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Abstract
On-device intelligence for weather forecasting uses
local deep learning models to analyze weather pat-
terns without centralized cloud computing, holds
significance for supporting human activates. Fed-
erated Learning is a promising solution for such
forecasting by enabling collaborative model train-
ing without sharing raw data. However, it faces
three main challenges that hinder its reliability:
(1) data heterogeneity among devices due to geo-
graphic differences; (2) data homogeneity within
individual devices and (3) communication overload
from sending large model parameters for collabo-
ration. To address these challenges, this paper pro-
pose Federated Prompt learning for Weather Foun-
dation Models on Devices (FedPoD), which en-
ables devices to obtain highly customized mod-
els while maintaining communication efficiency.
Concretely, our Adaptive Prompt Tuning lever-
ages lightweight prompts guide frozen founda-
tion model to generate more precise predictions,
also conducts prompt-based multi-level communi-
cation to encourage multi-source knowledge fu-
sion and regulate optimization. Additionally, Dy-
namic Graph Modeling constructs graphs from
prompts, prioritizing collaborative training among
devices with similar data distributions to against
heterogeneity. Extensive experiments demonstrates
FedPoD leads the performance among state-of-
the-art baselines across various setting in real-
world on-device weather forecasting datasets.

1 Introduction
Climate change has a profound impact on both natural
ecosystems and human societies [Karl et al., 2009; Kjell-
strom et al., 2016]. It leads to higher temperatures, sea level
changes and more frequent extreme weather events [Hage-
mann et al., 2013]. As a result, precise weather forecasting is
becoming increasingly important. Data from meteorological
devices in various regions is vital. However, analyzing this
data with deep learning through centralized cloud computing
presents challenges such as network dependence and privacy
concerns [Chakraborty and Rodrigues, 2020]. First, sending

large volumes of data to centralized system places a heavy
burden on communication networks, which is impractical for
low-resource weather devices. Second, data from sensitive
locations is subject to privacy laws, restricting sharing across
devices [Chen et al., 2023a]. To address these issues, on-
device intelligence for analyzing data directly on the devices
is crucial, reduces the need for data transfers, protects privacy,
and decreases reliance on networks.

Federated Learning (FL) [McMahan et al., 2017] is a
promising method for on-device intelligence that trains a
uniform model collaboratively across multiple devices with-
out exchanging data. However, the models often underper-
form due to statistical heterogeneity among clients and data
homogeneity on within individual clients’ data. Personal-
ized FL (PFL) offers new insights by developing specialized
models for each device, enabling tailored on-device intelli-
gence [Paulik et al., 2021]. Recent PFL methods have intro-
duced various methods to improve personalization [Chen et
al., 2022; Tan et al., 2022; Li et al., 2021b]. Despite these
advances, two significant challenges remain. First, there is
often inadequate consideration of the impact of physical ge-
ographic location on local models. For example, devices on
seashores and hilltops may collect different data types even if
they are geographically close. Second, the substantial com-
munication demands of large neural networks burden both
clients and servers. Edge devices with limited resources may
struggle to process the necessary updates for these complex
models [Xiong et al., 2023]. Moreover, the transfer of entire
model parameters hampers communication efficiency.

To tackle the above issues, this paper introduces Federated
Prompt Learning for Weather Foundation Models on Devices
(FedPoD), which allows devices to obtains high customized
models with efficient communication. FedPoD comprising
two pivotal components: (1) Adaptive Prompt Tuning and (2)
Dynamic Graph Modeling. Adaptive Prompt Tuning against
data homogeneity and reduces communication load via up-
dating local prompts based on the frozen foundation model
(FM) to capture local information and guide FM to gener-
ate accurate prediction, coupled with multi-level communica-
tion. Additionally, FedPoD uses Dynamic Graph Modeling
on the server to manage prompts from clients and to build
multiple graphs dynamically, considering various perspec-
tives. This process takes geographic features into account
and promotes priority collaborative learning among clients



with similar data, mitigating the effects of data heterogeneity.
As shown in Table 1, using a pre-trained foundation model
leads to fewer parameters and higher performance compared
to starting from scratch with FedAvg [McMahan et al., 2017].
Furthermore, FedPoD achieves the best results with the pro-
posed adaptive prompt tuning and dynamic graph modeling.

Method Trainable Param. MAE/RMSE
Train from scratch (FedAvg) 5,284,173 40.3/51.2

Pre-trained FM (FedAvg) 215,089 33.5/44.5
Pre-trained FM & Prompts (FedAvg) 159,649 31.1/41.9

FedPoD (Ours) 159,649 27.0/37.6

Table 1: Compared with training Encoder-only Transformer as the
foundation model. Experiments are implemented with FedAvg, and
our method. Communication rounds: 30, local updating: 5.

Main Contributions. With extensive experiments across
datasets including real-world on-deivce weather series
datasets on various setting, we show that our FedPoD con-
sistently outperforms state-of-the-art baselines. Besides, we
conduct further analysis to provide more insights in FedPoD
from the perspective of ablation, hyperparameter sensitivity,
and privacy. The main contributions is as follows:

• We present FedPoD, a communication-efficient frame-
work for on-device weather forecasting that addresses
the challenges of data heterogeneity among devices and
data homogeneity within individual clients during feder-
ated learning.

• We show Adaptive Prompt Tuning that uses prompts
to represent information and guide generation. These
prompts enable multi-level communication and knowl-
edge sharing, reducing the impact of data homogeneity.

• We introduce Dynamic Graph Modeling to create dy-
namic links between participants’ prompts. This prior-
itizes collaborative optimization for clients with similar
representations, enhancing personalization.

• With extensive experiments, we show FedPoD consis-
tently achieves the best and help improve the commu-
nication efficiency while keeping privacy, and adaptive
prompt tuning also benefits baselines.

2 Related Work
Weather Forecasting. Weather forecasting is a crucial
tool that analyzes the variations in weather patterns. Re-
cently, weather forecasting has made significant strides by
incorporating data-driven approaches [Chen and Lai, 2011;
Sapankevych and Sankar, 2009; Voyant et al., 2012]. RNNs
have shown promising in weather forecasting [Shi et al.,
2015; Grover et al., 2015]. Besides, Transformers [Zhou et
al., 2021; Zhou et al., 2022; Wu et al., 2021; Chen et al.,
2023c] can capture non-stationary changes, which have con-
tributed to their widespread use in weather analysis. To over-
come challenges caused by intricate spatial-temporal correla-
tion, spatial-temporal modeling methods [Yu et al., 2017] can
be an effective solution. However, these methods all focus on
data-intensive centralized training, which poses a challenge
to weather forecasting practices.

Personalized Federated Learning. Weather forecasting
involves significant communication loads and raises pri-
vacy issues due to the large volume of data processes on
parallel [Chavan and Momin, 2017]. Federated learning
(FL) [McMahan et al., 2017] offers a way to perform on-
device intelligence but is often hampered by data heterogene-
ity and homogeneity. Personalized FL (PFL) seeks to over-
come these issues by training customized models for each
device, providing fresh insights. For example, [T Dinh et
al., 2020; Hanzely et al., 2020; Li et al., 2021a] add a regu-
larization that decomposes the personalized model optimiza-
tion from the global. [Li et al., 2021b; Collins et al., 2021]
share part of the model and keep personalized layers pri-
vate. [Zhang et al., 2020] enables a flexible method by
adaptively weighted aggregation. [Fallah et al., 2020] start
from a Model-Agnostic Meta-Learning where a meta-model
is learned to generate the initialized local model for each
client. In addition, [Chen et al., 2022] utilize structure in-
formation to explore the topological relations among clients.

3 Preliminaries and Problem Formulation
Weather Forecasting. A multivariate weather time series
represented by Xi ∈ Rm×n, where m and n is the series
length and the number of variables, respectively. Each data
point is shown as xt ∈ R1×n. The weather forecasting task
can be divided into two categories below:

• Task 1-Multivariate to Univariate Forecasting: Pre-
dicting a single variable for future Q periods using all
variables from the past P periods.

• Task 2-Multivariate to Multivariate Forecasting: Pre-
dicting all variables for future Q periods from all vari-
ables in the past P periods.

These tasks can be defined as follows:

Task1: [xt−P ,xt−P+1, · · · ,xt]
f−→

[
xT1

t+1,x
T1
t+2, · · · ,xT1

t+Q

]
,

Task2: [xt−P ,xt−P+1, · · · ,xt]
f−→

[
xT2

t+1,x
T2
t+2, · · · ,xT2

t+Q

]
,

(1)
where f denotes the learning system, xT1

t ∈ R1×1 is the
predicted variable at the t-th step, and xT2

t ∈ R1×n is the
predicted variable at the t-th step.
On-device Weather Forecasting based on FL. Each de-
vice1 possesses a local data varying location pattern, leading
to statistical heterogeneity. Thus, we can define the task on-
device weather forecasting as:

[f1(D1), f2(D2), ..., fN (DN )]→ [D′
1, D

′
2, ..., D

′
N ] (2)

where the Dk and D′
k denote the input dataset and prediction

in k-th client, respectively, and fk is the personalized model
for k-th client. This makes vanilla FL that train an uniform
model unsuitable, and the task is updated to the PFL problem
that solves below bi-level optimization.

F (v;w): = argmin
{v1,v2,...,vN}

N∑
k=1

nk

n
Fk(vk) + λR(vk, w),

s.t. w ∈ argmin
w

G(F1(w), F2(w), ..., FN (w)), (3)

1We take “device(s)“ and “client(s)“ to mean the same one.



where each client hold a customized model parameterized
by vi, w denotes the global model. R(·) is a regularization
term, G(·) is the aggregation strategy. Previous studies have
had difficulty managing the non.iid of geographic data, often
overlooking how spatial-temporal correlation is affected by
more than just location [Chen et al., 2023b]. In this work,
we aim to address two main challenges: (1) How can we
ensure efficient communication between clients and servers
while guaranteeing the framework’s high performance? (2)
How can we minimize the heterogeneity caused by complex
geographic features in the most cost-effective way?

4 Methodology
In this section, we detail our FedPoD, illustrated in Fig. 1.
Each client hold a pre-trained FM (PFM)2 and three types
of prompts that updated locally. In each round, we intro-
duce multi-level communication based on prompts uploaded
by participants, including inter-clients and client-server. In
the server, we present a novel aggregation method, Dynamic
Graph Modeling, to building dynamic graphs based on struc-
tural information from prompts, reducing influence of data
heterogeneity. With the updated prompts from the server,
clients perform local optimization with a specialized prompt-
wise loss. We’ll describe them in more detail below.

Adaptive Prompt Tuning. We introduce Adaptive Prompts
Tuning for local updating to minimize the effects of data ho-
mogeneity within devices while keeping computational loads
low. Unlike prompt tuning in Natural Language Processing,
which simply adjusts inputs to guide a pre-trained large lan-
guage model (LLM) to produce outputs [White et al., 2023].
It involves using lightweight prompts that dynamically repre-
sent local knowledge and act as information carriers in multi-
level communication. This helps lessen the overall impact
of both global data heterogeneity and local data homogene-
ity during collaborative training. Specifically, we use train-
able parameters as prompts, including TEMPORAL PROMPTS
(PT ) and INTER-VARIABLES PROMPTS (PV ), to capture the
local temporal dynamics and the relationships among vari-
ables. These prompts are incorporated into the time series
and are refined during the local training phase. The updating
process of PT and PV is shown in Alg. 1.

After updating the TEMPORAL PROMPTS (PT ) and
INTER-VARIABLES PROMPTS (PV ), we apply two learn-
able matrices, Wt and Wv , to them. This is represented as
X = PT ⊙Wt + PV ⊙Wv . These matrices help to adjust
the significance of the prompts, ensuring they contribute to
our optimization goal without straying off course. Further-
more, we introduce SPATIAL PROMPT (PS), to encode local
geographic pattern for comprehensive modeling, via updat-
ing with original input Xipt and X . The final prediction X
is then derived using the following formula:

PS ,X ←LayerNorm(∥Xipt,Xgeo∥, ∥X,PS∥),
X = FFN(F (Xipt +X))

(4)

2Detailed information about the utilized PFM in Appendix B.
Complete version: https://arxiv.org/abs/2305.14244.

Algorithm 1 Implementation of PT and PV Updating
Initialize Original input series Xipt, frozen PFM FM , Tempo-
ral/Variable updating steps Kt and Ks.
for time forecasting step q = 1, 2, ... do

Updating(FM (∥Xipt,PT ∥T )),PT ∈ Rq·Kt×n

▷ ∥.∥T : concat along temporal dimension
PT ← ∥PT ,P

′
T ∈ RKt×n∥T

▷ P ′
T : Next temporal prompt block

end for
for variable forecasting step p = 1, 2, ... do

Updating(FM (∥Xipt,PV ∥V )),PV ∈ Rm×p·Kv

▷ ∥.∥V : concat along variable dimension
PV ← ∥PV ,P ′

V ∈ Rm×Kv∥V
▷ P ′

V : Next inter-variable prompt block
end for

where Xgeo denotes the client’s geographic location repre-
sented by (ϕ, λ), ϕ and λ is the latitude and longitude coordi-
nates, respectively, for simultaneous updating of PS and X
to adjust the parameters of PS .

Local Optimization from Multi-Task Perspective. For
each client’s local optimization, we focus on two key el-
ements: (1) multi-level communication regularization and
(2) a multi-task perspective. The first involves interactions
among clients and between clients and the server, aiming to
mitigate the effects of data homogeneity. The second treats
the optimization of various prompts as separate tasks, helping
to lessen the unpredictability that comes with mixed updates.
Consequently, we suggest a prompt-based optimization ob-
jective for local updates, as follows:

Lap = MSE(y′, y) +R({Pi}; {Pj}l; {Pi}l; {P }∗), (5)

where MSE(·) denotes the mean square error loss that eval-
uate the distance between ground-truth y and output y′,
R({Pi}; {Pj}l; {Pi}l; {P }∗) is the regularization term uti-
lized to measure the distance between prompts, including per-
sonalized prompts {Pi}l of the i-th client, neighboring j-th
client’s prompts {Pj}l, and global prompts {P }∗ obtained
by averaging all client’s prompts. The underlying motivations
is allowing local client to craft highly customized models via
decomposing prompt parameters from the neighboring and
global prompts while keeping the comprehensive knowledge.
Then, inspired by [Kendall et al., 2018], we conceptualize the
optimization from a multi-task view, can be formulated as:

Lap = MSE(y′, y)

+
1

ξ2
L2({Pi}, {P }∗) +

1

ξ2
L2({Pi}, {Pi}l)

+
1

τ2
· 1

(|N |/SG)− 1

∑
j∈N

L2({Pi}, {Pj}l)

+ 4{log2(ξ) + log2(τ)}.

(6)

Here, the ξ and τ are importance coefficients that obey
λ, τ ∈ (0, 1), the L2 is L2 regularization (e.g., Eu-
clidean distance, Cosine Similarity, etc.). SG represents
the subgraph step used to adjust the scope of interac-
tion between clients. The inter-client regularization term
1
τ2 · 1

(|N |/SG)−1

∑
j∈N L2({Pi}, {Pj}), drives the local up-

https://arxiv.org/abs/2305.14244
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Figure 1: Architecture of FedPoD, prompts comprise the Spatial Prompt, Temporal Prompt, and Inter-variables Prompt.↔: communication
exchanges prompts among clients,↔: communication between clients and the server only transmit prompts.

dating process towards a more comprehensive representa-
tion via considering neighboring clients with distinct fea-
ture distributions within a given range. Regulation terms
1
ξ2L

2({Pi}, {P }∗) and 1
ξ2L

2({Pi}, {Pi}l) are employed
with the purpose of prompting the local clients to attain a
more personalized representation.

Dynamic Graph Modeling for Global Aggregation. We
introduce Dynamic Graph Modeing (DGM) on the server to
boost personalization by constructing spatial-temporal cor-
relations among clients. This promotes collaborative opti-
mization among clients with similar local knowledge rep-
resentation. DGM uses the prompts shared by clients and
their geographic data, like latitude and longitude, to form
graphs. These graphs reveal possible relationships among
clients, leading to a more customized optimization process.
Specifically, we divide local prompts into three classes: (1)
Temporal and Inter-Variables Prompts {PT,i,PV,i}Ni=1; (2)
Spatial Prompts {PS,i}Ni=1 and (3) Full Prompts {Pi}Ni=1,
where N is the number of clients. First, the server gener-
ates a static graph Ageo according to the location information
based on Haversine formula [Robusto, 1957] as:

2R · tan−1

(√
sin2(∆ϕ

2
) + cos(ϕi) · cos(ϕj) · sin2(∆λ

2
)

1− (sin2(∆ϕ
2
) + cos(ϕi) · cos(ϕj) · sin2(∆λ

2
)))

)
,

(7)
where i, j ∈ N , i ̸= j, ϕi and ϕj are the latitude coordinates
of client i and j, respectively, ∆ϕ = ϕi−ϕj is the difference
in latitude between the two points in radians, ∆λ = λi − λj

is the difference in longitude between the client i and client
j, R is the radius of the Earth.

To grasp the potential correlations between clients dynam-
ically, we use two matrices, Wi are Wj , to apply linear trans-
formations to the prompt vectors Pi and Pj of two different
clients. The relation of the i-th client to the j-th client is
calculated using the formula ei,j = α(WiPi,WjPj), where
α(·) denotes a shared attention mechanism that operates in
the space RF ′ × RF ′ → R. Here, W ∈ RF ′×F helps de-
termine the attention coefficients. We then introduce another
matrix W to calculate the weight of the connection (edge)

and construct an adjacency matrix as follows:

Ai,j =
ei,j

1 + e−W [WiPi−WjPj ]
. (8)

For three types of prompts, we create three corresponding
adjacency matrices (graphs), denoted as ATV , AS , and A,
via Eq. 8. We then merge these with AGeo (from Eq.7) us-
ing an attention mechanism to capture more precise corre-
lation representations. Based on these matrices, we recon-
struct prompts to deliver personalized prompts {Pi}l for each
client:

A′ ← Softmax

(
(AGeo −AS)A

⊤
TV√

dk

)
A,

{Pi}l,Ni=1 ← αA{Pi}Ni=1 + (1− α)A′{Pi}Ni=1,

(9)

where
√
dk is the dimension of adjacent matrix, and α is im-

portance coefficient. The term [AGeo − AS] highlights the
discrepancy between the actual geographic correlation and
the encoded spatial correlation, enabling the dynamic adjust-
ment of spatial-temporal correlation among clients to achieve
a more precise potential correlation graph modeling.
Optimization for FedPoD. The overall optimization ob-
jective of FedPoD is to solve a bi-level optimization prob-
lem, as below:

argmin
{Pi};A

N∑
i=1

[
ni

n
Fi({Pi};Di) +R({Pi}; {Pj}l; {Pi}l; {P }∗)]

+ τG(A),

s.t. {P }∗ ∈ argmin
{P1},...,{PN}

N∑
i=1

ni

n
Fi({Pi}),

{P }l ∈ argmin
{Pi}l

∑
j∈N

Aj,iS({Pi}l, {Pj}l)

(10)
where {P } denotes local prompts including PT , PV , and PS ,
{P }∗ is global prompts, the local model was parameterized
by {P } after receiving the pre-trained FM. The {Pj}l is per-
sonalized local models from other clients that achieve by the
additional regularization term G(·) that is a graph-based con-
straint that ensures each client aggregates with similar neigh-
bor nodes. The learned graph with the adjacent matrix A



Algorithm 2 Implementation of FedPoD

1: Initialize local data {Di}Ni=1, foundation model FM , prompts {PT,i,PV,i,PS,i}Ni=1

2: Initialize {PT,i,PV,i,PS,i}Ni=1 as {Pi}Ni=1, Wbt,i,Wbs,i

3: Server-side: Broadcast frozen FM to each clients ▷ Model communication
4: for rounds R = 1, 2, 3... do ▷ FL rounds in sequence
5: Client-side:
6: Download {P }l (personalized prompts), {P }∗ (global prompts) from the server
7: for each client i in parallel do ▷ Clients in parallel
8: {Pi} ← LOCALUPDATE(FM , Di, {Pi}Ni=1) ▷ Prompt-based training
9: Upload {Pi} to the server ▷ Model communication

10: end for
11: Server-side:
12: Ageo ← HAVERSINE FORMULA(ϕ, λ) (Eq. 7) ▷ Generate the static graph
13: A ← DYNAMIC GRAPH MODELING({PT }i}Ni=1, {PV }i}Ni=1, {PS}i}Ni=1) (Eq. 8) ▷ Generate the dynamic graph
14: ATV ← DYNAMIC GRAPH MODELING({PT }i}Ni=1, {PV }i}Ni=1) (Eq. 8) ▷ Generate the dynamic graph
15: AS ← DYNAMIC GRAPH MODELING({PT }i}Ni=1, {PV }i}Ni=1) (Eq. 8) ▷ Generate the dynamic graph
16: A′ ← ATTENTION(A,ATV,AS,Ageo) (Eq. 9) ▷ Attention for filtering
17: {Pi}l,Ni=1 ← αA{Pi}Ni=1 + (1− α)A′{Pi}Ni=1 (According to Eq. 9) ▷ Update personalized prompts
18: {Pi}∗ ← n

nk

∑N
i=1 P

s, wr ← n
nk

∑N
i=1 wr,i ▷ Update global prompts and layers

19: end for
20: LocalUpdate(FM , D,PT,PV,PS,Flayer)
21: for local epoch e = 1, 2, ... do
22: Update PT,PV (Algorithm 1)
23: Update PS (Eq. 4)
24: Update rest of trainable parameters (Eq. 4)
25: Compute local loss (Eq. 6) ▷ Optimization from multi-task view
26: end for

(computed by A′,A) is expected to be sparse and able to
preserve proximity relationships among clients. Algorithm 2
shows the detailed implementation of our FedPoD.

5 Theorems and Proofs
Theorem 1. Consider a on-device weather forecasting sys-
tem with m clients. LetD1,D2, ...,Dm be the true data distri-
bution and D̂1, D̂2, ..., D̂m be the empirical data distribution.
Denote the head h as the hypothesis fromH and d be the VC-
dimension ofH. The total number of samples over all clients
is N . Then with probability at least 1− δ:

max
({P1},{P2},...,{Pm})

∣∣∣∣∣
m∑
i=1

|Di|
N
Lap,Di −

m∑
i=1

|Di|
N
Lap,D̂i

∣∣∣∣∣
≤

√
N

2
log

(m+ 1)|{P }|
δ

+

√
d

N
log

eN

d

(11)

Theorem 2 (Transmitting Prompts Ensure Privacy). Con-
sider a device with a frozen pre-trained foundation model pa-
rameterized by θf , and trainable prompts parameterized by
θp but initialized before updates. Transmitting these prompts
can ensure privacy in multi-level communication.

Proof. Detailed proofs can be found at Appendix C.

6 Experiments
Datasets. Three weather multivariate time-series datasets
from [Chen et al., 2023b], including AvePRE, SurTEMP, and

SurUPS collected by 88, 525, and 238 devices, respectively.
Detailed information can be found at Appendix A.

Baselines. We compare with competitive FL methods, in-
cluding FedAvg [McMahan et al., 2017], FedProx [Li et al.,
2020], pFedMe [T Dinh et al., 2020], Per-FedAvg [Fallah et
al., 2020], FedATT [Jiang et al., 2020], APFL [Deng et al.,
2020], FedAMP [Huang et al., 2021], and SFL [Chen et al.,
2022], while keeping the local foundation model consistent.
Details about baselines can be found at Appendix A. In addi-
tion, we adapt two fine-tuning methods for each baseline for
evaluate our method’s effectiveness, as below:

• Conventional Fine-tuning: Update local FM with an
FFN as the fine-tune head.

• Adaptive Prompts Tuning (Ours): Update prompts
with the frozen FM and multi-level communication.

• Other Prompt Tuning: Add parameters to input to up-
dating models [Chen et al., 2023b; Guo et al., 2023].

Implementation. The task of on-device weather forecast-
ing is to predict the next 12 hours using the data from the
previous 12 hours. Main experiments are conducted in 25 lo-
cal epoch within 50 communication round. Following [Chen
et al., 2022], Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) are used as evaluation metrics. All re-
sults are in 100× the original value for a clearer comparison.
Detailed information about the implementation, local updat-
ing process and the aggregation can be found at Appendix B.



Fine-Tuning Strategy Method
AvePRE SurTEMP SurUPS

Task1 Task2 Task1 Task2 Task1 Task2

Conventional Fine-tuning

FedAvg [McMahan et al., 2017] 34.6/44.8 56.0/90.1 47.6/64.4 56.5/78.3 53.5/74.2 54.1/74.6
FedProx [Li et al., 2020] 31.7/42.1 54.4/87.2 44.4/62.7 52.9/76.4 51.2/69.5 52.3/72.4

Per-FedAvg [Fallah et al., 2020] 30.9/40.7 54.3/71.5 41.4/60.9 51.8/73.3 50.2/69.7 51.7/71.8
APFL [Deng et al., 2020] 32.5/43.8 56.1/84.9 46.2/63.1 59.4/77.3 54.3/73.7 53.8/73.4

FedAMP [Huang et al., 2021] 31.9/41.3 54.7/84.2 43.8/62.9 52.3/73.7 51.5/70.0 53.2/73.4
FedATT [Jiang et al., 2020] 34.5/44.7 63.2/89.8 48.7/63.1 61.0/79.4 58.8/73.6 64.6/82/0

pFedMe [T Dinh et al., 2020] 32.2/42.7 64.0/85.2 42.9/61.8 50.7/74.6 51.7/70.1 52.5/72.0
SFL [Chen et al., 2022] 30.0/40.2 53.1/81.2 39.9/62.6 51.7/76.1 48.0/69.1 51.0/70.4

Adaptive Prompt Tuning (Ours)

FedAvg [McMahan et al., 2017] 32.4/42.8 51.0/76.3 41.2/61.7 54.4/76.8 52.1/72.2 53.2/73.8
FedProx [Li et al., 2020] 27.1/38.0 47.1/70.2 39.7/61.5 51.7/75.2 48.1/67.1 51.0/67.6

Per-FedAvg [Fallah et al., 2020] 29.3/37.9 45.3/67.4 37.8/60.0 51.3/72.2 47.6/68.2 50.1/69.5
APFL [Deng et al., 2020] 29.5/38.7 46.0/67.7 38.6/64.2 55.7/75.7 56.2/67.1 59.7/68.2

FedAMP [Huang et al., 2021] 27.1/37.4 46.7/69.7 39.2/61.0 51.2/73.1 51.5/67.9 52.1/69.3
FedATT [Jiang et al., 2020] 30.5/40.8 58.7/79.7 38.4/63.7 52.4/79.1 50.9/70.0 53.5/72.6

pFedMe [T Dinh et al., 2020] 28.2/39.7 47.5/69.9 38.5/61.4 50.5/74.1 48.4/66.9 51.2/68.8

SFL [Chen et al., 2022] 31.1/39.2 46.4/68.8 37.6/59.3 54.2/73.7 47.2/66.0 49.8/67.2
FedPoD (Ours) 23.7/32.9 44.3/65.5 35.7/55.0 51.4/71.2 43.9/62.5 45.2/63.9

Other Prompt Tuning
PromptFL [Guo et al., 2023] 33.8/42.7 49.2/70.0 44.1/63.2 59.7/78.9 51.1/73.7 58.2/69.2

MetePFL [Chen et al., 2023b] 29.9/37.2 46.1/68.0 40.1/58.6 51.3/73.0 48.4/67.7 52.4/67.6

Table 2: Main results with different local fine-tuning strategy (MAE/RMSE reported), including Conventional Fine-tuning and ours adaptive
prompt tuning, a lower value means better performance. Bold and Underline denote the best and second best respectively.

Variant PV PT Wbv Wbt PS Federated Aggregation Strategy Local Loss Task 1 Task 2

FedPoD-A w/o w - - w {Pi}l,Ni=1 ← AT{Pi}Ni=1 + (1− α)AS{Pi}Ni=1

Ours 29.9/40.4 53.7/78.4
MSE 31.7/42.4 54.4/80.0

FedPoD-B w w/o - - w {Pi}l,Ni=1 ← AS{Pi}Ni=1 + (1− α)AV{Pi}Ni=1

Ours 28.2/37.2 57.1/85.0
MSE 29.2/39.0 58.2/85.9

FedPoD-C w/o w/o - - w {Pi}l,Ni=1 ← AS{Pi}Ni=1

Ours 30.8/41.2 52.0/77.7
MSE 31.8/42.4 54.8/78.9

FedPoD-D w w w w w/o {Pi}l,Ni=1 ← ATV{Pi}Ni=1

Ours 30.1/40.9 48.7/74.7
MSE 31.6/42.1 50.9/76.0

FedPoD-D w w/o - - w/o {Pi}l,Ni=1 ← AV{Pi}Ni=1

Ours 29.4/39.8 56.2/84.7
MSE 31.1/40.8 59.0/87.8

FedPoD-E w/o w - - w/o {Pi}l,Ni=1 ← AT{Pi}Ni=1

Ours 30.1/40.6 53.7/79.0
MSE 31.7/43.5 54.2/80.5

FedPoD (Ori.) w w w w w {Pi}l,Ni=1 ← αA{Pi}Ni=1 + (1− α)A′{Pi}Ni=1

Ours 23.7/32.9 44.3/65.5
MSE 25.0/34.4 47.7/68.0

Table 3: Ablation results (MAE/RMSE report) about (1) Local Adaptive Prompts and (2) Local Optimization Objective, a lower value means
better performance. Bold: the best, Underline: the second best, w and wo denote the presence and absence of prompt, respectively. Note that
AT and AV are generated by Eq. 8 when either PT or PV is present alone.

6.1 Main Results
Table 2 presents main results, showing that FedPoD outper-
forms baselines in most scenarios, often by a significant mar-
gin, across various tuning strategies. Notably, our adaptive
prompt tuning outperforms conventional fine-tuning while
using about 74% parameters (see Table 1). This method
enhances baseline models by enabling them to learn fewer
parameters for considerable performance boosts. FedPoD
records an average performance increase of 23.6%/12.9%,
11.7%/19.7%, and 12.6%/4.3% over FedAvg, FedProx, and
Per-FedAvg, respectively. These percentages reflect MAE
improvements for Task1/Task2. The gains are particularly
striking against SFL, which employs graph-based aggrega-
tion [Chen et al., 2022]. With adaptive prompt tuning,
FedPoD improves by 9.8% and 6.7% on average. These
figures rise to 15.9% for Task1 and 11.1% or Task2 with
conventional fine-tuning. In addition, FedPoD can show

a superior performance relative to FL-based prompt meth-
ods, PromptFL [Guo et al., 2023] and MetePFL [Chen et
al., 2023b]. We credit these benefits to two main strate-
gies: (1) adaptive prompt tuning guides the PFM to generate
more accurate prediction based on lightweight prompts with
multi-level communication, and (2) dynamic graph model-
ing encourages collaborative optimization among clients with
similarly distribution to mitigate data heterogeneity. These
components effectively address data heterogeneity and homo-
geneity issues through a lightweight plug-and-play means.

6.2 Framework Analysis
Ablation Study. We present the ablation results from two
angles: (1) examining local prompts and their aggregation
method, and (2) assessing the local optimization objective.
This helps confirm the effectiveness of our Adaptive Prompt
Tuning and Dynamic Graph Modeling. For (1), Table 3 re-



veal that: (i) ours local optimization objective outperforms
MSE in all ablation scenarios concerning prompts, and (ii)
the lack of any kind of prompt significantly hinders perfor-
mance due to inadequate local representation and global dy-
namic aggregation. Furthermore, the impact of our multi-
task optimization objective is detailed in Table 4, with Term
1: 1

ξ2L
2({Pi}, {P }∗), Term 2: 1

ξ2L
2({Pi}, {Pi}l), Term 3:

1
τ2 · 1

(|N |/SG)−1

∑
j∈N L2({Pi}, {Pj}l). This indicates that

omitting any single term of our local optimization objective
leads to a drop in overall performance, underscoring the im-
portance and necessity of each component.

Term 1 Term 2 Term 3 Task 1 Task 2

w wo wo 29.1/36.9 47.1/70.1
w wo w 27.3/36.3 46.0/69.9
w w wo 29.1/34.3 46.6/72.5

wo w w 29.0/34.6 47.9/74.8
wo wo w 28.2/37.0 49.2/74.4

Table 4: Ablation results about the multi-task optimization objective
(MAE/RMSE report). Bold: the best, Underline: the second best.

Privacy. We’ve implemented differential privacy (DP) in
FedPoD by adding random noise to the gradient updates.
This noise is scaled by a factor of τ = 1e−2. Table 5 shows
a drop in performance after incorporating DP. Despite this, as
shown in Table 2, FedPoD continues to surpass other base-
lines. Importantly, since FedPoD only uses adaptive prompts
on the server to create graphs that capture the spatial-temporal
relationships among clients, applying DP exclusively to these
prompts is enough to maintain privacy.

Method/Dataset FedPoD FedPoD-DP Ave. Variation

AvePRE
Task1 23.7/32.9 24.8/33.9 ↓ 4.33%
Task2 44.3/65.5 46.1/66.9 ↓ 2.88%

SurTEMP
Task1 35.7/55.0 37.0/56.6 ↓ 2.69%
Task2 51.4/71.2 52.7/73.0 ↓ 2.53%

SurUPS
Task1 43.9/62.5 45.1/63.7 ↓ 2.33%
Task2 45.2/63.0 46.4/65.2 ↓ 2.34%

Table 5: Differential privacy experiment results (MAE/RMSE re-
port), FedPoD-DP denotes FedPoD with DP.

Hyper-parameter Sensitivity. We examine the impact of
hyper-parameters from two angles: the prompt updating step
and the subgraph step. Our configuration is as follows: 5
local epochs and 10 communication rounds, while other set-
tings follow main experiments. Table 6 shows that the best
performance for Task 2 is achieved with a step of 1, and for
Task 1 with a step of 6. This inconsistency is due to the vari-
able nature of weather patterns. Additionally, setting the step
to 12 results in the poorest performance for both Task 1 and
Task 2. This is because a single-step update does not account
for the erratic periodicity of weather patterns, leading to in-
flexibility. Our findings on the impact of SG are shown in
Table 7, where SG ∈ {1, 2, 4, 6, 8, 10}. The results suggests
that FedPoD achieve the suboptimal when SG = 1 across

different tasks, while optimal results are achieved for Task
1/2 when SG = 10/2. Bigger SG means more knowledge
will be involved in local optimization. In our experiment, not
all clients train in each round for training due to the consider-
able overhead. With a large SG, clients are optimized locally
with a restricted range of client knowledge, potentially over-
looking valuable input from other participants and negatively
affecting performance. We set SG = 1 as the default because
it considers all clients and allows for flexibility in specific
scenarios. As only prompts PT ,PS ,PV , which have fewer
parameters, are involved, SG = 1 does not significantly in-
crease communication costs.

Updating step of PT Updating step of PV MAE RMSE

1 1 39.9/51.5 50.2/79.5

2 2 38.1/53.7 48.8/85.0

3 3 37.1/52.9 47.9/80.4

4 4 38.6/53.2 47.7/80.1

6 6 35.7/52.6 46.1/80.7

12 12 39.3/53.7 50.3/84.8

Table 6: Impact of prompt updating steps, Bold: the best, Underline:
the second best, a lower value means a better performance. Note
that the value format like ”38.1/53.7” in the report denotes results
for Task 1 and Task 2, respectively.

Step of subgraph SG MAE (Task 1/Task 2) RMSE (Task 1/Task 2)

1 36.9/51.7 47.0/79.4

2 39.1/51.5 49.9/79.0

4 38.1/51.8 49.7/78.8

6 38.8/54.0 49.1/81.9

8 39.3/54.4 49.7/81.8

10 35.9/52.4 45.6/79.6

Table 7: Results about impact of subgraph step SG, Bold: the best,
Underline: the second best. Lower means bette performance.

7 Conclusion and Future Works
In this paper, we seek to tackle data heterogeneity among
devices and data homogeneity within individual devices in
on-device weather forecasting. To achieve this, we pro-
pose FedPoD, which is built on Adaptive Prompt Tuning
and Dynamic Graph Modeling. The former aims to mitigate
data homogeneity via extracting latent knowledge with the
frozen foundation model, alongside multi-level communica-
tion, and the last deals with data heterogeneity by prioritiz-
ing devices with similar distribution for aggregation and col-
laborative training based on prompt-related graphs. Exten-
sive experiments on real-world on-device weather forecast-
ing datasets shows FedPoD consistently outperforms state-
of-the-art methods. However, FedPoD can struggle with
long-term predictions due to the gradual updating of prompts.
We plan to address this limitation in future research and ex-
tend our approach to more on-device spatiotemporal reason-
ing challenges, such as forecasting and imputation.
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