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Abstract

Adaptation of foundation models using low-rank methods is a widespread approach.1

Another way to adapt these models is to employ orthogonal fine-tuning methods,2

which are less time and memory efficient despite their good generalization prop-3

erties. In this work, we propose Householder Orthogonal Fine-tuning (HOFT),4

a novel orthogonal fine-tuning method that aims to alleviate the time and space5

complexity. Moreover, some theoretical properties of the orthogonal fine-tuning6

paradigm are explored. From this exploration, Scaled Householder Orthogonal7

Fine-tuning (SHOFT) is proposed. Both HOFT and SHOFT are evaluated in down-8

stream tasks, namely commonsense reasoning, machine translation, subject-driven9

generation and mathematical reasoning. Compared with state-of-the-art adaptation10

methods, HOFT and SHOFT show comparable or better results.11

1 Introduction12

Nowadays, fine-tuning foundation models for downstream tasks [17] is the standard approach to13

model adaptation these days thanks to their knowledge across many domains. By tuning far fewer14

parameters than full fine-tuning using parameter-efficient fine-tuning techniques (PEFT), the model15

is able to learn the key aspects of a task and perform comparably or even better than full fine-tuning16

[18]. This fact makes PEFT methods a particularly well-suited approach for efficiently adapting these17

models. The employment of PEFT methods has enabled the adaptation of large foundation models18

without the necessity of compute-intensive hardware infrastructure, making adaptation accessible to19

a broader user community.20

The most popular PEFT methods are based on low-rank approximations, including Low-Rank Adap-21

tation (LoRA) [19] and Weight-Decomposed Low-Rank Adaptation (DoRA) [27]. These methods22

work under the assumption that the learnable parameters must reside in a lower intrinsic dimension23

[2]. Alternatively, there are methods proposing the use of orthogonal matrices for adaptation, such24

as Orthogonal Fine-tuning (OFT) [36] and Orthogonal Butterfly (BOFT) [29]. These methods hy-25

pothesize that a good fine-tuned model should have a minimal difference in hyperspherical energy26

compared to the pre-trained model [26, 28]. In brief, the assumption made is that orthogonality is27

required to learn new features while keeping pre-trained information [36, 53]. Whilst the performance28

of these techniques has been demonstrated, their runtime and memory footprint make them a less29

preferable option for use in real-world applications. A recent approach to balance low-rank and30

orthogonal methods is Householder Reflection Adaption (HRA) [53], which constrains orthogonality31

through the incorporation of a term within the loss function. With the employment of an additional32

weight λ for the orthogonality regularizer, HRA aims to construct the chained matrix product of33

Householder transformations [14].34

Orthogonal fine-tuning methods generally result in the construction of a single orthogonal matrix for35

adaptation purposes. This work demonstrates that two orthogonal matrices are required in order to36

ensure full expressivity in orthogonal fine-tuning methods. This leads us to propose Householder37

Orthogonal Fine-tuning (HOFT): a novel orthogonal fine-tuning technique using two orthogonal38
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matrices as directional components efficiently updated through orthogonal transformations. For39

efficiency, these matrices are obtained by accumulating Householder transformations via the CWY40

transform [25, 21] along with a fast inverse approximation. Additionally, we draw inspiration from41

DoRA’s analysis, which shows that fine-tuning magnitude and direction separately closely matches42

the learning dynamics of full fine-tuning. From this, a variant of HOFT incorporating an additional43

scaling transformation is proposed: Scaled Householder Orthogonal Fine-tuning (SHOFT).44

In order to evaluate both methods, a series of experiments are conducted in four distinct areas:45

commonsense reasoning, machine translation, subject-driven generation and mathematical reasoning.46

The selection of these tasks was made with the intention of evaluating the efficacy of the proposed47

methods along with both low-rank and orthogonal PEFT. Notably, quantized models are also adapted48

in mathematical reasoning experiments. Experimental results demonstrate that HOFT and SHOFT49

benefit from retaining the relational structure of pre-trained weights, reaching or exceeding the50

performance of existing state-of-the-art PEFT baselines.51

2 Related Work52

Low-Rank Adaptation Methods in this family assume that effective fine-tuning updates lie on53

a compact, low-dimensional manifold [19, 27, 23, 55, 24, 51, 20, 46]. LoRA [19] introduces54

trainable low-rank adapter matrices into each Transformer layer, freezing the original weights55

and reducing trainable parameters by several orders of magnitude. DoRA [27] separates the fine-56

tuning of directional and scaling components by normalizing LoRA’s output and applying a scaling57

transformation. PiSSA [30] employs singular value decomposition (SVD) on pre-trained weight58

matrices to initialize LoRA adapters in principal subspaces, maintaining most of the original model’s59

expressive capacity. QLoRA [12] combines 4-bit NormalFloat (NF4) quantization with LoRA,60

enabling the fine-tuning of 65B-parameter models on a single 48GB GPU while preserving near61

full-precision quality. QA-LoRA [49] employs group-wise quantization operators to selectively62

compress adapter updates with minimal impact on task performance loss.63

Orthogonal Fine-Tuning Orthogonal fine-tuning methods learn distance preserving transforma-64

tions in weight space, keeping geometric properties such as hyperspherical energy among neuron65

activations [36, 29]. Previous works show how the imposition of orthogonality constraints within66

deep learning architectures is conducive to enhancing performance [5, 44, 48, 13, 3]. OFT [36]67

employs Cayley parameterization [22] to generate orthogonal matrix blocks. Additionally, COFT [36]68

constrains the orthogonal matrix to be within a small neighborhood of the pre-trained matrix. BOFT69

[29] reduces OFT parameter footprint by factorizing orthogonal updates into butterfly structures70

inspired by the Cooley–Tukey FFT algorithm [6], achieving similar generalization gains with fewer71

trainable parameters. The employment of hybrid methods, such as HRA, enforces hyperspherical72

constraints on low-rank adapters to blend both paradigms via a term in the loss function controlled by73

a weight [53].74

3 Proposed Method75

3.1 Orthogonal fine-tuning paradigm76

As discussed in Section 2, orthogonal fine-tuning stresses the importance of preserving the hyper-77

spherical energy of the given matrix M = UΣV⊤ ∈ Rm×n. Although it is clear that this can78

be done by adapting both singular vector matrices U and V, it is common practice to keep V⊤79

unchanged and adapt only U [36, 29, 53].80

Consider all possible orthogonal transformations of M into an adapted matrix M̂ = ÛΣ̂V̂⊤ preserv-81

ing its hyperspherical energy; that is, meaning that Σ̂ = Σ, though Û and V̂⊤ might differ from U82

and V⊤ respectively. Suppose there exists an orthogonal matrix Q ∈ O(m) such that M̂ = QM,83

that is ÛΣ̂V̂⊤ = QUΣV⊤. Since Q is arbitrary, we can set Q = ÛU⊤, and due to hyperspherical84

energy conservation, Σ̂ = Σ. However, we cannot ensure that V and V̂ are equal. Thus, in order85

to cover all possible adapted matrices, we need two orthogonal matrices QU ∈ O(m),QV ∈ O(n).86

Only in this case we can ensure that it is possible to obtain M̂, since we can set QU = ÛU⊤ and87

QV = VV̂⊤ to construct QUMQV = M̂.88
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In terms of approximation error, pre- and post-multiplying the pre-trained matrix M by distance-89

preserving transformations exactly captures all adapted matrices M̂ that maintain the same hyper-90

spherical energy. However, the error incurred when applying just one orthogonal matrix leads us to91

a known problem, the Orthogonal Procrustes Problem [15], which has a solution if M̂ and M are92

known matrices. In this one-transform setting, a theoretical upper bound on the Frobenius norm error93

is given by94

min
Q∈O(m)

∥∥∥M̂−QM
∥∥∥
F
≤ 2

√
m ∥M∥F (1)

Further details and the proof of Equation 1 are provided in Appendix C.95

3.2 CWY transform and inverse approximation96

As observed in [36, 29], computing parameterized orthogonal matrices is computationally costly97

though it can be sped up with numerical methods. In our case, the composition of multiple House-98

holder transformations can be cast into high-performance matrix-matrix products through the WY99

and CWY transforms [21, 25]. The following result from [21] allows us to construct an orthogonal100

matrix by accumulating householder transformations:101

Theorem 1 Let the matrix U ∈ Rm×r have linearly independent columns. Partition U by columns102

as U = (u1 | u2 | . . . | ur) and consider the vector τ = (τ1, τ2, . . . , τr)
⊤ with τi ̸= 0, 1 ≤ i ≤ r.103

Then, there exists a unique nonsingular upper triangular matrix S ∈ Rr×r such that104

QU =

(
I− u1u

⊤
1

τ1

)(
I− u2u

⊤
2

τ2

)
· · ·
(
I− uru

⊤
r

τr

)
= I−US−1U⊤ (2)

where QU ∈ O(m). S can be computed following two steps:105

1. S := the upper triangular part of U⊤U.106

2. Divide the diagonal elements of S by two.107

As in the case of many orthogonal parameterization methods [14], there is a matrix inverse to be108

computed. This fact makes orthogonal parameterization methods non-scalable, since the inverse109

computation during training and the gradient update computation are resource-intensive. However, in110

the case of the CWY transform, the inverse can be approximated with a high degree of precision. In111

order to efficiently compute S−1, Neuman Series are required [14]. We can separate S = D+A =112

D(I+D−1A) where D is a diagonal matrix and A is a strictly upper triangular matrix. The inverse113

will be:114

S−1 =
(
I+D−1A

)−1
D−1 =

( ∞∑
i=0

(
−D−1A

)i)
D−1 ≈ D−1 −D−1AD−1 (3)

It can be demonstrated that, since A ∈ Rr×r is
strictly upper triangular, then the spectral radius
ρ
(
D−1A

)
is less than one and we can ensure that

the series from Equation 3 always converges. In
fact,

∑∞
i=0(−D−1A)i =

∑r−1
i=0 (−D−1A)i, and

the inverse approximation error grows with the
number of columns r.

Taking the first and second term of the se-
ries in order to approximate the inverse only
require diagonal inverses, which are very fast to
compute. Rearranging Equation 2, the final equa-
tion to approximately compute the accumulated
householder product is:
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Figure 1: Inverse approximation error
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QU = I−US−1U⊤ ≈ I+U
(
D−1AD−1 −D−1

)
U⊤ (4)

To empirically assess the error magnitude, we conducted an experiment approximating a random117

gaussian accumulated Householder transformation. Figure 1 illustrates how the inverse approximation118

error varies depending on the rank r. The error is defined as
∥∥I−QUQ⊤

U

∥∥
F
/
√
n, where n denotes119

the matrix dimension. As expected, the error is zero when r = 1, since the approximation is exact in120

that case. Although the error grows when increasing r, the growth rate remains modest. In particular,121

for r ≪ m, the approximation remains remarkably accurate. Further details can be found in Appendix122

B.123

3.3 Householder Orthogonal Fine-tuning124

Given householder vectors stored in the columns of U ∈ Rm×r and V ∈ Rn×r, we construct125

orthogonal matrices QU ∈ O(m) and QV ∈ O(n) by applying the CWY transform along with126

the inverse approximation of S from Section 3.2. As discussed in Section 3.1, the resulting matrix127

M̂ = QUMQV can express any matrix M̂ ∈ Rm×n such that the hyperspherical energy remains128

the same as M ∈ Rm×n. We call this novel method Householder Orthogonal Fine-tuning (HOFT).129

As illustrated in Figure 2, our method adapts both U,V⊤ while preserving the same hyperspherical130

energy.131

M

V⊤

Σ
σ2

σ1

σ2

σ1 σ2σ1

U

QUQV

V̂⊤ Û

Figure 2: Diagram of our proposed HOFT method

Similar to HRA’s rank r [53], HOFT also employs r householder vectors. For both inverse ap-132

proximations, the computational complexity is O
(
r2(m+ n)

)
, and the matrix-vector multipli-133

cations require O
(
2mr + 2nr +mn+ 2r2

)
. Altogether, the total time complexity of HOFT is134

O
(
mn+ 2r(m+ n) + r2(m+ n+ 2)

)
∼ O

(
mn+ (m+ n)(r2 + 2r)

)
. A comparison of the135

computational complexity of HOFT to other parameterized orthogonal-based methods is provided in136

Table 1.137

Table 1: Comparisons of parameterized orthogonal-based methods

Method #Parameters Complexity Coverage

OFT m(b−1)
2 O(mn+m(b2 + b)) b = m

BOFT mk(b−1)
2 O(mn+mk(b2 +m)) k = logm and b = 2

HRA rm O(mn+mr) r = m− 1

HOFT r(m+ n) O(mn+ (m+ n)(r2 + 2r)) r = max (m,n)− 1

One drawback of OFT is that it requires b to be large in order to achieve O(m) coverage [36]. The138

increase of b cannot be arbitrary because of the cost of inverting b× b matrices. BOFT, on the other139

hand, offers better coverage at the expense of higher time complexity [29]. HRA provides even better140

coverage than the two previous methods; however, its Householder transformations must be applied141

sequentially, and when λ = ∞, its runtime matches that of OFT [53]. By contrast, HOFT provides142

the same coverage as HRA, and because most of its computations can be parallelized, it achieves143

greater speedup and represents an attractive alternative.144
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Although LoRA and DoRA can be randomly initialized, OFT and BOFT cannot due to the necessity145

of preserving orthogonality; Cayley’s parameterization [14] needs skew-symmetric matrix R =146

0 to ensure that the orthogonal parameterized matrix is Q = I. In general, orthogonal PEFT147

methods cannot be randomly initialized. However, HOFT and SHOFT can be randomly initialized by148

considering consecutive pairs of equal vectors ui. Since they express the same reflection, we can149

place Householder vectors in the form U = (u1 | u1 | · · · | uk | uk), which yields the identity150

matrix:151

QU =

(
I− u1u

⊤
1

τ1

)(
I− u1u

⊤
1

τ1

)
︸ ︷︷ ︸

I

· · ·
(
I− uku

⊤
k

τk

)(
I− uku

⊤
k

τk

)
︸ ︷︷ ︸

I

= I (5)

Thus, if r is even, we can generate k = r
2 pairs of random vectors. If r is odd, we can generate152

k = ⌊ r
2⌋ pairs of random vectors and a zero vector. Vectors ui are picked from a high-dimensional153

gaussian distribution. V is also initialized following this procedure, making QV = I at the beginning154

of the training.155

3.4 Scaled Householder Orthogonal Fine-tuning156

The use of scaling transformations in orthogonal fine-tuning methods has been studied in [36] as a way157

to improve their performance. Drawing also inspiration from DoRA’s weight decomposition analysis158

[27], we propose a variant of HOFT that employs a scaling transformation: Scaled Householder159

Orthogonal Fine-tuning (SHOFT). As observed in Section 3.1, placing the scaling transformation160

near the singular value matrix will be interesting from a SVD perspective. Since scaling is performed161

between two distance preserving transformations, the effect of m in the singular values of M is162

closely controlled. Thus, SHOFT formulation will be as follows163

M̂ = QUmMQV = QUmUΣV⊤QV (6)

where QU,QV and m are formed by trainable parameters. It seems more intuitive to be able to164

redirect with QV, transform with M, then scale with m and finally redirect with QU. SHOFT is165

more flexible since it is no longer constrained to keep the same hyperspherical energy. All elements166

of vector m are initialized to one. As observed in other PEFT methods [27, 36], the increase on the167

amount of trainable parameters due to adding a magnitude vector m ∈ Rm is marginal.168

4 Experiments169

In order to compare HOFT and SHOFT along with other PEFT methods, four main tasks have been170

selected: commonsense reasoning, machine translation, subject-driven generation and mathematical171

reasoning. In these tasks, state-of-the-art PEFT methods are evaluated using different pre-trained172

models to show robustness along different architectures. In addition, quantized models are also173

employed for evaluating mathematical reasoning. All hyperparameter settings used in the experiments174

are provided in Appendix A. Additionally, an empirical comparison of time and memory complexity175

is given in Appendix D.176

4.1 Commonsense reasoning177

For measuring commonsense reasoning performance, we compare HOFT and SHOFT with DoRA178

and LoRA across eight standard commonsense reasoning benchmarks: BoolQ [8], PIQA [4], SIQA179

[43], HellaSwag [54], WinoGrande [42], ARC-e [9], ARC-c [9] and OBQA [31]. Following DoRA180

[27], the training splits of all eight tasks are merged into a single training set, and then each model is181

evaluated separately on the original test set of each task. The models employed are LLaMA3.1-8B182

[16], Qwen2.5-7B [50], Phi4-14B [1], and Qwen2.5-14B [50]. We initialize DoRA [27] and LoRA183

[19] using PiSSA [30]. We set r = 16 for all PEFT methods and train the models for two epochs.184

The results of each individual task along with the average task accuracy per model and PEFT method185

are shown in Table 2, where it can be seen that HOFT and SHOFT generally achieve higher scores186

than LoRA and DoRA across most models, with SHOFT performing comparably to DoRA for187
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Qwen2.5-7B. Moreover, both HOFT and SHOFT continue to deliver strong results as model size188

grows, demonstrating solid performance on both Phi4-14B and Qwen2.5-14B. In particular, HOFT189

and SHOFT attain the highest scores on nearly every task, matching LoRA and DoRA only on PIQA190

and ARC-e. This underscores their robustness and efficiency when trained on datasets containing191

multiple domains.192

Table 2: Accuracy comparison (%) on various commonsense reasoning benchmarks

Model Method #Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA3.1-8B

LoRA 0.35 88.2 88.5 80.3 96.7 80.5 91.9 82.3 87.4 87.0
DoRA 0.36 88.1 89.1 80.1 96.6 81.4 92.0 82.5 86.8 87.1
HOFT 0.35 88.5 88.5 80.9 96.8 80.4 92.7 83.2 88.4 87.4
SHOFT 0.36 88.8 88.5 80.1 96.8 81.2 92.0 82.9 86.6 87.1

Qwen2.5-7B

LoRA 0.35 88.4 89.5 79.6 96.8 82.5 95.8 88.7 92.2 89.2
DoRA 0.36 88.9 89.8 79.2 96.8 82.5 96.2 88.9 92.4 89.3
HOFT 0.35 89.0 89.1 79.2 96.4 80.4 95.9 88.4 92.4 88.9
SHOFT 0.36 88.8 89.5 79.5 96.5 80.7 95.7 89.1 93.4 89.2

Phi4-14B

LoRA 0.33 89.7 92.0 81.7 97.3 87.9 97.9 93.1 94.2 91.7
DoRA 0.35 90.0 91.9 82.0 97.4 87.3 98.0 93.5 94.0 91.8
HOFT 0.33 90.1 92.7 82.3 97.4 86.7 98.1 94.3 93.6 91.9
SHOFT 0.35 90.0 92.7 81.9 97.3 87.4 98.0 94.5 95.4 92.2

Qwen2.5-14B

LoRA 0.31 89.9 92.7 82.1 98.0 87.1 98.1 93.6 95.0 92.1
DoRA 0.32 89.9 92.5 82.6 98.0 87.3 98.1 93.0 94.6 92.0
HOFT 0.31 90.2 91.9 83.8 98.0 87.6 97.7 93.7 96.2 92.4
SHOFT 0.32 90.3 92.3 83.0 98.1 88.2 97.2 92.7 96.2 92.3

4.2 Machine Translation193

For measuring machine translation performance, HOFT and SHOFT are compared with DoRA and194

LoRA using four languages from the CoVoST 2 [47] dataset: Slovene, German, Latvian and French.195

We chose these languages in order to have two well-represented languages and two low-resource196

languages. For French and German, models are trained on the first 10K elements of the training split.197

Three models are adapted for this task: NLLB-3.3B [11], LLaMA2-7B [45], and LLaMA3.1-8B [16].198

We set r = 16 for all PEFT methods and train the models for 2 epochs. Both BLEU [33, 35] and199

COMET [39, 38] results are provided for each individual language per model and PEFT method.200

Results obtained are shown in Table 3. We additionally provide baseline performance of the models.201

Table 3: Performance comparison on X → English machine translation tasks

Model Method #Params (%) Slovene German Latvian French
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

NLLB-3.3B

Baseline - 39.7 87.5 39.3 86.2 31.2 81.3 38.5 84.9
LoRA 0.42 46.8 89.2 44.5 87.7 38.2 83.9 49.7 87.8
DoRA 0.43 46.8 89.1 44.7 87.6 38.2 83.9 49.5 87.7
HOFT 0.42 48.0 89.4 44.4 87.6 38.6 83.9 49.5 87.7
SHOFT 0.43 46.4 89.5 44.5 87.7 38.7 84.0 49.7 87.8

LLaMA2-7B

0-shot - 26.8 72.8 30.4 74.1 4.5 52.2 37.2 79.3
LoRA 0.19 39.3 84.7 41.5 86.9 15.5 66.2 47.0 87.2
DoRA 0.19 39.6 84.8 41.4 86.9 16.2 66.6 47.0 87.2
HOFT 0.19 40.6 85.2 41.4 86.9 15.8 66.6 47.0 87.3
SHOFT 0.19 41.2 85.6 41.6 87.0 15.7 65.9 47.1 87.3

LLaMA3.1-8B

0-shot - 34.2 77.8 40.9 86.2 22.9 70.8 41.6 82.7
LoRA 0.12 36.2 84.1 42.3 87.4 32.7 80.9 46.8 85.5
DoRA 0.12 42.4 85.0 42.2 87.4 32.8 80.8 46.7 85.5
HOFT 0.12 44.2 86.6 42.9 87.5 32.2 80.4 46.7 85.6
SHOFT 0.12 43.6 86.4 43.1 87.7 31.9 80.4 46.8 85.6

From Table 3 we can observe how HOFT and SHOFT provide competitive results in French and202

German. In Latvian, HOFT and SHOFT give similar results in the case of NLLB-3.3B. For Slovene,203

both methods clearly outperform LoRA and DoRA with LLaMA2-7B, while HOFT in BLEU and204

SHOFT in COMET with NLLB-3.3B. Notably, the difference on both metrics is significantly higher205
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with LLaMA3.1-8B. Overall, the top BLEU and COMET scores are almost always achieved by either206

HOFT or SHOFT, underlining their effectiveness across multiple languages.207

4.3 Subject-driven generation208

For subject-driven generation, we follow the experimental protocol of HRA [53], using the Dream-209

Booth dataset [41] to train and evaluate on 25 distinct subjects, each with 30 associated prompts. We210

adapt the pre-trained Stable Diffusion (SD) model [40] and compare PEFT methods quantitatively211

across four metrics: subject fidelity (DINO [7] and CLIP-I [37]), prompt fidelity (CLIP-T [37]), and212

sample diversity (LPIPS [56]).213

Table 4: Quantitative comparison of subject-driven generation

Method #Param (M) DINO ↑ CLIP-I ↑ CLIP-T ↑ LPIPS ↑
Real Images – 0.764 0.890 – 0.562
DreamBooth 859.52 0.614 0.778 0.239 0.737
LoRA 0.80 0.613 0.765 0.237 0.744
COFTb=4 23.3 0.630 0.783 0.235 0.744
OFTb=4 23.3 0.632 0.785 0.237 0.746
HRAr=7,8,λ=0 0.69 0.670 0.803 0.238 0.758
HRAr=7,8,λ=10−3 0.69 0.661 0.799 0.255 0.760
HRAr=7,8,λ=∞ 0.69 0.651 0.794 0.274 0.778
HOFTr=2 0.40 0.657 0.793 0.239 0.758
SHOFTr=2 0.41 0.658 0.793 0.241 0.757
HOFTr=4 0.80 0.680 0.810 0.235 0.752
SHOFTr=4 0.81 0.680 0.808 0.235 0.747

The results, together with the provided baselines, are summarized in Table 4. Both HOFT and214

SHOFT outperform all baselines in subject fidelity. In terms of textual prompt fidelity, they achieve215

results comparable with LoRA, OFT, and COFT. For sample diversity, they also deliver competitive216

performance. Additionally, we also tested HOFT and SHOFT at half the rank. Even with fewer217

trainable parameters, both methods consistently outperform LoRA, OFT, and COFT across all metrics,218

while remaining competitive with HRA on subject fidelity.219

images of 3d icons images of lego sets

Figure 3: Examples of training images of 3D icons and lego sets

Therefore, in order to gain a deeper insight into subject fidelity, we conducted an additional experiment220

following DoRA [27]. We fine-tuned a pre-trained Stable Diffusion XL (SDXL) model [34] on two221

datasets: 3D icons and lego sets. In Figure 3 we can see some examples of the styles to be learned. In222

this experiment, five PEFT methods are used for evaluation: LoRA, HRA, OFT, HOFT, and SHOFT.223

To ensure a fair comparison, all methods used the same random sample seed for generating the224

images.225

As shown in Figure 4, HOFT and SHOFT provide better personalization than LoRA, HRA, and OFT.226

When generating 3D icons, both methods closely match the style and subject of the training images.227

This highlights the value of orthogonality: while OFT also produces competitive results, LoRA and228

HRA struggle to generate realistic 3D icons. Moreover, HOFT and SHOFT produce accurate text229

in the lego sets, while the rest do not achieve it. Additional qualitative examples can be found in230

Appendix E.231
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Prompt: a TOK 3d icon of an orange llama eating ramen, in the style of TOK

Prompt: a TOK lego set of an orange llama eating ramen, in the style of TOK

LoRA HRA OFT HOFT SHOFT

Figure 4: Qualitative results on lego sets and 3d icons datasets

4.4 Mathematical reasoning232

For the mathematical reasoning experiments, we follow the HRA guidelines [53]. We fine-tune233

LLaMA2-7B [45] on the MetaMathQA dataset [52], which contains a diverse amount of mathematical234

questions along with rationalized answers. HOFT and SHOFT are evaluated on the GSM8K [10]235

and MATH [52] validation sets. Table 5 shows the accuracy of these methods alongside other PEFT236

baselines.237

Table 5: Accuracy comparison (%) on mathematical reasoning datasets

Method GSM8K MATH

Baseline 14.6 2.5
LoRA 50.2 7.8
OFT 50.1 8.4
BOFT 50.6 8.6
PiSSA 53.1 7.4
HRA 56.3 9.3

HOFT 56.6 8.9
SHOFT 55.0 9.8

The results in Table 5 show that HOFT and SHOFT are competitive with existing PEFT methods238

on mathematical reasoning benchmarks. HOFT achieves the highest accuracy on GSM8K, while239

SHOFT achieves the best score on the more challenging MATH dataset. This suggests that the scaling240

transformation plays a role to improve performance on harder math questions.241

4.5 QHOFT: Quantized HOFT242

In addition to the previous mathematical reasoning experiment, two additional experiments are243

performed in order to test the quantized versions of HOFT and SHOFT. We adapt 4-bit quantized [12]244

LLaMA2-7B [45] and LLaMA3.1-8B [16] to GSM8K [10] and Orca-Math [32] datasets separately245

and evaluate them on their respective test datasets. In particular, we follow DoRA [27] Orca-Math246

experimental setup: 100K elements for training and 2K for evaluation. The experimental results are247

reported in Table 6.248
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Table 6: Accuracy comparison (%) on mathematical reasoning datasets using quantized models

Model Method #Params (%) GSM8K Orca-Math

LLaMA2-7B

QLoRA 0.19 27.9 14.4
QDoRA 0.19 29.0 13.0
QHOFT 0.19 30.5 14.7
QSHOFT 0.19 29.3 15.5

LLaMA3.1-8B

QLoRA 0.12 53.8 54.1
QDoRA 0.12 56.5 53.8
QHOFT 0.12 55.0 57.2
QSHOFT 0.12 57.0 54.6

The results in Table 6 demonstrate that the quantized versions of HOFT and SHOFT consistently249

outperform QLoRA and QDoRA under extreme parameter efficiency. On LLaMA2-7B, QHOFT250

achieves the highest GSM8K accuracy, while QSHOFT leads on Orca-Math. On the larger LLaMA3.1-251

8B model, QSHOFT delivers the best GSM8K performance, and QHOFT achieves the best Orca-Math252

score. These results confirm that QHOFT and QSHOFT perform well even with aggressive 4-bit253

quantization.254

5 Limitations255

One limitation of our work is the challenge of adapting architectures with low-dimensional weight256

matrices: neither HOFT nor SHOFT can fully enforce orthogonality in their learned weights when257

the dimensionality is low. Although both methods achieve a slightly lower peak memory usage than258

DoRA, their memory footprint remains substantially higher than that of LoRA.259

6 Conclusions260

In this work, we examined some of the theoretical foundations of orthogonal fine-tuning. Based261

on our findings we proposed HOFT, a new PEFT method that adapts a pre-trained weight matrix262

by pre- and post-multiplying it with learned orthogonal matrices. We also developed SHOFT, a263

HOFT variant that introduces scaling transformations to further improve performance. Both exhibit264

good theoretical properties and provide higher flexibility. Our experimental results show that HOFT265

and SHOFT consistently match or outperform leading PEFT approaches across a wide range of266

benchmarks. To the best of our knowledge, QHOFT and QSHOFT are the first quantized orthogonal267

fine-tuning methods that maintain the benefits of their non-quantized counterparts, while operating268

with substantially reduced time and memory requirements.269

For future work, we would like to extend our evaluation to include visual instruction tuning and the270

adaptation of multi-modal pre-trained models. In addition, we plan to explore how to reduce the271

number of trainable parameters in both methods, for instance by adopting vector-bank strategies272

similar to VB-LoRA. Finally, as discussed in Section 5, we would like to develop a variant of HOFT273

optimized for smaller weight matrices, aiming to reduce memory overhead and enforce orthogonality274

constraints.275
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A Experimental details449

A.1 Commonsense reasoning experiments450

For commonsense reasoning experiments, we employ a NVIDIA A40 GPU for training LLaMA3.1-451

8B and Qwen2.5-7B models. For training Phi4-14B and Qwen2.5-14B, a NVIDIA H100 GPU was452

employed. For all experiments, the rank r was set to 16, and a dropout of 0.05. The optimizer453

employed was AdamW with Linear LR Scheduler. All models were trained for 2 epochs using a454

batch size of 4 and accumulation step of 4. The number of warmup steps was set to 100. The adapted455

layers were Query, Key, Value, Up, Down and Gate. We provide in Table 7 the learning rates used456

per model and per PEFT method.457

Table 7: Learning rate hyperparameter configurations for commonsense reasoning experiments

Method LLaMA3.1-8B Qwen2.5-7B Phi4-14B Qwen2.5-14B
LoRA 9e-5 1e-4 9e-5 1e-4
DoRA 1e-4 9e-5 9e-5 9e-5
HOFT 1e-4 9e-5 9e-5 9e-5
SHOFT 2e-4 1e-4 9e-5 2e-4

A.2 Machine translation experiments458

For machine translation experiments, we use a NVIDIA A30 GPU for training NLLB-3.3B model.459

For training LLaMA2-7B and LLaMA3.1-8B, a NVIDIA A40 GPU was used. For all experiments,460

the rank r was set to 16, and a dropout of 0.05. The optimizer employed was AdamW with Linear461

LR Scheduler. For French and German datasets, models were trained for 2 epochs on the first 10K462

elements of the training dataset. For Slovene and Latvian, models were trained for 3 epochs. All463

experiments use batch size of 16 and accumulation step of 4. The number of warmup steps was set to464

100. The adapted layers were Query, Key and Value. We provide in Table 8 the learning rates used465

per language, model and per PEFT method.466

Table 8: Learning rate hyperparameter configurations for machine translation experiments

Language Method NLLB-3.3B LLaMA2-7B LLaMA3.1-8B

Slovene

LoRA 4e-4 4e-4 8e-4
DoRA 4e-4 4e-4 9e-4
HOFT 5e-4 6e-4 1e-3
SHOFT 5e-4 6e-4 7e-4

German

LoRA 6e-4 3e-4 4e-4
DoRA 6e-4 3e-4 4e-4
HOFT 2e-4 2e-4 8e-4
SHOFT 2e-4 2e-4 4e-4

French

LoRA 5e-4 1e-4 1e-4
DoRA 4e-4 1e-4 1e-4
HOFT 1e-4 1e-4 3e-4
SHOFT 4e-4 1e-4 1e-4

Latvian

LoRA 5e-4 4e-4 5e-4
DoRA 5e-4 5e-4 5e-4
HOFT 2e-4 9e-4 6e-4
SHOFT 3e-4 8e-4 5e-4
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A.3 Subject-driven generation experiments467

For quantitative subject-driven experiments, we employ 10 NVIDIA A40 GPUs for training the468

Stable Diffusion 1.5 model. For all experiments, no dropout was used. The optimizer employed was469

AdamW with Linear LR Scheduler. All models were trained for 2005 steps using a batch size of 1.470

The adapted layers were Query, Key, Value and Out from the U-Net part. The learning rate used for471

training both HOFT and SHOFT is 5e-4.472

For qualitative subject-driven experiments, we employ 5 NVIDIA A40 GPUs for training the Stable473

Diffusion XL model. For all experiments, no dropout was used. For all PEFT methods the rank r was474

set to 16, except for HRA, which was set to 32 for fair comparison. The optimizer employed was475

AdamW with Linear LR Scheduler. All models were trained 1000 steps using a batch size of 4 and476

gradient accumulation of 4. The adapted layers were Query, Key, Value and Out from the U-Net and477

text encoder part. The learning rate used for training both all PEFT methods is 1e-4.478

A.4 Mathematical reasoning experiments479

For mathematical reasoning experiments, we employ a NVIDIA H100 GPU for training LLaMA2-7B480

model. For all experiments, the rank r was set to 8, and no dropout. The optimizer employed was481

AdamW with Linear LR Scheduler. All models were trained for 2 epochs using a batch size of 8 and482

accumulation step of 2. The warmup ratio was set to 0.05. The adapted layers were Query and Value.483

The learning rates used by HOFT and SHOFT were 1e-3 and 7e-4 respectively.484

A.5 Mathematical reasoning experiments with quantized models485

For experiments in mathematical reasoning with quantized models, we employ a NVIDIA H100 GPU486

for training LLaMA2-7B and LLaMA3.1-8B models. Models are quantized using NF4 and double487

quatization. For all experiments, the rank r was set to 16, and a dropout of 0.05. The optimizer488

employed was AdamW with Linear LR Scheduler. For Orca-Math dataset, all models were trained489

for 2 epochs using a batch size of 4 and accumulation step of 1. For GSM8K dataset, all models were490

trained for 3 epochs using a batch size of 4 and accumulation step of 1. The number of warmup steps491

was set to 100. The adapted layers were Query, Key and Value. We provide in Table 9 the learning492

rates used per model and per PEFT method.493

Table 9: Learning rate hyperparameter configurations for mathematical reasoning on quantized
models

Dataset Method GSM8K Orca-Math

LLaMA2-7B

QLoRA 4e-4 1e-4
QDoRA 4e-4 9e-5
QHOFT 3e-4 1e-4
QSHOFT 3e-4 4e-4

LLaMA3.1-8B

QLoRA 2e-4 9e-5
QDoRA 1e-4 9e-5
QHOFT 3e-4 2e-4
QSHOFT 4e-4 2e-4
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B About inverse approximation error494

B.1 Hyperspherical energy difference495

Given W = (w1 | · · · | wn) ∈ Rm×n, where wi denotes the i-th column of matrix W, the496

hyperspherical energy is defined as follows:497

HE(W) =
∑
i ̸=j

∥wi −wj∥−1 (7)

In order to measure the difference on the hyperspherical energy, we conduct an experiment by498

approximating two random gaussian accumulated householder transformations QU,QV. We measure499

|HE(M)− HE(QUMQV)|, where M is a random gaussian matrix. Results are show in Figure 5.500
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Figure 5: Hyperspherical energy difference

As observed in Figure 5, the hyperspherical energy tends to increase rapidly for higher ranks.501

Remarkably, for all cases the difference is negligible when r = 1 and r = 2 (omitted in Figure 5 for502

clarity). We can conclude from Figures 1 and 5 that, for a given rank r, the inverse approximation503

improves as the dimension of the matrix increases. Given the growing tendency for weight matrices504

in new pre-trained models, this is really convenient.505

B.2 Indifference towards weight decay506

One theoretical property of computing the CWY transform along with the inverse approximation507

is that, after applying weight decay to the original weights U ∈ Rm×r, the resulting accumulated508

householder matrix remains the same. That is, given U′ = U− λU, we compute509

QU′ = I+U′ (D′−1A′D′−1 −D′−1
)
U′⊤

= I+ (1− λ)2U

(
1

(1− λ)2
D−1(1− λ)2A

1

(1− λ)2
D−1 − 1

(1− λ)2
D−1

)
U⊤

= I+
(1− λ)2

(1− λ)2
U
(
D−1AD−1 −D−1

)
U⊤

= I+U
(
D−1AD−1 −D−1

)
U⊤ = QU

Thus, we ensure that distance-preserving transformations in HOFT and SHOFT are not affected by510

weight decay. From this fact, we can ignore weight decay when adapting with HOFT. Additionally,511

when adapting with SHOFT, weight decay only affects the scaling transformation m.512
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C Proof for Equation 1513

Given M, M̂ ∈ Rm×n two matrices such that both have the same hyperspherical energy. Then514

min
Q∈O(m)

∥∥∥M̂−QM
∥∥∥
F
= min

Q∈O(m)

∥∥∥Q̂UMQ̂V −QM
∥∥∥
F
≤
∥∥∥MQ̂V −M

∥∥∥
F

=
∥∥∥M(

Q̂V − I
)∥∥∥

F
≤ ∥M∥F

∥∥∥Q̂V − I
∥∥∥
F

Now we need to compute
∥∥∥Q̂V − I

∥∥∥
F

515

∥∥∥Q̂V − I
∥∥∥2
F
= Tr

((
Q̂V − I

)⊤ (
Q̂V − I

))
= Tr

(
Q̂⊤

VQ̂V − Q̂⊤
V − Q̂V + I

)
=

= 2m− Tr
(
Q̂⊤

V

)
− Tr

(
Q̂V

)
= 2m− 2Tr

(
Q̂V

)
The previous expression attains its maximum precisely when Q̂V = −I. In that case, we conclude516

that Tr
(
Q̂V

)
= −m and consequently

∥∥∥Q̂V − I
∥∥∥2
F
≤ 4m. Thus, final upper-bound will be517

min
Q∈O(m)

∥∥∥M̂−QM
∥∥∥
F
≤ 2

√
m ∥M∥F

D Time and memory consumption518

In order to give a better understanding of the time and memory complexity of HOFT and SHOFT, we519

provide the runtime for training and the peak memory usage during training from the commonsense520

reasoning, qualitative subject-driven generation and mathematical reasoning using quantized models521

experiments. All values are gathered in Tables 10, 11 and 12.522

In Table 10 we can observe that both HOFT and SHOFT are 72.5% and 55.3% faster on average523

than DoRA, respectively. With respect to LoRA, they are on average 35.1% and 41.8% slower,524

respectively. In terms of memory, both HOFT and SHOFT peak memories are between LoRA’s and525

DoRA’s peak memories, except in Phi4-14B, where the memory is higher in HOFT and SHOFT. This526

unusual peak in Phi4-14B is due to the fact Query, Key and Value are all together in a matrix (the527

same happens with Up and Gate layers).

Table 10: Memory and time complexity comparison on the commonsense reasoning task

Model Method Training time (hours) Peak memory (GB)

LLaMA3.1-8B

LoRA 1.5 31.9
DoRA 3.3 45.8
HOFT 2.3 42.3
SHOFT 2.6 44.5

Qwen2.5-7B

LoRA 6.1 30.7
DoRA 13.9 44.5
HOFT 8.0 41.3
SHOFT 9.2 43.5

Phi4-14B

LoRA 2.4 49.9
DoRA 8.3 68.0
HOFT 3.4 78.6
SHOFT 3.7 78.0

Qwen2.5-14B

LoRA 2.8 39.8
DoRA 7.6 59.4
HOFT 5.9 56.4
SHOFT 6.4 57.6
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528

From Table 11, both HOFT and SHOFT are 72.1% faster than OFT, and 732.5% faster than HRA. In529

this respect, it is worth noting that HRA entails a number of sequential householder transformations530

that leads to a comparatively high training time. With respect to LoRA, they are on average 32.6%531

slower. In terms of memory, both HOFT and SHOFT require less memory than OFT and HRA, and532

the same as LoRA.533

Table 11: Memory and time complexity comparison on the mathematical reasoning using quantized
models experiments

Method Training time (hours) Peak memory (GB)
LoRA 2.9 25.5
HRA 35.8 25.7
OFT 7.4 26.7
HOFT 4.3 25.5
SHOFT 4.3 25.5

Table 12 shows that there is a minor difference in time cost between LoRA, HOFT and SHOFT. In534

the case of DoRA, it is 16.7% slower than the rest. In terms of memory, both HOFT and SHOFT535

peak memories are between LoRA’s and DoRA’s peak memories, requiring at most 9.6% and 20.8%536

more memory than LoRA, respectively.537

Table 12: Memory and time complexity comparison on the mathematical reasoning using quantized
models experiments

Model Method Training time (hours) Peak memory (GB)

LLaMA2-7B

QLoRA 0.9 43.2
QDoRA 1.2 58.2
QHOFT 1.0 47.7
QSHOFT 1.0 52.2

LLaMA3.1-8B

QLoRA 1.0 52.0
QDoRA 1.2 60.4
QHOFT 1.0 57.0
QSHOFT 1.0 56.4

E Additional experiments538

E.1 Rank exploration539

We explore the effect of various rank settings r ∈ {2, 4, 8, 16, 32, 64} on LoRA, DoRA, HOFT540

and SHOFT by evaluating the fine-tuned LLaMA3.1-8B and Qwen2.5-7B performance on the541

commonsense reasoning tasks described in Section 4.1. The implementation settings are the same as542

those for rank 16, given in Appendix A.543
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Figure 6: Rank exploration in LLaMA3.1-8B
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Figure 7: Rank exploration in Qwen2.5-7B
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The average accuracies of the PEFT methods across different ranks are shown in Figures 6 and 7.545

In Figure 6, all four methods improve sharply up to r = 16, where HOFT peaks. Beyond r = 16,546

DoRA’s performance declines markedly while LoRA falls slightly. In contrast, SHOFT maintains a547

mild upward trend approaching HOFT best result for r = 64. In Figure 7, the methods again climb to548

a peak at r = 32, where DoRA attains the highest accuracy, with SHOFT and LoRA close behind.549

At r = 64, HOFT’s accuracy falls more noticeably, whereas the others dip only slightly.550

Overall, these results suggest that HOFT is the strongest option for moderate ranks, but SHOFT is the551

most robust method at higher ranks and offers the steadiest, most consistent gains across the entire552

rank spectrum.553

E.2 More qualitative results on subject-driven generation554

Prompt: a TOK pink 3d icon of a rainbow unicorn eating marshmallow, in the style of TOK

Prompt: a TOK 3d icon of a yellow racoon eating banana, in the style of TOK

Prompt: a TOK 3d icon of a yellow duck eating sushi, in the style of TOK

Prompt: a TOK 3d icon of a demon red panda eating bamboo, in the style of TOK

LoRA HRA OFT HOFT SHOFT

Figure 8: Comparison of different prompts in 3D icons dataset
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Prompt: a TOK lego set of a colorful coral reef with an explorer submarine and a giant octopus, in
the style of TOK

Prompt: a TOK lego set of a crashed spaceship turned into a jungle village, in the style of TOK

Prompt: a TOK lego set of an old steam train crossing a rickety bridge, in the style of TOK

Prompt: a TOK lego set of a giant treehouse with rope bridges and zip lines, in the style of TOK

LoRA HRA OFT HOFT SHOFT

Figure 9: Comparison of different prompts in lego sets dataset
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NeurIPS Paper Checklist555

The checklist is designed to encourage best practices for responsible machine learning research,556

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove557

the checklist: The papers not including the checklist will be desk rejected. The checklist should558

follow the references and follow the (optional) supplemental material. The checklist does NOT count559

towards the page limit.560

Please read the checklist guidelines carefully for information on how to answer these questions. For561

each question in the checklist:562

• You should answer [Yes] , [No] , or [NA] .563

• [NA] means either that the question is Not Applicable for that particular paper or the564

relevant information is Not Available.565

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).566

The checklist answers are an integral part of your paper submission. They are visible to the567

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it568

(after eventual revisions) with the final version of your paper, and its final version will be published569

with the paper.570

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.571

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a572

proper justification is given (e.g., "error bars are not reported because it would be too computationally573

expensive" or "we were unable to find the license for the dataset we used"). In general, answering574

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we575

acknowledge that the true answer is often more nuanced, so please just use your best judgment and576

write a justification to elaborate. All supporting evidence can appear either in the main paper or the577

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification578

please point to the section(s) where related material for the question can be found.579

IMPORTANT, please:580

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",581

• Keep the checklist subsection headings, questions/answers and guidelines below.582

• Do not modify the questions and only use the provided macros for your answers.583

1. Claims584

Question: Do the main claims made in the abstract and introduction accurately reflect the585

paper’s contributions and scope?586

Answer: [Yes]587

Justification: The key assertions in the abstract and introduction faithfully capture the paper’s588

contributions and overall scope.589

Guidelines:590

• The answer NA means that the abstract and introduction do not include the claims591

made in the paper.592

• The abstract and/or introduction should clearly state the claims made, including the593

contributions made in the paper and important assumptions and limitations. A No or594

NA answer to this question will not be perceived well by the reviewers.595

• The claims made should match theoretical and experimental results, and reflect how596

much the results can be expected to generalize to other settings.597

• It is fine to include aspirational goals as motivation as long as it is clear that these goals598

are not attained by the paper.599

2. Limitations600

Question: Does the paper discuss the limitations of the work performed by the authors?601

Answer: [Yes]602
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Justification: We discussed the limitations of our work in Section 5.603

Guidelines:604

• The answer NA means that the paper has no limitation while the answer No means that605

the paper has limitations, but those are not discussed in the paper.606

• The authors are encouraged to create a separate "Limitations" section in their paper.607

• The paper should point out any strong assumptions and how robust the results are to608

violations of these assumptions (e.g., independence assumptions, noiseless settings,609

model well-specification, asymptotic approximations only holding locally). The authors610

should reflect on how these assumptions might be violated in practice and what the611

implications would be.612

• The authors should reflect on the scope of the claims made, e.g., if the approach was613

only tested on a few datasets or with a few runs. In general, empirical results often614

depend on implicit assumptions, which should be articulated.615

• The authors should reflect on the factors that influence the performance of the approach.616

For example, a facial recognition algorithm may perform poorly when image resolution617

is low or images are taken in low lighting. Or a speech-to-text system might not be618

used reliably to provide closed captions for online lectures because it fails to handle619

technical jargon.620

• The authors should discuss the computational efficiency of the proposed algorithms621

and how they scale with dataset size.622

• If applicable, the authors should discuss possible limitations of their approach to623

address problems of privacy and fairness.624

• While the authors might fear that complete honesty about limitations might be used by625

reviewers as grounds for rejection, a worse outcome might be that reviewers discover626

limitations that aren’t acknowledged in the paper. The authors should use their best627

judgment and recognize that individual actions in favor of transparency play an impor-628

tant role in developing norms that preserve the integrity of the community. Reviewers629

will be specifically instructed to not penalize honesty concerning limitations.630

3. Theory assumptions and proofs631

Question: For each theoretical result, does the paper provide the full set of assumptions and632

a complete (and correct) proof?633

Answer: [Yes]634

Justification: Each theoretical result is accompanied by a complete list of assumptions and a635

rigorous, fully detailed proof.636

Guidelines:637

• The answer NA means that the paper does not include theoretical results.638

• All the theorems, formulas, and proofs in the paper should be numbered and cross-639

referenced.640

• All assumptions should be clearly stated or referenced in the statement of any theorems.641

• The proofs can either appear in the main paper or the supplemental material, but if642

they appear in the supplemental material, the authors are encouraged to provide a short643

proof sketch to provide intuition.644

• Inversely, any informal proof provided in the core of the paper should be complemented645

by formal proofs provided in appendix or supplemental material.646

• Theorems and Lemmas that the proof relies upon should be properly referenced.647

4. Experimental result reproducibility648

Question: Does the paper fully disclose all the information needed to reproduce the main ex-649

perimental results of the paper to the extent that it affects the main claims and/or conclusions650

of the paper (regardless of whether the code and data are provided or not)?651

Answer: [Yes]652

Justification: For each experiment, we specify the hardware used, the model architecture653

and all required hyperparameters.654

Guidelines:655
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• The answer NA means that the paper does not include experiments.656

• If the paper includes experiments, a No answer to this question will not be perceived657

well by the reviewers: Making the paper reproducible is important, regardless of658

whether the code and data are provided or not.659

• If the contribution is a dataset and/or model, the authors should describe the steps taken660

to make their results reproducible or verifiable.661

• Depending on the contribution, reproducibility can be accomplished in various ways.662

For example, if the contribution is a novel architecture, describing the architecture fully663

might suffice, or if the contribution is a specific model and empirical evaluation, it may664

be necessary to either make it possible for others to replicate the model with the same665

dataset, or provide access to the model. In general. releasing code and data is often666

one good way to accomplish this, but reproducibility can also be provided via detailed667

instructions for how to replicate the results, access to a hosted model (e.g., in the case668

of a large language model), releasing of a model checkpoint, or other means that are669

appropriate to the research performed.670

• While NeurIPS does not require releasing code, the conference does require all submis-671

sions to provide some reasonable avenue for reproducibility, which may depend on the672

nature of the contribution. For example673

(a) If the contribution is primarily a new algorithm, the paper should make it clear how674

to reproduce that algorithm.675

(b) If the contribution is primarily a new model architecture, the paper should describe676

the architecture clearly and fully.677

(c) If the contribution is a new model (e.g., a large language model), then there should678

either be a way to access this model for reproducing the results or a way to reproduce679

the model (e.g., with an open-source dataset or instructions for how to construct680

the dataset).681

(d) We recognize that reproducibility may be tricky in some cases, in which case682

authors are welcome to describe the particular way they provide for reproducibility.683

In the case of closed-source models, it may be that access to the model is limited in684

some way (e.g., to registered users), but it should be possible for other researchers685

to have some path to reproducing or verifying the results.686

5. Open access to data and code687

Question: Does the paper provide open access to the data and code, with sufficient instruc-688

tions to faithfully reproduce the main experimental results, as described in supplemental689

material?690

Answer: [Yes]691

Justification: All code is included in the supplementary material, complete with a structural692

overview, and the datasets are publicly available online with easy download instructions693

provided there.694

Guidelines:695

• The answer NA means that paper does not include experiments requiring code.696

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/697

public/guides/CodeSubmissionPolicy) for more details.698

• While we encourage the release of code and data, we understand that this might not be699

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not700

including code, unless this is central to the contribution (e.g., for a new open-source701

benchmark).702

• The instructions should contain the exact command and environment needed to run to703

reproduce the results. See the NeurIPS code and data submission guidelines (https:704

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.705

• The authors should provide instructions on data access and preparation, including how706

to access the raw data, preprocessed data, intermediate data, and generated data, etc.707

• The authors should provide scripts to reproduce all experimental results for the new708

proposed method and baselines. If only a subset of experiments are reproducible, they709

should state which ones are omitted from the script and why.710
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• At submission time, to preserve anonymity, the authors should release anonymized711

versions (if applicable).712

• Providing as much information as possible in supplemental material (appended to the713

paper) is recommended, but including URLs to data and code is permitted.714

6. Experimental setting/details715

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-716

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the717

results?718

Answer: [Yes]719

Justification: The appendix includes comprehensive experimental details, such as hyperpa-720

rameter settings, optimizer configurations, and more.721

Guidelines:722

• The answer NA means that the paper does not include experiments.723

• The experimental setting should be presented in the core of the paper to a level of detail724

that is necessary to appreciate the results and make sense of them.725

• The full details can be provided either with the code, in appendix, or as supplemental726

material.727

7. Experiment statistical significance728

Question: Does the paper report error bars suitably and correctly defined or other appropriate729

information about the statistical significance of the experiments?730

Answer: [No]731

Justification: We omitted error bars due to the large number of experiments. The significant732

time requirements that reporting them would entail are not practical.733

Guidelines:734

• The answer NA means that the paper does not include experiments.735

• The authors should answer "Yes" if the results are accompanied by error bars, confi-736

dence intervals, or statistical significance tests, at least for the experiments that support737

the main claims of the paper.738

• The factors of variability that the error bars are capturing should be clearly stated (for739

example, train/test split, initialization, random drawing of some parameter, or overall740

run with given experimental conditions).741

• The method for calculating the error bars should be explained (closed form formula,742

call to a library function, bootstrap, etc.)743

• The assumptions made should be given (e.g., Normally distributed errors).744

• It should be clear whether the error bar is the standard deviation or the standard error745

of the mean.746

• It is OK to report 1-sigma error bars, but one should state it. The authors should747

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis748

of Normality of errors is not verified.749

• For asymmetric distributions, the authors should be careful not to show in tables or750

figures symmetric error bars that would yield results that are out of range (e.g. negative751

error rates).752

• If error bars are reported in tables or plots, The authors should explain in the text how753

they were calculated and reference the corresponding figures or tables in the text.754

8. Experiments compute resources755

Question: For each experiment, does the paper provide sufficient information on the com-756

puter resources (type of compute workers, memory, time of execution) needed to reproduce757

the experiments?758

Answer: [Yes]759

Justification: For each experiment, we provide the information of the GPU used. In760

some experiments, we also include train runtime and GPU peak memory usage. All that761

information is on the appendix.762
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Guidelines:763

• The answer NA means that the paper does not include experiments.764

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,765

or cloud provider, including relevant memory and storage.766

• The paper should provide the amount of compute required for each of the individual767

experimental runs as well as estimate the total compute.768

• The paper should disclose whether the full research project required more compute769

than the experiments reported in the paper (e.g., preliminary or failed experiments that770

didn’t make it into the paper).771

9. Code of ethics772

Question: Does the research conducted in the paper conform, in every respect, with the773

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?774

Answer: [Yes]775

Justification: This paper adheres in every respect to the NeurIPS Code of Ethics.776

Guidelines:777

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.778

• If the authors answer No, they should explain the special circumstances that require a779

deviation from the Code of Ethics.780

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-781

eration due to laws or regulations in their jurisdiction).782

10. Broader impacts783

Question: Does the paper discuss both potential positive societal impacts and negative784

societal impacts of the work performed?785

Answer: [Yes]786

Justification: HOFT reduce the computational and memory overhead of fine-tuning large787

language models and opens the door to a broader range of applications. Lowering both788

cost and technical barriers increases accessibility carries inherent risks: like other PEFT789

techniques, HOFT may be used to reinforce or propagate harmful biases present in training790

data, generate misleading or malicious content, or facilitate inappropriate applications when791

oversight is lacking. Crucially, these challenges are not unique to HOFT but reflect broader792

issues in the development and deployment of fine-tuning methods. Addressing these areas793

represents an important avenue for future research as we work to ensure that HOFT (and794

PEFT techniques more generally) are harnessed safely and equitably.795

Guidelines:796

• The answer NA means that there is no societal impact of the work performed.797

• If the authors answer NA or No, they should explain why their work has no societal798

impact or why the paper does not address societal impact.799

• Examples of negative societal impacts include potential malicious or unintended uses800

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations801

(e.g., deployment of technologies that could make decisions that unfairly impact specific802

groups), privacy considerations, and security considerations.803

• The conference expects that many papers will be foundational research and not tied804

to particular applications, let alone deployments. However, if there is a direct path to805

any negative applications, the authors should point it out. For example, it is legitimate806

to point out that an improvement in the quality of generative models could be used to807

generate deepfakes for disinformation. On the other hand, it is not needed to point out808

that a generic algorithm for optimizing neural networks could enable people to train809

models that generate Deepfakes faster.810

• The authors should consider possible harms that could arise when the technology is811

being used as intended and functioning correctly, harms that could arise when the812

technology is being used as intended but gives incorrect results, and harms following813

from (intentional or unintentional) misuse of the technology.814
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• If there are negative societal impacts, the authors could also discuss possible mitigation815

strategies (e.g., gated release of models, providing defenses in addition to attacks,816

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from817

feedback over time, improving the efficiency and accessibility of ML).818

11. Safeguards819

Question: Does the paper describe safeguards that have been put in place for responsible820

release of data or models that have a high risk for misuse (e.g., pre-trained language models,821

image generators, or scraped datasets)?822

Answer: [NA]823

Justification: This paper poses no such risks.824

Guidelines:825

• The answer NA means that the paper poses no such risks.826

• Released models that have a high risk for misuse or dual-use should be released with827

necessary safeguards to allow for controlled use of the model, for example by requiring828

that users adhere to usage guidelines or restrictions to access the model or implementing829

safety filters.830

• Datasets that have been scraped from the Internet could pose safety risks. The authors831

should describe how they avoided releasing unsafe images.832

• We recognize that providing effective safeguards is challenging, and many papers do833

not require this, but we encourage authors to take this into account and make a best834

faith effort.835

12. Licenses for existing assets836

Question: Are the creators or original owners of assets (e.g., code, data, models), used in837

the paper, properly credited and are the license and terms of use explicitly mentioned and838

properly respected?839

Answer: [Yes]840

Justification: We have appropriately acknowledged all creators and original owners of the841

code, data, and models used in this work.842

Guidelines:843

• The answer NA means that the paper does not use existing assets.844

• The authors should cite the original paper that produced the code package or dataset.845

• The authors should state which version of the asset is used and, if possible, include a846

URL.847

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.848

• For scraped data from a particular source (e.g., website), the copyright and terms of849

service of that source should be provided.850

• If assets are released, the license, copyright information, and terms of use in the851

package should be provided. For popular datasets, paperswithcode.com/datasets852

has curated licenses for some datasets. Their licensing guide can help determine the853

license of a dataset.854

• For existing datasets that are re-packaged, both the original license and the license of855

the derived asset (if it has changed) should be provided.856

• If this information is not available online, the authors are encouraged to reach out to857

the asset’s creators.858

13. New assets859

Question: Are new assets introduced in the paper well documented and is the documentation860

provided alongside the assets?861

Answer: [Yes]862

Justification: Comments are provided in the code of the supplementary material.863

Guidelines:864

• The answer NA means that the paper does not release new assets.865
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• Researchers should communicate the details of the dataset/code/model as part of their866

submissions via structured templates. This includes details about training, license,867

limitations, etc.868

• The paper should discuss whether and how consent was obtained from people whose869

asset is used.870

• At submission time, remember to anonymize your assets (if applicable). You can either871

create an anonymized URL or include an anonymized zip file.872

14. Crowdsourcing and research with human subjects873

Question: For crowdsourcing experiments and research with human subjects, does the paper874

include the full text of instructions given to participants and screenshots, if applicable, as875

well as details about compensation (if any)?876

Answer: [NA]877

Justification: This paper does not involve crowdsourcing nor research with human subjects.878

Guidelines:879

• The answer NA means that the paper does not involve crowdsourcing nor research with880

human subjects.881

• Including this information in the supplemental material is fine, but if the main contribu-882

tion of the paper involves human subjects, then as much detail as possible should be883

included in the main paper.884

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,885

or other labor should be paid at least the minimum wage in the country of the data886

collector.887

15. Institutional review board (IRB) approvals or equivalent for research with human888

subjects889

Question: Does the paper describe potential risks incurred by study participants, whether890

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)891

approvals (or an equivalent approval/review based on the requirements of your country or892

institution) were obtained?893

Answer: [NA]894

Justification: This paper does not involve crowdsourcing nor research with human subjects.895

Guidelines:896

• The answer NA means that the paper does not involve crowdsourcing nor research with897

human subjects.898

• Depending on the country in which research is conducted, IRB approval (or equivalent)899

may be required for any human subjects research. If you obtained IRB approval, you900

should clearly state this in the paper.901

• We recognize that the procedures for this may vary significantly between institutions902

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the903

guidelines for their institution.904

• For initial submissions, do not include any information that would break anonymity (if905

applicable), such as the institution conducting the review.906

16. Declaration of LLM usage907

Question: Does the paper describe the usage of LLMs if it is an important, original, or908

non-standard component of the core methods in this research? Note that if the LLM is used909

only for writing, editing, or formatting purposes and does not impact the core methodology,910

scientific rigorousness, or originality of the research, declaration is not required.911

Answer: [NA]912

Justification: The core method development in this research does not involve LLMs as any913

important, original, or non-standard components.914

Guidelines:915

• The answer NA means that the core method development in this research does not916

involve LLMs as any important, original, or non-standard components.917
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)918

for what should or should not be described.919
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