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Abstract

In this reproducibility study, we present our results and experience during replicating the
paper, titled CUDA: Curriculum of Data Augmentation for Long-Tailed Recognition(Ahn
et al., 2023).Traditional datasets used in image recognition, such as Imagenet, are often
synthetically balanced, meaning each class has an equal number of samples. In practical
scenarios, datasets frequently exhibit significant class imbalances, with certain classes having
a disproportionately larger number of samples compared to others. This discrepancy poses a
challenge for traditional image recognition models, as they tend to favor classes with larger
sample sizes, leading to poor performance on minority classes. CUDA proposes a class-wise
data augmentation technique which can be used over any existing model to improve the
accuracy for LTR: Long Tailed Recognition. We were able to reproduce a significant part
of the results for the long tailed dataset Cifar100-LT.

1 Introduction

Long-tailed recognition presents one of the most formidable challenges in visual recognition. This problem
revolves around training highly effective models from datasets characterized by a large number of images
distributed along a long-tailed class distribution. In such datasets, a notable imbalance exists among the
number of samples belonging to different classes, with some classes comprising a vast majority of training
instances (Head classes), while others contain significantly fewer instances (Tail classes).Consider a practical
example of a disease screening test dataset: the Head classes would predominantly consist of non-patients,
whereas the Tail classes would represent the minority of patients. In such scenarios, the performance of deep
learning models tends to be disproportionately influenced by the Head classes, while the learning of Tail
classes is often inadequately developed.

Solutions to Long Tailed recognition primary involves three methods: (1) Resampling (Buda et al., 2018)
,Up-sampling minority classes and Down-sampling majority classes. (2) Reweighting (Cao et al., 2019):
Rebalancing the loss to give more weights to minority classes. (3) Transfer learning(Kim et al., 2020).:
enriching the information of minority classes by transferring information gathered from majority classes to
the minority classes.

The original authors propose that applying an algorithm to determine class-wise augmentation strength can
potentially address the imbalance problem in long-tailed visual recognition tasks. The other key finding, as
highlighted in the paper, is that implementing class-wise augmentation tends to enhance the performance of
non-augmented classes while the improvement in augmented classes may not be as significant.

In this reproducibility study, we examine the performance of CUDA over the dataset Cifar100-LT across
methods like CE(Cross Entropy), CE-DRW (Cross entropy Dynamic reweighting)(Cao et al., 2019), LDAM-
DRW (label-distribution-aware margin loss)(Cao et al., 2019), BS (balanced soft-max)(Ren et al., 2020),BCL
(balanced contrastive learning)(Zhu et al., 2022).We analyze the standard deviation of the weight L1 norm
to demonstrate how CUDA contributes to achieving more balanced feature representation across different
classes.. We investigate the LOL score, representing the augmentation strength of each class after training
with CUDA. We extend our experiments to observe how changes in CUDA hyperparameters affect model
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Figure 1: Schematic of CUDA.The left part shows the strength based augmentation and the right part shows
how the Level-of-Learning(LOL) score is updated in a given epoch

performance . We conduct a component analysis to dissect the contribution of curriculum learning and
class-wise augmentation strengths to overall model performance

2 Scope of Reproducibility

The main idea of the paper is to introduce a data augmentation technique called CUDA, which is designed
to complement existing Long-Tailed Recognition (LTR) models. When integrated with LTR models, the
paper claims that CUDA offers the following benefits

• CUDA enhances the top-1 validation accuracy across all LTR models and effectively addresses class
imbalance.

• Implementing stronger augmentation on majority classes and milder augmentation on minority
classes leads to superior model performance compared to the reverse strategy.

To further substantiate the aforementioned claims, we conducted the following studies:

• Conduct the performance analysis across three different imbalance ratios (100, 50, 10) to examine
how CUDA performance varies with dataset imbalance ratios.

• Examine how accuracy changes with the three hyper-parameters augmentation probability, number
of test samples and acceptance rate. This analysis aims to validate the assertion that both excessive
and insufficient augmentation adversely affect performance.

• To evaluate the contribution of curriculum learning and class-wise score to performance of CUDA
,we do a component analysis.

3 Methodology

3.1 Model descriptions

We use Resnet-32 as our backbone model for all 5 models CE, CE-DRW, BS, LDAM-DRW, and
RIDE.However RIDE uses modified version of Resnet-32 implemented according to the original paper.The
core philosophy of CUDA is to “generate an augmented sample that becomes the most difficult sample
without losing its original information.”CUDA uses two main parts to achieve this: (1)Strength-based aug-
mentation(2)Using Level-of-Learning (LOL) score.
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3.1.1 Strength-based augmentation

We need to define a metric to quantify how complex augmentations we are applying on an image. Let us
assume that there exist pre-defined K augmentation operations. We utilize visual augmentation operations
indexed as k ∈ {1, . . . , K}, e.g., Gaussian blur, Rotation, Horizontal flip. Each augmentation operation
O

mk(s)
k has its own predefined augmentation magnitude function mk(s) with the strength parameter s ∈

{0, . . . , S}.Given an augmentation strength parameter s and an input image x, we model a sequence of
augmentation operations O(x; s) as follows:

O(x; s) = Omks (s)
ks

◦ O
mks−1 (s)
ks−1

◦ · · · ◦ Omk1 (s)
k1

(x), ki ∼ Cat(K, U(K)) ∀i = {1, . . . , s}

The sequential augmentation operation O(x; s) involves sampling s operations from a categorical distribution,
where each operation is chosen from a uniform distribution among K possible operations. In essence, out
of the K possible operations, only s operations are selected, each with a magnitude m(3).For example, let’s
consider s=3. Suppose the selected augmentation operations k1,k2,k3 correspond to brightness adjustment,
X-shift, and Y-shift, respectively. In this case,O(x;3) outputs an image where the brightness is increased
by m-bright(3) and shifted by m-x-shift(3) on the x-axis, and shifted by m-y-shift(3) on the y-axis.As s
increases, both the number of augmentation operations applied to each image and the magnitude of each of
these operations increase. Consequently, the complexity of the augmentation process increases.

3.1.2 Updating Level of Learning Score

To control the strength of augmentation properly, we check whether the model can correctly predict aug-
mented versions without losing the original information. To enable this, we define the LOL for each class c
at epoch e, i.e., Le

c which is adaptively updated as the training continues as follows:

• Initialize Le
c to zero for all values of c before training.Suppose, at the beginning of the third epoch

L2
c (LOL value for class c after the second iteration) for a specific c is 2.

• First, update the LOL value for each class using the function Vlol which takes inputs: Dc (all images
belonging to class c) , L2

c (previous value of LOL), fθ (the model we are gonna use for prediction),
γ ∈ [0, 1] (threshold hyperparameter) , T (coefficient of the number of samples used to updating
LOL).

Le
c = VLoL

(
Dc, Le−1

c , fθ, γ, T
)

• Inside the function Vlol we loop over values of l lesser than L2
c =2 (i.e) for l=0,1,2 We randomly

sample T(l+1) samples out of Dc which is D
′

c, D
′

c ∈Dc s.t. |D′

c| = T(l + 1)

VLoL
(
Dc, Le−1

c , fθ, γ, T
)

=
{

Le−1
c + 1 if VCorrect (Dc, l, fθ, T ) ≥ γT (l + 1) ∀l ∈

{
0, . . . , Le−1

c

}
Le−1

c − 1 otherwise

• Compute Vcorrect where the model fθ predict the class for all samples in D
′

c counting the total
correct predictions among the T(l+1) samples.

VCorrect (Dc, l, fθ, T ) =
∑

x∈D′
c

⊮{fθ(O(x;l))=c} where D′
c ⊂ Dc

• If the number of correct predictions is above the threshold T(l+1) (i.e if the ratio of correct sam-
ples/total samples is above ) for all values of l (0,1,2 in this case)increase the Le

c by 1 (3 in this case)
otherwise decrease it by 1 (1 in this case) for the next epoch.

• By running Vlol for all classes we could then define a sequence of augmentation operations O(xi, Le
yi

)
each with their strengths defined by the respective Le

yi
where each yi is a class .We create a new

training dataset according to equation 2.

We can train any LTR algorithm (model + preprocessing) on the new dataset and obtain the overall accuracy
for that epoch.
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Figure 2: Algorithm of CUDA

3.2 Dataset and Hyper Parameters

The reproduction study is done on the dataset Cifar100-LT as mentioned in the previous works(Cao et al.,
2019) ,Three different datasets are derived from Cifar100 dataset with imbalance ratio 100,50 and 10,where
an imbalance ratio is defined as Nmax/Nmin. The CIFAR-100 dataset (Canadian Institute for Advanced
Research, 100 classes) is a subset of the Tiny Images dataset and consists of 60000 32x32 color images. |Dk|
between |D1| = Nmax and |D100| = Nmin follows an exponential decay.The Hyper parameters augmenta-

tion probability ,Number of test samples and Acceptance Rate as mentioned in the original paper.The values
used are 0.6 for augmentation probability,10 for number of test samples and 0.5 for Acceptance rate.The
hyper parameter sensitivity analysis done on the three hyper parameters further substantiated the values
used.

3.3 Experimental setup and code

We have conducted all experiments for the dataset Cifar100-LT by using the official repository, which is
implemented in PyTorch .The code from the repository was reorganized into a Jupyter notebook to enhance
portability and offer better control over the environment.The dependencies were not explicitly provided,
and the versions of different libraries were determined through trial and error. Deprecated elements within
the code were replaced with suitable, up-to-date alternatives.For training the model, parameters were set
based on the specifications outlined in the paper. Any parameters not explicitly mentioned in the paper
were assumed to use default values. The code for conducting component analysis on curriculum learning,
class-wise score measurement, and measuring the standard deviation in weight L1 norm were re-implemented
based on the specifications provided in the paper.The code and the readings are available here.

3.4 Computational requirements

We trained the model in kaggle with 1 NVIDIA Tesla P100 as the GPU accelerator.The average training
time of the model was approximately 40 minutes with a batch size of 128 for 200 epochs.The overall budget
of the study was 250 GPU hours.For each model, include a measure of the average runtime (e.g. average
time to predict labels for a given validation set with a particular batch size).For each experiment, include
the total computational requirements (e.g. the total GPU hours spent).

4 Results

The performance analysis of accuracy with CUDA consistently demonstrates an increase across all mod-
els. The examination of LOL scores, representing augmentation strength, broadly supports the claim that
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Figure 3: Validation accuracy on CIFAR-100-LT dataset. † are from Park et al. (2022) and ‡, are from the
original papers (Kim et al. (2020); Zhu et al. (2022)). Other results are from our implementation.We report
the average results of three random trials.

Figure 4: Evolution of LOL score in the order CE,CE-DRW,LDAM-DRW,BS,RIDE

"Stronger augmentation on majority classes and milder augmentation on minority classes improves perfor-
mance," although a definitive trend is not readily apparent. The gain in accuracy attributed to CUDA
diminishes as the imbalance ratio decreases. We observe a concavity in performance when hyper-parameters
augmentation probability and accept rate are varied. Additionally, minimal fluctuations in accuracy are
observed with variations in the hyper-parameter number of test samples. A drop in performance is observed
when classwise score or curriculum learning is omitted from the model training process.

4.1 Results reproducing original paper

4.1.1 Comparison of validation accuracy

We measure the validation accuracy of CUDA when used with CE(Cross Entropy), CE-DRW (Cross entropy
Dynamic reweighting)(Cao et al., 2019), LDAM-DRW (label-distribution-aware margin loss)(Cao et al.,
2019), BS (balanced soft-max)(Ren et al., 2020) and RIDE(Wang et al., 2021) for the CIFAR-100-LT dataset
following the general settings outlined in Cao et al. (2019). Specifically, we use ResNet-32 (He & Garcia,
2009)as the backbone network. The network is trained using stochastic gradient descent (SGD) with a
momentum of 0.9 and a weight decay of 0.0002. The initial learning rate is set to 0.1, and a linear learning
rate warm-up is applied during the first 5 epochs to reach the initial learning rate. The training process
spans over 200 epochs, during which the learning rate is decayed at the 160th and 180th epochs by a factor
of 0.01.The hyperparmeters: acceptance rate, augmentation probability and Number of test samples were
0.6,0.5 and 10 respectively. From figure3 we can observe a consistent increase in accuracy across all 5 models
when paired with CUDA compared to the Vanilla edition.
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Figure 5: Variation Of weight-L1 norm in the order CE,CE-DRW,LDAM-DRW,BS

Figure 6: Hyper parameter Analysis on the LDAM-DRW

4.1.2 Dynamics of LOL Score

We plot the progression of LOL scores for various classes across five models: CE, CE-DRW, BS, LDAM-
DRW, and RIDE. Notably, while there isn’t a linear drop in augmentation strength as we move along the
y-axis, there’s a clear trend of higher average augmentation strength for the majority classes (0-49) compared
to minority classes (50-99). The heatmaps presented in Figure 4 validate the assertion that "Stronger
augmentation on majority classes and weaker augmentation on minority classes yields better performance."
A notable surge in LOL scores across most classes occurs after the 160th epoch, likely attributable to the
decay in learning rate beyond this epoch.

4.1.3 Variance of Weight L1-norm

The classifier weight norm is usually used to measure how balanced the model consider the input from a
class-wise perspective(Kang et al., 2021). If the weight L1 norm are similar means the model gives equal
importance to all classes. We analyze how CUDA affects standard deviation of weight L1 norm across the
5 models. We observe that there is a significant decrease in the standard deviation of weight L1 norm when
we use CUDA from Figure 5.

4.1.4 Hyper-Parameter Analysis

The paper proposed training on RIDE but we went with LDAM-DRW as LDAM-DRW showed a higher
increase in performance when paired with CUDA which means that the magnitude of change in performance
with change in hyper parameter will be higher.For Acceptance-Rate we train the model LDAM-DRW with
CUDA for 5 equally spaced values from 0.1 to 0.9. Accept rate of 0.1 means that threshold for accepting the
augmented samples is low leading to higher augmentation strength. Accept rate of 0.9 means that threshold
for accepting the augmented samples is high leading to lower augmentation strength. For Probability-
augmentation we train the model LDAM-DRW with CUDA for 5 equally spaced values from 0.3 to 0.7
.Probability-augmentation of 0.3 means that most of the original images is retained when forming the data-
loader. Probability-augmentation of 0.7 means that most of the original images is replaced by the augmented
images when forming the data-loader . From Figure 6 we observe that Acceptance-Rate and Probability-
augmentation shows a concavity in the performance. For the hyper parameter number of test samples
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Figure 7: CA on Classwise Score and Curriculum Learning,Comparison of accuracy on different augmentation
techniques

we train the model LDAM-DRW with CUDA for three different values of 1,10,100.We can see that the
performance increases slightly with increase in Number of Test samples from Figure 6.

4.1.5 Curriculum Learning

Curriculum Learning (CL) is a training strategy designed to enhance machine learning models by progres-
sively exposing them to increasingly complex or challenging data during training.Previous works (Zhou et al.,
2020) have shown that curriculum learning can improve accuracy of LTR models.In the context of the CUDA
algorithm, the LOL (Learning Objective Level) scores for each class initially start at zero and are iteratively
updated at the end of each epoch based on the model’s performance with augmented images. After 200
epochs, an optimal combination of LOL scores is achieved, leading to the final model performance.To assess
the impact of curriculum learning on accuracy, a two-step approach is employed. In the first step, a model
is trained using the standard CUDA procedure. Subsequently, the LOL scores obtained from this initial
training run are extracted and utilized as fixed scores in a subsequent run. In this second run, the model is
trained without updating the LOL scores. Figure7 shows that there is an decrease in performance across all
5 models when CUDA is trained without curriculum learning.

4.1.6 Classwise-Score

To examine the validity of class-wise augmentation of CUDA, we apply CUDA with the same strength of
DA for all classes. Instead of computing LOL score class-wisely, we computed only one LOL score for the
entire dataset by uniformly random sampling instances in the training dataset regardless of class. Figure7
shows a significant performance degradation of CUDA across all 5 models without class-wise augmentation
compared to CUDA.

4.1.7 Comparison with other Augmentation techniques

We compare the performance of CUDA with other augmentation techniques:Auto-
Augmentation(Cifar,Imagenet and SVHN policy) (Cubuk et al., 2019),Fast Auto-
Augmentation(Cifar,Imagenet and SVHN policy)(Lim et al., 2019),DADA (Li et al., 2020) and Rand-
Augmentation(m=1,n=2) (Cubuk et al., 2020)for the model LDAM-drw.Our analysis reveals that CUDA
consistently outperforms all other augmentation techniques.

4.2 Results beyond original paper

4.2.1 Cutout

The usage of the augmentation operation Cutout was not explicitly mentioned in the paper. Cutout has
proved to improve generalization performance of CNNs (DeVries & Taylor, 2017). Our analysis focused on
investigating how Cutout affects the performance of CUDA for the CE (cross-entropy) model. Our findings
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Figure 8: Analysis of accuracy on Cutout and Analysis of gain in accuracy with imbalance ratio

in Figure8 suggest that incorporating cutout during training is crucial for achieving the reported accuracy
levels stated in the original paper.

4.2.2 Gain in accuracy for imbalance ratio

We conducted a comparative analysis of the gain in accuracy among five models when paired with CUDA
across three different imbalance ratios: 100, 50, and 10.Imbalance ratios reflect the disparity in class distri-
bution within the dataset, with higher ratios indicating more pronounced class imbalances. Our findings in
Figure 8 reveal a consistent trend where the gain in accuracy diminishes as the imbalance ratio decreases.

5 Discussion

The experimental results presented in the paper effectively support its claims, demonstrating improvements
in validation accuracy. However, the performance of CUDA with model BCL couldn’t be fully evaluated due
to inadequate time. Nevertheless, we can still validate the first claim based on the available data. There is a
noticeable difference in the LOL scores between the majority class (0-49) and minority class (50-100) before
the 160th epoch. However, after training for 200 epochs, this difference becomes insignificant. Despite
this, a holistic analysis of the evolution of the LOL scores across epochs still supports the second claim.
By analyzing the variance of weight L1-norm, the study showcases how CUDA effectively addresses the
imbalance problem, leading the model to assign equal importance to each class. We were unable to conduct
a study on classwise feature cosine similarity, which could have further validated the efficiency of CUDA on
solving the imbalance problem.The impact of curriculum and classwise score on the performance of CUDA
is evident from our findings. Notably, Cutout plays a significant role in the accuracy gain observed when
using CUDA, even more so than curriculum learning or classwise score. The Hyper-parameter sensitivity
analysis for augmentation probability and Accept rate on validation accuracy reveals a concavity as claimed
by the paper.Additionally, our analysis on the imbalance ratio indicates that CUDA’s efficiency diminishes
as we move towards datasets with lesser imbalance. From this, we can infer that CUDA may not provide
significant improvements with balanced datasets.

5.1 What was easy

The paper was really easy to follow. The section on the repository for Cifar100-LT was clearly written. The
description of the arguments that we pass during training was properly stated.The algorithm, which makes
up CUDA, was completely logical in its implementation.The lack of significant barriers in setting up the
code enhances its portability.

5.2 What was difficult

The dependencies were not clearly mentioned by the author requiring additional time to find the versions by
trial and error. The original paper had also included performance comparison on datasets Imagenet-LT and
Inaturalist-18, the section of the original repository for imagenet-LT and inat-18 contains redundant code
and uncleaned up code.The paper claims to deviate from the model recipes of BCL and NCL to ensure a fair
comparison. However, it fails to clearly state these deviations, making it difficult to assess their performance
in this study.
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5.3 Communication with original authors

The initial attempts to contact the authors through the email IDs given in the paper was not successful.We
were able to contact the authors through linked-in in latter half of the study.The authors were able to clarify
our doubts on implementing the component analysis for curriculum learning and class-wise score.Regrettably,
the authors were unable to provide a clear recipe for BCL.
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Table 1: Operation Parameter Description
Operation Description
Flip On/Off Flip top and bottom
Mirror On/Off Flip left and right
Edge Enhancement On/Off Increasing the contrast of the pixels around the targeted

edges

Detail On/Off Utilize convolutional kernel

 0 −1 0
−1 10 −1
0 −1 0


Smooth On/Off Utilize convolutional kernel

1 1 1
1 5 1
1 1 1


AutoContrast On/Off Remove a specific percent of the lightest and darkest pixels
Equalize On/Off Apply non-linear mapping to make uniform distribution
Invert On/Off Negate the image
Gaussian Blur Blurring an image using Gaussian function with radius [0,2]
Resize Crop Resizing and center random cropping with scale [1,1.3]
Rotate Rotate the image with angle [0,30]
Posterize Reduce the number of bits for each channel in the range

[0,4]
Solarize Invert all pixel values above a threshold in the range [0,256]
SolarizeAdd Adding value and run solarize in the range [0,110]
Color Colorize gray scale values in the range [0.1, 1.9]
Contrast Adjust the distance between colors in the range [0.1,1.9]
Brightness Adjust image brightness in the range [0.1,1.9]
Sharpness Adjust image sharpness in the range [0.1,1.9]
Shear X Shearing X-axis in the range [0,0.3]
Shear Y Shearing Y-axis in the range [0,0.3]
Translate X Shift X-axis in the range [0,100]
Translate Y Shift Y-axis in the range [0,100]

Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. Bbn: Bilateral-branch network with cumulative
learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9719–9728, 2020.

Jianggang Zhu, Zheng Wang, Jingjing Chen, Yi-Ping Phoebe Chen, and Yu-Gang Jiang. Balanced contrastive
learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6908–6917, 2022.

A Augmentation preset

We use 22 different augmentation operations for CUDA each having their own parameter.The details of
each of these operation has been described in table 1.The magnitude parameter divides the augmentation
parameter into 30 values linearly.For example for Rotate max value is 30 and min value is 0,the magnitude
of parameter for rotate is defined by

mrotate (s) = (30 − 0)/30 ∗ s, thus mrotate (1) = 1 = (30 − 0)/30 ∗ 1
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Figure 9: The 22 augmentation operations we use for CUDA
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