods. As shown in Table 1, IVPP outperformed all baseline methods on POCUS, regardless of the96

pretraining objective. USCL and IVPP with SimCLR performed comparably on the AB task. On the97

LS task, which is more fine-grained and had a stronger class imbalance, IVPP with SimCLR achieved98

the greatest performance. Non-contrastive methods were unremarkable, achieving lower performance99

than networks initialized with ImageNet-pretrained weights.100

Label Efficiency: We devised an experiment to compare the performance of models pretrained using101

different IVPP hyperparameters in low-label settings. The ParenchymalLUS training set was split102

by patient identifier into 20 subsets. Pretrained models were fine-tuned on each subset, resulting in103

a population of 20 test set metrics for each hyperparameter combination. As is visible in Figure 5,104

SimCLR obtained the best performance by a large margin. As detailed in Appendix D, the differences105

between some means were statistically significant.106
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(a) Fine-tuned classifiers for the AB task
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Figure 4: ParenchymalLUS test set AUC for models fine-tuned for the AB and LS binary classification
tasks and pretrained with a variety of intra-video positive pair thresholds, with and without sample
weights (SW). The dashed line indicates initialization with ImageNet-pretrained weights.

Dataset POCUS ParenchymalLUS

Task COVID Mean (std) test accuracy AB Test AUC LS Test AUC

Random initialization 0.881 (0.050) 0.954 0.790
ImageNet initialization 0.908 (0.043) 0.973 0.898
USCL [8] 0.905 (0.044) 0.979 0.874
US UCL [10] 0.901 (0.054) 0.967 0.809
IVPP [SimCLR] 0.926 (0.043) 0.980 0.903
IVPP [Barlow Twins] 0.921 (0.054) 0.969 0.887
IVPP [VICReg] 0.930 (0.046) 0.971 0.862

Table 1: Performance of fine-tuned models pretrained using IVPP compared to US-specific contrastive
learning methods, USCL and UCL, and to baseline Random and ImageNet initializations.
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Figure 5: Distributions of test AUC for each pretraining method and assignment to δ, with and
without sample weights. Each experiment is repeated 20 times on disjoint subsets of the training set,
each containing all images from a group of patients.

4 Discussion107

Overall, the results indicated that the optimal assignment for IVPP hyperparameters may be problem-108

specific. First, IVPP may improve performance on downstream ultrasound interpretation tasks;109

however, practitioners are advised to include a range of values of δ with and without sample weights110

in their hyperparameter search. Subsequent work could explore IVPP for other downstream tasks111

in US outside of the lung. Second, SimCLR outperformed non-contrastive methods across multiple112

tasks – contrary to our initial belief. Future work assessing non-contrastive methods for tasks in US113

examinations or alternative imaging modalities would shed light on the utility of non-contrastive114

methods outside the typical evaluation setting of photographic images.115
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A ParenchymalLUS Dataset and Downstream Tasks193

ParenchymalLUS is a subset of a larger database of de-identified lung US videos that was partially194

labelled for previous work [17, 21]. Access to this database was permitted via ethical approval by195

[redacted].1 The labelled portion of ParenchymalLUS was split by patient identifier into training,196

validation, and test sets. Its unlabelled portion consists of 20 000 videos from the unlabelled pool of197

videos in the database that were predicted to contain a parenchymal view of the lungs by a previously198

trained lung US view classifier [22]. Below are descriptions of the lung US binary classification tasks199

for which labels were available in ParenchymalLUS.200

A-line vs. B-line Classification (AB): A-lines and B-lines are two cardinal artifacts in B-mode lung201

US that can provide quick information on the status of a patient’s lung tissue. A-lines are reverberation202

artifacts that are indicative of normal, clear lung parenchyma [3]. On lung US, they as horizontal203

lines deep to the pleural line. Conversely, B-lines are indicative of diseased lung tissue [3]. Generally,204

the two are mutually exclusive. We evaluate on the binary classification task of A-lines versus B-lines205

on lung US, as was done in previous work benchmarking joint embedding SSL methods for lung US206

tasks [23].207

Lung Sliding Classification: (LS) Lung sliding is a dynamic artifact that, when observed on a208

parenchymal lung US view, rules out the possibility of a pneumothorax at the site of the probe [24].209

The absence of lung sliding is suggestive of pneumothorax, warranting further investigation. On210

B-mode US, lung sliding manifests as a shimmering of the pleural line [24]. The presence or absence211

of lung sliding is also appreciable on M-mode lung US images that intersect the pleural line [25, 26].212

We evaluate on the binary lung sliding classification task, where positive pairs are 3-second M-mode213

images originating from the same B-mode video that intersect the pleural line. Following prior studies,214

we estimate the horizontal bounds of the pleural line using a previously trained object detection215

model [17] and use the top half of qualifying M-mode images, in decreasing order of total pixel216

intensity [11].217

Table 2 gives the composition of the ParenchymalLUS dataset, along with the number of examples218

labelled for the AB and LS tasks.219

UNLABELLED LABELLED

Train Validation Test

Total
Patients 5204 1540 330 329
Videos 20 000 4123 858 936
Images 4 611 063 927 889 191 437 208 648

AB Labels Videos − 2100 / 998 441 / 197 512 / 213
Images − 484 287 / 216 505 99 132 / 40 608 116 648 / 42 122

LS Labels Videos − 3169 / 477 631 /103 707 / 96
Images − 727 205 / 96 771 146 322 / 23 218 166 753 / 21 911

Table 2: Breakdown of ParenchymalLUS at the video and image level. x / y indicates the number of
negative and positive labelled examples available for each task, respectively. Video labels apply to
each image within the video. Note that some videos were not labelled for both tasks.

B Sample Weights220

For a positive pair of B-mode images occurring at times t1 and t2 or M-mode images occurring at221

positions x1 and x2, the sample weight is calculated as follows:222

w =
δt − |t2 − t1|+ 1

δt + 1
w =

δx − |x2 − x1|+ 1

δx + 1
(1)

1Omitted to protect anonymity during the review process.
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Sample weights were incorporated into each SSL objective trialled in this study. Accordingly, we223

modified the objective functions for SimCLR, Barlow Twins, and VICReg in order to weigh the224

contribution to the loss differently based on sample weights. To the authors’ knowledge, this study225

is the first to propose sample weighting schemes for the aforementioned self-supervised learning226

methods.227

The SimCLR objective can be easily modified by multiplying Li, the per-example NT-Xent loss for228

the ith positive pair, by sample weight wi.229

LSimCLR =
1

N

N∑
i=1

wiLi (2)

For VICReg [20], the invariance term is weighted with wi for each positive pair in a batch. The230

invariance term is then calculated as follows:231

s(Z1, Z2) =
1

N

N∑
i=1

wi∥Z1i − Z2j∥22 (3)

where Z1 and Z2 are batches of predicted embeddings for corresponding positive pairs; that is, Z1i232

and Z2i correspond to one positive pair. The entire VICReg objective can then be calculated as233

LVICReg(Z1, Z2) = λs(Z1, Z2)︸ ︷︷ ︸
Invariance term

+µ(v(Z1) + v(Z2))︸ ︷︷ ︸
Variance term

+ ν(c(Z1) + c(Z2))︸ ︷︷ ︸
Covariance term

(4)

where λ, µ, and ν are weights for each term. Since frames were sampled uniformly at random,234

E[w] ≃ 0.5. Accordingly, we doubled λ when pretraining VICReg with sample weights.235

For the Barlow Twins objective, weighting was applied to each positive pair in the invariance term by236

computing the weighted normalized cross correlation matrix CW ∈ RD×D between the weighted-237

mean-centered normalized batches of embeddings, Z1 and Z2. For a batch of embeddings Z, the238

calculation for the weighted mean Z̄ and standard deviations σ(Z) across the batch dimension was239

performed as follows:240

Z̄ =

∑N
i=1 wiZi∑N
i=1 wi

σ(Z) =

√√√√∑N
i=1 wi(Zi − Z̄)2∑N

i=1 wi

(5)

C =
1

N

(
Z1 − Z̄1

σ(Z1)

)T(
Z2 − Z̄2

σ(Z2)

)
σ(Z) =

√√√√∑N
i=1 wi(Zi − Z̄)2∑N

i=1 wi

(6)

where wi is the sample weight for the ith positive pair in the batch. The redundancy reduction term241

should still be calculated using the normalized cross correlation matrix C, since its purpose is to242

decorrelate the embedding dimensions. In the original Barlow Twins, the normalized cross correlation243

matrix is employed for both terms. The Barlow Twins objective then becomes244

LBT =

D∑
d=1

(1− CWd,d
)2

︸ ︷︷ ︸
Invariance term

+ λ

D∑
d=1

D∑
e=1
e ̸=d

Cd,e2

︸ ︷︷ ︸
Redundancy reduction term

(7)

8



C Pretraining and Training Protocols245

Unless otherwise stated, all feature extractors are initialized with ImageNet-pretrained weights.246

Similar studies concentrating on medical imaging have observed that this practice improves down-247

stream performance when compared to random initialization [11, 27]. Moreover, we designate fully248

supervised classifiers initialized with ImageNet-pretrained weights as a baseline against which to249

compare models pretrained with SSL.250

Evaluation on POCUS follows a similar protocol employed in prior works [8, 10]. Feature extractors251

with the ResNet18 architecture [28] are pretrained on the Butterfly dataset. Prior to training on252

the POCUS dataset, a 3-node fully connected layer with softmax activation was appended to the253

pretrained feature extractor. Five-fold cross validation is conducted with POCUS by fine-tuning254

the final three layers of the pretrained feature extractor. Unlike prior works, we adopt the average255

across-folds validation accuracy, instead of taking the accuracy of the combined set of validation set256

predictions across folds. Presenting the results in this manner revealed the high variance of model257

performance across folds, which may be due to the benchmark dataset’s small video sample size.258

All experiments with ParenchymalLUS utilize the MobileNetV3-Small architecture as the feature259

extractor, which outputs a 576-dimensional representation vector [29]. Feature extractors are pre-260

trained on the union of the unlabelled videos and labelled training set videos in ParenchymalLUS.261

Performance is assessed via test set classification metrics. Prior to training on the downstream task,262

a single-node fully connected layer with sigmoid activation was appended to the pretrained feature263

extractor. We report the performance of linear classifiers trained on the frozen feature extractor’s264

representations, along with classifiers that are fine-tuned end-to-end.265

For each joint embedding method, the projectors were multilayer perceptrons with two 768-node266

layers, outputting 768-dimensional embeddings. Pretraining is conducted for 500 epochs using the267

LARS optimizer [30] with a batch size of 384 and a learning rate schedule with warmup and cosine268

decay as in [20].269

B-mode and M-mode images were resized to 224 × 224 and 224 × 112 pixels respectively using270

bilinear interpolation. The reason that the width of M-modes was standardized to a smaller value was271

because the height of B-mode images often far exceeded the number of frames in a 3-second segment272

of B-mode video. Since feature extractors were initialized with pretrained weights, pixel intensities273

were mean-centered and normalized using the mean and standard deviation of the ImageNet dataset.274

All IVPP pretraining runs were subjected to stochastic data augmentations after intra-video positive275

pairs were sampled. Each image was subjected to the following sequence of stochastic transformations276

for data augmentation:277

1. Randomly located crop of a fraction of the image’s area in the range [0.4, 1.0], followed by278

resizing to the original image dimensions. For B-mode images, the width/height aspect ratio279

was confined to the range [0.8, 1.25], while M-mode crops were confined to [0.4, 0.6].280

2. With probability 0.5, horizontal reflection.281

3. With probability 0.5, random brightness change in the range [−0.25, 0.25].282

4. With probability 0.5, random contrast change in the range [−0.25, 0.25].283

5. With probability 0.25, random Gaussian blur with a kernel size of 5 pixels and a standard284

deviation uniformly sampled from the range [0.1, 2.0].285

Training runs for the COVID and AB tasks with B-mode images also utilized this data augmentation286

pipeline. For LS training runs with M-modes, the minimum allowable crop area was increased to287

95% of the image’s area to ensure the pleural line was almost always visible.288

Source code is available at [redacted]2.289

2Public GitHub repository URL redacted to preserve anonymity.
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D Additional Performance Details290

Linear Classification Performance: In addition to fine-tuning experiments, linear classifiers were291

trained using the feature vectors outputted by the pretrained models. Figure 6 summarizes the results292

obtained for the AB and LS tasks for each of the hyperparameter combinations studied.293
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(a) Linear classifiers for the AB task

0 5 10 15
x [pixels]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
U

C

SimCLR (no SW)
SimCLR (SW)

Barlow Twins (no SW)
Barlow Twins (SW)

VICReg (no SW)
VICReg (SW)

(b) Linear classifiers for the LS task

Figure 6: ParenchymalLUS test set AUC for linear classifiers trained on the AB and LS binary
classification tasks and pretrained with a variety of intra-video positive pair thresholds, with and
without sample weights (SW). The dashed line indicates initialization with ImageNet-pretrained
weights.

Label Efficiency Experiments: Inspection of the central moments and boxplots from each distribu-294

tion (Figure 5) indicated that the normality and equal variance assumptions for ANOVA were not295

violated. For each pretraining method, a two-way repeated-measures analysis of variance (ANOVA)296

was performed to determine whether the mean test AUC scores across values of δ and sample weight297

usage were different. The independent variables were δ and the presence of sample weights, while298

the dependent variable was test AUC. Whenever the null hypothesis of the ANOVA was rejected,299

post-hoc paired t-tests were performed to compare the following:300

• Pretraining with nonzero δ against standard positive pair selection (δ = 0)301

• For the same nonzero δ value, sample weights against no sample weights302

For each group of post-hoc tests, the Bonferroni correction was applied to establish a family-wise303

error rate of α = 0.05. To ensure that each training subset was independent, we split the dataset304

by anonymous patient identifier. This was a necessary step because intra-video images are highly305

correlated, along with videos from the same patient. As a result, the task became substantially306

more difficult than naively sampling 5% of training images because the volume and heterogeneity307

of training examples was reduced by training on a small fraction of examples from a small set of308

patients.309

Table 3 gives the mean and standard deviation of each set of trials, for each hyperparameter com-310

bination. For each task and each pretraining method, the ANOVA revealed significant interaction311

effects (p ≤ 0.05). Accordingly, all intended post-hoc t-tests were performed to ascertain (1)312

which combinations of hyperparameters were different from the baseline setting of augmenting the313

same frame twice (δ = 0) and (2) values of δ where the addition of sample weights changes the314

outcome. First, we note that SimCLR was the only pretraining method that consistently outperformed315

full supervision with ImageNet-pretrained weights. Barlow Twins and VICReg pretraining – both316

non-contrastive methods – resulted in worse performance.317

For the AB task, no combination of intra-video positive pairs or sample weights resulted in statistically318

significant improvements compared to dual distortion of the same image (δt = 0). For Barlow Twins319

and VICReg, several nonzero δt resulted in significantly worse mean test AUC. Sample weights320

consistently made a difference in Barlow Twins across δt values, but only improved mean test AUC321

for δt = 1 and δt = 1.5.322

Different trends were observed for the LS task. SimCLR with δx = 5 and no sample weights improved323

mean test AUC compared to the baseline where δx = 0. No other combination of hyperparameters324

resulted in a significant improvement. For Barlow Twins, multiple IVPP hyparameter combinations325
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resulted in improved mean test AUC over the baseline. No IVPP hyperparameter combinations326

significantly improved the performance of VICReg.327

AB LS
Pretrain Method δt SW Mean (std) test AUC δx SW Mean (std) test AUC

SimCLR

0 0.938 (0.007) 0 0.812 (0.037)
0.5 0.931 (0.010) ∗ 5 0.824 (0.030) ∗

0.5 0.936 (0.007) † 5 0.820 (0.033)
1 0.934 (0.011) 10 0.815 (0.035)
1 0.933 (0.011) 10 0.816 (0.037)
1.5 0.936 (0.013) 15 0.819 (0.034)
1.5 0.932 (0.012) 15 0.798 (0.039) ∗†

Barlow Twins

0 0.914 (0.014) 0 0.693 (0.044)
0.5 0.914 (0.010) ∗ 5 0.694 (0.040)
0.5 0.883 (0.017) ∗† 5 0.780 (0.040) ∗†

1 0.877 (0.022) ∗ 10 0.705 (0.051)
1 0.891 (0.018) ∗† 10 0.706 (0.066)
1.5 0.870 (0.024) ∗ 15 0.769 (0.037) ∗

1.5 0.892 (0.015) ∗† 15 0.707 (0.071) †

VICReg

0 0.917 (0.011) 0 0.690 (0.042)
0.5 0.879 (0.024) ∗ 5 0.675 (0.036)
0.5 0.879 (0.021) ∗ 5 0.679 (0.038)
1 0.872 (0.023) ∗ 10 0.680 (0.039)
1 0.876 (0.024) ∗ 10 0.675 (0.040)
1.5 0.860 (0.026) ∗ 15 0.710 (0.036)
1.5 0.870 (0.021) ∗† 15 0.685 (0.039) †

None (ImageNet-pretrained) 0.896 (0.017) 0.783 (0.028)
None (random initialization) 0.774 (0.051) 0.507 (0.022)

∗ Significantly different (p < 0.05) than baseline for the pretraining method where δ = 0
† Significantly different (p < 0.05) for particular δ when sample weights are applied, compared to no sample

weight
Table 3: ParenchymalLUS test AUC for the the AB and LS tasks when trained using examples from 5% of the
patients in the training set. Twenty trials were performed for each pretraining method, value of δ, with and
without sample weights (SW). Mean and standard deviation of the test AUC across trials are reported for each
condition.
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