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ABSTRACT

In recent years, several works have explored the use of score-based generative
models as expressive priors in Markov chain Monte Carlo (MCMC) algorithms for
provable posterior sampling, even in the challenging case of nonlinear Bayesian
inverse problems. However, these approaches have been mostly limited to finite-
dimensional approximations, while the original problems are typically defined in
function spaces of infinite dimension. It is well known that algorithms designed
for finite-dimensional settings can encounter theoretical and practical issues when
applied to infinite-dimensional objects, such as an inconsistent behavior across
different discretizations. In this work, we address this limitation by leveraging the
recently developed framework for score-based generative models in Hilbert spaces
to learn an infinite-dimensional score, which we use as a prior in a function-space
Langevin-type MCMC algorithm, providing theoretical guarantees for convergence
in the context of nonlinear Bayesian inverse problems. Crucially, we prove that
controlling the approximation error of the score is not only essential for ensuring
convergence but also that modifying the standard score-based Langevin MCMC
through the selection of an appropriate preconditioner is necessary. Our analysis
shows how the control over the score approximation error influences the design of
the preconditioner—an aspect unique to the infinite-dimensional setting.

1 INTRODUCTION

Solving inverse problems is a central challenge in many applications. The objective is to estimate
unknown parameters using noisy observations or measurements (Tarantola, 2005). One of the main
challenges of inverse problems is that they are often ill-posed (Hadamard, 1923). However, by
framing an inverse problem within a probabilistic framework known as Bayesian inference, one
can characterize all possible solutions (Tarantola, 2005; Lehtinen et al., 1989; Stuart, 2014). In the
Bayesian approach, we first define a prior probability distribution that describes our knowledge on
the unknown before any measurements are taken, along with a model for the observational noise. The
objective is to estimate the posterior distribution, which characterizes the distribution of the unknown
given noisy measurements. One can then sample from the posterior to extract statistical information
for uncertainty quantification (Stuart, 2014; 2010; Knapik et al., 2011; Dashti and Stuart, 2011).

Score-based generative models (SGMs) offer a powerful way to compute the posterior. SGMs are
deep learning tools that sample from a complex high-dimensional distribution by first learning the
(Stein) score (Liu et al., 2016)—the gradient of the logarithm of the probability density function of the
distribution—and then using it in various sampling algorithms. A popular version among them, known
as score-matching with Langevin dynamics (SMLD), uses the learned score in a Monte Carlo Markov
Chain (MCMC) algorithm based on Langevin dynamics (Song and Ermon, 2019). Well-documented
practical issues with Langevin MCMC samplers, such as slow mixing and inaccurate score estimation
in low data density regions, are handled using heuristics inspired by simulated annealing (Kirkpatrick
et al., 1983) and annealed importance sampling (Neal, 2001), where data are perturbed with different
noise levels, a single score network is trained to estimate scores for all these levels, and during
sampling, scores for large noise levels are used initially while the noise is gradually reduced. To
enable new sampling procedures, Song et al. (2020) found that SMLD and diffusion-based methods
(Sohl-Dickstein et al., 2015; Ho et al., 2020) can be related through a unified framework, based on
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stochastic differential equations (SDEs), often referred to as score-based diffusion models. Here,
instead of perturbing data with a finite number of noise distributions at discrete times, Song et al.
(2020) have considered a continuum of distributions that evolve in time according to a diffusion
process whose dynamics is described by an SDE. Crucially, the reverse process is also a diffusion
(Anderson, 1982) satisfying a reverse-time SDE whose drift depends on the score, which can be
estimated through a neural network via score matching (Vincent, 2011; Song and Ermon, 2020).

After their introduction, SGMs have been utilized for solving inverse problems in a Bayesian fashion.
Some have proposed to sample from the posterior using the score conditioned on observations
(Batzolis et al., 2021; Kawar et al., 2021; Jalal et al., 2021). Others have suggested utilizing the
learned score of the prior distribution, that is, the so-called unconditional score model. Currently,
there are two ways the learned score of the prior is used to sample the posterior distribution of an
inverse problem: (i) modifying the unconditional reverse diffusion process of a pretrained SGM,
which initially produces samples from the prior distribution, by conditioning on the observed data
so that the modified reverse process yields samples from the posterior (Song et al., 2021; You and
Dragotti, 2024; Chung et al., 2022); and (ii) using a score-based MCMC sampler, as in the seminal
work of Welling and Teh (2011) on stochastic gradient Langevin dynamics, where the score of the
prior distribution is learned to capture more complex features (Feng et al., 2023; Sun et al., 2024; Xu
and Chi, 2024), thereby extending de facto the SMLD algorithm to posterior sampling.

Regardless of whether they utilize the conditional or unconditional score, all the works cited above
have something in common: they assume that the posterior is supported on a finite-dimensional
space. However, in many inverse problems, especially those governed by partial differential equations
(PDEs), the unknown parameters to be estimated are functions that exist in a suitable function space,
typically an infinite-dimensional Hilbert space. Unfortunately, discretizing the input and output
functions into finite-dimensional vectors and utilizing standard SGMs to sample from the posterior is
not always desirable—it is well known that algorithms designed for finite-dimensional settings can
encounter theoretical and practical issues when applied to infinite-dimensional objects, such as an
inconsistent behavior across different discretizations (Stuart, 2010). In the last year, however, some
progress has been made to address these concerns. Building upon the theory of infinite-dimensional
stochastic analysis (Follmer and Wakolbinger, 1986; Millet et al., 1989; Da Prato, 2006; Da Prato and
Zabczyk, 2014), SGMs have been extended to operate directly in Hilbert function spaces (Kerrigan
et al., 2022; Lim et al., 2023; Franzese et al., 2024; Pidstrigach et al., 2023; Hagemann et al.,
2023; Bond-Taylor and Willcocks, 2023; Lim et al., 2024). Some works have started employing
infinite-dimensional SGMs to solve inverse problems, providing a discretization-invariant numerical
platform for exploring the posterior (Pidstrigach et al., 2023; Baldassari et al., 2024; Hosseini et al.,
2023). However, the theoretical guarantees provided by these works require the inverse problem to
be linear, whereas many interesting inverse problems are nonlinear, like those arising in electrical
impedance tomography (Calderén, 2006; Borcea, 2002; Uhlmann, 2009), data assimilation (Law
et al., 2015), photo-acoustic tomography (Bal and Ren, 2011; Bal and Uhlmann, 2010), boundary
rigidity (Kachalov et al., 2001), and groundwater flow (Dashti and Stuart, 2011).

In this work, we take a first step towards bridging this gap and utilize an infinite-dimensional
unconditional score model as a prior in a Langevin-type MCMC algorithm, providing theoretical
guarantees for its convergence to the true posterior of function-space nonlinear inverse problems. In
doing so, we extend the theoretical setup of Sun et al. (2024) to Hilbert function spaces, presenting a
convergence analysis with error bounds that are dimension-free. The main feature of our analysis,
similar to Sun et al. (2024), is that it is fully compatible with the joint presence of potentially non-log-
concave likelihoods (making it suitable for nonlinear inverse problems), imperfect score networks,
and weighted annealing. Most importantly, we prove that controlling the approximation error of the
score is essential for ensuring convergence and that modifying the standard Langevin-type MCMC
algorithm through the selection of an appropriate preconditioner is necessary. More precisely,
our analysis shows how the control over the score approximation error dictates the design of the
preconditioner—an aspect unique to the infinite-dimensional setting.

1.1 RELATED WORK

Since we aim to extend the theoretical setup of Sun et al. (2024) into infinite dimensions, while
addressing the theoretical questions posed by Stuart (2010) on the challenges of functions-space
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Bayesian inference, our work combines elements from three contemporary research areas: MCMC
methods for functions, Bayesian nonlinear inverse problems, and SGMs.

There exists a large body of literature on infinite-dimensional score-based MCMC algorithms (Beskos
et al., 2017; Wallin and Vadlamani, 2018; Durmus and Moulines, 2019; 2017; Dalalyan, 2017;
Hairer et al., 2014; Cotter et al., 2013; Cui et al., 2016; 2024; Beskos et al., 2018; Morzfeld et al.,
2019; Muzellec et al., 2022; Beskos et al., 2008). However, most of these works precede the recent
wave of papers on SGMs. The main inspiration behind our theory is the non-asymptotic stationary
convergence analysis recently developed in the finite-dimensional setting by Sun et al. (2024) for
a method known by various names, such as the plug-and-play unadjusted Langevin algorithm or
plug-and-play Monte Carlo (PMC-RED), with the latter making the connection to regularization-
by-denoising algorithms (Reehorst and Schniter, 2018; Romano et al., 2017) explicit. This method,
closely related to stochastic gradient Langevin dynamics (Welling and Teh, 2011), employs a plug-
and-play approach within an MCMC scheme. Specifically, it aims to learn an approximation of the
prior density through a denoising algorithm while keeping an explicit likelihood, in the same spirit as
fixed-point algorithms (Buzzard et al., 2018). While similar methods have been used frequently in
the past (Venkatakrishnan et al., 2013; Alain and Bengio, 2014; Guo et al., 2019; Kadkhodaie and
Simoncelli, 2021), a general proof of convergence in the context of stochastic Bayesian algorithms
was only recently proposed by Laumont et al. (2022). Sun et al. (2024) rely on weaker conditions,
and their analysis is compatible with the joint presence of potentially non-log-concave likelihoods,
imperfect score networks, and weighted annealing. Unfortunately, their convergence bound is not
dimension-free and becomes uninformative in the limit of infinite dimensions. In our work, we fill
this gap by carrying out the convergence analysis in function spaces.

Using MCMC methods that provably sample from a non-log-concave posterior distribution, especially
in function spaces, is notoriously challenging since it results in a high-dimensional, non-convex
optimization problem. Recently, a series of rigorous mathematical papers, mostly by Richard Nickl
and his collaborators, have approached nonlinear inverse problems within a probabilistic framework
(Nickl and Wang, 2022; Nickl and Sohl, 2019; Nickl, 2020; Abraham, 2019; Furuya et al., 2024;
Giordano and Nickl, 2020; Bohr and Nickl, 2021; Paternain et al., 2012; Monard et al., 2021a;
Bonito et al., 2017; Nickl and Paternain, 2022; Vershynin, 2018; Nickl et al., 2020; Nickl and Sohl,
2017; Monard et al., 2021b; Spokoiny, 2019); see Nickl (2023a) for an overview. The general idea
is to provide a set of assumptions for the forward model to mitigate the non-log-concavity of the
posterior. The main concerns of these works are ensuring statistical consistency, i.e., that the posterior
concentrates most of its mass around the actual parameter that generated the data, and computability.
For the former, the global stability of the inverse problem appears to be a sufficient condition. While
we have not addressed this in our work, it can be imposed by restricting the family of nonlinear
inverse problems under consideration, thus without changing the essence of our convergence analysis.
A stronger assumption—Ilocal gradient stability of the forward map—is crucial for computability, as
it ensures local log-concavity of the posterior. This implies that if a Markov chain is initialized in
such a local region, proving convergence and fast mixing time of the sampling procedure becomes
easier. We discuss the challenges related to the computational complexity of Langevin-type MCMC
algorithms in the Discussion and Conclusion section; it’s worth mentioning, however, that in our
work we focus only on theoretical convergence, even though our setup, being compatible with a
weighted annealing schedule, provides a heuristic to speed up the mixing of the Markov chain, similar
to Song and Ermon (2019) and Sun et al. (2024).

In our convergence analysis, the learned score plays a key role. Among the theoretical frameworks
defining SGMs in infinite dimensions, we consider the one by Pidstrigach et al. (2023) and Baldassari
et al. (2024) for continuous-time diffusion models. An important contribution of our work is that
we show not only that the obtained convergence bound explicitly depends on the H-accuracy of
the approximated score—where H is the infinite-dimensional separable Hilbert space in which the
inverse problem is defined—but also that the control we have over the score approximation error
plays a key role in designing the MCMC sampler, particularly in introducing the preconditioning
operator that ensures convergence in function spaces. The idea of modifying an MCMC sampler
with a preconditioner in the infinite-dimensional setting is not new (Hairer et al., 2007); howeyver, it is
novel in the context of SGMs. In fact, we not only prove convergence with imperfect scores, similar
to Sun et al. (2024), but we also characterize the parameters of the preconditioner with respect to the
strength of the control over the score approximation error.
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1.2 OUR CONTRIBUTION

In this work, we provide theoretical guarantees for the convergence of a Hilbert space Langevin-type
MCMC algorithm that incorporates infinite-dimensional unconditional score models and samples
from the posterior of nonlinear inverse problems. The main contributions are as follows:

* We study the extension to infinite dimensions of the posterior sampler defined by Sun et al.
(2024) by utilizing infinite-dimensional SGMs as expressive learning-based priors within a
Hilbert space Langevin-type MCMC scheme (Section 4).

* In doing so, we build upon the non-asymptotic stationary convergence analysis of Sun
et al. (2024). We prove that the infinite-dimensional algorithm converges to the posterior
under possibly non-log-concave likelihoods and imperfect scores. The obtained convergence
bound is dimension-free and depends on the score approximation error (Theorem 1).

* The role of the score approximation error is explored in detail, as ensuring the convergence
of the algorithm in Sun et al. (2024) in infinite dimensions requires the use of an appropriate
preconditioner whose parameters depend on the strength of the control over the error. This
aspect is quantified (Remark 7).

Section 5 concludes with a discussion on the challenges related to learning the score and computational
complexity of Langevin-type MCMC methods, drawing connections to Song and Ermon (2019) and
Nickl (2023b).

2 BACKGROUND

2.1 THE BAYESIAN APPROACH TO INVERSE PROBLEMS

We consider the possibly nonlinear inverse problem
y = A(Xo) +b, ey

where the unknown parameter X is modeled as an H-valued random variable and H is an infinite-
dimensional separable Hilbert space, A : H — R” is the measurement operator, and b is the noise
term with a given density p with respect to the Lebesgue measure over RYY. We assume to have some
prior knowledge about the distribution of X before any measurements are taken. This knowledge
is encoded in a given prior measure pg. The solution to (1) is then represented by the conditional
probability measure of X|y ~ uY, which is typically referred to as the posterior (Stuart, 2010). If
E,.,[p(y — A(Xo))] < 400, which is the case for instance when the density p is bounded (such
as a multivariate Gaussian A/ (0, T")), then ¥ is absolutely continuous with respect to po (we write
1Y < po) and its Radon-Nikodym derivative is given by

dpy 1

W (x) =

dpio Z(y)
where @ (X;y) := —log (p(y — A(X))) is the negative log-likelihood. Explicitly characterizing
1Y in (2) is challenging, particularly in high dimensions, due to the intractable normalizing con-
stant Z(y) := [,; exp(—®o(X;y))dpuo(X). Popular methods for exploring the posterior, such as
Langevin-type MCMC algorithms, aim to generate samples distributed approximately according to
Y. As anticipated in the Introduction section, we propose to extend one such algorithms to infinite
dimensions: the plug-and-play Monte Carlo method (PMC-RED) proposed by Sun et al. (2024).

exp(—Po(X:y)), ()

2.2 FORMULATION OF PMC-RED

For the reader’s convenience, we will now review the formulation of PMC-RED proposed by Sun
et al. (2024) for sampling the posterior of a possibly nonlinear imaging inverse problem in finite
dimensions, y = A(x) + e, with A : R® — R™ and e ~ N(0, o%I). As the reader will notice, this
method resembles the well-known stochastic gradient Langevin dynamics (Welling and Teh, 2011),
with the main difference being that the prior is replaced by the score network of a smoothed prior,
which provides additional regularity in computing the gradient.

PMC-RED is built on the fusion of traditional regularization-by-denoising (RED) algorithms
(Reehorst and Schniter, 2018; Romano et al., 2017) and score-based generative modelling (Song and
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Ermon, 2019; Song et al., 2020; Ho et al., 2020). It incorporates expressive score-based generative
priors in a plug-and-play fashion (Venkatakrishnan et al., 2013; Alain and Bengio, 2014; Guo et al.,
2019; Kadkhodaie and Simoncelli, 2021) for conducting provable posterior sampling. Given an initial
state xg € R™, PCM-RED is defined as the following recursion

Xpt1 = Xk — ¥ (Vg(xk) — So(xXk,0)) + /272, 3)
k1

where Z;, = & dW, follows the m-dimensional i.i.d normal distribution, {Wt}tZO represents the
m-dimensional Brownian motion, v > 0 denotes the step-size, g is the negative log-likelihood, and
So(xx, o) = Vlog p,(xXy) is the score network for p,, a smoothed prior with V log p, — Vlogp as
o — 0. As we mentioned, a motivation for using p, is that p may be non-differentiable, precluding
the use of algorithms such as gradient descent for maximum a posteriori (MAP) estimation. This
motivates the application of proximal methods (Beck and Teboulle, 2009a; Boyd et al., 2011) like
RED (Beck and Teboulle, 2009b). Interestingly, Sun et al. (2024) notice that since the gradient-flow
ODE links RED to the Langevin diffusion described by the SDE

dx; = (Vlogp(x;) — Vg(x;))dt + V2dW,,

one can interpret (3) as a parallel MCMC algorithm of RED for posterior sampling—in this sense,
PMC-RED is conceptually equivalent to the plug-and-play unadjusted Langevin algorithm studied by
Laumont et al. (2022). The reason we focus on PMC-RED instead of other similar methods is that Sun
et al. (2024) provide a convergence analysis that is compatible with the joint presence of potentially
non-log-concave likelihoods, imperfect scores, and weighted annealing. Unfortunately, the obtained
convergence bound depends on the dimension of the problem, and thus becomes uninformative in
infinite dimensions. To address this issue, in Section 4 we carry out the convergence analysis directly
in Hilbert (function) spaces.

3  SCORE-BASED GENERATIVE PRIORS IN HILBERT SPACE

In (3), the score network Sy(x, o) approximates V log p, (x). As mentioned above, p,, refers to the
smoothed prior, here being a distribution with respect to the Lebesgue measure. In infinite dimensions,
however, there is no natural analogue of the Lebesgue measure; p, is no longer well defined (Da Prato,
2006). To extend PMC-RED to infinite dimensions we then need to define the infinite-dimensional
score function that will replace V log p, (x). Subsequently, we will show in Section 4 that this allows
us to approximately sample from ¥ in the infinite-dimensional setting.

Let Cy, : H — H be a trace class, positive-definite, symmetric covariance operator. Here and
throughout the paper, we assume that the prior po that we want to learn from data to perform
Bayesian inference in (1) is the Gaussian measure ;o = N (0, C,,, ), though our analysis can be easily
generalized to other classes of priors, e.g. priors given as a density with respect to a Gaussian. To
define the score function in infinite dimensions, we follow the continuous-time approach outlined
in Pidstrigach et al. (2023) and Baldassari et al. (2024). Let C' : H — H be a trace class, positive-
definite, symmetric covariance operator. Let {W; };>( be a Wiener process on H. Denote by X the
diffusion at time 7 of a prior sample Xy ~ pg:
-
X, =e?X, +/ e~ (T2 Caw,.
0

X evolves towards the Gaussian measure N (0, C') as T — oo according to the SDE
1
X, = =5 Xedr + VCAW,, X~ uo. 4)
The score function in infinite dimensions is defined as follows:
Definition 1. The score function enabling the time-reversal of (4) is defined for x € H as
S(rywyp0) = —(1—e 7)o — e_T/QJE[X0|XT = x]). 5)

Remark 1. The neural network Sy(, z; po) that approximates the true score minimizes the denoising
score matching loss in infinite dimensions:

Eaom £(Xo) s ~ (X | Xo=a0) 196 (T T pr0) — (1 = €7 7)™ (2, — €77/ 2a0) | 1],
where L(Xy) and L(X | Xo = xo) denote the law of Xy and X .| Xy = xo, respectively.
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Remark 2. Sy(7,x; po) for some T > 0 is what will replace the approximation of V log p, in the
finite-dimensional case (3).

We will now make an assumption, often employed in infinite dimensions on C' and C,,,.

Assumption 1. We assume that C,,,,C' : H — H have the same basis of eigenvectors (e;) and that
Cyoej = pojej, Cej = Njej for every j, with \j [ pg; < +o0.

Remark 3. If C = C,,, or if C is very close to C,,,, in the sense that C~'/2C,, C~1/2 — [ is
Hilbert-Schmidt (Da Prato and Zabczyk, 2014), then sup A; / po; < +00.

The proposition below has been proved by Baldassari et al. (2024). We will reproduce the proof for
the reader’s convenience in Appendix A.
) .
Proposition 1. Let Assumption I hold. Then S(,x; po) = — >, %{)mx(])ej =-CCla,
e’ — Po -
where 1) := (z,e;), pgj) = #A—OJ?, and Cr :=e7Cpuy+ (1 —e"7)C.
Throughout the paper, we assume the situation described in Remark 3. In particular, the condition for
the spectral norm ||CC,, !|| = sup; A;j/po; < 400 is needed to ensure the following result, which
will be useful in the proof of Theorem 1
) N

Corollary 1. By Proposition 1, C'Cljolx + S(r,x;m0) = (67 = 1) Zjo Hp“i—l)l(j)pé])zmej.

e™—1)p
Moreover, the following inequality for the so-called score mismatch error holds: ’

ICCL @ + S(r,as po)ll7 < (7 = D2(ICCLH I + D ICC |17

Remark 4. Similar results to Corollary I can be derived when L is given as a density with respect
to a Gaussian, dp(z) = exp(¥(x))dN (0,C, ); see Theorem 3 of Pidstrigach et al. (2023).

4 HILBERT SPACE MCMC WITH SCORE-BASED PRIORS

We now utilize the score network Sy(7, x; 1i9) introduced in Remark 1 as a learning-based prior and
modify the Langevin dynamics of PMC-RED so that it can operate directly in function spaces. The
infinite-dimensional version of (3) is then defined as follows:

Xiy1 = Xp — (= C*7'So(7, Xp; o) — C*Vx, log(p(y — A(X)))) + 27)2Z,  (6)

where v > 0 denotes the step-size, @ > 0 is a constant that will be chosen later, and Z; =
:H C'% dW; denotes the i.i.d Gaussian variables with mean zero and covariance operator C'“. Our
main theoretical result, as summarized later in Theorem 1, presents a convergence analysis of (6),
demonstrating that when 7 is sufficiently small and Sy provides a good approximation of the true
score of the prior, it generates samples distributed approximately according to the true posterior.
Finally, as the reader will have immediately noticed, (6) differs from PMC-RED due to the presence
of a preconditioner C'*. The role of C' and « will be explored thoroughly in this section, where we
provide a detailed convergence analysis of the sampler defined in (6).

4.1 MEASURE-THEORETIC DEFINITIONS OF THE KL DIVERGENCE AND THE FISHER
INFORMATION

Before introducing our convergence theorem, we need to introduce analogues of the metrics appearing
in Theorem 1 of Sun et al. (2024)—namely, the Kullback-Leibler (KL) divergence and the relative
Fisher information (FI)—that are compatible with the infinite-dimensional setting of our paper. Since,
as we mentioned, there is no natural analogue of the Lebesgue measure in infinite-dimensional spaces,
we will adopt a measure-theoretic definition of the KL divergence (Ambrosio et al., 2005):

mwm:Lm%mwa>

if v < p, where dv/dp refers to the Radon-Nikodym derivative; this quantity is set to infinity if v is
not absolutely continuous with respect to u. In our convergence theorem, we will employ
dv 2

/HHCQVXlOgd,u(X) de(X) 7
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as a criterion to assess similarity between measures. As for the measure-theoretic KL divergence, we
set (7) to infinity if v is not absolutely continuous with respect to . It is straightforward to see that,
if (7) is zero, then v and p are equal v-almost surely.

4.2 THEORETICAL CONVERGENCE ANALYSIS
We aim to study the convergence of

a dvy ?
/H HC"‘VX log () | v (x), ®)

H

where {1, },>( represents a continuous interpolation of the probability measures generated by (6)

Xe=Xp+(t — k) (Ca_ng(T, Xy 110) +C*V x, Tog(p(y — A(X;m)))) +22C% (W — Wiy)

©)
for ¢t € [kv, (k + 1)7], with initial state X, ~ v, where v > 0 is the step-size and Sy is a neural
network approximating the score defined in (5). To prove the convergence of (8), we will use the
following assumptions.

Assumption 2. V x @ is continuously differentiable and globally Lipschitz; for any X1, Xo € H:
V@0 (X1) = VOo(Xo)llir < Lay | X1 — Xl -

Remark 5. Note that Assumption 2 does not assume the log-concavity of the likelihood, meaning
that our analysis is compatible with nonlinear inverse problems.

Assumption 3. For any 7 > 0, the score network Sy(7, X; po) approximating (5) is Lipschitz
continuous with L. > 0 for any X1, X, € H:

[[S6(7, X15 po) — So (7, Xos po) | < L[| X1 — Xo|lmr- (10)
Moreover, So(1, X; o) has a bounded error e, < oo for every X € H:
196 (7, X o) — S(7, X5 po) lr < e (11)

Assumption 4. The forward operator A depends only on PP°(X) for some Dy > 0. Moreover;, we
assume that the v introduced in (9) can be factorised as follows

vo(X) =vio(xP) [ w’(x@),
j=Do+1

where the superscript Dy in X0 refers to the orthogonal projection PP° of the H-valued random
variable X onto the linear span of the first Dy eigenvectors (e;) of C, ué)“ = Pi" v, and Véj) is

the density of X ) := (X, e;); see Appendix B.1 for details on the notation. We also assume that

w(X) = ()P x) [ @)V(x©).
j=Do+1

Remark 6. Assumption 4 implies that the algorithm does not explicitly depend on the articulation
of the subspace associated with the first Dy modes. Thus, the essential aspect of the assumption is
that only a finite number of modes contributes to the observations, which is quite realistic from an
applications point of view. Moreover; the error bound in Theorem 1 will not depend on Dy, ensuring
the robustness of the convergence analysis with respect to increasing D, which is crucial in an
infinite-dimensional setting.

Now that we have listed the main assumptions for our convergence analysis, we are ready to state our
main result, Theorem 1, where we establish an explicit bound for (8), which resembles that for PMC-
RED in Sun et al. (2024), with the main difference being that ours does not diverge as the dimension
of the problem goes to infinity. Additionally, our proof rigorously quantifies the relationship between
C, «, and the score approximation error—an aspect unique to the infinite-dimensional setting.
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Theorem 1 (Convergence bound on Hilbert spaces). Let Assumptions 1-4 hold. Denote by {v; }+>0
a continuous interpolation of the probability measures generated by (6):

Xy =Xk (t = k7) (C71Sp(T, Xy 10) +CV x,. log(ply — A(Xsy)))) +27C% (Wy — Wiy)

fort € [k, (k+1)y], with initial state Xo ~ vo, where v > 0 is the step-size, Sp is a neural network
approximating the score defined in (5), and {W}i>0 is a Wiener process on H independent of X;.

FO}’O{ZQCI”d’}/E (O,W ,wehave
N'y dv 2
C3Vxlog —(X)|| dv(X) ] dt
+/ (/H Viclog ()| ))
4KL Y 32v/2 52 52
< AKLOollw) (322 o) mooyizy 1 2R 2y oo
N~y 3 3 3
S—— —r
SCoreEAr/I;gTatCh Score A%pruximation

where Lg := ||C[|*2L2 + ||C[| LG, K := | Cl|*2(|CCLH| + D2||CCLH* sup,ejo,nq) BII Xl
-l denotes the spectral norm, and N > 0 is the total number of iterations.

Proof. (Sketch, the full proof can be found in Appendix B) We define the stochastic process
X, =X+ If(C'O‘_ls(7'7 Xo; o) + C*Vx, log(p(y — A(Xo)))) + Z%C%Wt, Xo ~ 1.

We derive the evolution equation for v, (the probability measure of X;) and plug it into the time
derivative formula for KL(ut| |).

du,

2
)HH dv¢(X) and the expected square H-norm
E[||C%~1S(7, X; po) + C'2V x log(p(y A( MIE]-

We construct a linear interpolation of (6), make use of the aforementioned bounds and Assumptions
1-4, and integrate the time derivative of the KL divergence over the interval [k, (k + 1)7] to obtain
a convergence bound that is dimension-free and depends explicitly on the score mismatch and the
network approximation errors. O

Corollary 2 (Stationarity). Let o > 2. If v, 7, and €, are sufficiently small, then vy converges to |1’
in terms of the averaged measure-theoretic FI (7) at the rate of O(%

Remark 7. The interplay between C, «, and the imperfect score networks is a novel aspect of
our analysis and can be rigorously quantified. Indeed, if we have a better control on the score
approximation error, such as ||C~?(Sp — S) ||\ g < €s.» for some B > 0, then our proof of Theorem 1
shows that the score approximation error term ||C||*~2€2 can be replaced by HC”OL72+2BE%.T.

We conclude this section by briefly discussing weighted annealing, a well-known heuristic to miti-
gate mode collapse and accelerate the sampling speed of Langevin MCMC algorithms (Song and
Ermon, 2019; Kirkpatrick et al., 1983; Neal, 2001). It consists of replacing Sy (7, Xx; to) in (6) by
MSe (T, Xk; po), where () and (73) decay from large initial values to 1 and almost 0, respectively.
Following our proof of Theorem 1, one can show that weighted annealing will not introduce extra
error influencing the convergence accuracy in the infinite-dimensional case. Additional assumptions,
however, will be needed, such as that the output of the score network Sy(7, X; 119) is bounded in
H-norm and the Lipschitz constant of the true score is not exploding, as this is necessary for the
existence of sup{ L., } " as N — oo, where L., denotes the Lipschitz constant of S (7%, X}; o).

5 DISCUSSION AND CONCLUSION

In this work, we address the concerns raised by Stuart (2010), who emphasized the importance
of using algorithms specifically designed for the infinite-dimensional setting when dealing with
intrinsically infinite-dimensional objects in the context of inverse problems. We extend one of the
methods commonly referred to as score-based generative models (SGMs) to Hilbert spaces, where the
learned score is used as a prior in a Langevin-type MCMC algorithm for posterior sampling (Sun et al.,
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2024). By leveraging the recently developed infinite-dimensional framework for SGMs, we provide
theoretical guarantees for the convergence of the MCMC sampler that uses the infinite-dimensional
unconditional score as a prior. Our analysis, conducted in the challenging context of nonlinear
Bayesian inverse problems, shows that controlling the approximation error of the score is not only
essential for ensuring convergence but also that modifying the Langevin MCMC algorithm through
the selection of an appropriate preconditioner is necessary. Our analysis shows how the control over
the score approximation error influences the design of the preconditioner—an aspect unique to the
infinite-dimensional setting.

Despite the rigor of our convergence analysis, we anticipate that practical challenges common to most
Langevin-type MCMC algorithms, as described in Section 3 of Song and Ermon (2019), particularly
in learning the score in low-density regions and the mixing times of the Langevin MCMC algorithm,
will carry over to the infinite-dimensional setting. For the former, it is known that to accurately
sample from the posterior distribution, the SGM must precisely estimate the scores for both the initial
point in the MCMC chain and all points during the burn-in phase. However, when 7 is small, since
there is no guarantee that the MCMC chain explores the high-probability regions of the prior during
burn-in, the estimated scores might be inaccurate, possibly preventing the chain from converging
to the true posterior. One possible heuristic for addressing this issue involves adopting a weighted
annealed schedule, as suggested by Song and Ermon (2019) and Sun et al. (2024), among others.
Another challenge comes from the non-convexity originating from the nonlinearity of the inverse
problem. If not handled properly, Langevin-type MCMC algorithms are known to converge slowly or,
worse, get stuck in local minima. Nickl (2023a) provides algorithmic guarantees, but they rely on
strong assumptions about the forward model. Our work addresses the theoretical convergence under
weaker assumptions. Moreover, weighted annealing has shown promising results in addressing issues
related to mixing time and local minima. In offering a theoretical foundation to show that Hilbert
space Langevin MCMC samplers with score-based priors are provably convergent, we leave to future
work the derivation of algorithmic strategies to overcome the challenges outlined above.
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A PROOF OF PROPOSITION 1
We define XY = (X, ;) and SO (7, z; 1g) = (S(7, ; o), €;). We then have
. 1 . .
dxV) = —§X7(_])dT + /AW,

Since C),, and C have the same basis of eigenfunctions, the system of modes diagonalizes so that the
X ij ) processes are independent for different j modes. Thus we have

x¢" = yiogng, X9 = X2 4 21— et

(g

for 7, ) independent standard Gaussian random variables. We seek
2§ = EIX§|X8) = 20,
where 2§ = a2() with a solving

Ef(aXP) - X)X =0,

which gives

eT/2
“= @
14 (em — l)poj
for
@ _ A
Fo Hoj

Since also the time-reversed system diagonalizes, we have

. . . e p(” .
S (1, x5 o) = SV (7,25 o) = — 0 o) 2
L+ (e7 = 1)p

B PROOF OF THE CONVERGENCE THEOREM

B.1 FINITE-DIMENSIONAL PROJECTION

Denote by (e;) the orthonormal basis of eigenvectors of a trace class, positive-definite, symmetric
covariance operator C'

Definition 2. Define the linear span of the first D eigenvectors as
D
HP := 3> " fiejlfr,....fp €Rp C H.
j=1
Define HPT1%° sych that H = HP @ HP+1>,
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Definition 3. Let PP : H — HP be the orthogonal projection onto HP. If we write an element f
of H as

f = Z(fv ej>ej7
=1

PP is equivalent to restricting f to its first D coefficients:
D
PDf = Z<f, €j>€j.
j=1
Definition 4. The push-forward P£  of p under PP is denoted by
WP = PRu. where PPu(A) = p((PP)7(4).

B.2 USEFUL RESULTS ON MEASURE THEORY

Here we review some basic measure-theoretic tools needed in the proof of Theorem 1.

Theorem 2 (Disintegration (Ambrosio et al., 2005)). Let P(H) be the family of all Borel probability
measures on H. Let H)Y be Radon separable metric spaces, ;1 € P(H), and w : H — Y a
Borel map. Then there exists a w4 i-a.e. uniquely determined Borel family of probability measures
{1ty }yey C P(H) such that

py(H\ 7 (y)) =0 for myp-ae.y ey

| s@dnt) = [ ( / 1(y)f(x)duy(:v)> ()

for every Borel map f : H — [0,00]. In particular, when H = HP x HP+%° Y = HD and
7w = PP (hence Tl = uP), we can identify =1 (xP) with HP+Y°° and find a Borel family of
probability measures { 1,0 },p o such that

;U’J."D(HD):(L M:LD Nde/JJD(xD)'

and

The proof of the following result can be found in (Ambrosio et al., 2005, Corollary 9.4.6).
Theorem 3 (KL divergence and orthogonal projection). For every measures v, on H, we have

lim KL(|u?) = KL(v| ).
D—oo

B.3 LEMMAS

Before going through the proof of Theorem 1, we will need two lemmas. Similar results have been
proved in (Sun et al., 2024; Balasubramanian et al., 2022; Vempala and Wibisono, 2019) for the
finite-dimensional setting.

Lemma 1. Let Assumptions 1 and 4 hold. Consider the stochastic process defined by
Xy = Xo —1Qo +2:CEW,, with Qo := Qo(Xo), Xo ~ v,
where
Qo(Xo) = —C71S(7, Xo3 ho) — C*V x, log(p(y — A(Xo))),

and {Wy}>¢ is a Wiener process on H independent of Xo. Then, writing v, for the probability
measure of Xy, we have

2
th (X)
H

+E,, [|[CEVx®(X) +CECIX — C™5Qo(Xo)|1%] -

d 3 a dl/t
Yy < — = 2 —
KLl < 4/”0 Vx log W(X)

Proof. We extend the proof of Lemma 1 in Sun et al. (2024) to infinite dimensions. The main
idea is to derive the evolution of the density of v, plug it into the the time derivative formula for
KL(vP||(1¥)P), and then take the limit as D — oo.
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Step 1: Projecting the process onto a finite-dimensional subspace Let D > D, where Dy is
defined in Assumption 4 as the number of modes contributing to the observations. Consider the
stochastic process X defined by

XP =X —1QP +v2PPCoPPW,, X ~ 1, (12)
where
Q) 1= (C“ PSP (1, Xoy o) — (C*)PV xp log(p(y — A(Xo)))
D
:—ZA;HSU 7, Xo; to)e ZA V; log(p(y — A(Xo)))e;,
)= =1
with

S(j)(T» X();MO) = <5(7'7 X(]%M())»€j>a vjf = <Vfa €j>~
‘We observe that
xXP = PP(Xx,).

Since X will stay in H for all the times, we can view X/ as a process on R and define the
Lebesgue densities v” of X/ there.

Step 2: Deriving the evolution equation for v” For each ¢ > 0, let yt o denote the Lebesgue

density of the joint distribution of (X, XP). Let Vt\o be the density of the conditional distribution
of X conditioned on X, and I/()Il) . be the density of the probability distribution of XP conditioned
on X 7. We have the relation

Vi, O(XD Xo ) = t|0(XD|X0 Vo (X(?) = Vo\t(X(ﬂXD)VtD(XD)-
Since SP (7, Xg) = SP (7, XP) by Assumptlon 4, conditioning on X £’ we have that Q¥ is a constant
vector. Then, the conditional distribution 1/ 4o evolves according to the following Fokker-Planck

equation:

9 p

SR(XPIXD) = divxo (B (XPIXD)QE + (C) PV xorfy(XP1XD))

To derive the evolution equatlon for the marginal distribution v” (XP?), we need to take the ex-
pectation over X2’ ~ 1. Multiplying both sides of the Fokker-Planck equation by v’ (X{’) and
integrating over X, we have

= [ (R xPIxD) ) (xyixg

= [ divxe (W XPIXDIQP + (C)PTxorfy(XPIXP)) o (X)X .
= /divXD (X P, XP)QF + (C*) PV xov (X P, XP)) dX

—divyo (P (X7) [ A (XPIXPIQPAXE + (€ Vo [ o (X7, XE)IXE )

= divyo (VP (XP)E,p [QF1XP = XP] +(C*)PVxovP (XP)).
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Step 3: Calculating the derivative of the KL divergence The time derivative of KL(v||(1¥)?)
is given by

SRLEP)")
_ v (XP)
a/utD(XD)log (MY)D(XD)dXD
ovP vP (XDP) 0 vP(XP)
:/ ot 1 g(My)D(XD)dXD—|—/VtD(XD)alogi(uy)D(XD)dXD
vy v (XP) D DDy ()P (XP) 1 v (XP) b
| o e G+ [ O ey ey X
ovP vP(XP 0
:/ o log (My)]()(X;)dXDJrat/utD(XD)dXD
_ [ovl  vP(XP)
= | ( y)D(XD)dXD.
By using the evolution equation for v found in (13), we can derive
SRLEPI()P)
ovp(xP), vl (XP)
- [ Ha o Gy
D
- /diVXD ((utD(XD)E,,& QP|xP = xP] + (CQ)DVXDI/tD(XD)>) log (t)()((])D)dXD
_ D(yD D|yvD _ D a\D D(yD vP (XP) D
= Vi (X )Ey(ﬁz[QO IX =X ]+(C ) Vxov; (X ),VXD log (ILLy)D(XD) dX
= _/<VD(XD) (E o [QF|XP = XP]+(C*)PV b log X)
t G ()P (XP)
+(C*) PV xo log(?)?(XP)), vV DlothD<XD)>dXD
* TR ()P (XP)

vP(XP) vP(XP)
=— [ {(C)PVxplog————— Vyplog > vP(XxPyaxP
/< (n¥)P(XP) (w)P(XP) /"

[ {(€)PV 0108 P(XP) + B, [QFIXP = XP)

P (xP)

(n¥)P(XP)
Step 4: Factorising »; and 1Y into product of marginals As a consequence of Assumption 4 and
the definition of X, 4 can be factorised into two blocks (1 : Dg) and (Do + 1 : 00). The latter can
be further factorised into a product of marginals, since S can be diagonalised and the likelihood does

not depend on PPo+1:%° (X)), once more by Assumption 4. More precisely, we have

n(X) =v ™) I w9,
j=Do+1
where Z/tD ° is equivalent to (;¥)P0 (they both have densities with respect to the Lebesgue measure
over RP?) and each l/t(] ) is equivalent to (;¢)"). Then we have that

dvy v Dy =
o=\ ™) 1 o)

j=Do+1

Vxo log > vP(XP)dx?P.

In particular, for any D > Dy,
th

W o) T 4 (xw
50 = (™) T1 g,
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hence

dvy
C%Vylog duy(X)

dvP o i Y
= (C%)Pv Dlog( ¢ xP > +(C= Dtlicoy D+1:00 1Og ¢ X(j)
()T o log ( gotsm(X7)) +(C) X FE[H i (X9
(14)
Step 5: Taking the limit as D — oo Assume that
dl/t 2
cs Vxlogd y(X) dvy(X) < +o0. (15)
H
By Theorem 2, disintegrating v; with respect to X yields
/ HC?V)(Iog ( ) dl/t(X)
o dvy ? D+1l:00y 7. D(vD
= C2Vxlog ﬂ(X) d(v)xo (X Jdvy (X7).
HD JHD+1: 12 HD
We get
dv, 2
/ HC Vxlogd y(X) dut(X)
/HD /HD+1 C2Vyx logd y( ) d(Vt)XD(XD'HOO)dV (x?)
= \D 1 t XD
Lo e®Pvsoios ( Z55x?)
a\D+1: - Vt(j) j 2 D+1: D(yD
HODPHTsontog| [ (o5 (XO) | ) o (X7 (X)
j=D+1 H
2\D vy D ’ D
= - (C2)”Vxb log Hy)D(X ) HDdI/t (XY)

Sy 23

=D+1

v, log (J) ( (‘))
(e )

G) 2
\ 1og< 0 (X(J))> () xo (XPHE0) D (X PYax P P2E g,
(C%)PV b log

By (15), it follows that

fyo Sy 2

=D+1

This means that

dv,
. D Vg
Dhgéo . dl/t (X / HC’ VXlogd

(XD)

d 2

18
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‘We now take the limit in

d
%KL(%DH(M)D)

vP(XP) vP(XP)
()P (XP)’ (1) P(XP)

C*)PV xp log
C*)PV o log(i?)?(XP)+E,p [QF | X{ = X7],. Vb log
)

Vo log > vP(XPyaxP
RZACSON
(W¥)P(XP)

> vP(XPyaxP

Yar?(x7)

vP(XP) vP(XP)
(2P (XP) (127 (X7)
J(e)P 9o logu)P(XP) + (€417, [QF1XP = X

VtD xb
W(D(XI)D)>dV,P(XD)dXD.

-/
K
(CPV b log , Vo log
-/
C

(C2)PV yp log

By Theorem 3, we get

d d
SKLOP|[(6)P) = S KLOs )
for D — oco. By Eq. (16), we have

. o v (XP)
lim /<(C )PV xp logm,vxp log

D—oo

2
/HC Vxlogd LX)

H

P(XP)

t I/D D D
(uy)D(XD)> e (X)X

dv(X).

We apply Young’s inequality
- / ((CH)PV o log(u)P(XP) + (C)PE,p [QF1XP = X7,

uyD)> vP(xPyaxP

1 a P (XP) P (xP)
3 [ (9o ey Tre e oty

+ / |~(C%)P o log(i)P(XP) — (C~$)PQP|I, vP (XP)dXP.

> vP(XP)axP

‘We need to calculate

i { [ 1-(C)7¥ o lou()P(X7) - (¢~9)°QF [P (xP)ax? |

D—oo

as so far we have proved that

d
%KL(W”N )

3 s e

o

+ lim {/||— C%)PVxp log(,uy)D(XD)—(C3)DQ(?||2ytD(XD)dXD}.

D—oo

Recall that

Q¢ = —(C* PSP (7, X§; o) — Zxav log(p(y — A(Xo0)))ej,

19
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where S (7, Xo; p10) = SP (7, XF; o) follows from the separability assumptions on 1. We have

[=(C%)PVxplog(p*)P(XP) = (C~2)PQF ||
D 2
= —(C%)Dvxnlog(uy)D(XD)+(O%*1)DSD(T,X€;uo)+ZAj%leog(p(y—A(Xo)))ej
j=1 i
We would like to prove that
Jim { / |=(C%)PVxnlog(u*)? (XP) + (CF 1P 8P (7, X¢; o)
—00
2
+ Z A7V log(p(y — A(Xo))e; || vP (XP)dxP
j=1 I
g/H—C%VX%(X)—C%C’;OIX+C%_1S(T,X0;MO)

+C3Vx, log(p(y — A(X0)))| 3y di(X).

First, notice that
(C%)PVxo log(p¥)?(XP)
o N (xpo o

Then, since .
(C%)PVxolog N (0,C)(XP) = —(CE)P(Cn) ' XP,
we get
Q _a 2
|[—(C%)PVxplog(p*)”(XP) = (C~)PQ¢ ||,
Nnb(xpb o _ a_
s + ()P (CR) T XP + (017577, XP o)

— H (C%) Vxb logN.( 7CILDO)(XD)
. 2
+Z)\ V;log(p(y — A(Xo)))e;

Jj=1 H

By Assumption 4 and the fact that the likelihood does not depend on PP*1:%°(X,) for any D > Dy,
and since dN(0,C),,) = dN(0,CP)dN (0, CP+1:20) (see (Da Prato, 2006, Definition 1.5.2)), we

can follow the same procedure that led to (16) and prove that

i { [ 109V o 10g0)7(X7) - (€5)°Q8 [ P (xP)ix”
HD

D—oo

:/H‘lcgvXq)o(X)—f—C%C;OlX—FC%_lS(T,Xo,/,Lo)

+ 0%V, log(p(y — A(Xo)))l[Fdve (X)),

where we used dp¥ o< exp(—®o)dN (0, C,,) as per (2). Putting everything together, we have
2

—KL (ve||2¥) <—/HC Vxlog—(X)
H
+E,, [|C?VxPo(X )+C%Cg;X—C*%Qo<Xo)H%I},

dv(X)

which ends the proof of the lemma.

Lemma 2. Define G: H — H as
G(X) == —C*71Sy(7, X; o) — C*V x log(p(y — A(X))), (17)

20
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where Sy represents a neural network approximating the score defined in (5). Let Assumptions 1, 2,
and 4 hold. It holds that

d 1%7

2
E,, [[C-2G(X)|3] <2 / Hc%vx log 40| dvn(X) + 4TH(C) Lo,
H

+2E,,[|C3 Ve (X) + C2C X — CT5G(X)||3].

Proof. First, notice that
G(X)=6G(X) - (CVxPo(X) + CO‘C;OlX) +C*Vxdo(X) + C“C;OIX.
We apply Young’s inequality to get

E..[|IC™2G(X)|%]
<2E,,[|C?Vx®o(X)+C2CL X |13
+2E,,[[|[C2Vx®(X) + C2C, ' X — CT5G(X)|3]-

We study the first term of the inequality above. Notice that

E, [ICEVx®o(X) + C2C, X3 = Ky,

—C3Vxl i X)+C307'X
Xog d,u,o ( )+ Ho

2
)
H

where we used the relation

VX(P()(X) = —VX 10g (ZZZ) (X)

With the same arguments as in the proof of the previous lemma, we can write

a d/Jy a 1 2
Eyt —CZ’VXlOg Tm (X)+CQCMOX .
2
. a ,Uzy b XD a _
= lim E,p H(Cz)DvXD 1ogw+(02)13(q?0) 1xP .

= lim E,p [||-(C%)PVxo log(p)? (XP) + (CF)P Vo log u (X P)
HCHP(CR) X3 ]
Since py = N(0,C,, ), we have
(C#)PV o log i (XP) = —(C%)P(C2) 71 XP.

It follows that
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We can derive

a

E,p |[|-(CH)P Vo log((u))(XP)|[5;o ]
=E,p [[|-(C%)P Vo log(y)?(XP) + (CF)PVlogvP (XP)
—(C%)PVlogvP (XP) HHD}
E,p [[|-(C%)PVxp log(u)P(XP) + (CH)PT log P (XP) 0
+2((C%)PV o log(p¥) P (XP) = (CF)PV xp log v (XP),
C%)PVxologrP(XP)) + [(C*)PV o logy! <XD)||HD]
=E,p || ~(CF)P Vo log(i)P(XP) + (CF)PViog P (XP)|0
+(2(C%)PV xo log(p?)P(XP) = (C%)PVxp logy” (XP),
(C%)PVxologr (X D)>}

VP (XP)
</, P,
4 9B, ((C)PV o Tog(s®)P (X ), (CF)PF o log b2 (XD,

where in the last inequality we used the fact that

—E,o[[(C%)PVxplogr (XP)|}] < 0.

—~

(C2)PV xplog —Lr——t zxtD(XD)dXD

For Lemma 1, we proved

. PP |
D-roc ()P (XP) |

/H 8V log d”t( )H v (X).

(C%) Vo log z/tD(XD)dXD

We notice that
E,p[((C%)PVxp log(p?)P(XP),(C%)PVxp logr (XP))]

= [ UCHPYxolog()P(XP),(CH)PV o g (XP ) (XP)ax”
= [ UCHPYxolog()P(XP),(CHPV xon (XP) X

= [ UCmPY 0 log()P(XP), T xouP (XP))ax”

== [ divn((C7)P o log() (X7 (XP)AXP < THC®) L,

In the second identity, we used v” (XP)V xb logvP (XP) = VxpvP (XP). In the fourth identity,
we used

divxo ((C*)PV o log(p*)? (X P)v (X))
= divyn ((C*)PVxo log(*) P (XP)r” (XP) + ((C%) PV xp log(p*) P (XP), Vo1 (X7))
and
/ divyo ((C*)PV o log(p*)P(XP)vP(XP)) dXP = 0.
HD
In the last inequality, we used

y D
Vxo log(p?)?(XP) = Vxo log(u)()((X)JerD log 1’ (X )

)
= —Vxo®(X”) +(CP) X7,
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with
Do(XP) = / Do (X P, XPTE) (1Y) yp (X P,
HD+1:00
Then

= [ divio (€)7o log(u) ) (XP)wP (XP)ix P
HD

:/ divXD((C“)DVXDéo)(XD)utD(XD)dXD—i(A?)/ vP(XP)dxP
HD = Hoj HD

D
A
< Tr(C“)L%/ v (XP)ax? =% (J>
HD i=1 Hoj

S Tr(C’O‘)Lq)O.
This is because, since we assumed that V&, € C* is Lipschitz continuous with a constant Lg,,, S0 is
Vxp®o(X7P), and then

|divx o ((C*)PV x00o(XP))| < Tr(C¥) La,.

Combining all the inequalities above, we get

d vy

2
BllC #6001 <2 [ 039 xton S0 an(x) +4m(C) s,
H H H

+2E,[[|[C2 VP (X) + C2C,' X — C™5G(X)| 3]
The proof is complete. ]

B.4 PROOF OF THEOREM 1

We are now ready to prove our convergence theorem.

Proof of Theorem 1. We construct the following interpolation for our method
Xy = Xy — (t = k) (=C°7'8p(7, Xiyi p1o) — OV x,, log(p(y — A(Xiy))))
+23C% (W) — W),
fort € [kv, (k+1)7v].
Let v; be the law of X;. As in Lemma 2, define
G(X,7) = —C*"1Sy(7, X; o) — C*Vx log(p(y — A(X))).

As a consequence of Corollary 1, the distance of C~2 G(X, 7) from C2Vx®o(X) + C3 C’M‘OlX is
given by

[CEVR(X)+C2C X —C2G(X, )|}
<2(CEVRY(X) +C2C X +C271S(r, X5 o) — C2 VR (X)|13
+2|CF (S (X, 73 0) — S(X, 73 10) |
(Plug-in Corollary 1) (13)
< 272 K"(|X |3 + 2(|CF M (S (X, 75 o) — S(X, 75 10)) |
(Assumption 3)
< 2K X |[f + 20,
where K'? = [Cl|*=2([|CCH + 1)2|CCLH|? and [|C]| is the spectral norm of C, i.e., its largest

eigenvalue, and The last inequality is valid only if &« > 2. Note that, if we have a stronger control of the
score approximation error, that is to say, if we assume that ||C~#(Sq (7, X; po) — S(7, X; o)) |z <

23



Under review as a conference paper at ICLR 2025

€p.- for some B > 0 instead of (11), then we can replace the upper bound 2||C||*~2€2 by
2||C||*—2+28¢ 2 .~ and this new bound is valid for any o > 2 — 2.

From (17) we have

e

B, [|CT2G(Xy, ) = C75G(Xy, 7))
< 2R, [[|CF 1 Sp(Xy, 75 p10) — CF 1 Sp( Xy, 75 20) | 1]
+ 2B, [[|CF V®o(Xy) — CF Vo (X3,
By Assumptions 2 and 3, we have
E, [ICT3G(Xe,7) = C73G(Xpn, 7)[7] < 2(IC72LE + | C1" L ) Ewy [l Xe — Xis ]
< 2LZE,, (|1 X0 — Xy I,

(19)
where the last inequality is valid only if o > 2 and
Lg = \/IC*=212 +||C||*L3,
From Lemma 1, we know for ¢ € [k, (k + 1)~] that
KL(vg||p¥) < /sz lod(X) d(X)
1% - — U,
it tII X, log e t t{ At (20)
+E,, [[|C2V®(X;) +C* CM}Xt— TG ( Xy, )] -
The second term can be bounded via Young’s inequality, (18) and (19):
E,, [|C2V®y(X;) + C2C Xy — C7 G (X, 7)l|7]
<28, [|C7#G(Xe,7) = O G(Xi, 7IH] o

+2E,,[|C3 VO (Xy) + C2Ct Xy — C2G( Xy, 7))
< ALZE, [ X — X I7] + 472K + [|C]|*2€2),

where K2 = K'* Supyeo, N ElIIX¢ |%,]. We can bound the first term of the inequality above via

E,, [[|X: = Xiyll7]
<2t — ks, [ O3 Sp(7, Xyt o) — CF Vi, log(ply — A3 ]
+A4E,, [|CF (W — Wiy )II7]
<20t - ky)?C]” (2Ew [[[=CF7180(r, X3 10) = CF Vx, Tog oy = ACX)))|[3]
+ ALGE,, [ Xy — Xel[F]) + 4Te(C)(t = k),
where for the last step we used Young’s inequality and (19). Rearranging the terms yields
(1= 8(t — k7)? | CII*LG) B, [[| Xky — Xe| 7]
< 4t = k2IICI By, [[|-C% S0 (r, Xis o) — CF Vx, Tog(ply — AX)))| [
+ATr(C*)(t — k),
which can be simplified by letting v < W = 1-8(t—kv)?|C||*LE > 1-8¥*||C||*LE >

L Therefore, when v < ——L—— it holds that
2 7= W/Icl L

By [ Xy — Xi%]
< 8(t = k72IIC By [[|-CF 7S (r, Xis o) — CFVx, loglply — A [,] @2
+ 8TH(C)(t — k).
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By plugging (22) and (21) into (20) and invoking Lemma 2, we can obtain

d
KL |)
(Plug-in Eq. (20) and Eq. (21))

3 (e d
< —4/HC2VXt logﬁ

aw (Xt)

2

dve(Xo)+HALEE, | Xe — Xy |31 +42 K [[Cl222)
H
(Plug-in Eq. (22))

2
dl/t(Xt)

3 a th
< —— 2 —_—
< 4/HC Vx, log duy(Xt) .

a o o 2
+32(t = k)2 CIP L3Ry, [||=CF 1Sy, Xis o) — CFVx, log(p(y — A(X0)))] ]
+ 32Tr(C¥)(t — kvy)LE + A(T°K? + ||C|*2€2)
(Plug-in Lemma 2 with [|C' (V& (X) 4+ . X) — C™2G(X) ||} < 2(r°K” + [|C]|*7?€2)))

3 o dv, 2
< —4/chvxt 1ogd7§(xt) Hdut(Xt)
. d 2
+64(t — ky)?|C)|* LS (/ HCNXt log d—:;(Xt) dvy(X;)+2Te(C*) Lg,
H

+2(T2K? + ||C||*7%€2)) 4 32Tr(C)(t — k) LE + A(T°K* + ||C[|*2€2).

(23)

We can simplify (23) by letting v < m = 64(t — kv)?||C[|*LE < 6442|C||*LE < L.
Therefore, once v < m, we get

d

—KL y

SKL ()

dv, 2
< /HC Vx, logd —(Xy) dut(Xt) (24)

+64(t — kv)?(|C||* L (2Tr(C“)L4>O +2(72K? +||C||*2€2))
+32(t — ky)Te(C*) LG + A(T°K? + ||C||*2€2).

By integrating (24) between [k~, (k + 1)7] we get

KL(¥(et1)5 [117) = KL (v |[127)

(k+1)y 2
<—f (/H 2VXt logd (Xt)

H

th (Xt)> dt

+ §HC||”‘L§73 (2Tr(C*) Lo, + 2(T* K + ||C||*%€2)) +167*Tr(C*) LG
+dy(T2 K2 + || O] %€2)

1 D)y o dv; 2
i), ([t

H

dut(Xt)> dt

128 128
(||0||aLm+16)Tr<ca>Lg7 +( L2y + )w<r2K2+||c||”ei>

(k+1)y d
/ / Hc Vi, log T2 (X;)
d H

1
4
1
( ) H(CLg + (3 +4) AR + o)),

Si

dl/t (Xt)> dt
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. . . . < 1 . . > a/2
where in the last inequality we invoked v < TEicTeL, and the inequality Lg > ||C||*/*Lg,.

Now by averaging over N > 0 iterations and dropping the negative term, we can derive the result of
Theorem 1:

1 Ny a th
— $Vy, log L(x
v (/HC Vi log g5 (Xe)

2
dl/t (Xt) dt
H

AKL(vol| ¥ 32v2 52 52
< LUl | (32V2 ¢, TH(C)Lgy+ K o+ —[C|*? €.
Ny 3 3 3
N—— N———
Score Mismatch Score Approximation
Error
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