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ABSTRACT

Universal Adversarial Perturbations (UAPs) are imperceptible, image-agnostic
vectors that cause deep neural networks (DNNs) to misclassify inputs from a
data distribution with high probability. In practical attack scenarios, adversarial
perturbations may undergo transformations such as changes in pixel intensity,
rotation, etc. while being added to DNN inputs. Existing methods do not create
UAPs robust to these real-world transformations, thereby limiting their applicability
in attack scenarios. In this work, we introduce and formulate robust UAPs. We build
an iterative algorithm using probabilistic robustness bounds and transformations
generated by composing arbitrary sub-differentiable transformation functions to
construct such robust UAPs. We perform an extensive evaluation on the popular
CIFAR-10 and ILSVRC 2012 datasets measuring our UAPs’ robustness under a
wide range common, real-world transformations such as rotation, contrast changes,
etc. Our results show that our method can generate UAPs up to 23% more robust
than existing state-of-the-art baselines.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved impressive results in many application domains such as
natural language processing (Abdel-Hamid et al., 2014; Brown et al., 2020), medicine (Esteva et al.,
2017; 2019), and computer vision (Simonyan & Zisserman, 2014; Szegedy et al., 2016). Despite
their performance, they can be fragile in the face of adversarial perturbations: small imperceptible
changes added to a correctly classified input that make a DNN misclassify. While there is a large
amount of work on generating adversarial perturbations (Szegedy et al., 2013; Goodfellow et al.,
2014; Moosavi-Dezfooli et al., 2016; Madry et al., 2017; Carlini & Wagner, 2017; Xiao et al., 2018a;
Dong et al., 2018; Croce & Hein, 2019; Wang et al., 2019; Zheng et al., 2019; Andriushchenko et al.,
2019; Tramèr et al., 2020), the threat model considered by these works cannot be realized in practical
scenarios. This is because the threat model depends upon unrealistic assumptions about the power of
the attacker: the attacker knows the DNN input in advance, generates input-specific perturbations in
real-time and exactly combines the perturbation with the input before being processed by the DNN.

Practically feasible adversarial perturbations. In this work, we consider a more practical adversary
to reveal real-world vulnerabilities of state-of-the-art DNNs. We assume that the attacker (i) does not
know the DNN inputs in advance, (ii) can only transmit additive adversarial perturbations, and (iii)
their transmitted perturbations are susceptible to modification due to real-world effects. Examples of
attacks in our threat model include adding stickers to the cameras for fooling image classifiers (Li
et al., 2019b) or transmitting perturbations over the air for deceiving audio classifiers (Li et al., 2019a).
Note that this threat model is distinct from directly generating adversarial examples (Athalye et al.,
2018) which require access to the original input.

The first two requirements in our threat model can be fulfilled by generating Universal Adversarial
Perturbations (UAPs) (Moosavi-Dezfooli et al., 2017). Here the attacker can train a single adversarial
perturbation that has a high probability of being adversarial on all inputs in the training distribution.
However, as our experimental results show, the generated UAPs need to be combined with the DNN
inputs precisely, otherwise they fail to remain adversarial. In practice, changes to UAPs are likely due
to real-world effects. For example, the stickers applied to a camera can undergo changes in contrast
due to weather conditions or the transmitted perturbation in audio can change due to noise in the
transmission channel. This non-robustness reduces the efficiency of practical attacks created with
existing methods (Moosavi-Dezfooli et al., 2017; Shafahi et al., 2020; Li et al., 2019b;a).

1



Under review as a conference paper at ICLR 2023

❌
Misclassification

✔
Correct Classification

Robust UAP

Transformed

Standard UAP

Transformed

Figure 1: Robust UAPs (left) cause a classier to misclassify on most of the data distribution even
after transformations are applied on them. Standard UAPs (right) are not robust to transformations
and have a low probability of remaining UAPs after transformation.

This work: Robust UAPs. To overcome the above limitation, we propose the concept of robust
UAPs: perturbations that have a high probability of remaining adversarial on inputs in the training
distribution even after applying a set of real-world transformations. The optimization problem in
generating robust UAPs (Moosavi-Dezfooli et al., 2017) is the main challenge as we are looking
for perturbations that are adversarial for a set of inputs as well as to transformations applied to the
perturbations. To address this challenge, we make the following main contributions:

• We introduce Robust UAPs and formulate their generation as an optimization problem.

• We design a new method for constructing robust UAPs. Our method is general and works for any
transformations generated by composing arbitrary sub-differentiable transformation functions. We
provide an algorithm for computing provable probabilistic bounds on the robustness of our UAPs
against many practical transformations.

• We perform an extensive evaluation of the effectiveness of our method, RobustUAP, on state-
of-the-art models for the popular CIFAR-10 (Krizhevsky et al., 2009) and ILSVRC 2012 (Deng
et al., 2009) datasets. We compare the robustness of our UAPs under compositions of challenging
real-world transformations, such as rotation, contrast change, etc. We show that on both datasets,
the UAPs generated by RobustUAP are significantly more robust, achieving up to 23% more
robustness, than the UAPs generated from the baselines.

Our work is complementary to the development of real-world attacks (Li et al., 2019a;b) in vari-
ous domains, which require modeling how the universal perturbations change during transmission.
RobustUAP can improve the efficiency of such attacks by constructing perturbations that are
more robust against domain-specific, real-world transformations than possible with existing algo-
rithms (Moosavi-Dezfooli et al., 2017; Shafahi et al., 2020; Li et al., 2019a;b).

2 BACKGROUND

In this section, we provide necessary background definitions and notation for our work.

Adversarial Examples and Perturbations. An adversarial example is a misclassified data point
that is close (in some norm) to a correctly classified data point (Goodfellow et al., 2014; Madry et al.,
2017; Carlini & Wagner, 2017). Let µ ⊂ Rd be the input data distribution, x ∈ µ be an input point
with the corresponding true label y ∈ R, and f : Rd → Rd′ be our target classifier. For ease of
notation, we define fk(x) to be the kth element of f(x) and allow f̂(x) = argmaxk fk(x) to directly
refer to the classification label. We use v to reference image specific perturbations and u to reference
universal adversarial perturbations, vr and ur refer to the robust variants and will be defined in Sec.
3. We now formally define an adversarial example.

Definition 2.1. Given a correctly classified point x, a distance function d(·, ·) : Rd × Rd → R, and
bound ϵ ∈ R, x′ is an adversarial example iff d(x′,x) < ϵ and f̂(x′) ̸= y.

In this paper, we consider examples x′ generated as x′ = x+v where v is an adversarial perturbation.
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Universal Adversarial Perturbations. UAPs are single vector, input-agnostic perturba-
tions (Moosavi-Dezfooli et al., 2017). They differ from traditional adversarial attacks, which create
perturbations dependent on each input sample. To measure UAP performance, we introduce the
notion of universal adversarial success rate, which measures the probability that a perturbation u
when added to x, sampled from µ, causes a change in classification under f .
Definition 2.2. Given a data distribution µ, and perturbation u, universal adversarial success rate
ASRU for u, is defined as

ASRU (f, µ,u) = P
x∼µ

(f̂(x+ u) ̸= f̂(x)) (1)

Using Definition 2.2, we formally define a UAP.
Definition 2.3. A universal adversarial perturbation is a vector u ∈ Rd which, when added to almost
all datapoints in µ causes the classifier f to misclassify. Formally, given γ, a bound on universal
ASR, and lp-norm with corresponding bound ϵ, u is a UAP iff ASRU (f, µ,u) > γ and ||u||p < ϵ.

In general, if the additive perturbations have small lp-norm , then they look like noise and do not
affect the semantic content of the image. For ease of notation in later parts of the paper, we can also
pose the construction of UAPs as an expectation minimization problem:

argmin
u

Ex∼µ[δ(f̂(x+ u), f̂(x))] s.t. ||u||p < ϵ (2)

where δ is the Kronecker Delta function (Agarwal, 2013).

3 ROBUST UNIVERSAL ADVERSARIAL PERTURBATIONS

In this section, we will define the optimization problem for generating robust UAPs. We first define
transformation sets and neighborhoods.
Definition 3.1. A transformation, τ , is a composition of bijective sub-differentiable transforma-
tion functions. A transformation set, T , is a set of distinct transformations. A point v′ is in the
neighborhood NT (v), of v, if there is a transform in T that maps v to v′. Formally,

v′ ∈ NT (v) ⇐⇒ ∃τ ∈ T s.t. τ(v) = v′ (3)

Example 3.2. Let T be the set of all transformations represented by a rotation of ±30◦, scaling of
up to a factor of 2, and a translation of up to ±2 pixels, in this case one τ ∈ T could be {rotation of
8◦, scaling a factor of 1.2, and translation of -1.3} in that order and NT (v) would include any point
that can be obtained by applying one of the transformations from T on v.

In order to define robust UAPs we introduce robust universal adversarial success rate.
Definition 3.3. Given a data distribution µ, transformation set T , universal ASR level γ, bound ϵ on
lp-norm, and perturbation ur, robust universal adversarial success rate, ASRR, is defined as,

ASRR(f, µ, T, γ,ur) = P
u′

r∼NT (ur)
(ASRU (f, µ,u′

r) > γ ∧ ||u′
r||p < ϵ) (4)

The robust universal adversarial success rate measures the probability that a neighbor of ur is also
an UAP on µ, i.e. after transformation it maintains high universal ASR. We note that even though
||ur||p ≤ ϵ, it can happen that a u′

r ∈ NT (ur) has ||u′
r||p > ϵ, this is particularly true for the

semantic transformations considered in this work. Therefore, we require that the norm of u′
r is small.

Using Definition 3.3 we can now formally define a robust UAP.
Definition 3.4. A robust universal adversarial perturbation, ur, is one which most points within a
neighborhood of ur when added to most points in µ fool the classifier, f . ur satisfies ||ur||p < ϵ and
ASRR(f, µ, T, γ,ur) > ζ.

In order to construct robust UAPs, we can pose the following expectation minimization problem:

argmin
ur

E
u′

r∈NT (ur)
[I(||u′

r|| < ϵ)× E
x∼µ

[δ(f̂(x+ u′
r), f̂(x))]] s.t. ||ur||p < ϵ (5)

3



Under review as a conference paper at ICLR 2023

Here I : Rd → R denotes an indicator function. The inner expectation represents the UAP
condition for the transformed perturbation u′

r while the outer expectation represents the neighborhood
robustness condition. Solving Equation 5 requires computing ur which minimizes the expectation
over the transformation set and data distribution. This composition makes it computationally harder
than minimizing over only the transformation set, as in EOT (Athalye et al., 2018), or than minimizing
over only the data distribution, as done for standard UAP (Moosavi-Dezfooli et al., 2017).

4 GENERATING ROBUST UNIVERSAL ADVERSARIAL PERTURBATIONS

In this section, we will discuss our approach for optimizing Equation 5 to generate UAPs robust to
transformations generated by a composition of arbitrary sub-differentiable transformation functions.
At a high level, the objective can be seen as gluing the outer expectation, a EOT objective over
the transformations applied on the perturbation, with the inner expectation, a UAP objective over
the input data distribution. We first describe intuitive baselines for optimizing Equation 5 and then
present our new algorithm, RobustUAP.

4.1 STOCHASTIC GRADIENT DESCENT

The first baseline directly solves Equation 5 using gradient descent. Since we are solving a constrained
optimization problem, we cannot use gradient descent directly. Instead, we can solve the Lagrangian-
relaxed form of the problem as in (Carlini & Wagner, 2017; Athalye et al., 2018).

argmin
ur

E
u′

r∈NT (ur)
[I(||u′

r|| < ϵ)× E
x∼µ

[δ(f̂(x+ u′
r), f̂(x))]]− λ||ur||p (6)

We use a momentum based Stochastic Gradient Descent (SGD) method for solving Equation 6.
Shafahi et al. (2020) suggests that this is an effective method for generating standard UAPs. In order
to implement this, we replace the Kronecker Delta function with a loss function, L. We iteratively
converge towards the inner expectation by computing it in batches, and towards the outer expectation
by sampling a large number of transformations. Given that we would like to estimate on a batch,
x̂ ⊂ µ, and a random set of transformations sampled from T , τ̂ ⊂ T , we can approximate Equation 6:

I(||τ̂j(ur)|| < ϵ)

|x̂| × |τ̂ |

|x̂|∑
i=1

|τ̂ |∑
j=1

L[f(x̂i + τ̂j(ur)), f(x̂i)]− λ||ur||p (7)

Our final algorithm is in Appendix C.

4.2 STANDARD UAP ALGORITHM WITH ROBUST ADVERSARIAL PERTURBATIONS

For our second baseline, we leverage the standard UAP algorithm from Moosavi-Dezfooli et al. (2017)
(see Appendix D for the algorithm). The standard UAP algorithm iterates over the entire training
dataset and at each input, xi, computes the smallest additive change, ∆u, to the current perturbation,
u, that would make u+∆u an adversarial perturbation for xi. Intuitively, over time the algorithm
will approach a perturbation that works on most inputs in the training dataset. This approach works
by computing robust adversarial perturbations rather than standard adversarial perturbations. At each
point xi, we compute the smallest additive change, ∆ur, to the current robust adversarial perturbation,
ur, that would make ur +∆ur a robust adversarial perturbation for xi.

We search for robust adversarial perturbations by optimizing the expectation that a point in the
neighborhood of vr is adversarial while restricting the perturbation to an lp norm of ϵ. We formulate
this as the following minimization problem:

argmin
vr

E
v′
r∈NT (vr)

[I(||v′
r|| < ϵ)× δ(f̂(x+ v′

r), f̂(x))] s.t. ||vr||p < ϵ (8)

4.3 ROBUST UAP ALGORITHM

The baseline algorithms have two fundamental limitations: (i) they rely on random sampling over
the symbolic transformation region, but the sampling strategy does not explicitly try to maximize
the robustness of the generated UAP over the entire symbolic region, and (ii) they do not estimate
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robustness on unsampled transformations. As a result, the baselines yield suboptimal UAPs (as
confirmed by our experiments below). To overcome these fundamental limitations, we create a method
to compute probabilistic bounds for expected robustness on an entire symbolic region. We leverage
this method for approximating expected robustness in a new algorithm to generate robust UAPs
with guarantees. We make a simplifying assumption that NT (ur) has a well defined, sampleable
probability density function (PDF) as we cannot bound robustness for arbitrary transformations.
Our experiments show that even though our assumptions do not hold for all the transformation sets
considered in this work, they significantly improve the robustness of our generated UAPs. Our
approximation of the expected robustness relies on the following theoretical result:
Theorem 4.1. Given a perturbation ur, a neural network f , a finite set of inputs X, a set
of transformations T , and minimum universal adversarial success rate γ ∈ R. Let p(γ) =
Pu′

r∼NT (ur)(ASRU (f,X,u
′
r) > γ). For i ∈ 1 . . . n, let ui

r ∼ NT (ur) be random variables
with a well defined PDF and I : Rd → R be the indicator function, let

p̂n(γ) =
1

n

n∑
i=1

I(ASRU (f,X,u
i
r) > γ) (9)

For accuracy level, ψ ∈ (0, 1), and confidence, ϕ ∈ (0, 1), where (0, 1) is the open interval between
0 and 1. If n ≥ 1

2ψ2 ln
2
ϕ then

P (|p̂n(γ)− p(γ)| < ψ) ≥ 1− ϕ (10)

Proof. The bound on n is derived via the Chernoff inequality applied to p̂n(γ) and E[p̂n(γ)] =
p(γ) (Chernoff, 1952; Alippi, 2014). Equation 10 holds since computing universal ASR is Lebesgue
measurable over the data distribution and since we assume NT (ur) has a well defined PDF.

Theorem 4.1 states that with enough samples from the neighborhood of a perturbation, ur, the
adversarial success rate of ur on the entire neighborhood is arbitrarily close to the adversarial success
rate of ur on sampled transformations with probability greater than 1− ϕ. One key observation is
that the Chernoff bound is independent of the dimensionality of the sample space which allows us to
efficiently apply this result to high-dimensional transformation set provided they have a well-defined
PDF (e.g., L∞-ball) and obtain provable bounds on the expected robustness. For the combinations
of semantic transformations, such as rotation, translation, etc. used in the experiment section the
neighborhood does not have a well-defined PDF, thus we uniformly sample the parameter space of
each transformation to produce a point in the neighborhood. We believe uniformly sampling the
parameter space is a realistic approximation of real-world effects.

Leveraging Theorem 4.1, we create EstimateRobustness which given accuracy, ψ, and
confidence, ϕ, returns the robust adversarial success rate on a finite set of inputs with prob-
abilistic robustness guarantees under the assumptions of Theorem 4.1. The pseudocode for
EstimateRobustness is in Algorithm 1

Algorithm 1 EstimateRobustness

1: Draw n = ⌈ 1
2ψ2 ln

2
ϕ⌉ samples τi ∼ T

2: Compute p̂n(γ) = 1
n

∑n
i I(ASRU (f,X, τi(ur)) > γ)

3: Return p̂n(γ)

Our algorithm: RobustUAP. We leverage Theorem 4.1 and Algorithm 1 to develop RobustUAP,
the pseudocode for which is seen in Algorithm 2. Similar to the SGD baseline, we approximate the
expectation in Equation 5 in batches. We start by sampling transformations from the PDF of the
neighborhood. We set the number of transformations, n, based on Theorem 4.1 to satisfy the desired
confidence level and accuracy. For each gradient step, we compute the mean loss over the current
batch and set of sampled transforms (line 8). For each set of batch and sampled transformations,
instead of making a single gradient update like SGD, we use Projected Gradient Descent (PGD) to
iteratively compute a more robust update to the universal perturbation and end only when the estimated
robustness on the batch satisfies a given threshold (line 10). At the end of each epoch, we check the
robustness across the entire training set and transformation space using EstimateRobustness
and stop when we have reached the desired performance (line 14).
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Algorithm 2 Robust UAP Algorithm

1: Initialize ur ← 0, n← ⌈ 1
2ψ2 ln

2
ϕ⌉

2: For i = 1 . . . n sample τi ∼ T
3: repeat
4: for B ⊂ X do
5: if EstimateRobustness(f,B, T, γ,ur, ψ, ϕ) < ζ then
6: ∆ur ← 0
7: repeat
8: Compute LB,τ = 1

|B|×n
∑|B|
i=1

∑n
j=1 L[f(Bi + τj(ur +∆ur)), f(Bi)]

9: ∆ur = Pp,ϵ(∆ur + αsign(∇LB,τ ))
10: until EstimateRobustness(f,B, T, γ,ur +∆ur, ψ, ϕ) < ζ
11: Update the perturbation with projection: ur ← Pp,ϵ(ur +∆ur)
12: end if
13: end for
14: until EstimateRobustness(f,X, T, γ,ur, ψ, ϕ) < ζ

5 EVALUATION

Our RobustUAP framework is applicable to all transformation sets in a variety of do-
mains. We empirically evaluate our method RobustUAP and three baseline approaches (SGD,
StandardUAP_RP, StandardUAP (Moosavi-Dezfooli et al., 2017)) on popular models from
the vision domain. We show that RobustUAP is more robust on both uniform random noise and
compositions of real-world transformations such as rotation, scaling, etc.

Experimental evaluation. We consider two popular image recognition datasets: CIFAR-
10(Krizhevsky et al., 2009) and ILSVRC 2012(Deng et al., 2009). For CIFAR-10, we evaluate
on the entire test set (1,000 images) and use a state-of-the-art pretrained VGG16 (Simonyan &
Zisserman, 2014) network as the target classification model. For ILSVRC 2012, we evaluate on a
random subset of the test set (1,000 images), and use a state-of-the-art Inception-v3 (Szegedy et al.,
2016) network. We evaluate the robustness against uniform random noise as well as a composition
of transformations from brightness/contrast, rotation, scaling, shearing, and translation. All experi-
ments were performed on a desktop PC with a GeForce RTX(TM) 3090 GPU and a 16-core Intel(R)
Core(TM) i9-9900KS CPU @ 4.00GHz.

We report the results for l2-norm with ϵ = 100 for ILSVRC 2012 and ϵ = 10 for CIFAR-10. These
values were chosen based on the values presented by the original UAP paper (Moosavi-Dezfooli
et al., 2017). We use an image normalization function given by our pretrained models and thus
scaled our ϵ values accordingly. We note that the ϵ-values are significantly smaller than the image
norms. Therefore the generated perturbation is imperceptible and does not affect the semantic
content of the image. Due to the hardness of the optimization problem, for the same norm value, the
effectiveness of a UAP is less than input-specific perturbations. We note that crafting input-specific
perturbations requires making unrealistic assumptions about the power of the attacker as mentioned
in the introduction and therefore we do not consider them part of our threat model which aims to
generate practically feasible perturbations. We use ψ = 0.05 and ϕ = 0.05 resulting in n = 738 for
generating samples for our RobustUAP algorithm as well as reporting robust ASR in our evaluation.
The UAPs are trained on 2,000 images, other parameters for evaluation are given in Appendix E.

5.1 ROBUSTNESS TO RANDOM NOISE

First, we show that our algorithm generates UAPs robust against uniform random noise. Here
our neighborhood is defined as an L∞ ball of radius ϵ around the perturbation. U(ϵ) represents
noise drawn uniformly from such a ball. Figure 2 shows the performance of each algorithm. For
example, the RobustUAP algorithm achieves a ASRU of 0.9 greater than 97% of the time under
U(0.1) on CIFAR-10, where all other algorithms achieve 0.9 at most 30% of the time. RobustUAP
outperforms all other algorithms for both noise sizes. StandardUAP has a lower mean and higher
variance in universal ASR and is much less robust to transformation. A table of Robust ASR results
for γ = 0.8 can be seen in Appendix F. Our Robust ASR results are guaranteed to be ±0.05 from the
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actual result with a probability of 95%. For example, we estimate that RobustUAP has ASRR of
96.1% for U(0.3), we are guaranteed that the true robustness is > 91.1% with a probability of 95%.
Note that we get robustness guarantees from EstimateRobustness as our neighborhood has a
well-defined PDF.
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Figure 2: For each method, a point (x, y) in the corresponding line represents the percentage of
sampled UAPs (y%) with Universal ASR > x for U(0.1) and U(0.3) on ILSVRC and CIFAR-10.

5.2 ROBUSTNESS TO SEMANTIC TRANSFORMATIONS

Next, we consider transformation sets generated by composing five popular semantic transformations
in existing literature (Athalye et al., 2018; Balunović et al., 2019): brightness/contrast, rotation,
scaling, shearing, and translation.

We use a variety of different compositions to show that our algorithm works under different conditions,
and base our parameters for the transformations on (Balunović et al., 2019). For our experiments,
R(θ) corresponds to rotations with angles between ±θ; T (x, y), to translations of ±x horizontally
and ±y vertically; Sc(p) to scaling the image between ±p%; Sh(m) to shearing by shearing factor
between ±m%; and B(α, β) to changes in contrast between ±α% and brightness between ±β.
Further details about these transformations can be seen in Appendix A. We consider compositions
of different subsets and ranges of these transformations shown in Table 1 including composing all
transformations together. The hardness of generating robust UAPs depends on the effect that the
transformation set has on the UAP (i.e. random noise has a relatively small effect compared to
rotation). The hardness also increases with the number of transformations in the composition as well
as the range of parameters for each individual transformation. For example, generating robust UAPs
is harder for the composition shown in the first and last row for ILSVRC 2012 in Table 1 compared
to the second and third row. The same is true for generating a UAP robust to uniform random noise.
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Figure 3: For each method, a point (x, y) in the corresponding line represents the percentage of
sampled UAPs (y%) with Universal ASR > x for the different semantic transformations on ILSVRC.

Robust ASR (ASRR). Figure 3 shows performance of UAPs obtained by applying 738 randomly
sampled transformations to the original UAPs generated by different methods on ILSVRC, similar
graphs for CIFAR-10 can be found in Appendix G. The RobustUAP algorithm outperforms all
others in each case, we observe that for these harder transformation sets StandardUAP loses its
effectiveness completely. In Table 1 we compare robust universal adversarial success rate ASRR with
γ = 0.6, in other words, we are finding the percentage of sampled neighbors of the perturbation that
are still UAPs with 60% effectiveness on the testing set. We provide average ASRU scores as well as
ASRR for different γ levels in Appendix H.
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Our RobustUAP algorithm achieves at least 53.4% higher robust ASR when compared to the
standard UAP algorithm on both datasets and the challenging transformation sets shown in Table 1.
Furthermore, our RobustUAP algorithm significantly outperforms both robust baseline approaches.
Except for the T (2, 2) case which we observe to be the easiest, RobustUAP achieves at least 11.6%
performance gain over the baselines. SGD is the best performing baseline and achieves high robust
ASR on relatively easier transformation sets performing within 1% of RobustUAP on T (2, 2). On
harder transformation sets, this gap widens considerably, see Table 1.

DATASET TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP_RP UAP

R(20) 0.0% 69.9% 2.9% 93.2%
ILSVRC T (2, 2) 35.9% 96.1% 38.8% 97.1%
2012 Sc(5), R(5), B(5, 0.01) 22.3% 85.4% 43.7% 96.1%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 0.0% 63.1% 2.9% 86.4%

CIFAR-10
R(30), B(2, 0.001) 0.0% 64.1% 2.9% 75.7%
R(2), Sh(2) 42.7% 88.3% 52.4% 96.1%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 0.0% 58.3% 7.8% 79.6%

Table 1: Robust ASR of RobustUAP compared to the three baselines.

Visualization. We visualize UAPs generated with RobustUAP and StandardUAP transformed
with random transformations fromR(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) and added to images in
ILSVRC 2012 in Figure 4. Our robust UAPs have a similar level of imperceptibility to standard UAPs
and do not affect the semantic content of the images. Robust UAPs affect the model classification
after transformation with high probability, unlike standard UAPs.

Figure 4: Examples of perturbed images with labels. The top row is unperturbed ILSVRC 2012 test
set images, the second row has a randomly transformed robust UAP added to it, and the bottom row
has a randomly transformed standard UAP added to it. Labels calculated using Inception-v3.

We further visualize UAPs generated with our three robust algorithms on the same transformation set
against a standard UAP generated on ILSVRC 2012 in Figure 5. We observe that UAPs generated by
the StandardUAP algorithm resemble those generated by the StandardUAP_RP algorithm. We
believe that this is due to the similarity in the workings of both algorithms. However, the two UAPs
are not identical. Under our transformation set the center of the image is least likely to be perturbed
so we observe StandardUAP_RP algorithm concentrates its budget towards the center. Both the
RobustUAP and the SGD algorithm generate larger patterns distributed over the entire image.

5.3 ADDITIONAL EXPERIMENTS

In Appendix I we show how our robust UAPs compare to standard UAPs on the non-robust uni-
versal ASR metric. In Appendix J, we evaluate our methods on ResNet18 (He et al., 2015) and
MobileNet (Howard et al., 2017) for CIFAR-10 and ILSVRC 2012 respectively. The results follow
the same trends as those reported in Table 1. In Appendix H we provide the average ASRU achieved
by all the algorithms and also provide ASRR computed with different values of γ for the same
transformation sets in Table 1. Finally, we provide runtimes for all algorithms in Appendix L.

8
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Figure 5: Comparison of UAPs generated with (a) StandardUAP, (b) RobustUAP, (c)
StandardUAP_RP, and (d) RobustUAP on ILSVRC 2012.

6 RELATED WORK

In this section, we survey works closely related ours.

UAP Algorithms. Most works focusing on UAPs (Moosavi-Dezfooli et al., 2017; Mopuri et al., 2018;
Zhang et al., 2020a; Khrulkov & Oseledets, 2018; Li et al., 2020; Akhtar et al., 2018; Hendrik Met-
zen et al., 2017; Zhang et al., 2020b) generate singular vectors and do not consider perturbation
robustness. Bahramali et al. (2021) introduces a perturbation generator model (PGM) for the wireless
domain which creates UAPs with random trigger patterns. They show that both adversarial training
and noise subtracting defenses used in the wireless domain are highly effective in mitigating the
effects of a single vector UAP attack; they further show that their method of generating a set of UAPs
is an effective way for an attacker to circumvent these defenses. Although PGM provides a method
for efficiently sampling unique UAPs, they do not train to be robust to real-world transformations. In
contrast, our method enables efficient sampling of UAPs that are robust to transformations.

Robust Adversarial Examples. The following papers introduce notions of robustness under
different viewpoints and environmental conditions for constructing realizable adversarial examples.
This is a different threat model compared to the additive perturbations discussed in this paper. Luo
et al. (2018) constructs adversarial examples which minimize human detectability, further introducing
the idea of robustness for adversarial examples. They show that their attacks are robust against jpeg
compression. Sharif et al. (2016) attack facial recognition systems by putting adversarial perturbations
on glass frames. Their work demonstrates a successful physical attack under stable conditions and
poses. Eykholt et al. (2018) proposes Robust Physical Perturbations (RP2) in order to show that
adding graffiti on a stop sign can cause it to be misclassified in both simulations and in the real world.
Athalye et al. (2018) introduce Expectation over Transformation (EOT) and use it to print real-world
objects which are adversarial given a range of physical and environmental conditions.

Robust Adversarial Perturbations. Li et al. (2019a) generates music which affects a voice assistant
based system from picking up its wake word. Li et al. (2019b) presents a method for generating a
targeted adversarial sticker which changes an image classifier’s classification from one pre-specified
class to another. Both of these methods rely on specific use cases and are tailored towards generating
adversaries coming from strict distributions, e.g. (Li et al., 2019a) generates guitar music while
(Li et al., 2019b) generates a small grid of dots. These works build on algorithms akin to our
baseline approaches and are limited in scope to domain specific transformations. Our work provides
a framework for improving robustness against a wide range of transformations in diverse domains
and can be leveraged for improving the effectiveness of these attacks.

7 CONCLUSION

In this paper, we demonstrate that standard UAPs are highly susceptible to transformations, i.e. they
fail to be universally adversarial under transformation. We propose a new method, RobustUAP to
generate robust UAPs based upon obtaining probabilistic bounds on UAP robustness across an entire
transformation space. Our experiments provide empirical evidence that this principled approach
generates UAPs that are practically more robust under a wide range of transformation sets than those
from the baseline methods.
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APPENDIX

A SEMANTIC TRANSFORMATIONS

In this section, we discuss the semantic transformations used in the paper. Brightness and contrast can
be represented via bias (β) and gain (α > 0) parameters respectively. Formally, if x is the original
image, then the transformed image, x′, can be represented as

x′ = αx+ β (11)

Rotation, scaling, shearing, and translation are all affine transformations acting on the coordinate
system, c, of the images instead of the pixel values, x. In order to recover the pixel values and
differentiate over the transformation, we will need sub-differentiable interpolation, see Appendix B.
For finite dimensions, affine transformations can be represented as a linear coordinate map where
the original coordinates are multiplied by an invertible augmented matrix and then translated with
additional bias vector. Below, we give the general form for an affine transformation given augmented
matrix A, bias matrix b, and input coordinates c. We can compute the output coordinates, c′, as[

c′

1

]
=

[
[ccc|c] A b

0 . . . 0 1

] [
c
1

]
(12)

Below, we give the augmented matrix A and additional bias matrix b for rotation, scaling, shearing,
and translation.

Rotation, R(θ), by θ degrees:

A =

(
cos θ − sin θ
sin θ cos θ

)
, b =

(
0
0

)
(13)

Scaling, Sc(p), by p%:

A =

(
1 + p

100 0
0 1 + p

100

)
, b =

(
0
0

)
(14)

Shearing, Sh(m), by shear factor m%:

A =

(
1 1 + m

100
0 1

)
, b =

(
0
0

)
(15)

Translation, T (x, y), by x pixels horizontally and y pixels vertically:

A =

(
0 0
0 0

)
, b =

(
x
y

)
(16)

B INTERPOLATION

Affine transformations may change a pixel’s integer coordinates into non-integer coordinates. Inter-
polation is typically used to ensure that the resulting image can be represented on a lattice (integer)
pixel grid. For this paper, we will be using bilinear interpolation, a common interpolation method
which achieves a good trade-off between accuracy and efficiency in practice and is commonly used
in literature (Xiao et al., 2018b; Balunović et al., 2019). Let xi,j , x′i,j represent the pixel value
at position i, j for the original and transformed image respectively. Let c′xi,j , c

′y
i,j represent the

x-coordinate and y-coordinate of the pixel at i, j after transformation. We define our transformed
image by summing over all pixels n,m ∈ [1 . . . H]× [1 . . .W ] where H and W represent the height
and width of the image.

x′i,j =

H∑
n

W∑
m

xn,mmax(0, 1− |c′xi,j −m|)max(0, 1− |c′yi,j − n|) (17)
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This interpolation can be computed for each channel in the image. While interpolation is typically
not differentiable, in order to generate adversarial examples using standard techniques we need
a differentiable version of interpolation. (Jaderberg et al., 2015) introduces differentiable image
sampling. Their method works for any interpolation method as long as the (sub-)gradients can be
defined with respect to x, c′i,j . For bilinear interpolation this becomes,

∂x′i,j
∂xn,m

=

H∑
n

W∑
m

max(0, 1− |c′xi,j −m|)max(0, 1− |c′yi,j − n|) (18)

∂x′i,j
∂c′xi,j

=

H∑
n

W∑
m

xn,mmax(0, 1− |c′yi,j − n|)


1 if m ≥ |c′xi,j −m|
−1 if m < |c′xi,j −m|
0 otherwise

(19)

C SGD ALGORITHM

Our SGD UAP algorithm is based on standard momentum based SGD while optimizing over the
objective proposed in 5, the algorithm details can be seen in Algorithm 3.

Algorithm 3 Stochastic Gradient Descent UAP Algorithm

1: Initialize ur ← 0,∆ur ← 0
2: repeat
3: for B ∈ X do
4: Sample t̂ ⊂ T
5: ∆ur ← α∆ur − ν

|x̂|×|t̂|
∑|x̂|
i=1

∑|t̂|
j=1∇L[f(x̂i + t̂j(ur)), f(x̂i)]

6: Update the perturbation with projection:
7: u← Pp,ϵ(ur +∆ur)
8: end for
9: until ASRR(f,X, T, γ,ur) < ζ

D ITERATIVE UAP ALGORITHM

Moosavi-Dezfooli et al. (2017) introduces an iterative UAP algorithm, the algorithm can be seen in
Algorithm 4.

Algorithm 4 Iterative Universal Perturbation Algorithm (Moosavi-Dezfooli et al. (2017))

1: Initialize u← 0
2: repeat
3: for xi ∈ X do
4: if f̂(xi + u) = f̂(xi) then
5: Compute minimal adversarial perturbation:
6: ∆u← argminr ||r||2 s.t. f̂(xi + u+ r) ̸= f̂(xi)
7: Update the perturbation with projection:
8: u← Pp,ϵ(u+∆u)
9: end if

10: end for
11: until ASRU (f,X,u) < γ

E EXPERIMENT PARAMETERS

In our experiments, we have capped all algorithms at 5 epochs or if they have achieved an ASRR
of 0.95. The UAPs are trained with the same transformation set that they are evaluated on. For
algorithms running PGD internally, we have capped the number of iterations to 40.
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F FURTHER EVALUATION OF UNIFORM NOISE

Results in Table 2.

DATASET TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP_RP UAP

ILSVRC U(0.1) 81.6% 94.2% 91.3% 99.0%
2012 U(0.3) 10.7% 68.9% 42.7% 96.1%

CIFAR-10 U(0.1) 66.0% 98.1% 96.1% 100%
U(0.3) 5.8% 96.1% 47.6% 100%

Table 2: Robust ASR with uniform random noise, γ = 0.8.

G UAP PERFORMANCE AGAINST SEMANTIC TRANSFORMATIONS ON
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Figure 6: For each method, a point (x, y) in the corresponding line represents the percentage of
sampled UAPs (y%) with Universal ASR > x for the different semantic transformations on CIFAR-
10.

H AVERAGE ASRU AND ASRR WITH DIFFERENT γ’S

We provide additional metrics computed on the same set of transformations, datasets, and models as
in Table 1. In Table 3, we present the Average ASRU rather than ASRR. The average shows us that
our RobustUAP algorithm creates UAPs which after transformation on average are better UAPs
than all other algorithms. We observe that the average shows us that even standard UAPs aren’t
completely ineffective after transformation they just have a very low chance of being highly effective.

DATASET TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP_RP UAP

R(20) 16.3% 71.5% 24.7% 81.3%
ILSVRC T (2, 2) 52.6% 82.6% 55.4% 85.4%
2012 Sc(5), R(5), B(5, 0.01) 44.9% 76.3% 58.5% 82.2%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 13.6% 64.8% 29.0% 75.3%

CIFAR-10
R(30), B(2, 0.001) 9.9% 66.8% 22.2% 73.4%
R(2), Sh(2) 57.1% 78.8% 61.2% 82.9%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 16.2% 61.2% 32.6% 76.4%

Table 3: Average Universal ASR of our Robust UAP algorithms and the standard UAP (Moosavi-
Dezfooli et al., 2017) method.

In Table 4, we present ASRR computed at γ = [0.5, 0.7] rather than γ = 0.6. This table shows a
similar story to above, and shows that our algorithm produces better results under a variety of success
thresholds.
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DATASET TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP_RP UAP
0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7

R(20) 1.9% 0.0% 88.3% 58.3% 10.7% 1.0% 98.1% 76.7%
ILSVRC T (2, 2) 51.5% 21.4% 100% 84.5% 57.3% 23.3% 100% 91.3%
2012 Sc(5), R(5), B(5, 0.01) 38.8% 11.7% 96.1% 67.0% 64.1% 25.2% 99.0% 87.4%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 1.9% 0.0% 82.5% 38.8% 12.6% 1.0% 95.1% 59.2%

CIFAR-10
R(30), B(2, 0.001) 1.0% 0.0% 80.6% 43.7% 12.6% 1.0% 93.2% 49.5%
R(2), Sh(2) 62.1% 22.3% 96.1% 68.9% 68.0% 30.1% 99.0% 89.3%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 2.9% 0.0% 67.0% 38.8% 19.4% 1.0% 93.2% 55.3%

Table 4: Robust ASR of our Robust UAP algorithms and the standard UAP (Moosavi-Dezfooli et al.,
2017) method with γ = [0.5, 0.7].

DATASET STANDARDUAP SGD STANDARDUAP_RP ROBUSTUAP

ILSVRC 2012 95.5% 85.6% 82.3% 91.3%

CIFAR-10 96.2% 89.3% 84.0% 93.7%

Table 5: Universal ASR of our Robust UAP algorithms and the standard UAP method.

I COMPARISON ON NON-ROBUST UNIVERSAL ASR METRIC

We compare our robust UAPs to standard UAPs on the non-robust universal ASR metric, see Table 5.
All robust UAPs are generated to be robust against R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001). We
observe that at the same l2-norm all robust UAPs achieve a lower universal ASR than the standard
UAP algorithm. This result is not too surprising as solving the optimization problem for robust
UAP is significantly more difficult. We further observe that our RobustUAP algorithm is the most
effective in comparison to the other robust baseline approaches.

J ADDITIONAL MODELS

We also provide additional data on our methods evaluated on the same transformations and datasets but
on different models. In this case, we use ResNet-18 (He et al., 2015) for CIFAR-10 and MobileNet
(Howard et al., 2017) for ILSVRC 2012. Results can be seen in Table 6. We observe similar
performance across models suggesting that the performance of the attacks is more directly tied to
transformation set and dataset.

DATASET MODEL TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP_RP UAP

MOBILENET

R(20) 8.1% 71.2% 2.6% 85.0%
ILSVRC T (2, 2) 40.9% 98.7% 54.3% 99.6%
2012 Sc(5), R(5), B(5, 0.01) 16.3% 94.5% 44.3% 96.3%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 4.1% 75.7% 8.6% 86.2%

CIFAR-10 RESNET-18
R(30), B(2, 0.001) 0.9% 67.8% 6.4% 74.9%
R(2), Sh(2) 49.9% 99.5% 49.1% 99.8%
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 8.0% 70.8% 12.2% 83.8%

Table 6: Robust ASR on Resnet-18 for CIFAR-10 and MobileNet for ILSVRC 2012.

K COMMON CORRUPTIONS

We also evaluate robust UAP against the 2D fog transformations in (Kar et al., 2022). We set the shift
intensity of the fog to be 1 and train our robust UAPs to be robust against random fog perturbations.
We observe similar results to the transformations we experiment with above. The graph of the results
can be seen in Figure 7.
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Figure 7: For each method, a point (x, y) in the corresponding line represents the percentage of
sampled UAPs (y%) with Universal ASR > x for the different semantic transformations on ILSVRC-
2012.

L ALGORITHM RUNTIMES

We compare the average runtimes of the different methods on one of our most challenging
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) transformation set on ILSVRC-2012 and n = 738. The
results are in Table 7. We observe that RobustUAP is the slowest algorithm and SGD is the fastest.
RobustUAP uses EstimateRobustness in each loop and thus with high n it requires much
more time to compute. The extra computation enables Robust UAP to obtain better robustness
than all baselines. On the same set of transformations and dataset we observe that one iteration
of EstimateRobustness on the entire test set takes on average 19 minutes. When running
EstimateRobustness in the RobustUAP loop, each call takes 36 seconds for a batch size of
32.

ALGORITHM TIME(MIN)

STANDARD UAP 37
SGD 32
STANDARD UAP_RP 43
ROBUST UAP 118

Table 7: Average Runtime for Robust UAP algorithms

M EFFECT OF COMPUTE TIME ON ROBUSTNESS

Previous sections highlight SGD as the most competitive algorithm to RobustUAP in terms of
performance. However, in the previous section we note that SGD takes significantly less time to run.
In this section, we investigate how RobustUAP performs with limited compute time as well as how
SGD performs with increased runtime. We first add results to the ILSVRC 2012 part of Table 1 by also
computing RobustUAP performance when limited to the same amount of time that SGD takes. Table
8 shows that RobustUAP outperforms SGD even when its compute time is limited with up to 9%
more robustness on our most challenging transformation R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001).

DATASET TRANSFORMATION SET
SGD ROBUST RESTRICTED

UAP ROBUST UAP

R(20) 69.9% 93.2% 72.9%
ILSVRC T (2, 2) 96.1% 97.1% 96.9%
2012 Sc(5), R(5), B(5, 0.01) 85.4% 96.1% 86.3%

R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 63.1% 86.4% 72.0%

Table 8: Robust ASR of RobustUAP restricted to the same amount of compute time as SGD.
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Next, we vary the number of SGD iterations. We compute the robust ASR on ILSVRC for robustness
against R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001). Figure 8, shows the robust ASR achieved by
SGD over time, here we observe that SGD’s performance flatlines after a small number of iterations
and seems to be unable to surpass about 65. Here SGD is allowed to continue to run past where it
would usually stop (at around 250 iterations), in this experiment we allow it to go to 1250 iterations
which is about the same amount of time that RobustUAP takes to run. RobustUAP is able to
achieve a performance of 72 even when restricted to the amount of compute time of base SGD (It
achieves 86.4 when unrestricted). These two results in combination show that RobustUAP is able
to find more robust UAPs than SGD whose performance stabilizes.
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Figure 8: The Robust ASR with γ = 0.6 for SGD over time

N ROBUSTNESS ON HOLD-OUT TRANSFORMATIONS

In this section, we measure the effectiveness of our robust UAPs against hold-out transformations.
In this experiment, we learn a UAP which is robust to R(5) and obtain a robust ASR of 96.2 at
γ = 0.6. We then measure its effectiveness against Sc(5) and get a robust ASR of 85.4, in contrast, a
robust UAP trained directly to be robust to Sc(5) obtains robust ASR of 98.1. Next, we measure the
robustness of UAP trained against R(5) when subjected to transformations from B(5, 0.01). Here
we get a robust ASR of 97.3, whereas a robust UAP trained to be robust to B(5, 0.01) obtains a
robust ASR of 99.2. Finally, we test the robust UAP on R(5), Sc(5), B(5, 0.01) and get a robust
ASR of 83.1. Our previous results show that a UAP trained to be robust against these parameters
directly can obtain a robust ASR of 96.1. In each case, our UAP maintains robustness on hold-out
transformations but has lower performance compared to robust UAPs trained directly to be robust to
those transformations.

O TARGETED ATTACK

So far in this paper we have focused on untargeted attacks, i.e. attacks which aim to degrade the
general performance of the model. Targeted attacks are also possible with both standard adversarial at-
tack methods and universal adversarial perturbation methods. Here, we can simply turn our algorithm
from untargeted to targeted by replacing the loss function. We would like to have target class, A, be
classified as target class, B. Instead of maximizing the expected value of the cross entropy loss we can
instead formulate the loss based on maximizing B while minimizing A similar to (Benz et al., 2020).
For ILSVRC 2012, we randomly select a couple of target classes and perform this attack, for each
of these cases, we train our robust UAP to be robust to R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001).
Table 9 shows our results for robust ASR with γ = 0.6. We are measuring our robust ASR of turning
class A into class B and observe similar results with RobustUAP being the most robust followed by
SGD. It is also interesting to note that different random combinations lead to more or less success, i.e.
it is easier to turn a dog into another dog than perfume into a padlock.
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DATASET TARGET CLASS
STANDARD SGD STANDARD ROBUST

UAP UAP_RP UAP

ILSVRC-2012 TOY POODLE → MALTESE DOG 42.4% 99.1% 85.6% 99.8%
PERFUME → PADLOCK 0.0% 63.8% 5.1% 76.4%

Table 9: Robust ASR of RobustUAP for target to target attack compared to the three baselines with
γ = 0.6.

P DATA EFFICIENCY

In this section, we will evaluate the data efficiency of RobustUAP. We use RobustUAP to generate
UAPs robust to R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) on ILSVRC-2012 with differing amounts
of training data. The results can be seen in Figure 9. These results show that the algorithm is able to
achieve good performance at 500 data points but continues to improve up to 4000 data points. After
that it seems to stagnate.
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Figure 9: Robust ASR with γ = 0.6 for RobustUAP with differing amounts of training data

Q TRANSFERABILITY

In this section, we will evaluate the transferability of RobustUAP. Previous works on
UAPs (Moosavi-Dezfooli et al., 2017) show that UAPs are transferable across different models.
Here, we will evaluate whether robust UAPs exhibit the same behavior for robustness. The robust
UAPs studied here are generated with RobustUAP on R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001)
for ILSVRC-2012 with γ = 0.6. We use a variety of models: Inception-v3 (Szegedy et al., 2016), Mo-
bileNet (Howard et al., 2017), Inception-v3 trained to be robust on R(20) (InceptionR20), Inception-
v3 trained to be robust on horizontal flips (InceptionHF), and ViT (Dosovitskiy et al., 2020). Table 10
shows us that our robust UAPs are transferable between different architectures. Our results show that
robust UAPs transfer their robustness properties between architectures and models. Ignoring ViT, on
all of the Inception and MobileNet models, the generated UAPs maintain at least 65% robust ASR
when transferred to each other. This transfer is less but still significant for ViT where it maintains at
least 32% robustness when transferred to or from the other models.

TARGET MODEL

SOURCE MODEL INCEPTION MOBILENET INCEPTIONR20 INCEPTIONHF VIT

INCEPTION 86.4% 65.2% 75.2% 78.5% 35.1%
MOBILENET 74.3% 86.2% 67.3% 68.6% 38.3%
INCEPTIONR20 80.1% 67.3% 81.3% 73.1% 32.0%
INCEPTIONHF 77.8% 70.9% 75.8% 83.8% 34.6%
VIT 41.2% 32.4% 43.2% 39.7% 88.5%

Table 10: Robust ASR when UAP is learned on source model and transfered to target model.
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R TRANSFORMER-BASED MODELS

Recently, transformers have become popular as a new architecture for deep learning models for
computer vision tasks. In this section, we evaluate the effectiveness of robust UAPs against one such
model, ViT (Dosovitskiy et al., 2020). Benz et al. (2021) has shown that standard UAPs are still
effective against transformer based architectures. In Table 11 we can see that we get similar results
compared to our results on Inception and MobileNet. This shows that our methods work against
transformer based models as well.

DATASET MODEL TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP_RP UAP

ILSVRC-2012 VIT R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) 2.0% 72.1% 12.9% 88.5%

Table 11: Robust ASR of RobustUAPcompared to the three baselines for ViT.

S ROBUST UAPS AGAINST ROBUSTLY TRAINED NETWORKS

In this section, we are interested in seeing whether training networks to be robust against the same
transformations that the UAP is trying to be robust against is helpful. For this, we trained two new
Inception-v3 networks. Because of time limitations, we started with our base Inception-v3 network
and fine-tuned it using data augmentations. For the first network InceptionR20, we augmented
the data by adding random rotations within 20 degrees. For the second network InceptionHF, we
augmented the data by adding horizontal flips. We then crafted UAPs robust against rotations and
flips on InceptionR20 and InceptionHF respectively. The results can be seen in Table 12. We can
compare the R(20) results to those from our normal inception network. We postulate that since the
network has received some additional robustness training it is harder to attack, and thus we should see
slightly lower robustness scores. However, it seems that training the network to be robust to R(20)
does not significantly effect the ability to create robust UAPs. The horizontal flips seems like it might
be too easy of a transformation as even standard UAP performs quite well for robust ASR.

DATASET MODEL TRANSFORMATION SET
STANDARD SGD STANDARD ROBUST

UAP UAP_RP UAP

ILSVRC-2012 INCEPTIONR20 R(20) 6.3% 72.4% 10.2% 81.3%
INCEPTIONHF HF 81.3% 99.5% 89.7% 99.6%

Table 12: Robust ASR of RobustUAP compared to the three baselines for robust networks.

T ABLATION ON OPTIMIZATION STRATEGY

In this section, we study the effect of using different optimizers in addition to SGD. We use a
variety of standard PyTorch optimizers, Adam, Adamax, Adagrad, and RMSProp. We formu-
late the optimization problem in the same way but instead use these algorithms in order to op-
timize our perturbation. We compute these results on ILSVRC-2012 with Inception-v3 and use
R(10), T (2, 2), Sh(2), Sc(2), B(2, 0.001) as the transformation set and with γ = 0.6. The results
can be seen in Table 13. We see that the optimization strategy has some affect on the results and that
SGD performs the best. We also found that SGD performed marginally faster than the rest of the
approaches.

OPTIMIZER ASRR

SGD 63.1%
ADAM 59.7%
ADAMAX 60.1%
ADAGRAD 62.3%
RMSPROP 58.3%

Table 13: Comparison of different optimization strategies.
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