
The GAN is dead; long live the GAN!
A Modern Baseline GAN

Nick Huang 1 Aaron Gokaslan 2 Volodymyr Kuleshov 2 James Tompkin 1

Abstract
There is a widely-spread claim that GANs are
difficult to train, and GAN architectures in the
literature are littered with empirical tricks. We
provide evidence against this claim and build a
modern GAN baseline in a more principled man-
ner. First, we derive a well-behaved regularized
relativistic GAN loss that addresses issues of
mode dropping and non-convergence that were
previously tackled via a bag of ad-hoc tricks. We
analyze our loss mathematically and prove that it
admits local convergence guarantees, unlike most
existing relativistic losses. Second, our new loss
allows us to discard all ad-hoc tricks and replace
outdated backbones used in common GANs with
modern architectures. Using StyleGAN2 as an
example, we present a roadmap of simplification
and modernization that results in a new mini-
malist baseline—R3GAN. Despite being simple,
our approach surpasses StyleGAN2 on FFHQ,
ImageNet, CIFAR, and Stacked MNIST datasets,
and compares favorably against state-of-the-art
GANs and diffusion models.

1. Introduction
Generative adversarial networks (GANs; (11)) feature the
ability to generate high quality images in a single forward
pass. However, the original objective in Goodfellow et
al. (11), is notoriously difficult to optimize due to its
minimax nature. This leads to a fear that training might
diverge at any point due to instability or lose diversity
through mode collapse. While progress in GAN objectives
has occurred (12; 20; 65; 43; 54), practically, the effects of
brittle losses are still regularly felt, and this notoriety has
had a lasting negative impact on GAN research.

A second issue—partly motivated by this instability—
is that existing popular GAN backbones like Style-

1Department of Computer Science, Brown University, Prov-
idence, RI USA 2Department of Computer Science, Cornell
University, New York, NY USA. Correspondence to: Nick Huang
<yhuan170@cs.brown.edu>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

GAN (30; 31; 27; 28) use many poorly-understood
empirical tricks with little theory. For instance, StyleGAN
uses a gradient penalized non-saturating loss (43) to
increase stability (affecting sample diversity), but then em-
ploys a minibatch standard deviation trick (25) to increase
sample diversity. Without tricks, the StyleGAN backbone
still resembles DCGAN (51) from 2015, yet it is still the
common backbone of SOTA GANs such as GigaGAN (23)
and StyleGAN-T (57). Advances in GANs have been
conservative compared to other generative models such as
diffusion models (18; 63; 26; 29), where modern computer
vision techniques such as multi-headed self attention (69)
and backbones such as preactivated ResNet (15), U-Net (53)
and vision transformers (ViTs) (9) are the norm. Given
outdated backbones, it is not surprising that there is a
widely-spread belief that GANs do not scale in terms of
quantitative metrics like Frechet Inception Distance (17).

We reconsider this situation: we show that by introducing
a new regularized training loss, GANs gain improved
training stability, which allows us to upgrade GANs with
modern backbones. First, we propose a novel objective that
augments the relativistic pairing GAN loss (RpGAN; (20))
with zero-centered gradient penalties (43; 54), improving
stability (12; 54; 43). We show mathematically that gradient-
penalized RpGAN enjoys the same guarantee of local con-
vergence as regularized classic GANs, and that removing
our regularization scheme induces non-convergence.

Once we have a well-behaved loss, none of the GAN tricks
are necessary (25; 31), and we are free to engineer a modern
SOTA backbone architecture. We strip StyleGAN of all its
features, identify those that are essential, then borrow new
architecture designs from modern ConvNets and transform-
ers (41; 75). Briefly, we find that proper ResNet design (15;
55), initialization (77), and resampling (30; 31; 28; 78) are
important, along with grouped convolution (74; 5) and no
normalization (31; 29; 12; 70; 3). This leads to a design that
is simpler than StyleGAN and improves FID performance
for the same network capacity (2.77 vs. 3.78 on FFHQ-256).

In summary, our work first argues mathematically that
GANs need not be tricky to train and introduces a new reg-
ularized loss. Then, it empirically develops a simple GAN
baseline that,without any tricks, compares favorably by FID
to StyleGAN (30; 31; 28), other SOTA GANs (4; 37; 73),
and diffusion models (18; 63; 68) across FFHQ, ImageNet,
CIFAR, and Stacked MNIST datasets.

1

The GAN is dead; long live the GAN

2. Serving Two Masters: Stability
and Diversity with RpGAN +R1+R2

In defining a GAN objective, we tackle two challenges:
stability and diversity. Some previous work deals with
stability (30; 31; 28) and other previous work deals with
mode collapse (20). We combine a stable method with a
simple regularizer grounded by theory to overcome both.

2.1. Traditional GAN
A traditional GAN (11; 49) is formulated as a minimax
game between a discriminator Dψ and a generator Gθ.
Given real data x ∼ pD and fake data x ∼ pθ produced by
Gθ, the most general form of a GAN is given by:
L(θ,ψ)=Ez∼pz [f(Dψ(Gθ(z)))]+Ex∼pD [f(−Dψ(x))] (1)

where G tries to minimize L while D tries to maximize
it. The choice of f is flexible (42; 38). In particular,
f(t) = − log(1+ e−t) recovers the classic GAN by Good-
fellow et al. (11). For the rest of this work, this will be our
choice of f (49).

It has been shown that Equation 1 has convex properties
when pθ can be optimized directly (11; 65). However, in
practical implementations, the empirical GAN loss typically
shifts fake samples beyond the decision boundary set by D,
as opposed to directly updating the density function pθ. This
deviation leads to a significantly more challenging problem,
characterized by susceptibility to two prevalent failure
scenarios: mode collapse/dropping1 and non-convergence.

2.2. Relativistic f -GAN.
We employ a slightly different minimax game named rela-
tivistic pairing GAN (RpGAN) by Jolicoeur-Martineau et
al. (20) to address mode dropping. The general RpGAN is
defined as:

L(θ,ψ)=E z∼pz
x∼pD

[f(Dψ(Gθ(z))−Dψ(x))] (2)

Although Eq.2 differs only slightly from Eq.1, evaluating
the critic difference has a fundamental impact on the land-
scape of L. Since Eq.1 merely requires D to separate real
and fake data, in the scenario where all real and fake data can
be separated by a single decision boundary, the empirical
GAN loss encourages G to simply move all fake samples
barely past this single boundary—this degenerate solution is
what we observe as mode collapse/dropping. Sun et al. (65)
characterize such degenerate solutions as bad local minima
in the landscape of L, and show that Eq.1 has exponentially
many bad local minima. The culprit is the existence of a
single decision boundary that naturally arises when real and
fake data are considered in isolation. RpGAN introduces
a simple solution by coupling real and fake data, i.e. a fake
sample is critiqued by its realness relative to a real sample,
which effectively maintains a decision boundary in the
neighborhood of each real sample and hence forbids mode

1While mode collapse and mode dropping are technically
distinct issues, they are used interchangeably in this context to
describe the common problem where supp pθ does not fully cover
supp pD .

dropping. Sun et al. (65) show that the landscape of Eq.2
contains no local minima that correspond to mode dropping
solutions, and that every basin is a global minimum.

2.3. Training Dynamics of RpGAN
Although the landscape result (65) of RpGAN allows us to
address mode dropping, the training dynamics of RpGAN
have yet to be studied. The ultimate goal of Eq. 2 is to find
the equilibrium (θ∗, ψ∗) such that pθ∗ = pD and Dψ∗ is
constant everywhere on pD. Sun et al. (65) show that θ∗ is
globally reachable along a non-increasing trajectory in the
landscape of Eq.2 under reasonable assumptions. However,
the existence of such a trajectory does not necessarily mean
that gradient descent will find it. Jolicoeur-Martineau et
al. show empirically that unregularized RpGAN does not
perform well (20).

Proposition I. (Informal) Unregularized RpGAN does not
always converge using gradient descent.

We confirm this proposition with a proof in Appendix H.
We show analytically that RpGAN does not converge for
certain types of pD, such as ones that approach a delta
distribution. Thus, further regularization is necessary to fill
in the missing piece of a well-behaved loss.

Zero-centered gradient penalties. To tackle RpGAN
non-convergence, we explore gradient penalties as the solu-
tion since it is proven that zero-centered gradient penalties
(0-GP) facilitate convergent training for classic GANs (43).
The two most commonly-used 0-GPs areR1 andR2:

R1(ψ)=
γ

2
Ex∼pD

[
∥∇xDψ∥2

]
R2(θ,ψ)=

γ

2
Ex∼pθ

[
∥∇xDψ∥2

] (3)

R1 penalizes the gradient norm of D on real data, and R2

on fake data. Analysis on the training dynamics of GANs
has thus far focused on local convergence (47; 44; 43), i.e.
whether the training at least converges when (θ,ψ) are in
a neighborhood of (θ∗,ψ∗). In such a scenario, the conver-
gence behavior can be analyzed (47; 44; 43) by examining
the spectrum of the Jacobian of the gradient vector field
(−∇θL,∇ψL) at (θ∗,ψ∗). The key insight here is that when
G already produces the true distribution, we want ∇xD=0,
so thatG is not pushed away from its optimal state, and thus
the training does not oscillate. R1 and R2 impose such a
constraint when pθ = pD. This also explains why earlier
attempts at gradient penalties, such as the one-centered
gradient penalty (1-GP) in WGAN-GP (12), fail to achieve
convergent training (43) as they still encourage D to have a
non-zero slope whenG has reached optimality.

Since the same insight also applies to RpGAN, we extend
our previous analysis and show that:

Proposition II. (Informal) RpGAN with R1 or R2 regular-
ization is locally convergent subject to similar assumptions
as in Mescheder et al. (43).

2

The GAN is dead; long live the GAN

In Appendix I, our proof similarly analyzes the eigenvalues
of the Jacobian of the regularized RpGAN gradient vector
field at (θ∗, ψ∗). We show that all eigenvalues have a
negative real part; thus, regularized RpGAN is convergent
in a neighborhood of (θ∗, ψ∗) for small enough learning
rates (43).

Discussion. Another line of work (54) links R1 and R2

to instance noise (62) as its analytical approximation. Roth
et al. (54) showed that for the classic GAN (11) by Goodfel-
low et al.,R1 approximates convolving pD with the density
function ofN (0,γI), up to additional weighting and a Lapla-
cian error term. R2 likewise approximates convolving pθ
withN (0,γI) up to similar error terms. The Laplacian error
terms from R1, R2 cancel when Dψ approaches Dψ∗ . We
do not extend Roth et al.’s proof (54) to RpGAN; however,
this approach might provide complimentary insights to our
work, which follows the strategy of Mescheder et al. (43).

We demonstrate our loss in Appendix A where we focus
on practical considerations such as global convergence.
Building on Roth et al. (54), we apply both R1 and R2 to
improve global stability.

3. A Roadmap to a New Baseline — R3GAN
The well-behaved RpGAN + R1 + R2 loss alleviates GAN
optimization problems, and lets us proceed to build a mini-
malist baseline—R3GAN—with recent network backbone
advances in mind (41; 75). Rather than simply state the new
approach, we will draw out a roadmap from the StyleGAN2
baseline (27). This model (Config A; identical to (27)) con-
sists of a VGG-like (60) backbone forG, a ResNetD, a few
techniques that facilitate style-based generation, and many
tricks that serve as patches to the weak backbone. Then, we
remove all non-essential features of StyleGAN2 (Config B),
apply our loss function (Config C), and gradually modernize
the network backbone (Config D-E).

We evaluate each configuration on FFHQ 256 × 256 (30).
Network capacity is kept roughly the same for all
configurations—both G and D have about 25M trainable
parameters. Each configuration is trained until D sees
5M real images. We inherit training hyperparameters
(optimizer settings, batch size, EMA decay length, etc.)
from Config A unless otherwise specified. We tune the
training hyperparameters for our final model and show the
converged result in Sec. 4.

Minimum Baseline (Config B). We strip away all Style-
GAN2 features, retaining only the raw network backbone
and basic image generation capability. The features fall into
three categories:

• Style-based generation: mapping network (30), style
injection (30), weight modulation/demodulation (31),
noise injection (30).

• Image manipulation enhancements: mixing regulariza-

tion (30), path length regularization (31).
• Tricks: z normalization (25), minibatch stddev (25),

equalized learning rate (25), lazy regularization (31).

Following (58; 57), we reduce the dimension of z to 64.
The absence of equalized learning rate necessitates a
lower learning rate, reduced from 2.5× 10−3 to 5× 10−5.
Despite a higher FID of 12.46 than Config-A, this simplified
baseline produces reasonable sample quality and stable
training. We compare this with DCGAN (51), an early
attempt at image generation. Key differences include:

a) Convergent training objective withR1 regularization.
b) Smaller learning rate, avoiding momentum optimizer

(Adam β1=0).
c) No normalization layer inG orD.
d) Proper resampling via bilinear interpolation instead

of strided (transposed) convolution.
e) Leaky ReLU in both G and D, no tanh in the output

layer ofG.
f) 4×4 constant input forG, output skips forG, ResNet
D.

We discuss our findings about these principles in Appendix
B and establish that a) through e) are critical to the suc-
cess of StyleGAN2, and apply them to all subsequent
configurations.

Well-behaved loss function (Config C). We use the loss
function proposed in Section 2 and this reduces FID to
11.65. We hypothesize that the network backbone in Config
B is the limiting factor.

General network modernization (Config D). First, we
apply the 1-3-1 bottleneck ResNet architecture (14; 15) to
both G and D. This is the direct ancestor of all modern
vision backbones (41; 75). We also incorporate principles
discovered in Config B and various modernization efforts
from ConvNeXt (41). We categorize the roadmap of
ConvNeXt as follows:

i. Consistently beneficial: i.1) increased width with
depthwise conv., i.2) inverted bottleneck, i.3) fewer
activation functions, and i.4) separate resampling layers

ii. Negligible performance gain: ii.1) large kernel depth-
wise conv. with fewer channels, ii.2) swap ReLU with
GELU, ii.3) fewer normalization layers, and ii.4) swap
batch norm. with layer norm.

iii. Irrelevant to our setting: iii.1) improved training recipe,
iii.2) stage ratio, and iii.3) “patchify” stem

We aim to apply i) to our model, specifically i.3 and i.4 for
the classic ResNet, while reserving i.1 and i.2 for Config
E. Many aspects of ii) were introduced merely to mimic
vision transformers (40; 9) without yielding significant
improvements (41). ii.3 and ii.4 are inapplicable due to our
avoidance of normalization layers following principle c).
ii.2 contradicts our finding that GELU deteriorates GAN

3

The GAN is dead; long live the GAN

Figure 1. Network architecture blocks.

performance, thus we use leaky ReLU per principle e).
Liu et al. emphasize large conv kernels (ii.1) (41), but this
results in slightly worse performance compared to wider
3×3 conv layers, so we do not adopt this ConvNeXt design
choice. We discuss the architecture details in Appendix C.

Bottleneck modernization (Config E). Now that we have
settled on the overall architecture, we investigate how the
residual block can be modernized, specifically i.1) and i.2).
First, we explore i.1 and replace the 3×3 convolution in the
residual block with a grouped convolution. We set the group
size to 16 rather than 1 (i.e. depthwise convolution as in
ConvNeXt) as depthwise convolution is highly inefficient on
GPUs and is not much faster than using a larger group size.
With grouped convolution, we can reduce the bottleneck
compression ratio to two given the same model size. This in-
creases the width of the bottleneck to 1.5× as wide as Config
A. Finally, we notice that the compute cost of grouped con-
volution is negligible compared to 1×1 convolution, and so
we seek to enhance the capacity of grouped convolution. We
apply i.2), which inverts the bottleneck width and the stem
width, and which doubles the width of grouped convolutions
without any increase in model size. Figure 1 depicts our final
design, which reflects modern CNN architectures.

4. Experiments
We evaluate our model on FFHQ (256×256) (30) for high
resolution unimodal image synthesis, and high diversity
generation on CIFAR-10 (34), and ImageNet (32×32) (6).
We compare our model with various baselines, in Table 1, 2,
and 3.

We leave a detailed discussion of our results in Appendix E.
Our model surpasses StyleGAN2 and StyleGAN3 by a large
margin across datasets despite its simplicity. Unless with Im-
ageNet feature leakage (56; 36) or certain regularization (79)
that has been shown to overfit (76) on FFHQ 256×256, no
GAN comes close to R3GAN in terms of FID. Our model
also beats diffusion models despite having a considerably
smaller model size and that it generates samples in one step.

Model FID↓
StyleGAN2 3.78

StyleGAN3-T 4.81

StyleGAN3-R 3.92

LDM 4.98

ADM (DDIM) 8.41

ADM (DPM-Solver) 8.40

Diffusion Autoencoder 5.81

Ours—Config E 2.77

With ImageNet feature leakage (36):

PolyINR* (61) 2.72

StyleGAN-XL* (58) 2.19

StyleSAN-XL* (66) 1.36
Table 1. FFHQ-256. * denotes models that leak ImageNet features.

Model FID↓
BigGAN (4) 14.73

TransGAN (69) 9.26

ViTGAN (37) 6.66

DDGAN (73) 3.75

Diffusion StyleGAN2 3.19

StyleGAN2 + ADA 2.42

StyleGAN3-R + ADA 10.83

DDPM 3.21

DDIM 4.67

VE (26) 3.11

VP (26) 2.48

Ours—Config E 1.97

With ImageNet feature leakage (36):

StyleGAN-XL* (58) 1.85
Table 2. CIFAR-10.

Model FID↓
Unconditional

DDPM++ (32) 8.42

VDM (33) 7.41

Conditional

MSGAN (24) 12.3

ADM (7) 3.60

DDPM-IP (48) 2.87

Ours—Config E 1.27

With ImageNet feature leakage (36):

StyleGAN-XL* (58) 1.10
Table 3. ImageNet-32.

4

The GAN is dead; long live the GAN

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.

Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[2] Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, and
Ashish Kumar Pandey. Smu: smooth activation function for
deep networks using smoothing maximum technique. arXiv
preprint arXiv:2111.04682, 2021.

[3] Andy Brock, Soham De, Samuel L Smith, and Karen
Simonyan. High-performance large-scale image recognition
without normalization. In International Conference on
Machine Learning, pages 1059–1071. PMLR, 2021.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

[5] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017.

[6] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A
downsampled variant of imagenet as an alternative to the
cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

[7] Prafulla Dhariwal and Alexander Nichol. Diffusion mod-
els beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

[8] Adji B Dieng, Francisco JR Ruiz, David M Blei, and
Michalis K Titsias. Prescribed generative adversarial
networks. arXiv preprint arXiv:1910.04302, 2019.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[10] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad
Pezeshki, Rémi Le Priol, Gabriel Huang, Simon Lacoste-
Julien, and Ioannis Mitliagkas. Negative momentum for
improved game dynamics. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages
1802–1811. PMLR, 2019.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[12] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. Advances in neural information processing
systems, 30, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of
the IEEE international conference on computer vision, pages
1026–1034, 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings, Part
IV 14, pages 630–645. Springer, 2016.

[16] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016.

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash
equilibrium. Advances in neural information processing
systems, 30, 2017.

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International conference on machine
learning, pages 448–456. pmlr, 2015.

[20] Alexia Jolicoeur-Martineau. The relativistic discriminator:
a key element missing from standard gan. arXiv preprint
arXiv:1807.00734, 2018.

[21] Alexia Jolicoeur-Martineau and Ioannis Mitliagkas. Gra-
dient penalty from a maximum margin perspective. arXiv
preprint arXiv:1910.06922, 2019.

[22] Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Rémi
Tachet des Combes, and Ioannis Mitliagkas. Adversarial
score matching and improved sampling for image generation.
arXiv preprint arXiv:2009.05475, 2020.

[23] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park,
Eli Shechtman, Sylvain Paris, and Taesung Park. Scaling
up gans for text-to-image synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10124–10134, 2023.

[24] Animesh Karnewar and Oliver Wang. Msg-gan: Multi-scale
gradients for generative adversarial networks. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7799–7808, 2020.

[25] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017.

[26] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. Advances in Neural Information Processing
Systems, 35:26565–26577, 2022.

[27] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative
adversarial networks with limited data. Advances in neural
information processing systems, 33:12104–12114, 2020.

[28] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. Advances in Neural
Information Processing Systems, 34:852–863, 2021.

[29] Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten,
Timo Aila, and Samuli Laine. Analyzing and improving
the training dynamics of diffusion models. arXiv preprint
arXiv:2312.02696, 2023.

[30] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4401–4410, 2019.

[31] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020.

[32] Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo
Kang, and Il-Chul Moon. Soft truncation: A universal
training technique of score-based diffusion model for high
precision score estimation. arXiv preprint arXiv:2106.05527,
2021.

[33] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan
Ho. Variational diffusion models. Advances in neural
information processing systems, 34:21696–21707, 2021.

[34] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[35] Rithesh Kumar, Sherjil Ozair, Anirudh Goyal, Aaron
Courville, and Yoshua Bengio. Maximum entropy generators
for energy-based models. arXiv preprint arXiv:1901.08508,
2019.

[36] Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo
Aila, and Jaakko Lehtinen. The role of imagenet classes in

5

The GAN is dead; long live the GAN

fréchet inception distance. arXiv preprint arXiv:2203.06026,
2022.

[37] Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang,
Zhuowen Tu, and Ce Liu. Vitgan: Training gans with vision
transformers. arXiv preprint arXiv:2107.04589, 2021.

[38] Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv
preprint arXiv:1705.02894, 2017.

[39] Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh.
Pacgan: The power of two samples in generative adversarial
networks. Advances in neural information processing
systems, 31, 2018.

[40] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021.

[41] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976–11986,
2022.

[42] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau,
Zhen Wang, and Stephen Paul Smolley. Least squares
generative adversarial networks. In Proceedings of the
IEEE international conference on computer vision, pages
2794–2802, 2017.

[43] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge?
In International conference on machine learning, pages
3481–3490. PMLR, 2018.

[44] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger.
The numerics of gans. Advances in neural information
processing systems, 30, 2017.

[45] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-
Dickstein. Unrolled generative adversarial networks. In In-
ternational Conference on Learning Representations, 2016.

[46] Takeru Miyato and Masanori Koyama. cgans with projection
discriminator. arXiv preprint arXiv:1802.05637, 2018.

[47] Vaishnavh Nagarajan and J Zico Kolter. Gradient descent
gan optimization is locally stable. Advances in neural
information processing systems, 30, 2017.

[48] Mang Ning, Enver Sangineto, Angelo Porrello, Simone
Calderara, and Rita Cucchiara. Input perturbation re-
duces exposure bias in diffusion models. arXiv preprint
arXiv:2301.11706, 2023.

[49] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka.
f-gan: Training generative neural samplers using variational
divergence minimization. Advances in neural information
processing systems, 29, 2016.

[50] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 4195–4205,
2023.

[51] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional genera-
tive adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

[52] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmenta-
tion. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015.

[54] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and
Thomas Hofmann. Stabilizing training of generative adver-
sarial networks through regularization. Advances in neural
information processing systems, 30, 2017.

[55] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 4510–4520, 2018.

[56] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas
Geiger. Projected gans converge faster. Advances in Neural
Information Processing Systems, 34:17480–17492, 2021.

[57] Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger,
and Timo Aila. Stylegan-t: Unlocking the power of gans
for fast large-scale text-to-image synthesis. In International
conference on machine learning, pages 30105–30118.
PMLR, 2023.

[58] Axel Sauer, Katja Schwarz, and Andreas Geiger. StyleGAN-
XL: Scaling stylegan to large diverse datasets. In ACM SIG-
GRAPH 2022 conference proceedings, pages 1–10, 2022.

[59] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016.

[60] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[61] Rajhans Singh, Ankita Shukla, and Pavan Turaga. Polyno-
mial implicit neural representations for large diverse datasets.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2041–2051, 2023.

[62] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe
Shi, and Ferenc Huszár. Amortised map inference for image
super-resolution. arXiv preprint arXiv:1610.04490, 2016.

[63] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. arXiv preprint arXiv:2011.13456, 2020.

[64] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U
Gutmann, and Charles Sutton. Veegan: Reducing mode col-
lapse in gans using implicit variational learning. Advances
in neural information processing systems, 30, 2017.

[65] Ruoyu Sun, Tiantian Fang, and Alexander Schwing. Towards
a better global loss landscape of gans. Advances in Neural
Information Processing Systems, 33:10186–10198, 2020.

[66] Yuhta Takida, Masaaki Imaizumi, Takashi Shibuya, Chieh-
Hsin Lai, Toshimitsu Uesaka, Naoki Murata, and Yuki
Mitsufuji. SAN: Inducing metrizability of GAN with
discriminative normalized linear layer. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

[67] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Instance normalization: The missing ingredient for fast
stylization. arXiv preprint arXiv:1607.08022, 2016.

[68] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based
generative modeling in latent space. Advances in neural
information processing systems, 34:11287–11302, 2021.

[69] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[70] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan:
Enhanced super-resolution generative adversarial networks.
In Proceedings of the European conference on computer
vision (ECCV) workshops, pages 0–0, 2018.

[71] Yuxin Wu and Kaiming He. Group normalization. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018.

[72] Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat.
Vaebm: A symbiosis between variational autoencoders and
energy-based models. arXiv preprint arXiv:2010.00654,
2020.

6

The GAN is dead; long live the GAN

[73] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling
the generative learning trilemma with denoising diffusion
gans. arXiv preprint arXiv:2112.07804, 2021.

[74] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017.

[75] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 10819–10829, 2022.

[76] Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong
Chen, Fang Wen, Yong Wang, and Baining Guo. Styleswin:
Transformer-based gan for high-resolution image generation.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11304–11314, 2022.

[77] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup
initialization: Residual learning without normalization.
arXiv preprint arXiv:1901.09321, 2019.

[78] Richard Zhang. Making convolutional networks shift-
invariant again. In International conference on machine
learning, pages 7324–7334. PMLR, 2019.

[79] Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang,
Augustus Odena, and Han Zhang. Improved consistency reg-
ularization for gans. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pages 11033–11041,
2021.

7

The GAN is dead; long live the GAN

100

101

102

103

Ge
ne

ra
to

r l
os

s

RpGAN + R1 + R2
GAN + R1 + R2
RpGAN + R1
GAN + R1

Figure 2. Generator G loss for different objectives over training.
Regardless of which objective is used, training diverges with only
R1 and succeeded with both R1 and R2. Convergence failure with
only R1 was noted by Lee et al. (37).

Appendices

A. A Practical Demonstration of Our Loss.
We experiment with how well-behaved our loss is on
StackedMNIST (39) which consists of 1000 uniformly-
distributed modes. The network is a small ResNet (15) for
G and D without any normalization layers (19; 71; 1; 67).
Through the use of a pretrained MNIST classifier, we can
explicitly measure how many modes of pD are recovered by
pθ. Furthermore, we can estimate the reverse KL divergence
between the fake and real samplesDKL(pθ ∥pD) via the KL
divergence between the categorical distribution of pθ and
the true uniform distribution.

A conventional GAN loss with R1, as used by Mescheder
et al. (43) and the StyleGAN series (30; 31; 28), diverges
quickly (Fig. 2). Next, while theoretically sufficient for
local convergence, RpGAN with only R1 regularization
is also unstable and diverges quickly2. In each case, the
gradient of D on fake samples explodes when training
diverges. With both R1 and R2, training becomes stable
for both the classic GAN and RpGAN. Now stable, we
can see that the classic GAN suffers from mode dropping,
whereas RpGAN achieves full mode coverage (Table 4) and
reduces DKL from 0.9270 to 0.0781. As a point of contrast,
StyleGAN (30; 31; 27; 28) uses the minibatch standard
deviation trick to reduce mode dropping, improving mode
coverage from 857 to 881 on StackedMNIST and with
barely any improvement onDKL (25).

R1 alone is not sufficient for globally-convergent training.
While a theoretical analysis of this is difficult, our small
demonstration still provides insights into the assumptions
of our convergence proof. In particular, the assumption that
(θ, ψ) are sufficiently close to (θ∗, ψ∗) is highly unlikely
early in training. In this scenario, if D is sufficiently
powerful, regularizing D solely on real data is not likely
to have much effect on D’s behavior on fake data and so
training can fail due to an ill-behavedD on fake data.

2Varying γ from 0.1 to 100 does not stabilize training.

Loss # modes↑ DKL↓
RpGAN +R1+R2 1000 0.0781
GAN +R1+R2 693 0.9270
RpGAN +R1 Fail Fail
GAN +R1 Fail Fail

Table 4. StackedMNIST (39) result for each loss function. The
maximum possible mode coverage is 1000. “Fail” indicates that
training diverged early on.

Thus, the practical solution is to regularize D on both real
and fake data. The benefit of doing so can be viewed from
the insight of Roth et al. (54): that applying R1 and R2 in
conjunction smooths both pD and pθ which makes learning
easier than only smoothing pD. We also find empirically
that with both R1 and R2 in place, D tends to satisfy
Ex∼pD

[
∥∇xD∥2

]
≈ Ex∼pθ

[
∥∇xD∥2

]
even early in the

training. Jolicoeur-Martineau et al. (21) show that in this
case D becomes a maximum margin classifier—but if only
one regularization term is applied, this does not hold.

B. Experimental Findings from Config B.
Violating a), b), or c) often leads to training failures. Gidel et
al. (10) show that negative momentum can improve GAN
training dynamics. Since optimal negative momentum is
another challenging hyperparameter, we do not use any
momentum to avoid worsening GAN training dynamics.
Studies (31; 29) suggest normalization layers harm gen-
erative models. Batch normalization (19) often cripples
training due to dependencies across multiple samples, and
is incompatible with R1, R2, or RpGAN that assume inde-
pendent handling of each sample. Weaker data-independent
normalizations (31; 29) might help; we leave this for future
work. Early GANs may succeed despite violating a) and c),
possibly constituting a full-rank solution (43) to Eq. 1.

Violations of d) or e) do not significantly impair training
stability but negatively affect sample quality. Improper
transposed convolution can cause checkerboard artifacts,
unresolved even with subpixel convolution (59) or carefully
tuned transposed convolution unless a low-pass filter is
applied. Interpolation methods avoid this issue, varying
from nearest neighbor (25) to Kaiser filters (28). We
use bilinear interpolation for simplicity. For activation
functions, smooth approximations of (leaky) ReLU, such
as Swish (52), GELU (16), and SMU (2), worsen FID.
PReLU (13) marginally improves FID but increases VRAM
usage, so we use leaky ReLU.

All subsequent configurations adhere to a) through e). Viola-
tion of f) is acceptable as it pertains to the network backbone
of StyleGAN2 (31), modernized in Config D and E.

8

The GAN is dead; long live the GAN

C. Network Architecture Details of Config D
Given i.3, i.4, and principles c), d), and e), we can replace
the StyleGAN2 backbone with a modernized ResNet.
We use a fully symmetric design for G and D with 25M
parameters each, comparable to Config-A. The architecture
is minimalist: each resolution stage has one transition layer
and two residual blocks. The transition layer consists of
bilinear resampling and an optional 1×1 conv for changing
spatial size and feature map channels. The residual block
includes five operations: Conv1 × 1 → Leaky ReLU →
Conv3 × 3 → Leaky ReLU → Conv1 × 1, with the final
Conv1 × 1 having no bias term. For the 4 × 4 resolution
stage, the transition layer is replaced by a basis layer for
G and a classifier head for D. The basis layer, similar
to StyleGAN (30; 31), uses 4 × 4 learnable feature maps
modulated by z via a linear layer. The classifier head uses
a global 4 × 4 depthwise conv. to remove spatial extent,
followed by a linear layer to produce D’s output. We
maintain the width ratio for each resolution stage as in
Config A, making the stem width 3× as wide due to the
efficient 1× 1 conv. The 3× 3 conv in the residual block
has a compression ratio of 4, following (14; 15), making the
bottleneck width 0.75× as wide as Config A.

To avoid variance explosion due to the lack of normalization,
we employ fix-up initialization (77) for our modernized net-
works. Specifically, we zero-initialize the last convolutional
layer in each residual block and scale down the initialization
of the other two convolutional layers in the block byL−0.25,
where L is the number of residual blocks. We avoid other
fix-up tricks, such as excessive bias terms and a learnable
multiplier.

D. Roadmap Insights
As per Table 5, Config A (vanilla StyleGAN2) achieves an
FID of 7.52 using the official implementation on FFHQ-
256. Config B with all tricks removed achieves an FID of
12.46—performance drops as expected. Config C, with
a well-behaved loss, achieves an FID of 11.65. But, now
training is sufficiently stable to improve the architecture.

Config D, which improves G and D based on the classic
ResNet and ConvNeXt findings, achieves an FID of 9.95.
The output skips of the StyleGAN2 generator are no longer
useful given our new architecture; including them produces
a worse FID of 10.17. Karras et al. find that the benefit
of output skips is mostly related to gradient magnitude
dynamics (28), and this has been addressed by our ResNet
architecture. For StyleGAN2, Karras et al. conclude that a
ResNet architecture is harmful toG (31), but this is not true
in our case as their ResNet implementation is considerably
different from ours: 1) Karras et al. use one 3-3 residual
block for each resolution stage, while we have a separate
transition layer and two 1-3-1 residual blocks; 2) i.3) and i.4)
are violated as they do not have a linear residual block (55)
and the transition layer is placed on the skip branch of the
residual block rather than the stem; 3) the essential principle

Configuration FID↓ G #params D #params

A StyleGAN2 7.516 24.767M 24.001M

B Stripped StyleGAN2
- z normalization

- Minibatch stddev
- Equalized learning rate

- Mapping network
- Style injection

- Weight mod / demod
- Noise injection

- Mixing regularization
- Path length regularization

- Lazy regularization

12.46 18.890M 23.996M

C Well-behaved Loss
+ RpGAN loss 11.77 18.890M 23.996M+R2 gradient penalty 11.65

D ConvNeXt-ify pt. 1
+ ResNet-ify G & D 10.17 23.400M 23.282M- Output skips 9.950 23.378M

E ConvNeXt-ify pt. 2
+ ResNeXt-ify G & D 7.507 23.188M 23.091M
+ Inverted bottleneck 7.045 23.058M 23.010M

Table 5. Model configuration performance and size.

of ResNet (14)—identity mapping (15)—is violated as
Karras et al. divide the output of the residual block by

√
2

to avoid variance explosion due to the absence of a proper
initialization scheme.

For Config E, we conduct two experiments that ablate
i.1 (increased width with depthwise conv.) and i.2 (an
inverted bottleneck). We add GroupedConv and reduce the
bottleneck compression ratio to two given the same model
size. Each bottleneck is now 1.5× the width of Config
A, and the FID drops to 7.51, surpassing the performance
of StyleGAN2. By inverting the stem and the bottleneck
dimensions to enhance the capacity of GroupedConv, our
final model achieves an FID of 7.05, exceeding StyleGAN2.

E. Experiments Details
E.1. Mode recovery — StackedMNIST (45)
We repeat the earlier experiment in 1000-mode convergence
on StackedMNIST (unconditional generation), but this
time with our updated architecture and with comparisons to
SOTA GANs and likelihood-based methods (Tab. 6, Fig. 5).
One advantage brought up of likelihood-based models
such as diffusion over GANs is that they achieve mode
coverage (7). We find that most GANs struggle to find all
modes. But, PresGAN (8), DDGAN (73) and our approach
are successful. Further, our method outperforms all other
tested GAN models in term of KL divergence.

E.2. FID — FFHQ-256 (30) (Optimized)
We train Config E model until convergence and with opti-
mized hyperparameters and training schedule on FFHQ at
256×256 (unconditional generation) (Tab. 1, Figs. 3 and 6).

9

The GAN is dead; long live the GAN

Model # modes↑ DKL↓
DCGAN (51) 99 3.40

VEEGAN (64) 150 2.95

WGAN-GP (12) 959 0.73

PacGAN (39) 992 0.28

StyleGAN2 (31) 940 0.42

PresGAN (8) 1000 0.12

Adv. DSM (22) 1000 1.49

VAEBM (72) 1000 0.087

DDGAN (73) 1000 0.071

MEG (35) 1000 0.031

Ours—Config E 1000 0.029

Table 6. StackedMNIST 1000-mode coverage.

The hyperparameters and schedule are listed in Appendix J.
We outperform existing StyleGAN methods, plus four more
recent diffusion-based methods. This particular dataset
experimental setting is so common that many methods (not
listed here) use the bCR (79) trick—this has only been
shown to improve performance on FFHQ-256 (not even at
different resolutions of FFHQ) (79; 76). We use no such
tricks in our method.

Figure 3. Qualitative examples of sample generation from our
Config E on FFHQ-256.

E.3. FID — CIFAR-10 (34)
We train Config E model until convergence and with
optimized hyperparameters and training schedule on
CIFAR-10 (conditional generation) (Tab. 2, Fig. 7). Our
method outperforms many other GANs by FID even though
the model has relatively small capacity. For instance,

StyleGAN-XL (58) has 18 M parameters in the generator
and 125 M parameters in the discriminator, while our
model has a 40 M parameters between the generator and
discriminator combined (Fig. 4). Compared to diffusion
models like LDM or ADM, GAN inference is significantly
cheaper as it requires only one network function evaluation
compared to the tens or hundreds of network function
evaluations for diffusion models without distillation.

40 60 80 100 120 140
Number of Parameters (Millions)

10

2 × 100

3 × 100

4 × 100

6 × 100

FI
D-

50
K

Sc
or

e
(L

ow
er

 is
 B

et
te

r)

Scatterplot of Number of Parameters vs FID-50K on CIFAR10 (Log Scale)
Models

Diffusion StyleGAN2
StyleGAN2 + ADA
StyleGAN3-R + ADA
DDPM
VE
VP
Ours---Config E
StyleGAN-XL*

Figure 4. Number of parameters (millions) vs. FID-50K (log scale)
on CIFAR-10. Lower is better.

Many state-of-the-art GANs are derived from Projected
GAN (56), including StyleGAN-XL (58) and the concur-
rent work of StyleSAN-XL (66). These methods use a
pre-trained ImageNet classifier in the discriminator. Prior
work has shown that a pre-trained ImageNet discriminator
can leak ImageNet features into the model (36), causing
the model to perform better when evaluating on FID since
it relies on a pre-trained ImageNet classifier for the loss.
But, this does not improve results in perceptual studies (36).
Our model produces its low FID without any ImageNet
pre-training.

E.4. FID — ImageNet-32 (6)

We train Config E model until convergence and with
optimized hyperparameters and training schedule on
ImageNet-32 (conditional generation). We compare against
recent GAN models and recent diffusion models in Table 3.
We adjust the number of parameters in the generator of our
model to match StyleGAN-XL (58)’s generator (84 million
parameters). Specifically, we make the model significantly
wider to match. Our method achieves comparable FID
despite using a 60% smaller discriminator (Tab. 3) and
despite not using a pre-trained ImageNet classifier.

F. Discussion and Limitations
We have shown that a simplication of GANs is pos-
sible for image generation tasks, built upon a more
stable RpGAN+R1 + R2 objective with mathematically-
demonstrated convergence properties that still provides
diverse output. This stability is what lets us re-engineer a
modern network architecture without the tricks of previous

10

The GAN is dead; long live the GAN

methods, producing the R3GAN model with competitive
FID on the common datasets of Stacked-MNIST, FFHQ,
CIFAR-10, and ImageNet-32 as an empirical demonstration
of the mathematical benefits.

The focus of our work is to elucidate the essential compo-
nents of a minimum GAN for image generation. As such,
we prioritize simplicity over functionality—we do not claim
to beat the performance of every existing model on every
dataset or task; merely to provide a new simple baseline
that converges easily. While this makes our model an ideal
backbone for future GANs, it also means that it is not suit-
able to apply our model directly to downstream applications
such as image editing or controllable generation, as our
model lacks dedicated features for easy image inversion
or disentangled image synthesis. For instance, we remove
style injection functionality from StyleGAN even though
this has a clear use. We also omitted common techniques
that have been shown in previous literature to improve FID
considerably. Examples include some form of adaptive nor-
malization modulated by the latent code (7; 26; 30; 76; 50),
and using multiheaded self attention at lower resolution
stages (7; 26; 29). We aim to explore these techniques in a
subsequent study.

Further, our work is limited in its evaluation of the scalabil-
ity of R3GAN models. While they show promising results
on 32×32 ImageNet, we are yet to verify the scalability on
higher resolution ImageNet data or large-scale text to image
generation tasks.

Finally, as a method that can improve the quality of genera-
tive models, it would be amiss not to mention that generative
models—especially of people—can cause direct harm (e.g.,
through personalized deep fakes) and societal harm through
the spread of disinformation (e.g., fake influencers).

11

The GAN is dead; long live the GAN

G. Local convergence
Following (43), GAN training can be formulated as a
dynamical system where the update operator is given by
Fh(θ,ψ) = (θ,ψ) + hv(θ,ψ). h is the learning rate and v
denotes the gradient vector field:

v(θ,ψ)=

(
−∇θL(θ,ψ)
∇ψL(θ,ψ)

)
(4)

Mescheder et al. (44) showed that local convergence near
(θ∗, ψ∗) can be analyzed by examining the spectrum of
the Jacobian JFh

at the equilibrium: if the Jacobian has
eigenvalues with absolute value bigger than 1, then training
does not converge. On the other hand, if all eigenvalues have
absolute value smaller than 1, then training will converge
to (θ∗,ψ∗) at a linear rate. If all eigenvalues have absolute
value equal to 1, the convergence behavior is undetermined.

Given some calculations (43), we can show that the eigen-
values of the Jacobian of the update operator λJFh

can be
determined by λJv :

λJFh
=1+hλJv . (5)

That is, given small enough h (43), the training dynamics
can instead be examined using λJv , i.e., the eigenvalues of
the Jacobian of the gradient vector field. If allλJv have a neg-
ative real part, the training will locally converge to (θ∗,ψ∗)
at a linear rate. On the other hand, if some λJv have a posi-
tive real part, the training is not convergent. If all λJv have
a zero real part, the convergence behavior is inconclusive.

H. DiracRpGAN:
A demonstration of non-convergence

Summary. To obtain DiracRpGAN, we apply Eq. 2 to
the DiracGAN (43) problem setting. After simplification,
DiracRpGAN and DiracGAN are different only by a con-
stant. They have the same gradient vector field, therefore all
proofs are identical to Mescheder et al. (43).

Definition B.1. The DiracRpGAN consists of a (uni-
variate) generator distribution pθ = δθ and a linear
discriminatorDψ(x)=ψ ·x. The true data distribution pD
is given by a Dirac distribution concentrated at 0.

In this setup, the RpGAN training objective is given by:
L(θ,ψ)=f(ψθ) . (6)

We can now show analytically that DiracRpGAN does not
converge without regularzation.

Lemma B.2. The unique equilibrium point of the training
objective in Eq. 6 is given by θ = ψ = 0. Moreover, the
Jacobian of the gradient vector field at the equilibrium
point has the two eigenvalues ±f ′(0)i which are both on
the imaginary axis.

The gradient vector field v of Eq. 6 is given by:

v(θ,ψ)=

(
−∇θL(θ,ψ)
∇ψL(θ,ψ)

)
=

(
−ψf ′(ψθ)
θf ′(ψθ)

)
(7)

and the Jacobian of v:

Jv=
(

−ψ2f ′′(ψθ) −f ′(ψθ)−ψθf ′′(ψθ)
f ′(ψθ)+ψθf ′′(ψθ) θ2f ′′(ψθ)

)
(8)

Evaluating Jv at the equilibrium point θ=ψ=0 gives us:

Jv
∣∣∣∣
(0,0)

=

(
0 −f ′(0)

f ′(0) 0

)
(9)

Therefore, the eigenvalues of Jv are λ1/2 = ±f ′(0)i, both
of which have a real part of 0. Thus, the convergence
of DiracRpGAN is inconclusive and further analysis is
required.

Lemma B.3. The integral curves of the gradient vector
field v(θ,ψ) do not converge to the equilibrium point. More
specifically, every integral curve (θ(t),ψ(t)) of the gradient
vector field v(θ,ψ) satisfies θ(t)2 + ψ(t)2 = const for all
t∈ [0,∞).

LetR(θ,ψ)= 1
2 (θ

2+ψ2), then:

d

dt
R(θ(t),ψ(t))

=−θ(t)ψ(t)f ′(θ(t)ψ(t))+ψ(t)θ(t)f ′(θ(t)ψ(t))
=0 . (10)

We see that the distance between (θ,ψ) and the equilibrium
point (0, 0) stays constant. Therefore, training runs in
circles and never converges.

Next, we investigate the convergence behavior of DiracRp-
GAN with regularization. For DiracRpGAN, both R1 and
R2 can be reduced to the following form:

R(ψ)=
γ

2
ψ2 (11)

Lemma B.4. The eigenvalues of the Jacobian of the gra-
dient vector field for the gradient-regularized DiracRpGAN
at the equilibrium point are given by

λ1/2=−γ
2
±
√
γ2

4
−f ′(0) (12)

In particular, for γ > 0 all eigenvalues have a negative
real part. Hence, gradient descent is locally convergent for
small enough learning rates.

With regularization, the gradient vector field becomes

ṽ(θ,ψ)=

(
−ψf ′(ψθ)
θf ′(ψθ)−γψ

)
(13)

the Jacobian of ṽ is then given by

Jṽ=
(

−ψ2f ′′(ψθ) −f ′(ψθ)−ψθf ′′(ψθ)
f ′(ψθ)+ψθf ′′(ψθ) θ2f ′′(ψθ)−γ

)
(14)

evaluating the Jacobian at θ=ψ=0 yields

Jṽ
∣∣∣∣
(0,0)

=

(
0 −f ′(0)

f ′(0) −γ

)
(15)

given some calculations, we arrive at Eq.12.

12

The GAN is dead; long live the GAN

I. General Convergence Results
Summary. The proofs are largely the same as
Mescheder et al. (43). We use the same proving tech-
niques, and only slightly modify the assumptions and proof
details to adapt Mescheder et al.’s effort to RpGAN. Like
in (43), our proofs do not rely on unrealistic assumptions
such as supppD=supppθ.

I.1. Assumptions

We closely follow (43) but modify the assumptions wher-
ever necessary to tailor the proofs for RpGAN. Like in (43),
we also consider the realizable case where there exists θ
such thatGθ produces the true data distribution.

Assumption I. We have pθ∗ = pD, and Dψ∗ =C in some
local neighborhood of supppD, where C is some arbitrary
constant.

Since RpGAN is defined on critic difference rather than raw
logits, we no longer require Dψ∗ to produce 0 on supppD,
instead any constantC would suffice.

Assumption II. We have f ′(0) ̸=0 and f ′′(0)<0.

This assumption is the same as in (43). The choice
f(t)=−log(1+e−t) adopted in the main text satisfies this
assumption.

As discussed in (43), there generally is not a single equi-
librium point (θ∗, ψ∗), but a submanifold of equivalent
equilibria corresponding to different parameterizations of
the same function. It is therefore necessary to represent
the equilibrium as reparameterization manifolds MG and
MD. We modify the reparameterization h as follows:
h(ψ)=Ex∼pD

y∼pD

[
|Dψ(x)−Dψ(y)|2+∥∇xDψ(x)∥2

]
(16)

to account for the fact that Dψ∗ is now allowed to have
any constant value on supp pD. The reparameterization
manifolds are then given by:

MG={θ | pθ=pD} (17)
MD={ψ | h(ψ)=0} (18)

We assume the same regularity properties as in (43) forMG

and MD near the equilibrium. To state these assumptions,
we need:

g(θ)=Ex∼pθ [∇ψDψ|ψ=ψ∗] (19)
which leads to:

Assumption III. There are ϵ-balls Bϵ(θ∗) and Bϵ(ψ
∗)

around θ∗ andψ∗ so thatMG ∩Bϵ(θ∗) andMD ∩Bϵ(ψ∗)
define C1-manifolds. Moreover, the following holds:

(i) if v∈Rn is not in Tψ∗MD, then ∂2vh(ψ
∗) ̸=0.

(ii) ifw∈Rm is not in Tθ∗MG, then ∂wg(θ∗) ̸=0.

These two conditions have exactly the same meanings as
in (43): the first condition indicates the geometry of MD

can be locally described by the second derivative of h. The
second condition implies that D is strong enough that it
can detect any deviation from the equilibrium generator
distribution. This is the only assumption we have about the
expressiveness ofD.

I.2. Convergence

We can now show the general convergence result for
gradient penalized RpGAN, consider the gradient vector
field with eitherR1 orR2 regularization:

ṽi(θ,ψ)=

(
−∇θL(θ,ψ)

∇ψL(θ,ψ)−∇ψRi(θ,ψ)

)
(20)

note that the convergence result can also be trivially
extended to the case where both R1 and R2 are applied.
We omit the proof for this case as it is redundant once the
convergence with either regularization is proven.

Theorem. Assume Assumption I, II and III hold for
(θ∗,ψ∗). For small enough learning rates, gradient descent
for ṽ1 and ṽ2 are both convergent to MG×MD in a neigh-
borhood of (θ∗,ψ∗). Moreover, the rate of convergence is at
least linear.

We extend the convergence proof by Mescheder et al. (43)
to our setting. We first prove lemmas necessary to our main
proof.

Lemma C.2.1. Assume J ∈ R(n+m)×(n+m) is of the
following form:

J=

(
0 −B⊤

B −Q

)
(21)

where Q ∈ Rm×m is a symmetric positive definite matrix
and B ∈Rm×n has full column rank. Then all eigenvalues
λ of J satisfy ℜ(λ)<0.

Proof. See Mescheder et al. (43), Theorem A.7.

Lemma C.2.2. The gradient of L(θ,ψ) w.r.t. θ and ψ are
given by:

∇θL(θ,ψ)=E z∼pz
x∼pD

[f ′(Dψ(Gθ(z))−Dψ(x))

[∇θGθ(z)]
⊤∇xDψ(Gθ(z))] (22)

∇ψL(θ,ψ)=E z∼pz
x∼pD

[f ′(Dψ(Gθ(z))−Dψ(x))

(∇ψDψ(Gθ(z))−∇ψDψ(x))] (23)

Proof. This is just the chain rule.

Lemma C.2.3. Assume that (θ∗, ψ∗) satisfies Assump-
tion I. The Jacobian of the gradient vector field v(θ,ψ) at
(θ∗,ψ∗) is then

Jv
∣∣∣∣
(θ∗,ψ∗)

=

(
0 −K⊤

DG
KDG KDD

)
(24)

13

The GAN is dead; long live the GAN

the termsKDD andKDG are given by
KDD=f ′′(0)Ex∼pD

y∼pD
[(∇ψDψ∗(x)−∇ψDψ∗(y))

(∇ψDψ∗(x)−∇ψDψ∗(y))⊤] (25)

KDG=f ′(0)∇θEx∼pθ [∇ψDψ∗(x)] |θ=θ∗ (26)

Proof. Note that

Jv
∣∣∣∣
(θ∗,ψ∗)

=

(
−∇2

θL(θ∗,ψ∗) −∇2
θ,ψL(θ∗,ψ∗)

∇2
θ,ψL(θ∗,ψ∗) ∇2

ψL(θ∗,ψ∗)

)
(27)

By Assumption I, Dψ∗ = C in some neighborhood
of supp pD. Therefore we also have ∇xDψ∗ = 0 and
∇2
xDψ∗ = 0 for x ∈ supppD. Using these two conditions,

we see that ∇2
θL(θ∗,ψ∗)=0.

To see Eq.25 and Eq.26, simply take the derivatives of Eq.23
and evaluate at (θ∗,ψ∗).

Lemma C.2.4. The gradient ∇ψRi(θ,ψ) of the regular-
ization termsRi, i∈{1,2}, w.r.t. ψ are

∇ψR1(θ,ψ)=γEx∼pD [∇ψ,xDψ∇xDψ] (28)
∇ψR2(θ,ψ)=γEx∼pθ [∇ψ,xDψ∇xDψ] (29)

Proof. See Mescheder et al. (43), Lemma D.3.

Lemma C.2.5. The second derivatives ∇2
ψRi(θ

∗,ψ∗) of
the regularization terms Ri, i ∈ {1,2}, w.r.t. ψ at (θ∗,ψ∗)
are both given by

LDD=γEx∼pD [AA⊤] (30)
where A=∇ψ,xDψ∗ . Moreover, both regularization terms
satisfy ∇θ,ψRi(θ

∗,ψ∗)=0.

Proof. See Mescheder et al. (43), Lemma D.4.

Given Lemma C.2.3, Lemma C.2.5 and Eq.20, we can now
show that the Jacobian of the regularized gradient field at
the equilibrium point is given by

Jṽ
∣∣∣∣
(θ∗,ψ∗)

=

(
0 −K⊤

DG
KDG MDD

)
(31)

where MDD =KDD−LDD. To prove our main theorem,
we need to examine Jṽ when restricting it to the space
orthogonal to T(θ∗,ψ∗)MG×MD.

Lemma C.2.6. Assume Assumptions II and III hold. If
v ̸=0 is not in Tψ∗MD, then v⊤MDDv<0.

Proof. By Lemma C.2.3 and Lemma C.2.5, we have
v⊤KDDv=f

′′(0)Ex∼pD
y∼pD

[
((∇ψDψ∗(x)−∇ψDψ∗(y))⊤v)2

]
(32)

v⊤LDDv=γEx∼pD
[
∥Av∥2

]
(33)

By Assumption II, we have f ′′(0) < 0. Therefore
v⊤MDDv≤0. Suppose v⊤MDDv=0, this implies

(∇ψDψ∗(x)−∇ψDψ∗(y))⊤v=0 and Av=0 (34)
for all (x,y) ∈ supp pD × supp pD. Recall the definition
of h(ψ) from Eq.16. Using the fact that Dψ∗ = C and

∇xDψ∗ = 0 for x ∈ supp pD, we see that the Hessian of
h(ψ) at ψ∗ is

∇2
ψh(ψ

∗)=2Ex∼pD
y∼pD

[(∇ψDψ∗(x)−∇ψDψ∗(y))

(∇ψDψ∗(x)−∇ψDψ∗(y))⊤+AA⊤] (35)
The second directional derivative ∂2vh(ψ) is therefore

∂2vh(ψ)

=2Ex∼pD
y∼pD

[∣∣(∇ψDψ∗(x)−∇ψDψ∗(y))⊤v
∣∣2+∥Av∥2

]
=0 (36)

By Assumption III, this can only hold if v∈Tψ∗MD.

Lemma C.2.7. Assume Assumption III holds. If w ̸= 0 is
not in Tθ∗MG, thenKDGw ̸=0.

Proof. See Mescheder et al. (43), Lemma D.6.

Proof for the main theorem. Given previous lemmas, by
choosing local coordinates θ(α,γG) and ψ(β,γD) for MG

and MD such that θ∗=0, ψ∗=0 as well as
MG=Tθ∗MG={0}k×Rn−k (37)

MD=Tψ∗MD={0}l×Rm−l (38)
our proof is exactly the same as Mescheder et al. (43),
Theorem 4.1.

14

The GAN is dead; long live the GAN

J. Hyperparameters,
training configurations, and compute

We implement our models on top of the official StyleGAN3
code base. While the loss function and the models are
implemented from scratch, we reuse support code from
the existing implementation whenever possible. This
includes exponential moving average (EMA) of generator
weights (25), non-leaky data augmentation (27), and metric
evaluation (28).

Training schedule. To speed up the convergence early
in training, we specify a cosine schedule for the following
hyperparameters before they reach their target values:

• Learning rate
• γ forR1 andR2 regularization
• Adam β2
• EMA half-life
• Augmentation probability

We call this early training stage the burn-in phase. Burn-in
length and schedule for each hyperparameter are listed in
Table 7 for each experiment. A schedule for the EMA half-
life can already be found in Karras et al. (27), albeit they use
a linear schedule. A lower initial Adam β2 is crucial to the
initial large learning rate as it allows the optimizer to adapt
to the gradient magnitude change much quicker. We use a
large initial γ to account for that early in training: pθ and pD
are far apart and a large γ smooths both distributions more
aggressively which makes learning easier. Augmentation is
not necessary until D starts to overfit later on; thus, we set
the initial augmentation probability to 0.

Dataset augmentation. We apply horizontal flips and
non-leaky augmentation (27) to all datasets where aug-
mentation is enabled. Following (27), we include pixel
blitting, geometric transformations, and color transforms
in the augmentation pipeline. We additionally include
cutout augmentation which works particularly well with
our model, although it does not seem to have much effect
on StyleGAN2. We also find it beneficial to apply color
transforms less often and thus set their probability multiplier
to 0.5 while retaining the multiplier 1 for other types of
augmentations. As previously mentioned, we apply a fixed
cosine schedule to the augmentation probability rather than
adjusting it adaptively as in (27). We did not observe any
performance degradation with this simplification.

Network capacity. We keep the capacity distribution
for each resolution the same as in (27; 28). We place two
residual blocks per resolution which makes our model
roughly 3× as deep, 1.5× ∼ 3× as wide as StyleGAN2
while maintaining the same model size on CIFAR-10 and
FFHQ. For the ImageNet model, we double the number of
channels which results in roughly 4× as many parameters
as the default StyleGAN2 configuration.

Mixed precision training. We apply mixed precision
training as in (27; 28) where all parameters are stored in
FP32, but cast to lower precision along with the activation
maps for the 4 highest resolutions. We notice that using
FP16 as the low precision format cripples the training of our
model. However, we see no problem when using BFloat16
instead.

Class conditioning. For class conditional models, we
follow the same conditioning scheme as in (27). For
G, the conditional latent code z′ is the concatenation
of z and the embedding of the class label c, specifically
z′ = concat(z,embed(c)). For D, we use a projection dis-
criminator (46) which evaluates the dot product of the class
embedding and the feature vector D′(x) produced by the
last layer of D, concretely D(x) = embed(c) ·D′(x)⊤. We
do not employ any normalization-based conditioning such
as AdaIN (30), AdaGN (7; 26), AdaBN (4) or AdaLN (50)
for simplicity, even though they improve FID considerably.

Stacked MNIST. We base this model off of the CIFAR-
10 model but without class conditioning. We disable all
data augmentation and shorten the burn-in phase consider-
ably. We use a constant learning rate and did not observe any
benefit of using a lower learning rate later in the training.

Compute resources. We train the Stacked MNIST and
CIFAR-10 models on an 8× NVIDIA L40 node. Training
took 7 hours for Stacked MNIST and 4 days for CIFAR-10.
The FFHQ model was trained on an 8× NVIDIA A6000
f0r roughly 3 weeks. The ImageNet model was trained on
NVIDIA A100/H100 clusters and training took one day on
32 H100s (about 5000 H100 hours).

15

T
heG

A
N

isdead;long
livetheG

A
N

Hyperparameter Stacked MNIST CIFAR-10 FFHQ ImageNet
Resolution 32×32 32×32 256×256 32×32
Class conditional - ✓ - ✓
Number of GPUs 8 8 8 32
Duration (Mimg) 10 200 150 700
Burn-in (Mimg) 2 20 20 200
Minibatch size 512 512 256 4096
Learning rate 2×10−4 2×10−4→5×10−5 2×10−4→5×10−5 2×10−4→5×10−5

γ forR1 andR2 1→0.1 0.05→0.005 500→50 0.5→0.05
Adam β2 0.9→0.99 0.9→0.99 0.9→0.99 0.9→0.99
EMA half-life (Mimg) 0→0.5 0→5 0→0.5 0→50
Channels per resolution 768-768-768-768 768-768-768-768 96-192-384-768-768-768-768 1536-1536-1536-1536
ResBlocks per resolution 2-2-2-2 2-2-2-2 2-2-2-2-2-2-2 2-2-2-2
Groups per resolution 96-96-96-96 96-96-96-96 12-24-48-96-96-96-96 96-96-96-96
G params 20.73M 20.78M 23.06M 82.91M
D params 20.68M 21.28M 23.01M 86.55M
Dataset x-flips - ✓ ✓ ✓
Augment probability - 0→0.55 0→0.15 0→0.5

Table 7. Hyperparameters for each experiment.

16

The GAN is dead; long live the GAN

K. Qualitative Results

Figure 5. Qualitative examples of sample generation from our
Config E on Stacked-MNIST.

Figure 6. More qualitative examples of sample generation from
our Config E on FFHQ-256.

Figure 7. Qualitative examples of sample generation from our
Config E on CIFAR-10.

Figure 8. Qualitative examples of sample generation from our
Config E on ImageNet-32.

17

