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Abstract

Adaptation of foundation models using low-rank methods is a widespread approach.
Another way to adapt these models is to employ orthogonal fine-tuning methods,
which are less time and memory efficient despite their good generalization prop-
erties. In this work, we propose Householder Orthogonal Fine-tuning (HOFT),
a novel orthogonal fine-tuning method that aims to alleviate the time and space
complexity. Moreover, some theoretical properties of the orthogonal fine-tuning
paradigm are explored. From this exploration, Scaled Householder Orthogonal
Fine-tuning (SHOFT) is proposed. Both HOFT and SHOFT are evaluated in down-
stream tasks, namely commonsense reasoning, machine translation, subject-driven
generation and mathematical reasoning. Compared with state-of-the-art adaptation
methods, HOFT and SHOFT show comparable or better results.

1 Introduction

Nowadays, fine-tuning foundation models for downstream tasks [17] is the standard approach to
model adaptation these days thanks to their knowledge across many domains. By tuning far fewer
parameters than full fine-tuning using parameter-efficient fine-tuning techniques (PEFT), the model
is able to learn the key aspects of a task and perform comparably or even better than full fine-tuning
[18]. This fact makes PEFT methods a particularly well-suited approach for efficiently adapting these
models. The employment of PEFT methods has enabled the adaptation of large foundation models
without the necessity of compute-intensive hardware infrastructure, making adaptation accessible to
a broader user community.

The most popular PEFT methods are based on low-rank approximations, including Low-Rank Adap-
tation (LoRA) [19] and Weight-Decomposed Low-Rank Adaptation (DoRA) [27]]. These methods
work under the assumption that the learnable parameters must reside in a lower intrinsic dimension
[2]. Alternatively, there are methods proposing the use of orthogonal matrices for adaptation, such
as Orthogonal Fine-tuning (OFT) [36] and Orthogonal Butterfly (BOFT) [29]. These methods hy-
pothesize that a good fine-tuned model should have a minimal difference in hyperspherical energy
compared to the pre-trained model [26] 28]. In brief, the assumption made is that orthogonality is
required to learn new features while keeping pre-trained information [36,153]]. Whilst the performance
of these techniques has been demonstrated, their runtime and memory footprint make them a less
preferable option for use in real-world applications. A recent approach to balance low-rank and
orthogonal methods is Householder Reflection Adaption (HRA) [53]], which constrains orthogonality
through the incorporation of a term within the loss function. With the employment of an additional
weight A for the orthogonality regularizer, HRA aims to construct the chained matrix product of
Householder transformations [[14]].

Orthogonal fine-tuning methods generally result in the construction of a single orthogonal matrix for
adaptation purposes. This work demonstrates that two orthogonal matrices are required in order to
ensure full expressivity in orthogonal fine-tuning methods. This leads us to propose Householder
Orthogonal Fine-tuning (HOFT): a novel orthogonal fine-tuning technique using two orthogonal
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matrices as directional components efficiently updated through orthogonal transformations. For
efficiency, these matrices are obtained by accumulating Householder transformations via the CWY
transform [25) 21]] along with a fast inverse approximation. Additionally, we draw inspiration from
DoRA’s analysis, which shows that fine-tuning magnitude and direction separately closely matches
the learning dynamics of full fine-tuning. From this, a variant of HOFT incorporating an additional
scaling transformation is proposed: Scaled Householder Orthogonal Fine-tuning (SHOFT).

In order to evaluate both methods, a series of experiments are conducted in four distinct areas:
commonsense reasoning, machine translation, subject-driven generation and mathematical reasoning.
The selection of these tasks was made with the intention of evaluating the efficacy of the proposed
methods along with both low-rank and orthogonal PEFT. Notably, quantized models are also adapted
in mathematical reasoning experiments. Experimental results demonstrate that HOFT and SHOFT
benefit from retaining the relational structure of pre-trained weights, reaching or exceeding the
performance of existing state-of-the-art PEFT baselines.

2 Related Work

Low-Rank Adaptation Methods in this family assume that effective fine-tuning updates lie on
a compact, low-dimensional manifold [[19} 27} 23| |55| 24} 51} 20, 46]]. LoRA [19] introduces
trainable low-rank adapter matrices into each Transformer layer, freezing the original weights
and reducing trainable parameters by several orders of magnitude. DoRA [27] separates the fine-
tuning of directional and scaling components by normalizing LoRA’s output and applying a scaling
transformation. PiSSA [30] employs singular value decomposition (SVD) on pre-trained weight
matrices to initialize LoRA adapters in principal subspaces, maintaining most of the original model’s
expressive capacity. QLoRA [[12] combines 4-bit NormalFloat (NF4) quantization with LoRA,
enabling the fine-tuning of 65B-parameter models on a single 48GB GPU while preserving near
full-precision quality. QA-LoRA [49]] employs group-wise quantization operators to selectively
compress adapter updates with minimal impact on task performance loss.

Orthogonal Fine-Tuning Orthogonal fine-tuning methods learn distance preserving transforma-
tions in weight space, keeping geometric properties such as hyperspherical energy among neuron
activations [36} 29]]. Previous works show how the imposition of orthogonality constraints within
deep learning architectures is conducive to enhancing performance [} 44} 48}, 113, 3]. OFT [36]]
employs Cayley parameterization [22] to generate orthogonal matrix blocks. Additionally, COFT [36]
constrains the orthogonal matrix to be within a small neighborhood of the pre-trained matrix. BOFT
[29] reduces OFT parameter footprint by factorizing orthogonal updates into butterfly structures
inspired by the Cooley—Tukey FFT algorithm [[6], achieving similar generalization gains with fewer
trainable parameters. The employment of hybrid methods, such as HRA, enforces hyperspherical
constraints on low-rank adapters to blend both paradigms via a term in the loss function controlled by
a weight [S3].

3 Proposed Method

3.1 Orthogonal fine-tuning paradigm

As discussed in Sectlon@, orthogonal fine-tuning stresses the importance of preservmg the hyper-
spherical energy of the given matrix M = UXV ' ¢ R™x", Although it is clear that this can
be done by adapting both singular vector matrices U and V, 1t is common practice to keep V T
unchanged and adapt only U [36] 29, 53]

Consider all possible orthogonal transformations of M into an adapted matrix M=USVT preserv-
ing its hyperspherical energy; that is, meaning that S=3, though Uand VT might differ from U
and VT respectively. Suppose there exists an orthogonal matrix Q € O(m) such that M = QM,
thatis USVT = QUEVT Since Q is arbitrary, we can set Q = UUT and due to hyperspherical

energy conservation, s=3. However, we cannot ensure that V and V are equal. Thus, in order
to cover all possible adapted matrices, we need two orthogonal matrices Qu € O(m), Qv € O(n).

Only in this case we can ensure that it is poss1ble to obtain M since we can set Qu = UUT and
Qv = VVT to construct QuMQv =
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In terms of approximation error, pre- and post-multiplying the pre-trained matrix M by distance-
preserving transformations exactly captures all adapted matrices M that maintain the same hyper-
spherical energy. However, the error incurred when applying just one orthogonal matrix leads us to
a known problem, the Orthogonal Procrustes Problem [[15], which has a solution if ﬁ and M are
known matrices. In this one-transform setting, a theoretical upper bound on the Frobenius norm error
is given by

in ||V — MH < 2y/m|M 1
Quin (M- Qm| < 2vm M M

Further details and the proof of Equation[I]are provided in Appendix [C]

3.2 CWY transform and inverse approximation

As observed in [36, 29], computing parameterized orthogonal matrices is computationally costly
though it can be sped up with numerical methods. In our case, the composition of multiple House-
holder transformations can be cast into high-performance matrix-matrix products through the WY
and CWY transforms [21} 25]. The following result from [21]] allows us to construct an orthogonal
matrix by accumulating householder transformations:

Theorem 1 Let the matrix U € R™*" have linearly independent columns. Partition U by columns

as U= (u; |uy | ... | u,) and consider the vector T = (11,72, ...,7,) " withm; # 0,1 <i <.
Then, there exists a unique nonsingular upper triangular matrix S € R"™*" such that
T T T
uju usu u,u
QU:<I— ! 1)(1— 22)---(I—’“’“):I—Us—lUT 2)
T1 T2 Tr

where Qu € O(m). S can be computed following two steps:

1. S := the upper triangular part of UT U.
2. Divide the diagonal elements of S by two.

As in the case of many orthogonal parameterization methods [[14], there is a matrix inverse to be
computed. This fact makes orthogonal parameterization methods non-scalable, since the inverse
computation during training and the gradient update computation are resource-intensive. However, in
the case of the CWY transform, the inverse can be approximated with a high degree of precision. In
order to efficiently compute S~™!, Neuman Series are required [14]. We can separate S = D + A =
D(I + D !A) where D is a diagonal matrix and A is a strictly upper triangular matrix. The inverse
will be:

o0
S'=(1+D'A) D= (Z (—D‘lA)l> D '~D'-D'AD! 3)

i=0
It can be demonstrated that, since A € R"*" is
strictly upper triangular, then the spectral radius

p (D7'A) is less than one and we can ensure that | 2
the series from Equation [3| always converges. In — los
fact, 2 (-D1A) = 5" H(-D1A), and | — s
act, Zi:o(i ) - Zi:O (7 ) » an 12

the inverse approximation error grows with the
number of columns r.

Error
@
&

Taking the first and second term of the se-
ries in order to approximate the inverse only
require diagonal inverses, which are very fast to T2 1 5 18 ® e s
compute. Rearranging Equation 2] the final equa- ank

tion to approximately compute the accumulated
householder product is:

Figure 1: Inverse approximation error
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Qu=I1-US'U'~I+UMD'AD'-D ) U" 4)

To empirically assess the error magnitude, we conducted an experiment approximating a random
gaussian accumulated Householder transformation. Figure[T]illustrates how the inverse approximation
error varies depending on the rank 7. The error is defined as ||I - QuQyg || 1 /\/1, where n denotes
the matrix dimension. As expected, the error is zero when r = 1, since the approximation is exact in
that case. Although the error grows when increasing r, the growth rate remains modest. In particular,
for r < m, the approximation remains remarkably accurate. Further details can be found in Appendix
Bl

3.3 Householder Orthogonal Fine-tuning

Given householder vectors stored in the columns of U € R™*" and V € R"*", we construct
orthogonal matrices Qu € O(m) and Qy € O(n) by applying the CWY transform along with
the inverse approximation of S from Section[3.2] As discussed in Section 3.1} the resulting matrix

M = QuMQy can express any matrix M € R™*" guch that the hyperspherical energy remains
the same as M € R™*". We call this novel method Householder Orthogonal Fine-tuning (HOFT).
As illustrated in Figure [2| our method adapts both U, VT while preserving the same hyperspherical
energy.

B @ v R = NE

ol
D - @&

Figure 2: Diagram of our proposed HOFT method

7 G

Similar to HRA’s rank r [S3], HOFT also employs r householder vectors. For both inverse ap-
proximations, the computational complexity is O (r2(m + n)), and the matrix-vector multipli-
cations require O (2mr +2nr +mn + 2r2). Altogether, the total time complexity of HOFT is
O (mn+2r(m+n)+r’(m+n+2)) ~ O (mn+ (m+n)(r*+2r)). A comparison of the
computational complexity of HOFT to other parameterized orthogonal-based methods is provided in
Table [Tl

Table 1: Comparisons of parameterized orthogonal-based methods

Method #Parameters Complexity Coverage
OFT w O(mn + m(b® + b)) b=m
BOFT w O(mn + mk(b?> +m)) k =logmand b= 2
HRA m O(mn + mr) r=m-—1

HOFT r(m+n) O(mn+ (m+n)(r?> +2r)) r=max(m,n) —1

One drawback of OFT is that it requires b to be large in order to achieve O(m) coverage [36]]. The
increase of b cannot be arbitrary because of the cost of inverting b x b matrices. BOFT, on the other
hand, offers better coverage at the expense of higher time complexity [29]. HRA provides even better
coverage than the two previous methods; however, its Householder transformations must be applied
sequentially, and when A = oo, its runtime matches that of OFT [53]]. By contrast, HOFT provides
the same coverage as HRA, and because most of its computations can be parallelized, it achieves
greater speedup and represents an attractive alternative.
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Although LoRA and DoRA can be randomly initialized, OFT and BOFT cannot due to the necessity
of preserving orthogonality; Cayley’s parameterization [14] needs skew-symmetric matrix R =
0 to ensure that the orthogonal parameterized matrix is Q = I. In general, orthogonal PEFT
methods cannot be randomly initialized. However, HOFT and SHOFT can be randomly initialized by
considering consecutive pairs of equal vectors u;. Since they express the same reflection, we can
place Householder vectors in the form U = (u; | uy | -+ | ug | ug), which yields the identity

matrix:
QU_<I_uluT> (I_W)...<I_W> (I_ukul)_l )
T1 T1 Tk Tk

I I

Thus, if r is even, we can generate k = 5 pairs of random vectors. If r is odd, we can generate
k = | 5] pairs of random vectors and a zero vector. Vectors u; are picked from a high-dimensional
gaussian distribution. V is also initialized following this procedure, making Qv = I at the beginning
of the training.

3.4 Scaled Householder Orthogonal Fine-tuning

The use of scaling transformations in orthogonal fine-tuning methods has been studied in [36] as a way
to improve their performance. Drawing also inspiration from DoRA’s weight decomposition analysis
[27], we propose a variant of HOFT that employs a scaling transformation: Scaled Householder
Orthogonal Fine-tuning (SHOFT). As observed in Section [3.1] placing the scaling transformation
near the singular value matrix will be interesting from a SVD perspective. Since scaling is performed
between two distance preserving transformations, the effect of m in the singular values of M is
closely controlled. Thus, SHOFT formulation will be as follows

M = QumMQy = QumUEV ' Qy (6)

where Qu, Qv and m are formed by trainable parameters. It seems more intuitive to be able to
redirect with Qv, transform with IM, then scale with m and finally redirect with Qu. SHOFT is
more flexible since it is no longer constrained to keep the same hyperspherical energy. All elements
of vector m are initialized to one. As observed in other PEFT methods [27, 36]], the increase on the
amount of trainable parameters due to adding a magnitude vector m € R"™ is marginal.

4 Experiments

In order to compare HOFT and SHOFT along with other PEFT methods, four main tasks have been
selected: commonsense reasoning, machine translation, subject-driven generation and mathematical
reasoning. In these tasks, state-of-the-art PEFT methods are evaluated using different pre-trained
models to show robustness along different architectures. In addition, quantized models are also
employed for evaluating mathematical reasoning. All hyperparameter settings used in the experiments
are provided in Appendix [A] Additionally, an empirical comparison of time and memory complexity
is given in Appendix [D}

4.1 Commonsense reasoning

For measuring commonsense reasoning performance, we compare HOFT and SHOFT with DoRA
and LoRA across eight standard commonsense reasoning benchmarks: BoolQ [8]], PIQA [4]], SIQA
[43]], HellaSwag [54], WinoGrande [42], ARC-e [9], ARC-c [9] and OBQA [31]]. Following DoRA
[27], the training splits of all eight tasks are merged into a single training set, and then each model is
evaluated separately on the original test set of each task. The models employed are LLaMA3.1-8B
[16], Qwen2.5-7B [50], Phi4-14B [1], and Qwen2.5-14B [50]. We initialize DoRA [27]] and LoRA
[19] using PiSSA [30]. We set r = 16 for all PEFT methods and train the models for two epochs.

The results of each individual task along with the average task accuracy per model and PEFT method
are shown in Table[2] where it can be seen that HOFT and SHOFT generally achieve higher scores
than LoRA and DoRA across most models, with SHOFT performing comparably to DoRA for
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Qwen2.5-7B. Moreover, both HOFT and SHOFT continue to deliver strong results as model size
grows, demonstrating solid performance on both Phi4-14B and Qwen2.5-14B. In particular, HOFT
and SHOFT attain the highest scores on nearly every task, matching LoRA and DoRA only on PIQA
and ARC-e. This underscores their robustness and efficiency when trained on datasets containing
multiple domains.

Table 2: Accuracy comparison (%) on various commonsense reasoning benchmarks

Model Method #Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LoRA 0.35 88.2 88.5 803 96.7 80.5 91.9 82.3 87.4 87.0

DoRA 0.36 88.1 89.1 80.1 96.6 81.4 92.0 82.5 86.8 87.1

LLaMA3.1-8B yopt 0.35 885 885 809  96.8 80.4 927 832 884 874
SHOFT 0.36 88.8 885 80.1 96.8 81.2 92.0 82.9 86.6 87.1

LoRA 0.35 88.4 895 79.6 96.8 82.5 95.8 88.7 922 89.2

Qwen2.5-7B DoRA 0.36 839 89.8 792 96.8 82.5 96.2 839 924 893
: HOFT 0.35 89.0 89.1 792 96.4 80.4 95.9 88.4 924 88.9
SHOFT 0.36 88.8 89.5 795 96.5 80.7 95.7 89.1 934 89.2

LoRA 0.33 89.7 92.0 81.7 97.3 87.9 97.9  93.1 942 91.7

Phi4-14B DoRA 0.35 90.0 919 820 97.4 87.3 98.0 93.5 940 91.8
! HOFT 0.33 90.1 92.7 823 97.4 86.7 98.1 94.3 93.6 919
SHOFT 0.35 90.0 92.7 819 97.3 87.4 98.0 94.5 954 922

LoRA 0.31 89.9 92.7 82.1 98.0 87.1 98.1 93.6 95.0 92.1

Qwen2.5-14B DoRA 0.32 899 925 826 98.0 87.3 98.1 93.0 94.6 92.0
’ HOFT 0.31 90.2 919 838 98.0 87.6 97.7 93.7 96.2 924
SHOFT 0.32 90.3 923 83.0 98.1 88.2 97.2 92.7 96.2 923

4.2 Machine Translation

For measuring machine translation performance, HOFT and SHOFT are compared with DoRA and
LoRA using four languages from the CoVoST 2 [47] dataset: Slovene, German, Latvian and French.
We chose these languages in order to have two well-represented languages and two low-resource
languages. For French and German, models are trained on the first 10K elements of the training split.
Three models are adapted for this task: NLLB-3.3B [11l], LLaMA2-7B [45]], and LLaMA3.1-8B [16].
We set r = 16 for all PEFT methods and train the models for 2 epochs. Both BLEU [33}[35] and
COMET [39, 38] results are provided for each individual language per model and PEFT method.
Results obtained are shown in Table[3] We additionally provide baseline performance of the models.

Table 3: Performance comparison on X — English machine translation tasks

Model Method #Params (%) Slovene German Latvian French
BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Baseline - 397 875 393 862 312 813 385 849
NLLB33p  LORA 0.42 468 892 445 877 382 839 497 878
-3 DoRA 043 468 891 447 876 382 839 495 877
HOFT 0.42 480 894 444 876 386 839 495 877
SHOFT 043 464 895 445 877 387 840 497 878
0-shot - 268 728 304 741 45 522 372 793
LoRA 0.19 393 847 415 869 155 662 470 872
LLaMA2-TB - R A 0.19 306 848 414 869 162 666 470 872
HOFT 0.19 406 852 414 869 158  66.6 470 873
SHOFT 0.19 412 856 416 870 157 659 471 813
0-shot - 342 778 409 862 229 708 416 827
LoRA 0.12 362 841 423 874 327 809 468 855
LLaMA3.1-8B 1 b A 0.12 424 850 422 874 328 808 467 855
HOFT 0.12 442 866 429 875 322 804 467 856
SHOFT 0.12 436 864 431 877 319 804 468 856

From Table [3| we can observe how HOFT and SHOFT provide competitive results in French and
German. In Latvian, HOFT and SHOFT give similar results in the case of NLLB-3.3B. For Slovene,
both methods clearly outperform LoRA and DoRA with LLaMA2-7B, while HOFT in BLEU and
SHOFT in COMET with NLLB-3.3B. Notably, the difference on both metrics is significantly higher
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with LLaMA3.1-8B. Overall, the top BLEU and COMET scores are almost always achieved by either
HOFT or SHOFT, underlining their effectiveness across multiple languages.

4.3 Subject-driven generation

For subject-driven generation, we follow the experimental protocol of HRA [53]], using the Dream-
Booth dataset [41]] to train and evaluate on 25 distinct subjects, each with 30 associated prompts. We
adapt the pre-trained Stable Diffusion (SD) model and compare PEFT methods quantitatively
across four metrics: subject fidelity (DINO [[7] and CLIP-I [37]), prompt fidelity (CLIP-T [37]]), and
sample diversity (LPIPS [56]).

Table 4: Quantitative comparison of subject-driven generation

Method #Param (M) DINOt CLIP-I1T CLIP-T1T LPIPS*
Real Images - 0.764 0.890 - 0.562
DreamBooth 859.52 0.614 0.778 0.239 0.737
LoRA 0.80 0.613 0.765 0.237 0.744
COFTp—4 233 0.630 0.783 0.235 0.744
OFTp—4 233 0.632 0.785 0.237 0.746
HRA,—7 8 =0 0.69 0.670 0.803 0.238 0.758
HRA, _7 g x=10-3 0.69 0.661 0.799 0.255 0.760
HRA;—7 8 x=00 0.69 0.651 0.794 0.274 0.778
HOFT, -2 0.40 0.657 0.793 0.239 0.758
SHOFT, - 0.41 0.658 0.793 0.241 0.757
HOFT, -4 0.80 0.680 0.810 0.235 0.752
SHOFT, —4 0.81 0.680 0.808 0.235 0.747

The results, together with the provided baselines, are summarized in Table @ Both HOFT and
SHOFT outperform all baselines in subject fidelity. In terms of textual prompt fidelity, they achieve
results comparable with LoRA, OFT, and COFT. For sample diversity, they also deliver competitive
performance. Additionally, we also tested HOFT and SHOFT at half the rank. Even with fewer
trainable parameters, both methods consistently outperform LoRA, OFT, and COFT across all metrics,
while remaining competitive with HRA on subject fidelity.

images of 3d icons images of lego sets

Figure 3: Examples of training images of 3D icons and lego sets

Therefore, in order to gain a deeper insight into subject fidelity, we conducted an additional experiment
following DoRA [27]. We fine-tuned a pre-trained Stable Diffusion XL (SDXL) model on two
datasets: 3D icons and lego sets. In Figure 3] we can see some examples of the styles to be learned. In
this experiment, five PEFT methods are used for evaluation: LoRA, HRA, OFT, HOFT, and SHOFT.
To ensure a fair comparison, all methods used the same random sample seed for generating the
images.

As shown in Figure @ HOFT and SHOFT provide better personalization than LoRA, HRA, and OFT.
When generating 3D icons, both methods closely match the style and subject of the training images.
This highlights the value of orthogonality: while OFT also produces competitive results, LoRA and
HRA struggle to generate realistic 3D icons. Moreover, HOFT and SHOFT produce accurate text
in the lego sets, while the rest do not achieve it. Additional qualitative examples can be found in

Appendix [E]
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Prompt: a TOK 3d icon of an orange llama eating ramen, in the style of TOK

Figure 4: Qualitative results on lego sets and 3d icons datasets

4.4 Mathematical reasoning

For the mathematical reasoning experiments, we follow the HRA guidelines [53]. We fine-tune
LLaMA2-7B [43]] on the MetaMathQA dataset [52]], which contains a diverse amount of mathematical
questions along with rationalized answers. HOFT and SHOFT are evaluated on the GSM8K [10]
and MATH [52] validation sets. Table [5]shows the accuracy of these methods alongside other PEFT
baselines.

Table 5: Accuracy comparison (%) on mathematical reasoning datasets

Method GSMSK MATH

Baseline 14.6 2.5
LoRA 50.2 7.8
OFT 50.1 8.4
BOFT 50.6 8.6
PiSSA 53.1 7.4
HRA 56.3 9.3
HOFT 56.6 8.9
SHOFT 55.0 9.8

The results in Table [5|show that HOFT and SHOFT are competitive with existing PEFT methods
on mathematical reasoning benchmarks. HOFT achieves the highest accuracy on GSM8K, while
SHOFT achieves the best score on the more challenging MATH dataset. This suggests that the scaling
transformation plays a role to improve performance on harder math questions.

4.5 QHOFT: Quantized HOFT

In addition to the previous mathematical reasoning experiment, two additional experiments are
performed in order to test the quantized versions of HOFT and SHOFT. We adapt 4-bit quantized [12]
LLaMA2-7B [45]] and LLaMA3.1-8B [[16] to GSM8K [10] and Orca-Math [32]] datasets separately
and evaluate them on their respective test datasets. In particular, we follow DoRA [27]] Orca-Math
experimental setup: 100K elements for training and 2K for evaluation. The experimental results are
reported in Table
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Table 6: Accuracy comparison (%) on mathematical reasoning datasets using quantized models

Model Method #Params (%) GSMSK Orca-Math

QLOoRA 0.19 27.9 14.4

QDoRA 0.19 29.0 13.0

LLaMA2-7B  gHoFT 0.19 30.5 14.7
QSHOFT 0.19 293 15.5

QLoRA 0.12 538 54.1

QDoRA 0.12 56.5 53.8

LLaMA3.1-8B  sHopT 0.12 55.0 57.2
QSHOFT 0.12 57.0 54.6

The results in Table [6] demonstrate that the quantized versions of HOFT and SHOFT consistently
outperform QLoRA and QDoRA under extreme parameter efficiency. On LLaMA2-7B, QHOFT
achieves the highest GSMS8K accuracy, while QSHOFT leads on Orca-Math. On the larger LLaMA3.1-
8B model, QSHOFT delivers the best GSM8K performance, and QHOFT achieves the best Orca-Math
score. These results confirm that QHOFT and QSHOFT perform well even with aggressive 4-bit
quantization.

5 Limitations

One limitation of our work is the challenge of adapting architectures with low-dimensional weight
matrices: neither HOFT nor SHOFT can fully enforce orthogonality in their learned weights when
the dimensionality is low. Although both methods achieve a slightly lower peak memory usage than
DoRA, their memory footprint remains substantially higher than that of LoRA.

6 Conclusions

In this work, we examined some of the theoretical foundations of orthogonal fine-tuning. Based
on our findings we proposed HOFT, a new PEFT method that adapts a pre-trained weight matrix
by pre- and post-multiplying it with learned orthogonal matrices. We also developed SHOFT, a
HOFT variant that introduces scaling transformations to further improve performance. Both exhibit
good theoretical properties and provide higher flexibility. Our experimental results show that HOFT
and SHOFT consistently match or outperform leading PEFT approaches across a wide range of
benchmarks. To the best of our knowledge, QHOFT and QSHOFT are the first quantized orthogonal
fine-tuning methods that maintain the benefits of their non-quantized counterparts, while operating
with substantially reduced time and memory requirements.

For future work, we would like to extend our evaluation to include visual instruction tuning and the
adaptation of multi-modal pre-trained models. In addition, we plan to explore how to reduce the
number of trainable parameters in both methods, for instance by adopting vector-bank strategies
similar to VB-LoRA. Finally, as discussed in Section [5} we would like to develop a variant of HOFT
optimized for smaller weight matrices, aiming to reduce memory overhead and enforce orthogonality
constraints.
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A Experimental details

A.1 Commonsense reasoning experiments

For commonsense reasoning experiments, we employ a NVIDIA A40 GPU for training LLaMA3.1-
8B and Qwen2.5-7B models. For training Phi4-14B and Qwen2.5-14B, a NVIDIA H100 GPU was
employed. For all experiments, the rank r was set to 16, and a dropout of 0.05. The optimizer
employed was AdamW with Linear LR Scheduler. All models were trained for 2 epochs using a
batch size of 4 and accumulation step of 4. The number of warmup steps was set to 100. The adapted
layers were Query, Key, Value, Up, Down and Gate. We provide in Table[7|the learning rates used
per model and per PEFT method.

Table 7: Learning rate hyperparameter configurations for commonsense reasoning experiments

Method LLaMA3.1-8B Qwen2.5-7B Phi4-14B Qwen2.5-14B

LoRA 9e-5 le-4 9e-5 le-4
DoRA le-4 9e-5 9e-5 9e-5
HOFT le-4 9e-5 9e-5 9e-5
SHOFT 2e-4 le-4 9e-5 2e-4

A.2 Machine translation experiments

For machine translation experiments, we use a NVIDIA A30 GPU for training NLLB-3.3B model.
For training LLaMA2-7B and LLaMA3.1-8B, a NVIDIA A40 GPU was used. For all experiments,
the rank r was set to 16, and a dropout of 0.05. The optimizer employed was AdamW with Linear
LR Scheduler. For French and German datasets, models were trained for 2 epochs on the first 10K
elements of the training dataset. For Slovene and Latvian, models were trained for 3 epochs. All
experiments use batch size of 16 and accumulation step of 4. The number of warmup steps was set to
100. The adapted layers were Query, Key and Value. We provide in Table [§]the learning rates used
per language, model and per PEFT method.

Table 8: Learning rate hyperparameter configurations for machine translation experiments

Language Method NLLB-3.3B LLaMA2-7B LLaMA3.1-8B

LoRA de-4 de-4 8e-4
Slovene DoRA 4de-4 4e-4 9e-4
HOFT Se-4 6e-4 le-3
SHOFT Se-4 6e-4 Te-4
LoRA 6e-4 3e-4 4e-4
German DoRA 6e-4 3e-4 de-4
HOFT 2e-4 2e-4 8e-4
SHOFT 2e-4 2e-4 de-4
LoRA Se-4 le-4 le-4
French DoRA 4e-4 le-4 le-4
HOFT le-4 le-4 3e-4
SHOFT de-4 le-4 le-4
LoRA Se-4 4e-4 Se-4
Latvian DoRA Se-4 Se-4 Se-4
HOFT 2e-4 9e-4 6e-4
SHOFT 3e-4 8e-4 Se-4

14



467

468
469
470
471
472

473
474
475
476
477
478

479

480
481
482
483
484

485

486
487
488
489
490
491
492

A.3 Subject-driven generation experiments

For quantitative subject-driven experiments, we employ 10 NVIDIA A40 GPUs for training the
Stable Diffusion 1.5 model. For all experiments, no dropout was used. The optimizer employed was
AdamW with Linear LR Scheduler. All models were trained for 2005 steps using a batch size of 1.
The adapted layers were Query, Key, Value and Out from the U-Net part. The learning rate used for
training both HOFT and SHOFT is Se-4.

For qualitative subject-driven experiments, we employ 5 NVIDIA A40 GPUs for training the Stable
Diffusion XL model. For all experiments, no dropout was used. For all PEFT methods the rank r was
set to 16, except for HRA, which was set to 32 for fair comparison. The optimizer employed was
AdamW with Linear LR Scheduler. All models were trained 1000 steps using a batch size of 4 and
gradient accumulation of 4. The adapted layers were Query, Key, Value and Out from the U-Net and
text encoder part. The learning rate used for training both all PEFT methods is 1e-4.

A4 Mathematical reasoning experiments

For mathematical reasoning experiments, we employ a NVIDIA H100 GPU for training LLaMA2-7B
model. For all experiments, the rank r was set to 8, and no dropout. The optimizer employed was
AdamW with Linear LR Scheduler. All models were trained for 2 epochs using a batch size of 8 and
accumulation step of 2. The warmup ratio was set to 0.05. The adapted layers were Query and Value.
The learning rates used by HOFT and SHOFT were 1e-3 and 7e-4 respectively.

A.5 Mathematical reasoning experiments with quantized models

For experiments in mathematical reasoning with quantized models, we employ a NVIDIA H100 GPU
for training LLaMA2-7B and LLaMA3.1-8B models. Models are quantized using NF4 and double
quatization. For all experiments, the rank r was set to 16, and a dropout of 0.05. The optimizer
employed was AdamW with Linear LR Scheduler. For Orca-Math dataset, all models were trained
for 2 epochs using a batch size of 4 and accumulation step of 1. For GSM8K dataset, all models were
trained for 3 epochs using a batch size of 4 and accumulation step of 1. The number of warmup steps
was set to 100. The adapted layers were Query, Key and Value. We provide in Table[9] the learning
rates used per model and per PEFT method.

Table 9: Learning rate hyperparameter configurations for mathematical reasoning on quantized
models

Dataset Method GSMS8K Orca-Math
QLORA de-4 le-4
QDoRA 4e-4 9e-5

LLaMA2-7B  SHOFT 3e-4 le-4
QSHOFT  3e4 de-4
QLoRA 2e-4 9e-5
QDoRA le-4 9e-5

LLaMAS1-8B  QHOFT ~ 3e4 2e-4
QSHOFT  4de-4 e-4
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B About inverse approximation error

B.1 Hyperspherical energy difference

Given W = (wy | --- | w,) € R™*", where w; denotes the i-th column of matrix W, the
hyperspherical energy is defined as follows:

HE(W) =) llwi — wy| @
i#]
In order to measure the difference on the hyperspherical energy, we conduct an experiment by

approximating two random gaussian accumulated householder transformations Qy, Qv. We measure
|[HE(M) — HE(QuMQy )|, where M is a random gaussian matrix. Results are show in Figure[3]

256
le8 A 512
1024
2048
4096

le6

led

le2 A

Hyperespherical energy difference

1e0

4 8 16 32 64 128
Rank

Figure 5: Hyperspherical energy difference

As observed in Figure [3] the hyperspherical energy tends to increase rapidly for higher ranks.
Remarkably, for all cases the difference is negligible when = 1 and r = 2 (omitted in Figure 5] for
clarity). We can conclude from Figures[I]and [5]that, for a given rank r, the inverse approximation
improves as the dimension of the matrix increases. Given the growing tendency for weight matrices
in new pre-trained models, this is really convenient.

B.2 Indifference towards weight decay
One theoretical property of computing the CWY transform along with the inverse approximation

is that, after applying weight decay to the original weights U € R™*", the resulting accumulated
householder matrix remains the same. That is, given U’ = U — AU, we compute

QU’ =I4+U (D/flA/D/—l _ D/—l) U/T

=1+ (1-)?U (WD*Q - A)2A(1 j)\)QD_l a0 1/\)2D_1) U’
_ (1 — /\)2 -1 -1 -1
_1+mu(D AD'-D U

=I1+UMD'AD'-D ") U' =Qu

Thus, we ensure that distance-preserving transformations in HOFT and SHOFT are not affected by
weight decay. From this fact, we can ignore weight decay when adapting with HOFT. Additionally,
when adapting with SHOFT, weight decay only affects the scaling transformation m.
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C Proof for Equation []]

Given M, M € R™*™ two matrices such that both have the same hyperspherical energy. Then

s 50, iy v v, < s
QeOo(m) F QeO0(m) F F

@ 1), = o o],

Now we need to compute HQV — IH
F

HQV —IHi =Tr ((Qv —I)T (Qv —I)) =Tr (Q\T/Qv -Qy - Qv-i-I) =
— 9m —Tr (Q\T,) Ty (QV) — 9m — 2Tr (QV)

The previous expression attains its maximum precisely when Qv = —I. In that case, we conclude

. ~ 2
that Tr (QV) = —m and consequently HQV — IHF < 4m. Thus, final upper-bound will be

in ||MV— MH < ovmIM
Qgggn)H QM| < 2vim M|,

D Time and memory consumption

In order to give a better understanding of the time and memory complexity of HOFT and SHOFT, we
provide the runtime for training and the peak memory usage during training from the commonsense
reasoning, qualitative subject-driven generation and mathematical reasoning using quantized models
experiments. All values are gathered in Tables[I0] [[T]and [I2]

In Table |10} we can observe that both HOFT and SHOFT are 72.5% and 55.3% faster on average
than DoRA, respectively. With respect to LoRA, they are on average 35.1% and 41.8% slower,
respectively. In terms of memory, both HOFT and SHOFT peak memories are between LoRA’s and
DoRA’s peak memories, except in Phi4-14B, where the memory is higher in HOFT and SHOFT. This
unusual peak in Phi4-14B is due to the fact Query, Key and Value are all together in a matrix (the
same happens with Up and Gate layers).

Table 10: Memory and time complexity comparison on the commonsense reasoning task

Model Method Training time (hours) Peak memory (GB)
LoRA 15 319
DoRA 33 45.8
LLaMA3.1-8B ppr 23 423
SHOFT 26 445
LoRA 6.1 30.7
DoRA 13.9 445
Qwen25-7B  popr 8.0 413
SHOFT 9.2 435
LoRA 2.4 49.9
. DoRA 8.3 68.0
Phi4-14B HOFT 3.4 78.6
SHOFT 37 78.0
LoRA 238 39.8
DoRA 76 59.4
Qwen25-14B - okt 5.9 56.4
SHOFT 6.4 57.6
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From Table[T1] both HOFT and SHOFT are 72.1% faster than OFT, and 732.5% faster than HRA. In
this respect, it is worth noting that HRA entails a number of sequential householder transformations
that leads to a comparatively high training time. With respect to LoRA, they are on average 32.6%
slower. In terms of memory, both HOFT and SHOFT require less memory than OFT and HRA, and
the same as LoRA.

Table 11: Memory and time complexity comparison on the mathematical reasoning using quantized
models experiments

Method Training time (hours) Peak memory (GB)

LoRA 29 255
HRA 35.8 25.7
OFT 7.4 26.7
HOFT 43 255
SHOFT 43 25.5

Table [12] shows that there is a minor difference in time cost between LoRA, HOFT and SHOFT. In
the case of DoRA, it is 16.7% slower than the rest. In terms of memory, both HOFT and SHOFT
peak memories are between LoRA’s and DoRA’s peak memories, requiring at most 9.6% and 20.8%
more memory than LoRA, respectively.

Table 12: Memory and time complexity comparison on the mathematical reasoning using quantized
models experiments

Model Method Training time (hours) Peak memory (GB)
QLoRA 0.9 43.2
QDoRA 1.2 58.2

LLaMA2-TB  OhoFT 1.0 477
QSHOFT 1.0 52.2
QLoRA 1.0 52.0
QDoRA 1.2 60.4

LLaMA3.1-8B QHOFT 10 570
QSHOFT 1.0 56.4

E Additional experiments

E.1 Rank exploration

We explore the effect of various rank settings r € {2,4,8,16,32,64} on LoRA, DoRA, HOFT
and SHOFT by evaluating the fine-tuned LLaMA3.1-8B and Qwen2.5-7B performance on the
commonsense reasoning tasks described in Section[d.T} The implementation settings are the same as
those for rank 16, given in Appendix [A]

LoRA 89.44 LoRA

Accuracy (%)

2 4 8 16 32 64 2 4 8 16 32 64
Rank Rank

Figure 6: Rank exploration in LLaMA3.1-8B Figure 7: Rank exploration in Qwen2.5-7B
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The average accuracies of the PEFT methods across different ranks are shown in Figures [6] and [7]
In Figure[§] all four methods improve sharply up to = 16, where HOFT peaks. Beyond r = 16,
DoRA’s performance declines markedly while LoRA falls slightly. In contrast, SHOFT maintains a
mild upward trend approaching HOFT best result for » = 64. In Figure[7} the methods again climb to
a peak at 7 = 32, where DoRA attains the highest accuracy, with SHOFT and LoRA close behind.
At r = 64, HOFT’s accuracy falls more noticeably, whereas the others dip only slightly.

Overall, these results suggest that HOFT is the strongest option for moderate ranks, but SHOFT is the
most robust method at higher ranks and offers the steadiest, most consistent gains across the entire
rank spectrum.

E.2 More qualitative results on subject-driven generation

Prompt: a TOK pink 3d icon of a rainbow unicorn eating marshmallow, in the style of TOK

LoRA HRA OFT HOFT SHOFT

Figure 8: Comparison of different prompts in 3D icons dataset
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Prompt: a TOK lego set of a colorful coral reef with an explorer submarine and a giant octopus, in
the style of TOK

Figure 9: Comparison of different prompts in lego sets dataset
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The key assertions in the abstract and introduction faithfully capture the paper’s
contributions and overall scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discussed the limitations of our work in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Each theoretical result is accompanied by a complete list of assumptions and a
rigorous, fully detailed proof.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: For each experiment, we specify the hardware used, the model architecture
and all required hyperparameters.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code is included in the supplementary material, complete with a structural
overview, and the datasets are publicly available online with easy download instructions
provided there.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The appendix includes comprehensive experimental details, such as hyperpa-
rameter settings, optimizer configurations, and more.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We omitted error bars due to the large number of experiments. The significant
time requirements that reporting them would entail are not practical.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For each experiment, we provide the information of the GPU used. In
some experiments, we also include train runtime and GPU peak memory usage. All that
information is on the appendix.
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Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper adheres in every respect to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: HOFT reduce the computational and memory overhead of fine-tuning large
language models and opens the door to a broader range of applications. Lowering both
cost and technical barriers increases accessibility carries inherent risks: like other PEFT
techniques, HOFT may be used to reinforce or propagate harmful biases present in training
data, generate misleading or malicious content, or facilitate inappropriate applications when
oversight is lacking. Crucially, these challenges are not unique to HOFT but reflect broader
issues in the development and deployment of fine-tuning methods. Addressing these areas
represents an important avenue for future research as we work to ensure that HOFT (and
PEFT techniques more generally) are harnessed safely and equitably.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have appropriately acknowledged all creators and original owners of the
code, data, and models used in this work.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Comments are provided in the code of the supplementary material.
Guidelines:

* The answer NA means that the paper does not release new assets.
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* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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