
Patch n’ Pack: NaViT, a Vision Transformer
for any Aspect Ratio and Resolution

Mostafa Dehghani∗, Basil Mustafa∗, Josip Djolonga†, Jonathan Heek†,
Matthias Minderer, Mathilde Caron, Andreas Steiner, Joan Puigcerver,

Robert Geirhos, Ibrahim Alabdulmohsin, Avital Oliver, Piotr Padlewski,
Alexey A. Gritsenko, Mario Lucic, Neil Houlsby

Google DeepMind
{dehghani,basilm}@google.com

Abstract

The ubiquitous and demonstrably suboptimal choice of resizing images to a fixed
resolution before processing them with computer vision models has not yet been
successfully challenged. However, models such as the Vision Transformer (ViT)
offer flexible sequence-based modeling, and hence varying input sequence lengths.
We take advantage of this with NaViT (Native Resolution ViT) which uses sequence
packing during training to process inputs of arbitrary resolutions and aspect ratios.
Alongside flexible model usage, we demonstrate improved training efficiency for
large-scale supervised and contrastive image-text pretraining. NaViT can be effi-
ciently transferred to standard tasks such as image and video classification, object
detection, and semantic segmentation and leads to improved results on robustness and
fairness benchmarks. At inference time, the input resolution flexibility can be used to
smoothly navigate the test-time cost-performance trade-off. We believe that NaViT
marks a departure from the standard, CNN-designed, input and modelling pipeline
used by most computer vision models, and represents a promising direction for ViTs.

1 Introduction

The simple, flexible and scalable nature of the Vision Transformer (ViT) [1] has rendered it an almost
ubiquitous replacement to convolution based neural networks. Underpinning this model is a simple
operation: splitting an image into patches, each of which is linearly projected to a token. Typically,
input images are resized to a fixed square aspect ratio and then split into a fixed number of patches.

Recent works have explored alternatives to this paradigm: FlexiViT [2] supports multiple patch sizes
within one architecture, enabling smooth variation of sequence length and thus compute cost. This
is achieved via random sampling of a patch size at each training step and a resizing algorithm to allow
the initial convolutional embedding to support multiple patch sizes. Pix2Struct [3] introduced an
alternative patching approach which preserves the aspect ratio, which is particularly useful for tasks
such as chart and document understanding.

We present an alternative, NaViT. Multiple patches from different images are packed in a single
sequence—termed Patch n’ Pack—which enables variable resolution while preserving the aspect
∗ Project lead. †Core contributor.

37th Conference on Neural Information Processing Systems (NeurIPS 2023)

102 103

Pre-training TPU chips hours

60%

65%

70%

75%

80%

Ac
cu

ra
cy

Pre-training linear eval

102 103

Pre-training TPU chips hours

80%

82%

84%

86%

88%

Finetuned acc vs. pretrain cost

103 104

Inference cost (ms/image)

50%

60%

70%

80%

90%
Finetuned acc vs. inference cost

Model
ViT
NaViT

Version
B/32
B/16
L/16

Figure 1: NaViT offers notable computational efficiency during pre-training (left) which carries over to down-
stream fine-tuning (middle). A single NaViT can be applied successfully to multiple resolutions (right), smoothly
trading off performance and inference cost.

ratio (Figure 2). This is inspired by example packing in natural language processing, where multiple
examples are packed into a single sequence to accommodate efficient training on variable length inputs.

Image	1 Image	2 Image	3 Pad

query

key

Each	token's	receptive	field	is	restricted	to	the	tokens	within	the	same	example

Self-Attention

Pooling	Representations

Pad	tokens	are	masked	out	
from	attention

Pad	tokens	are	masked	out	
from	pooling

Pad	examples	are	masked	out	
from	loss	computation

Image1										Image2										 Image3																								Image1										Image2												Image3																			Image1										Image2											 Image3

Inputs Patchify Token	drop

Data	preprocessing

Packed	
Sequence

Figure 2: Example packing
enables variable resolution
images with preserved as-
pect ratio, reducing train-
ing time, improving perfor-
mance and increasing flexi-
bility. We show here the as-
pects of the data preprocess-
ing and modelling that need
to be modified to support
Patch n’ Pack. The position-
wise operations in the net-
work, such as MLPs, residual
connections, and layer nor-
malisations, do not need to
be altered. Note that this dia-
gram only showed the differ-
ences introduced by NaViT
and other parts of the model
architecture is identical to the
Vision Transformer [1].

We demonstrate that: (i) Randomly sampling resolutions at training time significantly reduces training
cost. (ii) NaViT results in high performance across a wide range of resolutions, enabling smooth
cost-performance trade-off at inference time, and can be adapted with less cost to new tasks, (iii) Fixed
batch shapes enabled by example packing lead to new research ideas, such as aspect-ratio preserving
resolution-sampling, variable token dropping rates, and adaptive computation.

These observations have major practical implications. At a fixed computational budget NaViT
consistently outperforms ViT. For instance, we match the performance of the top-performing ViT
with 4× less compute (Figure 1, left). We identify the substantial increase in the number of training
examples processed within the allocated compute budget as the primary contributor to the improved
performance over ViT (Appendix B.5) —example packing coupled with variable resolution inputs
and variable token dropping enable NaViT-L/16 to process five times more images during training
(Table 2). This improved efficiency extends to the fine-tuning process (Figure 1, middle). Furthermore,
by exposing NaViT to multiple resolutions during both pre-training and fine-tuning, a single model
demonstrates excellent performance when evaluated on various resolutions, significantly advantaging
NaViT in terms of inference cost (Figure 1, right).

NaViT’s training and adaptation efficiency, and flexible inference, presents a promising avenue for
Vision Transformers. Patch n’ Pack empowers computer vision systems to transcend limitations
imposed by current data and modeling pipelines, enabling ideas that were previously restricted by
the constraints of fixed batch shapes, unlocking new possibilities for innovation and advancement.

2

h = 2w h = w w = 2h
0
1
2
3
4
5

De
ns

ity

ImageNet (85.9% non-square)

h = 2w h = w w = 2h
Aspect ratio

LVIS (92.2% non-square)

h = 2w h = w w = 2h

WebLI (57.3% non-square) Figure 3: Height:width ra-
tios of different datasets;
most images are not square-
ish (> 20% deviation).

2 Method

Deep neural networks are typically trained and run with batches of inputs. For efficient processing on the
current hardware this implies fixed batch shapes which in turn imply fixed image sizes for computer vi-
sion applications. This coupled with architectural limitations historically associated with convolutional
neural networks led to a practice of either resizing or padding images to a fixed size. Both of these have
been shown to be flawed: the former harms performance and the latter is inefficient [3]. An analysis of
aspect ratios in ImageNet [4], LVIS [5] and WebLI [6] as representative examples of classification, de-
tection and web image datasets, respectively, shows that most images are typivally not square (Figure 3).

In language modelling, it is common to bypass limitations of fixed sequence lengths via example
packing: tokens from multiple distinct examples are combined in one sequence, which can significantly
accelerate training of language models [7]. By treating images as sequences of patches (tokens), we
show that Vision Transformers [1] can benefit from the same paradigm, which we call Patch n’ Pack.
Using this technique ViTs can be trained on images at their “native” resolution, and we name this
approach NaViT.

2.1 Architectural changes

NaViT is built upon the original ViT, but in principle can use any ViT variant operating on a sequence
of patches. To enable Patch n’ Pack, we make the following architectural modifications.

Masked self attention and masked pooling. To prevent examples attending to each other, additional
self-attention masks are introduced. Similarly, masked pooling on top of encoder aims to pool the
token representations within each example, resulting in a single vector representation per example
in the sequence. Figure 2 presents how the receptive filed of attention is controlled via masking.

Factorized & fractional positional embeddings. To handle arbitrary resolutions and aspect ratios,
we revisit the position embeddings. Given square images of resolutionR×R, a vanilla ViT with patch
sizeP learns 1-D positional embeddings of length (R/P)2 [1]. Linearly interpolating these embeddings
is necessary to train or evaluate at higher resolutionR.

Pix2struct [3] introduces learned 2D absolute positional embeddings, whereby positional embeddings
of size [maxLen,maxLen] are learned, and indexed with (x,y) coordinates of each patch. This enables
variable aspect ratios, with resolutions of up toR=P ·maxLen. However, every combination of (x,y)
coordinates must be seen during training.

To support variable aspect ratios and readily extrapolate to unseen resolutions, we introduce factorized
positional embeddings, where we decompose into separate embeddings φx and φy of x and y
coordinates. These are then summed together (alternative combination strategies explored in
Section 3.4). We consider two schema: absolute embeddings, where φ(p) : [0,maxLen]→RD is a
function of the absolute patch index, and fractional embeddings, where φ(r) : [0,1]→RD is a function
of r = p/side-length, that is, the relative distance along the image. The latter provides positional
embedding parameters independent of the image size, but partially obfuscates the original aspect
ratio, which is then only implicit in the number of patches. We consider simple learned embeddings
φ, sinusoidal embeddings, and the learned Fourier positional embedding used by NeRF [8].

2.2 Training changes

Patch n’ pack enables new techniques to be used during training of NaViT.

Continuous Token dropping. Token dropping (random omission of input patches during training)
[9, 10] has been developed to accelerate training. However, typically the same proportion of tokens are
dropped from all examples; packing enables continuous token dropping, whereby the token dropping
rate can be varied per-image. This enables the benefits of faster throughput enabled by dropping while
still seeing some complete images, reducing the train/inference discrepancy. Further, with packing, the

3

drop-distribution can vary throughout training, following some pre-defined schedule. In Section 3.3,
we explore different schedules and the benefits of flexible token dropping.

Resolution sampling. NaViT can be trained using the original resolution of each image. Alternatively,
the total number of pixels can be resampled while preserving aspect ratio. In vanilla ViT, there is a
tension between greater throughput (training on smaller images), and greater performance (training
on larger images, to enable high-resolution at evaluation time). Oftentimes, models are pre-trained at
a smaller resolution and finetuned at a higher one [11]. NaViT is much more flexible; it allows mixed-
resolution training by sampling from a distribution of image sizes, while retaining each images’ original
aspect ratio. This allows both higher throughput and exposure to large images, yielding substantial
improved performance over equivalent ViTs (in terms of models size and training duration). Section 3.2
explores different sampling strategies, and variable resolution training for pre-training and finetuning.

2.3 Efficiency of NaViT

Here we discuss some implications of Patch n’ Pack on the computational efficiency of NaViT.

1024 2048 4096 6144
Model dimension

0%
10%
20%
30%
40%
50%

At
ten

tio
n

ov
er

he
ad 1 packed

2 packed
4 packed
8 packed

Figure 4: Overhead from extra attention due
to packing, assuming 256 tokens per image; it
diminishes with model scale.

Self attention cost. TheO(n2) cost of attention is a natu-
ral concern when packing multiple images into longer se-
quences. Though many works aim to remove this quadratic
scaling [12, 13], we demonstrate here that as the transformer
hidden dimension is scaled, the attention becomes an in-
creasingly smaller proportion of the the overall cost, which
encompasses the computation cost of the MLP as well.
Figure 4 illustrates this trend, indicating a corresponding
reduction in the overhead associated with packing exam-
ples. In addition to speed considerations, the memory cost
of self-attention can pose a challenge for extremely long
sequences. However, this challenge can be also addressed
by employing memory-efficient methods [14, 15].

Packing, and sequence-level padding. The final sequence lengths containing multiple examples
must be fixed. We use a greedy packing approach discussed in Appendix B.3; there typically is no
perfect combination of examples exactly adding up to the fixed length and padding tokens have to be
used. One could for example dynamically choose the resolution or token dropping rate of the final
example in a sequence to exactly fit the remaining tokens; however, we find typically less 2% of tokens
are padding tokens, and thus the simple approach is sufficient.

Padding examples and the contrastive loss. Per-token losses are straightforward to implement with
packed sequences. However, many computer vision models are trained with example-level losses,
typically applied to a pooled representation. First, this requires modifications to the typical pooling
heads to account for packing. Second, multiple pooled representations must be extracted from each
sequence. Fixed batch shapes requires an assumption that, from a batch ofB sequences, we extract at
mostB×Emax pooled representations (i.e. Emax examples per sequence). If a sequence contains more
thanEmax images, the extra images will be dropped, wasting computation of the model’s encoder. If a
sequence has less thanEmax examples, then the loss will process lots of fake padding representations.

The latter is an issue for contrastive learning, where loss computation scales in time and memory
∼O(n2). To avoid this, we used the chunked contrastive loss [16], which circumvents the need to
gather all data points for the softmax by performing computations on local device subsets and efficiently
accumulating the necessary statistics for global softmax normalization. This enable high values of
Emax (and thus efficient use of the model encoder), without being bottlenecked by the loss.

3 Experiments

The base architecture we use for NaViT follows vanilla ViT [1], with the changes to enable packing,
described in Section 2.1. In addition, we include small ViT improvements from previous works:
query-key normalization and the omission of biases [17], and attention pooling [18].

We pre-train NaViT in two setups: classification training on JFT-4B [18] and contrastive language-
image training [19] on WebLI [6]. Typically, for JFT, inception crop is applied pre-training [20, 1],
and in both cases, images are resized to a square (distorting aspect ratio). Unless otherwise specified,

4

all NaViT models are pre-trained without these operations, and preserve aspect ratio. NaViT is
implemented in JAX [21] using the FLAX library [22] and built within Scenic [23].

Classification pretraining. We pre-train NaViT with supervised classification objective, using a
sigmoid cross-entropy loss, following the setup of [17] on JFT-4B [18]. Visual representations are
evaluated following the linear evaluation protocol used for ViT [1], where 10 examples per class are
used to train a linear classifier on top of frozen representations.

Contrastive pre-training. Alongside the image model, we train a text encoder with the same architec-
tural modifications using the contrastive image-text loss [19, 24] (details in Appendix B.2). Packing
also provides efficiency improvements on the text-tower, as text sequences do not need to be padded to
a fixed lengths, which is the normal setup. The contrastive models are evaluated on zero-shot ImageNet
classification and COCO image-text retrieval.

Note that throughout all the pre-training experiments and the transfer to downstream experiments, both
the NaViT and baseline models are trained with compute-matched setup. This implies that during
pretraining, the same amount of TPU time is used and for downstream tasks, the models are evaluated
at the same effective resolution (i.e., the same number of tokens). To be precise, all downstream
experiments utilized the top-rightmost points in Figure 1 (ViT-L/16 and NaViT-L/16).

3.1 Improved training efficiency and performance

Figure 1 illustrates the JFT pretraining performance of different NaViT models compared to compute-
matched ViT baselines [25]. The experimental setup details are provided in Appendix B.1. NaViT
consistently surpasses ViT in performance while using the same computational budget across different
compute and parameter scales; for example, the performance of the top-performing ViT can be matched
by a NaViT with four times less compute. Conversely, the computationally lightest NaViT in Figure 1
is five times more cost-effective than its equivalent ViT counterpart.

The NaViT models benefit from preserved aspect ratios and the ability to evaluate over many resolutions,
but the chief contributor here is the significant increase in the number of training examples processed
by NaViT within the allocated compute budget. This is achieved through the combination of sampling
multiple variable-resolution examples and token dropping, leading to variable size images that are
efficiently packed into a similar sequence length as the original model. We ablate these factors below.

3.2 Benefits of variable resolution

Here, we deep-dive the benefits of mixed-resolution training. Since we preserve the native aspect ratio,
when we refer to “resolution” for NaViT, we mean “effective resolution”. That is, images with the
same area as a square image with a given resolution. For example, for NaViT a resolution of “128” has
the same area of a square 128 x 128 image, but could be 64 x 256, or 170 x 96, etc., and thus has the
same inference cost as regular ViT on 128 x 128 images.

Variable-resolution pre-training. Lower resolution images require fewer FLOPs to process and
hence small resolutions (like 224) are used with fixed-resolution training. With fixed-resolution
training, there is a trade-off between throughput and ability to process details and high-resolution
images. With NaViT we can mix lower resolution images with large ones to get the best of both worlds.

Figure 5 shows a comparison between two NaViT variants trained at several different resolutions. Here,
all trained for the same number of FLOPs. (1) Native aspect ratio, but fixed resolution R=Rmax
for different chosen values of Rmax. (2) Variable resolution, where the resolution is distributed as
R∼U(64,Rmax). Variable resolution models outperform models trained at only that resolution. Even
in the best case for fixed resolution, where the train and evaluation resolutions are identical, variable
resolution matches or outperforms fixed.

Variable-resolution finetuning. Prior works increase resolution late in pre-training or during finetun-
ing, producing higher quality but more expensive models [1, 11]. We finetune NaViT and ViT models at
different fixed resolutions, and additionally NaViT at variable resolutions. Figure 6 shows the results of
fine-tuning pretrained ViT and NaViT on ImageNet-1k dataset. Performance gains during pretraining
transfer well at all resolutions, but two phenomena are particularly interesting: First, NaViT finetuned
with variable resolutions ("NaViT 64:512") is as good as a NaViT finetuned at a single resolution (and
much better than single-resolution ViT), removing the need to pick a single downstream finetuning
resolution. Second, NaViT finetuned at low resolution (64) still obtains good performance when

5

128 256 384 512
Max train resolution Rmax

76%

77%

78%

79%

To
p-

1
Ac

cu
ra

cy

Best ImageNet 10shot

Variable res U[64, Rmax]
Fixed res = Rmax

128 256 384 512

40%

60%

80%
native res eval

128 256 384 512

20%
40%
60%

128 res eval

128 256 384 512

65%
70%
75%

224 res eval

128 256 384 512
Rmax

70%

75%

256 res eval

128 256 384 512
Rmax

40%

60%

80%
384 res eval

128 256 384 512
Rmax

20%
40%
60%
80%

512 res eval

Figure 5: At fixed computa-
tional cost, sampling lower res-
olutions increases throughput,
improves performance and en-
ables better use of models at
varied resolutions. NaViT-
B/16 models trained with vari-
able vs. fixed resolutions
demonstrate the benefit of
mixed resolution.

64 128 256 384 512
Fine-tune resolution Rft

55%
60%
65%
70%
75%
80%
85%

Im
ag

eN
et

To
p-

1
Ac

cu
ra

cy

Eval at Rft

NaViT (one per res)
ViT (one per res)
NaViT-64:512

64 128 256 384 512
Fine-tune resolution Rft

Best eval across R [64, 512]

NaViT (one per res)
ViT (one per res)
NaViT-64:512

Figure 6: Variable-resolution finetuning, JFT B/16
models finetuned on ImageNet at various resolutions.
Overall NaViT in all settings (blue, red), outper-
forms ViT (orange) Left: A single NaViT finetuned
with variable resolutions (red) is as good as models
tuned on only one resolution (blue). Right: Mixed-
resolution pretraining performs well at high resolu-
tion when finetuning at low resolution (left-hand end
of blue curve).

evaluated at higher resolutions (Figure 6, right), enabling cheaper adaptation.This ability to perform
cheap adaptation of a flexible pre-trained model corroborates findings in [2].

55% 58% 60% 62% 65% 68%
ImageNet zero-shot Accuracy

normal

normal
= 0.5

normal
= 0.5

uniform

di
str

ib
ut

io
n

63.3%

62.6%

63.4%

63.8%

63.6%

63.1%

64.3%

63.4%

Sample side length
Sample area

Native res

Figure 7: Sampling side lengths di-
rectly with a bias towards lower reso-
lutions gives overall best performance
at a fixed computational budget.

Resolution sampling strategies. Packing examples enables
diverse resolution sampling strategies. We first consider whether
to sample the target side length (average height/width, R), or
the target area (i.e. sequence length∝R2). Sampling the side
length from a uniform distribution biases towards lower sequence
lengths, whereas sampling the area from a uniform distribution
biases towards higher side lengths.

For each image, we sample u∼D, whereD is a distribution with
support [−1,1]. We rescale u linearly to [64,384] for sampling
side-lengths or [642,3842] for sampling areas. We consider four
distributions D: uniform u ∼ U(−1,1), truncated (to [−1,1])
standard Normal u ∼ Nt(0,1), and then two other Normals
which bias towards lower resolution u∼Nt(−0.5,1) and higher
resolution u ∼ Nt(0.5,1). The results are shown in Figure 7.
Here, the best resolution resampling strategy consistently per-
forms over the default resolution. It is consistently better to
sample side-lengths (orange) directly as opposed to area (blue), and the best distribution is the truncated
normal biasing towards lower values; both of these increase throughput by preferentially sampling
smaller sequences.

3.3 Benefits of variable token dropping

Token dropping strategies.

70.0% 80.0%
Top-1 accuracy

Fixed

Increasing

Decreasing (fast)

Decreasing (slow)Dr
op

 sc
he

du
le 75.8%

72.2%

76.3%

76.5%

Figure 8: Time-varying token dropping
rates improves performance and are eas-
ily done with Patch n’ Pack.

We experimented with continuously sampled token dropping
rates, and with resolution-dependent token dropping rates; both
are explained in Appendix B.6.

Fig. 9a compares variable drop rates sampled from a Beta
distribution to a constant drop rate, demonstrating consistent
improvements from the former. Fig. 9b shows the use of a
resolution dependent token dropping rate for models trained
with R ∼ U(64, 384) and dropping rates scaled between
[0.5− δ,0.5 + δ] ∝ R, which further improves over the beta
distribution.

6

0.25 0.50 0.75
Mean token drop rate

76%

78%

80%

To
p-

1
Ac

cu
ra

cy
no token drop
fixed for every image
beta: per image

(a) Constant vs. Beta-distributed to-
ken dropping rates.

fixed beta = 0.25 = 0.4
Token drop strategy

78.0%

78.5%

79.0%

To
p-

1
ac

cu
ra

cy

Resolution-dependent

(b) Resolution dependent token drop-
ping sampled∈0.5±δ

Figure 9: Continuous to-
ken dropping strategies en-
abled by sequence packing
improves performance

Scheduled token dropping rates. Packing also enables easy
variation the token dropping rate during training. By changing the token dropping rate we can better
tune the trade-off between number of images seen and information used per image, to maximize the
final accuracy while keeping the total training cost constant. We varied the token dropping rate as a
function of the number of images seen (details of the schedule in Appendix B.7). Fig. 8 demonstrates
that further improvements are possible by reducing the token dropping rate during JFT pretraining of
NaViT-B/16.

3.4 Positional embeddings

We evaluate our factorized embeddings introduced in Section 2.1, and their design choices. We are
interested in both absolute performance, and extrapolation to resolutions outside the training regime.
To test this, we train NaViT-B/16 models for 200k steps on JFT, with resolutionsR∼U(160,352). We
evaluate performance at a range of resolutions, without modification of the embedding variables. We
compare to a ViT-B/16 trained at fixed resolution 256 for the same amount of images seen, evaluated at
new resolutions using standard interpolation of positional embeddings.

Figure 10a illustrates the disparity among different positional embedding methods when the model is
evaluated under the “in-distribution" setup, where the resolutions of training and testing data are within
a comparable range. Conversely, Figure 10b shows the model performance across out-of-distribution
resolutions, revealing notable distinctions between the approaches.

First, it is clear that the factorized approaches outperform both the baseline ViT and the Learned 2D
embeddings from Pix2struct. The latter in particular struggles to generalize to higher resolution, likely
because this requires an increasingly long tail of unseen (x,y) pairs. Factorized embeddings are best
combined additively (as opposed to stacking or multiplying).

50% 55% 60% 65% 70% 75%
ImageNet 10shot accuracy

Learned 1D (ViT)
Learned 2D (Pix2struct)

Factorized (+)
Factorized (stack)

Factorized (×)
Sinusoidal

Fourier
Factorized (+)

Sinusoidal
Fourier

64.4% 71.4%
64.7% 71.3%

64.9% 71.5%
64.8% 71.5%

64.2% 71.3%

53.8% 69.3%
63.5% 71.3%

63.9% 70.8%

64.8% 71.4%
64.2% 71.5%

(a)

64 160 256 352 512 640
Evaluation resolution

0%

20%

40%

60%

80%

100%

Re
lat

iv
e a

cc
ur

ac
y

Train
resolutions

ViT
Learned 2D (pix2struct)
Factorized (+)
Fourier (fractional)

(b)
Figure 10: Factorized position embeddings improve generalization to new resolutions and aspect ratios. (a) Best
(faded) and average accuracies (dark) across resolutions. (b) Accuracy normalized w.r.t. resolution 256.

3.5 Other aspects of NaViT’s performance

Out of distribution generalization. We directly evaluate JFT-pretrained NaViT on downstream
datasets, employing a label-map [26] from JFT-4B to ImageNet [4] and robustness-variants (Object-
Net [27] and ImageNet-A [28]). We compare the performance to a compute-matched ViT baseline.

7

102 103

Training TPU chip hours

55%

60%

65%

70%

75%
ImageNet

102 103

Training TPU chip hours

20%

30%

40%

50%

60%

70%
ImageNet-A

102 103

Training TPU chip hours

35%

40%

45%

50%

55%

ObjectNet
ViT NaViT B/32 B/16 L/16

Figure 11: Out of distribution evaluation of ViT and NaViT models that were matched for training compute. In
addition to improved performance due to more images seen (see also Figure 1), NaViT performs much better on
ImageNet-A that has many images with an extreme aspect ratio and important information outside the center crop
(Appendix G). Same data as in Table 5.

Figure 11 shows that NaViT compares favorably both on ImageNet as well as datasets variants that
were specifically designed to test out of distribution performance. It is interesting to note that NaViT
performs much better on ImageNet-A, but ViT catches up on ObjectNet, even though both these
datasets contain images that have extreme aspect ratios. We believe this is due to the aspect-preserving
center crop that we apply to images for ImageNet-A and ObjectNet classification (same as in [17]),
which is a useful prior for ObjectNet, but less so for ImageNet-A (see Appendix G for details). If no
crop is applied to images and they’re instead simply resized to the image resolution expected by the
model (i.e., square for ViT, and aspect preserving resize to the same number of tokens for NaViT), then
the observed difference is much larger (see Figure 21 in appendix).

Calibration. In addition to the in-depth accuracy analysis, we have also quantfied the quality of the
uncertainty computed by the model. In particular, for our ImageNet1K-finetuned models, we computed
the expected calibration error [29] of the top prediction, as we vary the number of patches we assign
per examples. We find that the calibration error remains very stable in the interval (0.045,0.047) as we
vary the number of patches per image in the range [128,1024], without any post-hoc recalibration. We
provide further details in the appendix Appendix F.

Inference trade-offs. Given the flexibility of the model, there are several viable approaches how one
can maximize the aggregate accuracy under a given compute budget, which we quantify in terms of
the latency measured on a Cloud TPUv3 chip. In an online inference setting, choosing an inference
strategy translates to an algorithm how to allocate a fixed number of tokens per example. As we show in
Fig. 1, NaViT offers much better trade-offs than ViT and it shows strong diminishing returns, s.t., even
relatively few patches provide highly competitive results. In Appendix D we further study a cascading
approach, which both provides Pareto optimal models and gives more precise trade-off opportunities.

Fairness signal annotation. We investigate annotating images with fairness-related signals, such
as those pertaining to gender and ethnicity. Prior research has shown that metrics, such as group
calibration, are susceptible to labeling inaccuracy, particularly for underrepresented groups. In
addition, this problem persists even when accounting for label noise during training [30]. Thus,
reducing the labeling error of fairness signals improves the reliability of bias mitigation and post-hoc
auditing [31]. To explore whether NaViT can help in overcoming these challenges, we train annotators
on FairFace [32] and CelebA [33] datasets as linear probes (i.e. using frozen features produced by
NaViT or ViT), before comparing their accuracy.

First, NaViT provides representations of higher quality that improve the accuracy of fairness signal
annotation, even when dealing with square images. Original images are of size 448×448 in FairFace
and 178×218 in CelebA, and we resize them to area 2242 while preserving aspect ratios in NaViT.
Despite having the same sequence length, NaViT provides a higher prediction accuracy than ViT, as
shown in Figure 12 (left). We verify statistical significance using the Wilcoxon signed-rank test test
[34], which reveals that the improvement in NaViT is significant with p=3×10−4.

8

100 250 500 1000
Pretraining Steps (K)

93

95

97

ac
cu

ra
cy

fairface / gender

100 250 500 1000
Pretraining Steps (K)

64

68

72

ac
cu

ra
cy

fairface / ethnicity

Model
ViT
NaViT

100 250 500 1000
Pretraining Steps (K)

95

96

97

ac
cu

ra
cy

fairface / gender

100 250 500 1000
Pretraining Steps (K)

64

68

72

ac
cu

ra
cy

fairface / ethnicity

Square
Native

Figure 12: Evaluating the accuracy of annotators trained on fairness-related signals using either NaViT-L/16 or
ViT-L/16: Left: NaViT offers better representations that improve the accuracy of annotators. Right: Using native
aspect ratios in NaViT results in a higher performance when compared to resizing images to squares.

Second, we apply inception-style cropping [35] with a fixed minimum area of 50%. This changes the
aspect ratio but maintains native resolution. Similar to before, we resize all cropped images to area
224×224, either as square images or with native aspect ratios. Figure 12 (right) shows that native
aspect ratios in NaViT improve accuracy, which is statistically significant at the 95% confidence level
(p=0.02). Appendix H contains the full set of figures for other attributes in CelebA and Fairface.

3.6 Other downstream tasks

Semantic segmentation.

256 384 512 800
Max Finetuning Resolution

44

47

50

53

AD
E2

0k
 m

Io
U

Evaluated on native resolutions

ViT (square R 2
max)

NaViT (res R 2
max)

Figure 13: NaViT transfers competi-
tively to semantic segmentation. We
transfer ViT-L/16 and NaViT-L/16 on
ADE20k with fine-tuning at different
resolutions. ViT consumes square im-
ages while NaViT preserves the aspect
ratio of the original images, while main-
taning the total number of pixels the
same as ViT.

We finetune NaViT to semantic segmentation on ADE20k
dataset [36], following the linear decoder protocol of Seg-
menter [37]. We use ViT-L/16 as baseline and compare its
performance with that of NaViT-L/16. Both models are pre-
trained on JFT-4B [18] with comparable compute budget.

We experiment with different maximum resolution Rmax at
finetuning time: ViT takes in random square crops of resolution
Rmax×Rmax while NaViT’s inputs are randomly resized (with
preserved aspect ratio) so that the total number of pixels isR2

max.
This way, we have the same finetuning cost for the ViT and
NaViT models. Note that following common practice, in order
not to alter the ground truth segmentation maps, both models are
evaluated at the native resolution [37, 38, 36]. This means that for
ViT, the square predictions are resized from square back to native
resolution. We observe in Figure 13 that NaViT outperforms
ViT when transferred to semantic segmentation with the same
maximum finetuning resolutionRmax. Note that NaViT atR384

beats ViT atR512 while being twice as fast (see Appendix D). An
advantage of NaViT over ViT is that it benefits from flexibility
of resolution during training and can ingest seamlessly square and non-square images.

Object detection.
Table 1: NaViT improvements carry over to object
detection.

ViT-L/14 NaViT-L/14

ImageNet zeroshot 68.3% 72.9%
LVIS AP 23.3% 28.3%
LVIS AP rare 17.2% 24.3%

Native-resolution training may be especially ben-
eficial for fine-grained tasks such as object detec-
tion, which require image understanding at many
different spatial scales. We use compute matched
NaViT and ViT models as backbones for OWL-ViT-
L/14 object detectors [39], following the OWL-ViT
protocol for training and evaluation. Results are
presented in Table 1. The NaViT-based detector
performs significantly better on both common and unseen LVIS “rare” classes. These experiments
used shorter pre-training than the original OWL-ViT and thus reach lower absolute performance; the
relative difference nonetheless suggests that NaViT produces strong representations for fine-grained
vision tasks.

Video Classification. Video processing with transformers is inherently challenging due to the het-
erogeneity of the underlying spatio-temporal signals. In practice, cumbersome protocols have to be

9

established both for training and evaluation (e.g. spatial and temporal multi-cropping) [40]. NaViT
alleviates some of these challenges by not only allowing training over different resolutions, but also
over different temporal durations. We fine-tuned NaViT trained on JFT for Kinetics400 [41] classifica-
tion by extracting three different spatio-temporal patches “tubelets”’. [42], extending the positional
embedding to include the temporal dimension and initializing the embedding kernel using “central
frame embedding” [40]. We posit that NaViT is an excellent starting point for multi-scale training due
to the resolution diversity at training time. We observe that NaViT-L achieves competitive performance
with ViViT-L (80.4%) in approximately 6x less epochs, without multi-crop evaluation. Note that the
Kinetics400 dataset used here contains less data than prior works [40].

4 Related work

Flexible Vision Transformers. FlexiViT [2] developed a novel kernel resizing approach which
enables variable "resolution" via models which support multiple patch sizes. This is viewed as unifying
multiple distinct models, and they study the relationship with distillation and neural architecture
search. Pix2struct [3] supported variable aspect ratios with a novel positional embedding schema, and
demonstrated significant efficiency and performance improvements for non-natural imagery such as
chart and document understanding.

Multiscale Vision Transformers. Using feature maps at multiple spatial scales is a common approach
to localization tasks such as segmentation and detection [43]. Many works developed Vision Transform-
ers which do the same [44, 45], though some dispute the necessity for simple localization tasks [46].
NaViT does not build hierarchical representations using multiple scales; we believe combining the
unique flexibility of our approach with the benefits of this modelling family is a promising avenue.

Accelerating training with mixed resolutions. Image modelling works considering resolution largely
focus on accelerating pretraining with a fixed, low resolution [47, 48]. FixRes [11] is a popular technique
whereby resolution is increased in a final stage of pretraining, and has been used in many subsequent
works [19, 6]. PaLI [6], for example, successively increases the resolution of the vision backbone
during its generative training. This approach’s main downside is its irreversibility: compute cannot be
scaled back by reducing resolution after tuning at the higher and more expensive resolution.

Multigrid training [49] is the most closely related work. The main idea is accelerate video modelling
by processing large batches with "coarse" spatiotemporal resolution early in the training, followed by a
"finer" resolution later. To this end, the authors apply a hierarchical grid sampling schedule coupled
with appropriate learning rate scaling. In contrast, Patch n’ Pack enables effortless incorporation of
mixed resolutions without complex schedules or training pipelines.

Token dropping for improved efficiency. Research initially explored random token dropping [9,
10, 50]. Follow ups demonstrated benefits from considering structured [51] or “importance” based
strategies [52, 53]. Better strategies will likely further boost performance, and Patch n’ Pack sidesteps
the fixed minibatch shape restriction which limited these works.

5 Conclusions and future work

We have demonstrated that Patch n’ Pack—the simple application of sequence packing to vision
transformers—significantly improves training efficiency. The resultant NaViT models can be applied
to many resolutions at inference time, and cheaply adapted to new tasks. We discuss limitations
and impacts in Appendix A, but overall Patch n’ Pack enables a wide variety of research previously
hindered by the need for fixed batch shapes, including adaptive computation and new algorithms for
improving training and inference efficiency.

10

References
[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

[2] Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua Zhai,
Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flexivit: One model for
all patch sizes. In CVPR, 2023.

[3] Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal,
Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot parsing as pretraining for
visual language understanding, 2022.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, pages 248–255, 2009.

[5] Agrim Gupta, Piotr Dollár, and Ross B. Girshick. LVIS: A dataset for large vocabulary instance segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019.

[6] Xi Chen, Xiao Wang, Soravit Changpinyo, A. J. Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, Alexander Kolesnikov, Joan Puigcerver, Nan Ding,
Keran Rong, Hassan Akbari, Gaurav Mishra, Linting Xue, Ashish Thapliyal, James Bradbury, Weicheng Kuo,
Mojtaba Seyedhosseini, Chao Jia, Burcu Karagol Ayan, Carlos Riquelme, Andreas Steiner, Anelia Angelova,
Xiaohua Zhai, Neil Houlsby, and Radu Soricut. PaLI: A jointly-scaled multilingual language-image model.
arXiv preprint arXiv:2209.06794, 2022.

[7] Mario Michael Krell, Matej Kosec, Sergio P Perez, and Andrew William Fitzgibbon. Efficient sequence
packing without cross-contamination: Accelerating large language models without impacting performance,
2021.

[8] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high
frequency functions in low dimensional domains. In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 2020.

[9] Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and Boqing Gong.
Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text. Advances in
Neural Information Processing Systems, 34:24206–24221, 2021.

[10] Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling language-image
pre-training via masking, 2023.

[11] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test resolution discrep-
ancy. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 2019.

[12] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Computing Surveys, 55(6):1–28, 2022.

[13] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient transformers. arXiv
preprint arXiv:2011.04006, 2020.

[14] Markus N Rabe and Charles Staats. Self-attention does not need O(n2) memory. arXiv preprint
arXiv:2112.05682, 2021.

[15] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In NeurIPS, 2022.

[16] Basil Mustafa, Josip Djolonga, and Mostafa Dehghani. On efficient losses for distributed contrastive learning.
arXiv preprint, 2023.

11

[17] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas
Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lucas Beyer, Michael
Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Minderer, Joan Puigcerver, Utku
Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed, Aravindh Mahendran, Fisher Yu,
Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Collier, Alexey Gritsenko, Vighnesh Birodkar,
Cristina Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetić, Dustin Tran, Thomas
Kipf, Mario Lučić, Xiaohua Zhai, Daniel Keysers, Jeremiah Harmsen, and Neil Houlsby. Scaling vision
transformers to 22 billion parameters. In International Conference on Machine Learning, 2023.

[18] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. In CVPR,
pages 12104–12113, 2022.

[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In ICML, pages 8748–8763, 2021.

[20] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big Transfer (BiT): General visual representation learning. In ECCV, pages 491–507, 2020.

[21] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

[22] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas Steiner, and
Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2020.

[23] Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab, Matthias Minderer, and Yi Tay. Scenic: A jax library
for computer vision research and beyond. In CVPR, 2022.

[24] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, and Curtis P. Langlotz. Contrastive
learning of medical visual representations from paired images and text. In Proceedings of the Machine
Learning for Healthcare Conference, MLHC, 2022.

[25] Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish Vaswani, and Yi Tay. The efficiency misnomer.
arXiv preprint arXiv:2110.12894, 2021.

[26] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig Schmidt. Ro-
bust fine-tuning of zero-shot models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 7949–7961. IEEE, 2022.

[27] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenen-
baum, and Boris Katz. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object
recognition models. In NeurIPS, pages 9448–9458, 2019.

[28] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples.
In CVPR, pages 15262–15271, 2021.

[29] Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Measuring
calibration in deep learning. In CVPR Workshops, 2019.

[30] Julius Adebayo, Melissa Hall, Bowen Yu, and Bobbie Chern. Quantifying and mitigating the impact of label
errors on model disparity metrics. In ICLR, 2023.

[31] Inioluwa Deborah Raji and Joy Buolamwini. Actionable auditing: Investigating the impact of publicly
naming biased performance results of commercial ai products. In Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, pages 429–435, 2019.

[32] Kimmo Kärkkäinen and Jungseock Joo. Fairface: Face attribute dataset for balanced race, gender, and age,
2019.

[33] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In ICCV,
2015.

[34] Frank Wilcoxon. Individual comparisons by ranking methods. Springer, 1992.

[35] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In CVPR, 2016.

12

[36] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing
through ade20k dataset. In CVPR, 2017.

[37] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for semantic
segmentation. In ICCV, 2021.

[38] Mathilde Caron, Neil Houlsby, and Cordelia Schmid. Location-aware self-supervised transformers for
semantic segmentation. arXiv preprint arXiv:2212.02400, 2022.

[39] Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovit-
skiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Simple open-vocabulary
object detection with vision transformers. arXiv preprint arXiv:2205.06230, 2022.

[40] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. ViViT: A
video vision transformer. In CVPR, 2021.

[41] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio
Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017.

[42] AJ Piergiovanni, Weicheng Kuo, and Anelia Angelova. Rethinking video vits: Sparse video tubes for joint
image and video learning, 2022.

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells III, and Alejandro F. Frangi, editors,
Medical Image Computing and Computer-Assisted Intervention - MICCAI, 2015.

[44] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and Christoph
Feichtenhofer. Multiscale vision transformers. In 2021 IEEE/CVF International Conference on Computer
Vision, ICCV, 2021.

[45] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and Christoph
Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification and detection. In CVPR,
2022.

[46] Wuyang Chen, Xianzhi Du, Fan Yang, Lucas Beyer, Xiaohua Zhai, Tsung-Yi Lin, Huizhong Chen, Jing Li,
Xiaodan Song, Zhangyang Wang, and Denny Zhou. A simple single-scale vision transformer for object
detection and instance segmentation. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner, editors, Computer Vision - ECCV 2022, 2022.

[47] Hugo Touvron, Matthieu Cord, and Hervé Jégou. DeiT III: Revenge of the ViT. In ECCV, 2022.

[48] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang,
Li Dong, et al. Swin Transformer V2: Scaling Up Capacity and Resolution. CVPR, 2022.

[49] Chao-Yuan Wu, Ross B. Girshick, Kaiming He, Christoph Feichtenhofer, and Philipp Krähenbühl. A
multigrid method for efficiently training video models. In CVPR, pages 150–159. Computer Vision
Foundation / IEEE, 2020.

[50] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked autoencoders
are scalable vision learners. In CVPR, pages 15979–15988. IEEE, 2022.

[51] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, and Denny Zhou. Auto-scaling
vision transformers without training. In The Tenth International Conference on Learning Representations,
ICLR, 2022.

[52] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy Hoffman.
Token merging: Your vit but faster. CoRR, abs/2210.09461, 2022.

[53] Hongxu Yin, Arash Vahdat, Jose M. Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit: Adaptive
tokens for efficient vision transformer. In CVPR, 2022.

[54] Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. Exploring the limits of large scale
pre-training. arXiv preprint arXiv:2110.02095, 2021.

[55] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv preprint arXiv:1910.10683, 2019.

13

[56] Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword tokenizer
and detokenizer for neural text processing. In EMNLP, pages 66–71, November 2018.

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[58] Foad Hamidi, Morgan Klaus Scheuerman, and Stacy M Branham. Gender recognition or gender reduc-
tionism? the social implications of embedded gender recognition systems. In Proceedings of the 2018 chi
conference on human factors in computing systems, pages 1–13, 2018.

[59] Os Keyes. The misgendering machines: Trans/hci implications of automatic gender recognition. Proceedings
of the ACM on human-computer interaction, 2(CSCW):1–22, 2018.

[60] Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Tizian Thieringer, Matthias Bethge, Felix A
Wichmann, and Wieland Brendel. Partial success in closing the gap between human and machine vision. In
NeurIPS, pages 23885–23899, 2021.

14

A Broader impacts & limitations

Broader Impacts

NaViT enables training of vision transformers on variable size inputs, which has a profound impact
on advancing adaptive computation research. By training models to handle various input size, we can
explore adaptive computation techniques that dynamically adjust the computational resources based
on the specific requirements of a given input. This flexibility opens up new avenues for implementing
ideas that aim at adjusting allocation of compute and improving efficiency in vision tasks per input.
Furthermore, NaViT computational efficiency unlocks the potential for scaling up pre-training of vision
models. With the ability to handle different resolutions, models can effectively tackle more complex
and diverse visual data, allowing for the development of larger and more powerful vision models.

Limitations

There is a wide range of applications that could benefit from a model capable of processing inputs
of different resolutions, including OCR or document understanding with the use of vision models.
Although we highlight the considerable advantages of employing NaViT and provide a comprehensive
analysis of common computer vision tasks, we did not specifically investigate the benefits of NaViT in
these particular applications. We consider this area as a priority for future research and follow-up work.

Implementation complexities The modelling changes shown in Figure 1 can complicate ViT; in
particular, packing-aware changes to the loss function may be complex for more complicated usecases.

Computational overhead Done carelessly, significant extra cost can be introduced due to sequence
packing (Discussed in Figure 4). NaViT can however be run with the same sequence length as a
corresponding ViT model (e.g. ViT at resolution 384 with sequence length 576 vs NaViT at resolutions
64:384 with sequence length 576; the latter will fit on average∼2× as many images).

Data augmentation aspects were not explored in this work; firstly, it is possible that token dropping
and variable resolution can also act as data augmentations, which was not exhaustively studied here.
Secondly, common data augmentations such as mixup and various random cropping schema assume
square, constant resolution images, and analogues supporting variable aspect ratio and size were not
developed here.

Scale; experiments were performed in a large-dataset regime, and future work should validate these
results at smaller scale. This however necessitates research into data augmentation techniques as
mentioned above.

B Training details

B.1 Classification pretraining

The experiments and ablations in the paper are with ViT-B/32, ViT-B/16, and ViT-L/16. We use a
reciprocal square-root learning rate schedule, with linear warmup and cooldown, with a maximum value
of 8e−4, and phases. We follow [18, 54] and use a higher weight decay of 3.0 on the head compared
to the body’s weight decay of 0.03 during upstream training to improve transfer to downstream tasks.
For our experiments, we evaluated both NaViT and ViT models using configurations B/32, B/16, and
L/16. Each ViT model was trained with varying compute budgets, with cooling down at different stages
of training. We trained a corresponding NaViT model for each ViT size and computational budget,
allowing us to perform “compute-matched” comparisons [25].

Table 2 presents the pretraining specifications for both ViT and NaViT models. During the pretraining
phase, ViT models were trained using images of size 224×224. In contrast, NaViT models uniformly
sampled a value, denoted as r, between 64 and 256 and resized the image to have a total of r2 pixels
while preserving the aspect ratio. Although training NaViT models on native resolutions is possible, we
empirically discovered that sampling a resolution provides greater control over maximizing the number
of examples observed during pretaining within a fixed computational budget while maintaining perfor-
mance across different resolutions in downstream tasks. Additionally, by controlling the resolution, we
can ensure efficient packing by tuning the sequence length and limit padding to less than 2%.

15

Table 2: Pre-training details of ViT and NaViT with supervised classification.

Name TPU
Hours

Train
Steps

Cooldown
Steps

Sequence
Length

Images
Per Seq.

Batch
Size

Training
Images

ViT-B/32

7.9×101 1.0×105 1.0×104 49 1.0 ≈4.0×103 4.0×108
1.9×102 2.5×105 5.0×104 49 1.0 ≈4.0×103 1.0×109
3.9×102 5.0×105 1.0×105 49 1.0 ≈4.0×103 2.0×109
7.9×102 1.0×106 1.0×105 49 1.0 ≈4.0×103 4.0×109

ViT-B/16

2.6×102 1.0×105 1.0×104 196 1.0 ≈4.0×103 4.0×108
6.6×102 2.5×105 5.0×104 196 1.0 ≈4.0×103 1.0×109
1.3×103 5.0×105 1.0×105 196 1.0 ≈4.0×103 2.0×109
2.6×103 1.0×106 1.0×105 196 1.0 ≈4.0×103 4.0×109

ViT-L/16

5.4×102 1.0×105 1.0×104 196 1.0 ≈4.0×103 4.0×108
1.3×103 2.5×105 5.0×104 196 1.0 ≈4.0×103 1.0×109
2.7×103 5.0×105 1.0×105 196 1.0 ≈4.0×103 2.0×109
5.4×103 1.0×106 1.0×105 196 1.0 ≈4.0×103 4.0×109

NaViT-B/32

7.9×101 9.8×104 1.0×104 64 5.41 ≈2.2×104 2.1×109
1.9×102 2.4×105 5.0×104 64 5.41 ≈2.2×104 5.3×109
3.9×102 4.8×105 1.0×105 64 5.41 ≈2.2×104 1.0×1010
7.9×102 9.7×105 1.0×105 64 5.41 ≈2.2×104 2.1×1010

NaViT-B/16

2.6×102 9.3×104 1.0×104 256 4.87 ≈1.9×104 1.8×109
6.6×102 2.3×105 5.0×104 256 4.88 ≈1.9×104 4.6×109
1.3×103 4.6×105 1.0×105 256 4.88 ≈1.9×104 9.2×109
2.6×103 9.2×105 1.0×105 256 4.88 ≈1.9×104 1.8×1010

NaViT-L/16

5.4×102 9.7×104 1.0×104 256 4.88 ≈1.9×104 1.9×109
1.3×103 2.4×105 5.0×104 256 4.87 ≈1.9×104 4.8×109
2.7×103 4.8×105 1.0×105 256 4.87 ≈1.9×104 9.6×109
5.4×103 9.6×105 1.0×105 256 4.88 ≈1.9×104 1.9×1010

B.2 Contrastive pretraining

We use the 32000 token T5 [55] sentencepiece [56] tokenizer. By default, text sequences are truncated
to a maximum length of 24. No token dropping is used for text. Models are trained under the same
optimization regime as the classification models, but with a learning rate of 3×10−3. Weight decay of
1×10−6 is applied consistently to all kernels in the model (no change for projection heads). By default,
image side-lengths are sampled∼U(64,Rmax), and no other image augmentations are applied.

B.3 Packing algorithm

Packing of examples into sequences is done alongside batching. A simple greedy approach is used
which adds examples to the first sequence with enough remaining space. Once no more examples
can fit, sequences are filled with padding tokens, yielding the fixed sequence lengths needed for
batched operations. Such simple packing algorithm can lead to a significant padding, depending on
the distribution of length of inputs. There are several methods to address such limitations, like bin
packing [7], which allows minimizing the padding. Here, in NaViT, since controlling the resolutions
we sample, we can ensure efficient packing by tuning the sequence length and limit padding to less
than 2%.

B.4 Pre-processing and augmentation

For both classification and contrastive pre-training, for the baseline models, we follow the original
Vision Transformer paper [1], and follow-ups; models are trained on images with resolution 224×224,
with inception crop followed by random horizontal flipping. For NaViT, we have no preprocessing
besides resizing to the sampled resolution and token dropping.

16

102 103

Training TPU chips hours

60%

65%

70%

75%

80%

Im
ag

eN
et1

K-
10

sh
ot

1011 1012

Tokens seen
109 1010

Images seen

Model
ViT
NaViT

Version
B/32
B/16
L/16

Figure 14: Training on more images given a fixed computational budget, is a key factor contributing to the
computational efficiency of NaViT compared to to the standard ViT.

B.5 Sample efficiency with NaViT

Based on the experiments we ran, we believe a lot of the observed performance benefits are due to
speeding up training (i.e., seeing more images in a given compute budget). This is evident in Figure 1,
where relative performance gains diminish with longer training. We can also show this by plotting the
number of images seen on the x-axis:

If compute cost was not a concern, for a given number of images seen, it is best to train on purely
large resolution, with no token dropping. Asymptotically we therefore expect the token dropping and
mixed resolutions to eventually hurt NaViT in unlimited compute regime. This assumes a large enough
dataset that overfitting is not an issue. Eventually one may enter a regime where the token dropping and
variable resolution is a useful data augmentation to prevent overfitting, which may alter results.

B.6 Sampling token dropping rates

Sampling with a beta distribution We use a parameterisation based on the mean dµ and standard
deviation σ. We aim to sample dropout rate d∈ [0.0,dmax], with some mean dµ.

Accordingly, we sample u∈ [0,1]∼B(α,β) and set drop rate d=u×dmax. α and β are set such that
the mean of u is uµ =

dµ
dmax . The maximum supported variance for a beta distribution of mean uµ

is uµ(1−uµ); we pick by default a variance σ2 = 0.3uµ(1−uµ), which we found to work well in
practice. The resultant distributions of token dropouts for different settings of dµ and dmax are shown
in Figure 15a.

25% 50% 75% 100%
Token drop rate

0%

5%

10%

15%

20%

25%

Pe
rc

en
t =
0.

10
p <

0.
1

=
60

.3
%

=
0.

25
p <

0.
1

=
11

.5
%

=
0.

35
p <

0.
1

=
1.

3%

Max drop rate = 40%

25% 50% 75% 100%
Token drop rate

=
0.

10
p <

0.
1

=
66

.9
%

=
0.

25
p <

0.
1

=
27

.3
%

=
0.

50
p <

0.
1

=
2.

3%

=
0.

65
p <

0.
1

=
0.

1%

Max drop rate = 70%

25% 50% 75% 100%
Token drop rate

=
0.

10
p <

0.
1

=
70

.4
%

=
0.

25
p <

0.
1

=
33

.5
%

=
0.

50
p <

0.
1

=
5.

9%

=
0.

70
p <

0.
1

=
0.

9%

=
0.

85
p <

0.
1

=
0.

1%

Max drop rate = 90%

(a) Beta-sampled token drop rates parameterised by the mean µ and the max
drop rate dmax

25% 50% 75% 100%
Token drop rate

0%

1%

2%

3%

4%

5%

Pe
rc

en
t

d [0.1, 0.9]
d [0.25, 0.75]
d [0.4, 0.6]

(b) Sampled resolution-dependent
token drop rates

Sampling resolution-dependent dropping rates Given input data with sequence lengths rang-
ing from smin to smax, we sample dropout rate d from a truncated normal distribution d ∼
Ntrunc(µ,0.02), where samples more than two standard deviations away from µ are rejected.

The mean of this distribution µ is set according to the minimum and maximum token dropping rates
dmin and dmax, and simply scales linearly with the sequence length s (such that s=smin hasµ=dmin
and s=smax has µ=dmax.

Figure 15b shows example distributions of sampled drop rates given inputs with resolution R ∼
U(64,384), and different values of dmin and dmax.

17

0 200 k 400 k
Total training steps

0.25

0.50

0.75

Av
er

ag
e d

ro
p

ra
te

0 200 k 400 k
Total training steps

0

1

2

To
tal

 im
ag

es
 se

en

1e9

0 200 k 400 k
Total training steps

65%

70%

75%

Im
ag

eN
et

10
sh

ot
 ac

c

Fixed = 1
2

= N
10 , = N

2

= N
10 , = N

2

= N
5 , = 2N

3

Figure 16: Decreasing the token dropping rate along training improves the ImageNet 10shot accuracy using the
same pre-training resources. N is the total number of training examples seen with a fixed token dropping rate of
ρ= 1

2
.

B.7 Scheduling token dropping rates

We experiment with a token dropping schedule which varies with total number of images seen. In
particular, the rate applied for the n-th processed image during training is given by:

ρ(n;ρmin,ρmax,µ,τ)=ρmin+(ρmax−ρmin)·σ
(
n−µ
τ

)
, (1)

where σ represents the sigmoid function; ρmin, ρmax control the minimum and maximum dropping
rate applied; and µ and τ control the shape of the schedule. We experimented with both increasing
(τ > 0) and decreasing (τ < 0) schedules. In all cases we set ρmin =0.2 and ρmax =0.8. Figure 16
shows that, by decreasing the dropping rate throughout training, one can improve the final accuracy, at
fixed training cost. Conversely, increasing the token dropping rate harms performance.

C Model information

C.1 Positional embeddings

Extending ViTs to variable input sizes necessitates rethinking positional embeddings added to every
token after embedding. We considered several variants of positional embeddings, and evaluated them
based on (1) the best performance model using them achieve within training distribution of input sizes;
and based on (2) how well these models perform when evaluated on image sizes outside of the training
distribution. Results and discussion of these experiments can be found in Section 3.4.

Broadly, we considered positional embeddings that varied along three axes: (1) whether they were
learned, parametric or fixed; (2) whether they were absolute or fractional; and (3) whether they are
factorized.

(0.0, 0.0)

(2, 3)

(0, 0)

(6, 4)

0 2

0

3

0 6

0

4

(0.0, 0.0)

(1.0, 1.0)

(0.0, 0.0)

(1.0, 1.0)

0.0 1.0

0.0

1.0

0.0 1.0

0.0

1.0

(0.0, 0.0)

(0.75, 1.0)

(0.0, 0.0)

(1.0, .71)

0.0 0.75

0.0

1.0

0.0 1.0

0.0

.71

 Absolute coordinates Fractional coordinates (non aspect ratio preserving) Fractional coordinates (aspect ratio preserving)

Image credit: Matthew Henry burst.shopify.com/photos/dog-staying-warm

Figure 17: We use two different views of the same image, of resolutions 96×128 and 224×160, and demonstrate
different coordinate systems when using patch size 32.

Absolute and fractional coordinates A natural way of indexing token within an image is to select a
priori a maximum possible image side length (shared for width and height) maxLen, and to assign
to token integer coordinates (x,y) based on their original location within the image. Embedding
coordinates defined in this way allow models to consume images with resolutions up toR=P ·maxLen.
However, when learned absolute coordinate embeddings are considered, extreme values of x and y
must also be observed during training, which necessitates training on images with varied aspect ratios
and limits models generalisation.

18

To alleviate the necessity of observing extreme aspect ratios and image size during learning of positional
embeddings, we also consider fractional coordinates, which are normalized to the actual size of the
input image and are obtained by dividing the absolute coordinates x and y above by the number number
of columns and rows respectively, i.e. the corresponding side length. Doing this allows the model to
observe extreme token coordinates during training, which intuitively should help with generalization to
higher resolutions. However, this is accomplished at the cost of obfuscating the input images aspect
ratio.

Factorized embeddings We further consider whether coordinates x and y should be embedded
independently or jointly. In case of independent embedding, the two coordinates x and y are embedded
independently, and their embeddings are combined via addition or by stacking. For joint embeddings
and embedding for each position (x,y) is obtained directly.

Learned, parametric and fixed positional embeddings Finally, we also explored the relative benefits
of fixed, learned and parametric embeddings. For fixed embeddings we followed [57] and used
sinusoidal positional embeddings, and learned embeddings were implemented as in [1].

For parametric positional embeddings we followed [8] and used Fourier embeddings. Specifically,
coordinates (x,y) were mapped using a single linear layer before applying sin and cos activations to
them, and stacking the results to obtained the positional embeddings.

Experiments Because not all combinations of the above embedding choices are equally promising or
natural, we experimented only with subset of them shown in Table 3 and Figure 10a.

Table 3: Classification of positional embedding experiments from Figure 10a.

Name Coordinates Type Factorized

Learned 1D (ViT) Absolute Learned No, position in flatted token sequence
Learned 2D (Pix2struct) Absolute Learned No
Factorized abs. (+) Absolute Learned Yes, sum
Factorized abs. (stack) Absolute Learned Yes, stack
Factorized abs. (×) Absolute Learned Yes, product
Fourier abs. Absolute Parametric No
Sinusoidal abs. Absolute Fixed Yes, stack
Factorized frac. (+) Fractional Learned Yes, sum
Fourier frac. Fractional Parametric No
Sinusoidal frac. Fractional Fixed Yes, stack

In sinusoidal and factorised embeddings experiments with fractional coordinates fractional coordinate
embeddings were obtained from absolute coordinate embeddings via bilinear interpolation.

D Inference strategies

We performed various experiments to measure model quality for given runtime cost. The runtime can
be tuned by changing the number of processed patches, or by using choosing different size of the model.

We firstly looked at how model quality changes in respect to decreasing area of the image compared to
native resolution, presented in Figure 18a. We observed that on ImageNet [4] model retains most of the
quality down to 40% of the image size. After that, the quality drastically decreases. On the other hand,
increasing the size of the image have a diminishing return in quality. This can be directly compared
with random token dropping as an alternative to resizing, which showed to be very ineffective way to
decrease number of patches during inference - Figure 18b.

Please note that this highly depends on the native resolution of the images in the dataset - e.g. dataset
with twice as big images than ImageNet can probably be safely resized to 20% of area.

A better way to quantify the performance is by giving a constant compute budget corresponding to
number of patches. Figure 19a shows that resizing the image (while preserving aspect ratio) to 256
tokens retains most of the quality (within 0.3%). This corresponds to 256x256 area (given patch size of
16). At 128 tokens (181x181 area) the quality difference reaches 1% and drops significantly after that.

19

0.25 0.50 0.75 1.00 1.25 1.50
Image area

85

86

87

88

Im
ag

en
et

ac
cu

ra
cy

NaViT-L/16
NaViT-B/16

(a)

0.25 0.50 0.75 1.00 1.25 1.50
Image area

86.5

87.0

87.5

88.0

88.5

Im
ag

en
et

ac
cu

ra
cy

resize
drop tokens

(b)

128 256 384 512 640 768 896 1024
sequence length

87.6

87.8

88.0

88.2

88.4

88.6

Im
ag

en
et

ac
cu

ra
cy

NaViT-L
NaViT-L(no upscale)

(c)

Figure 18: (a) The effect of resizing the image. (b) Dropping random tokens is ineffective way to decrease number
of patches compared to resizing the image. Data from NaViT-L/16. (c) Given number of patches as compute
budget, it is beneficial to upscale the image.

64128 256 384 512 640 768 896 1024
sequence length

84

85

86

87

88

Im
ag

en
et

ac
cu

ra
cy 6x reduction 1%

5x reduction 1%

NaViT-L/16
NaViT-B/16

(a)

5 10 15 20 25
average runtime in ms per image

86.5

87.0

87.5

88.0

Im
ag

en
et

ac
cu

ra
cy

128

256 384
512

640 768 896 1024

256

384
512

640
768 896 1024 NaViT-L/16

NaViT-B/16

(b)

Figure 19: (a) Quality on ImageNet in respect to number of patches (sequence length). (b) Runtime of models
compared to the accuracy on ImageNet.

Here we also resized the image past its native resolution in case it already fit the given sequence length
budget. We observed that it is beneficial to resize the image to the given sequence length past the native
resolution to keep monotonic increase in quality, which is showed on Figure 18c.

Figure 19b presents the runtime of NaViT-L/16 and NaViT-B/16 for different sequence lengths. We
can see that NaViT-L/16 at sequence length 128 is as fast as NaViT-B/16 with sequence length 512,
while having almost 1% difference in quality.

E Cascades

Another strategy to be more compute efficient would be to assign more tokens (and thus FLOPs) to the
examples deemed hard by the model. This is in particular interesting for bulk inference workloads,
where one can amortize over large datasets and where only the total inference time matters.

0 5 10 15 20 25
Average inference time in milliseconds

85.5

86.0

86.5

87.0

87.5

88.0

88.5

Im
ag

eN
et1

K-
Ac

cu
ra

cy

128

256
1024

Cascade (ViT-B)
ViT-B/16
Cascade (ViT-L)
ViT-L/16
Pareto frontier

Figure 20: Performance of a model cascade versus the average inference time. The labels at the select points
denote the number of tokens at that scale.

20

To evaluate the feasibility of this approach, we consider two sequence lengthsn1 andn2 with respective
inference times t1 and t2. Then, we (i) send all examples though the model with n1 tokens, and send
only theα∈(0,1)-fraction deemed hardest (those with the smallest maximum probability) to the model
with n2 tokens. To have an input almost exactly fit into n1 or n2 tokens we perform and aspect ratio
preserving resize. Hence, the total amortized inference time per-example is ti+αt2, while the accuracy
obtained by combining the accuracy of the first model on the 1−αmost-confident fraction of the data,
and the performance of the more expensive model on the remaining data. By considering several pairs
of models and varying αwe obtain the plot in Figure 20. As we can see this strategy is indeed useful
and provides not only the best performing models at given compute budgets, but because α is a real
parameter one can obtain very fine-grained trade-offs.

F Calibration

To evaluate behaviour of the predicted uncertainties with scale, we compute the calibration error of a
-B sized ImageNet-finetuned model (the -L model performs similarly). Note that these models were
trained with sigmoid loss, i.e., the 1000 labels were predicted independently without enforcing that the
probabilities should sum up to 1. As we varied the sequence of tokens per example between 128 and
1024, we obtained very stable calibration errors (top-1, using `1 and 30 buckets, i.e., the settings from
[29]), which we present in Table 4.

Table 4: Expected calibration error on ImageNet-1K with varying sequence lengths.

Sequence Length 128 256 384 512 640 768 1024

Calibration Error 0.047 0.046 0.048 0.047 0.047 0.046 0.045

G Out of distribution evaluation

For ViT, we apply the “Crop” strategy from [17], namely an aspect-preserving crop of the central 75%
of the image for ObjectNet and ImageNet-A, and square resize followed by a 87.5% central crop for
the other datasets. We also apply a simple “Resize” strategy that does not crop the images. For NaViT,
both the “Crop” and the “Resize” strategy do an aspect preserving resize of the target images.

1012 1013

Training TPU chip hours

55%

60%

65%

70%

75%

ImageNet

1012 1013

Training TPU chip hours

10%

20%

30%

40%

50%

60%

ImageNet-A

1012 1013

Training TPU chip hours

15%

20%

25%

30%

35%

40%

45%

50%
ObjectNet

ViT NaViT B/32 B/16 L/16

Figure 21: Same evaluation as in Figure 11, but without any special preprocessing of the images before the
evaluation. Employing a simple resize (square for ViT, aspect preserving for NaViT) results in much better
performance on datasets that have images with an extreme aspect ratio. Same data as in table Table 5.

H Fairness Signal Annotation

In Figure 22, we demonstrate that using native image resolution improves the performance of fairness
signal annotation. Prior research has shown that metrics, such as group calibration, are vulnerable to
labeling errors, particularly for underrepresented groups. Moreover, this problem persists even when
accounting for label noise during training [30]. Thus, reducing the labeling error of fairness signals has
the potential of improving the reliability of bias mitigation and post-hoc auditing [31]. Nevertheless,

21

Table 5: Detailed results of out evaluation of pretrained models with a label-map (see Section 3.5). Same data as
in Figure 11 and Figure 21.

ImageNet ImageNet-A ObjectNet

ViT NaViT ViT NaViT ViT NaViT
Compute

Crop B/32 7.9×101 54.4 63.5 14.7 32.7 32.9 41.2
1.9×102 60.2 65.6 22.0 37.0 38.0 43.5
3.9×102 63.7 67.2 26.6 40.1 41.7 45.1
7.9×102 65.5 68.2 30.7 42.5 44.2 45.7

B/16 2.6×102 66.4 68.5 37.3 52.3 47.2 48.4
6.6×102 61.7 66.0 27.0 44.2 41.3 45.9
1.3×103 70.3 71.2 48.8 57.0 52.8 50.7
2.6×103 68.7 70.1 43.5 55.1 50.5 49.8

L/16 5.4×102 70.7 73.6 51.5 65.5 53.3 55.0
1.3×103 66.4 71.1 39.2 58.6 47.6 52.1
2.7×103 73.9 75.1 60.4 68.9 57.7 57.9
5.4×103 73.0 74.6 57.6 67.9 56.2 57.1

Resize B/32 7.9×101 51.7 64.0 12.6 26.7 15.9 31.6
1.9×102 57.9 66.2 17.2 30.1 20.0 33.8
3.9×102 61.6 67.4 20.7 32.6 23.5 34.6
7.9×102 63.6 68.6 22.8 35.0 25.3 36.1

B/16 2.6×102 65.4 69.2 27.4 43.9 28.7 38.7
6.6×102 60.4 66.5 20.4 36.8 23.6 35.3
1.3×103 69.5 72.5 36.2 51.5 34.2 42.1
2.6×103 67.7 71.0 32.5 48.6 32.0 40.5

L/16 5.4×102 70.0 73.9 38.5 59.9 35.3 45.6
1.3×103 65.1 71.5 28.2 51.6 29.3 41.5
2.7×103 73.2 76.0 47.3 65.5 39.8 48.8
5.4×103 72.3 75.3 44.3 64.1 38.8 48.2

100 250 500 1000
Pretraining Steps (K)

98

99

ac
cu

ra
cy

celeba / gender

100 250 500 1000
Pretraining Steps (K)

93

95

97

ac
cu

ra
cy

fairface / gender

100 250 500 1000
Pretraining Steps (K)

54

57

60

ac
cu

ra
cy

fairface / age

100 250 500 1000
Pretraining Steps (K)

64

68

72
ac

cu
ra

cy
fairface / ethnicity

Model
ViT
NaViT

100 250 500 1000
Pretraining Steps (K)

98

99

ac
cu

ra
cy

celeba / gender

100 250 500 1000
Pretraining Steps (K)

95

96

97

ac
cu

ra
cy

fairface / gender

100 250 500 1000
Pretraining Steps (K)

55

57

59

ac
cu

ra
cy

fairface / age

100 250 500 1000
Pretraining Steps (K)

64

68

72

ac
cu

ra
cy

fairface / ethnicity

Square
Native

Figure 22: Summary of results of evaluating the accuracy of annotators trained on fairness-related signals using
either NaViT-L/16 or ViT-L/16. TOP: NaViT offers better representations that improve the accuracy of annotators.
BOTTOM: Using native aspect ratios in NaViT results in a higher performance when compared to resizing images
to squares.

we emphasize that while NaViT improves the annotation accuracy in these tasks, care must be taken
in such situations since classifiers can be inaccurate and lead to a broad categorization of people that
misidentifies real identities. We encourage readers to delve into the comprehensive work outlining such
potential risks, e.g. [58, 59], for further insight. In assessing the technical capabilities of NaViT, our
intent is not to promote or encourage their application in inappropriate contexts. Rather, our objective
is only to illuminate these technical findings for scenarios where they may be considered beneficial,
such as when measuring the level of diversity in a dataset or auditing/mitigating biases in predictive
models. We strongly advocate for responsible AI use, maintaining that the benefits of technological
advancements should not overshadow the importance of user safety and privacy. AI tools, including

22

ours, should always be deployed judiciously, with a keen awareness of potential risks and a commitment
to avoiding harm.

I Evaluation on model-vs-human OOD datasets on different resolutions

Just like NaViT, human visual perception works across flexible aspect ratios and resolutions (just
imagine how strange the world would look like if we could only see it through a 224× 224 pixel
window!). We investigate how the ability to cope with variable resolutions affects performance on
“model-vs-human”, a benchmark of 17 challenging datasets [60].1 For this purpose, we replicate the
setup from Figure 6, but instead of evaluating ImageNet accuracy, we evaluate OOD accuracy on the
model-vs-human benchmark.

64 128 224 384 512
Fine-tune resolution Rft

85

90

95

Ac
cu

ra
cy

 (%
)

colour

NaViT (one per res)
ViT (one per res)
NaViT-64:512

64 128 224 384 512
Fine-tune resolution Rft

85

90

95

Ac
cu

ra
cy

 (%
)

false-colour

64 128 224 384 512
Fine-tune resolution Rft

60

80

Ac
cu

ra
cy

 (%
)

power-equalisation

64 128 224 384 512
Fine-tune resolution Rft

40

60

80

Ac
cu

ra
cy

 (%
)

rotation

64 128 224 384 512
Fine-tune resolution Rft

40

50

Ac
cu

ra
cy

 (%
)

uniform-noise

64 128 224 384 512
Fine-tune resolution Rft

60

80

Ac
cu

ra
cy

 (%
)

contrast

64 128 224 384 512
Fine-tune resolution Rft

50

60

Ac
cu

ra
cy

 (%
)

low-pass

64 128 224 384 512
Fine-tune resolution Rft

20

40

60

Ac
cu

ra
cy

 (%
)

high-pass

64 128 224 384 512
Fine-tune resolution Rft

60

80

Ac
cu

ra
cy

 (%
)

phase-scrambling

64 128 224 384 512
Fine-tune resolution Rft

60

65

Ac
cu

ra
cy

 (%
)

eidolonI

64 128 224 384 512
Fine-tune resolution Rft

55.0

57.5

60.0

62.5

Ac
cu

ra
cy

 (%
)

eidolonII

64 128 224 384 512
Fine-tune resolution Rft

60

65

Ac
cu

ra
cy

 (%
)

eidolonIII

64 128 224 384 512
Fine-tune resolution Rft

60

70

80

90

Ac
cu

ra
cy

 (%
)

sketch

64 128 224 384 512
Fine-tune resolution Rft

40

50

60

Ac
cu

ra
cy

 (%
)

stylized

64 128 224 384 512
Fine-tune resolution Rft

55

60

65

70

Ac
cu

ra
cy

 (%
)

silhouette

64 128 224 384 512
Fine-tune resolution Rft

20

40

60

Ac
cu

ra
cy

 (%
)

edge

Figure 23: OOD accuracy on “model-vs-human” datasets across different fine-tuning resolutions. A single NaViT
model trained on varying resolutions (red) performs roughly on par as fine-tuning one NaViT model per test
resolution (blue). The ViT baseline (orange) is mostly worse than NaViT models for lower resolutions and mostly
better for higher resolutions.

This corresponds to testing JFT B/16 models finetuned on ImageNet at various resolutions. The test
dataset has a fixed 224×224 square resolution; thus we resize the test images to fit each model’s fine-
tuning resolution. Note that using square images has been standard practice designed for convolutional
networks, but NaViT models no longer require square input, thus existing benchmarks are not tailored
to those new possibilities. For datasets with multiple difficulty levels (such as different levels of blur),
we average performance across levels while excluding levels that are too easy (not OOD) or too hard
(human performance is close to chance), which follows the approach of (author?) [60] as explained in
their “Appendix G Benchmark scores”.

To ensure a fair comparison, we use models that are compute-matched for pretraining, and during
fine-tuning, compute and data are identical for all models. The results of our comparison are shown in
Figure 23. Overall, a single NaViT model trained on varying resolutions (red) performs roughly on par
with fine-tuning one NaViT model per test resolution (blue).

The ViT baseline (orange) is mostly worse than NaViT models for lower resolutions and mostly better
for higher resolutions. It may be worth noting that ViT models have a bit of an advantage in this
comparison since they are fine-tuned on square images, whereas NaViT models are fine-tuned on
flexible resolution images (preserving the image’s aspect ratio) that have the same number of pixels,
while not necessarily being square.

1For the purpose of our comparison, we exclude the “cue-conflict” dataset from the OOD evaluation, since
there is no objective ground truth class in the case of images with a texture-shape cue conflict.

23

	Introduction
	Method
	Architectural changes
	Training changes
	Efficiency of NaViT

	Experiments
	Improved training efficiency and performance
	Benefits of variable resolution
	Benefits of variable token dropping
	Positional embeddings
	Other aspects of NaViT's performance
	Other downstream tasks

	Related work
	Conclusions and future work
	Broader impacts & limitations
	Training details
	Classification pretraining
	Contrastive pretraining
	Packing algorithm
	Pre-processing and augmentation
	Sample efficiency with NaViT
	Sampling token dropping rates
	Scheduling token dropping rates

	Model information
	Positional embeddings

	Inference strategies
	Cascades
	Calibration
	Out of distribution evaluation
	Fairness Signal Annotation
	Evaluation on model-vs-human OOD datasets on different resolutions

