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Abstract

Applying large language model (LLM) agents to conversational data analytics is1

challenging, as existing agents often operate statelessly, leading to inefficiency and2

a fragmented user experience in multi-turn interactions. We argue that the agent’s3

environment should explicitly encode the domain’s predictable workflow. This4

reframes the agent’s role from complex, open-ended planning to a more tractable5

task: strategically selecting where to resume a structured process to maximize state6

reuse. To this end, we introduce the Stateful Execution Environment (SEA),7

a framework that represents the data analysis workflow as a Directed Acyclic8

Graph (DAG). A key feature of SEA is its dual-representation state model, which9

decouples a lightweight, symbolic state graph for the LLM planner from a full10

computational state graph used for execution. We evaluate SEA on GloboMart,11

a new large-scale benchmark for conversational data analytics. Our experiments12

show that the planner achieves over 95% accuracy on its reframed task, leading to13

an 84% end-to-end task success rate and a 36% reduction in average latency on14

stateful follow-up queries. Our work demonstrates that designing environments15

with strong workflow priors is a critical step toward building more efficient and16

reliable agents for domain-specific reasoning.17

1 Introduction18

Large language models (LLMs) have recently enabled a new class of intelligent agents that can19

interact with software tools, data, and users through natural language Wang et al. [2025], Schick et al.20

[2023]. A central insight from this line of work is that the design of the environment—the context21

in which the agent perceives state, chooses actions, and receives feedback—plays a critical role in22

determining the agent’s efficiency and reliability. While much effort has gone into scaling models and23

datasets, the question of how to design environments for domain-specific reasoning remains open.24

One such domain where this question is particularly important is conversational big data analytics.25

Analysts often want to explore large and complex datasets using natural language, without needing to26

know database schemas or programming details. This goal has motivated work in natural language to27

SQL translation Wang et al. [2019], Lei et al. [2024], Liu et al. [2025], visualization generation Dibia28

[2023], and interactive data exploration systems Ding et al. [2023], Weng et al. [2024]. These systems29

show strong results on individual tasks. However, the end-to-end workflow remains fragmented:30

finding the right tables, generating complex joins, performing localized analysis, and communicating31

insights are usually handled by separate tools, with no open-source unified framework that ties them32

together in a cohesive process.33

Our work starts from a simple but important observation: the workflow of data analysis is not arbitrary.34

Unlike open-ended tool-using agents, where the sequence of actions must be discovered Yang et al.35

[2023], data analysis follows a predictable sequence of stages: data discovery, data subsetting,36
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Figure 1: A high-level overview of the Stateful Execution Environment (SEA). The agent interacts
with a structured environment representing the data analysis workflow as a DAG. For follow-up
queries, the Planner’s primary role is to select the optimal entry-point node (e.g., AIAnalytics) to
resume execution, maximizing state reuse from the cached Main State DAG and avoiding redundant,
high-latency operations like data subsetting.

localized analysis, and finally presentation of insights. We argue that by explicitly encoding this37

workflow into the environment, we can shift the agent’s role from complex workflow planning to38

the more tractable task of strategic optimization within a structured process. This is the central39

thesis of our work. Essenstially, for follow-up queries, the planner’s prime objective becomes a node40

classification problem: identifying the optimal point in the workflow to resume from, in order to41

maximize state reuse and ensure a fast, efficient conversation.42

To this end, we introduce the Stateful Execution Environment (SEA), a framework for conversa-43

tional big data analytics built around this principle (see Figure 1 for a high-level overview). SEA44

represents the analytical workflow as a directed acyclic graph (DAG), where each node corresponds to45

a specialized tool (for discovery, SQL-based subsetting, Python-based analysis, and visualization) and46

the directed edges represents the immutable data dependencies between them. This structure deliber-47

ately separates the compute-heavy, high-latency stage of Data Subsetting from the fast, localized stage48

of Insight Generation. To make this state observable to the agent, we introduce a dual-representation49

state design: a Main State DAG caches full computational results (e.g., large dataframes) for the tools50

to access within the action space, while a lightweight Summary DAG provides compressed metadata51

to the LLM-based planner. The planner produces structured execution plans, while a deterministic52

executor enforces workflow consistency and parallelizes tasks in the action space. To support natural53

conversations, SEA also introduces a session lifecycle with explicit resets, preventing context drift54

while aligning with how analysts typically work (deep dive on one topic, then switch).55

To study SEA, we curated a realistic, large-scale evaluation setting. We constructed an e-commerce56

dataset GloboMart with 8 tables (up to 6M rows and upto 14 columns each), designed to capture the57

challenges of big data analytics and follows the standard setup of e-commerce big data. On top of58

this, we built a benchmark of 100 conversational queries that include topic switches, complex joins,59

and multi-turn analysis. The field is increasingly recognizing that evaluating an agent based solely60

on final task success is an insufficient metric Armony et al. [2025]. Thus, we evaluate the system at61
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multiple levels: (i) the Planner’s accuracy on the node classification task, (ii) the correctness of data62

discovery and join generation, and (iii) the end-to-end quality of system responses judged by human63

evaluators. Our evaluation confirms the efficacy of this structured approach: the agent’s planner64

achieves over 95% accuracy on its simplified task, while stateful execution leads to a 36% reduction65

in average latency for follow-up queries. The full dataset, benchmark, and code has been provided in66

the supplementary material. These will be also released to the community 1.67

Our primary contributions are:68

• We propose SEA, a structured environment that operationalizes the inherent workflow of69

data analytics, enabling more efficient and reliable agentic reasoning.70

• We introduce a dual-representation state DAG model, balancing heavy computational71

state for execution with compressed symbolic state for planning.72

• We provide a large-scale dataset and conversational benchmark tailored to big data73

analytics, supporting systematic evaluation of both agent-level planning and end-to-end74

system quality.75

• We demonstrate through a multi-faceted evaluation that our structured environment enables76

an agent to achieve high accuracy on complex analytical dialogues.77

By grounding agent design in the structure of the domain, our work highlights a general lesson:78

environments that encode workflow priors can lead to agentic systems that are not only more efficient,79

but also more transparent and reliable in practice.80

2 Related Works81

This work intersects with agentic AI for data analytics, planning architectures, and state management82

in conversational systems. While significant progress has been made, challenges remain in creating83

agents that can efficiently and reliably conduct iterative, multi-turn data exploration.84

2.1 Agentic Architectures for Data Analytics85

The application of LLMs to data analysis has evolved from direct code generation Chen et al. [2021]86

to agentic systems built on frameworks like LangChain Chase [2022]. While versatile, these general-87

purpose agents often operate reactively, re-evaluating context on each turn, which is inefficient for88

structured, state-dependent analytical workflows.89

A prominent agent architecture is the ReAct framework Yao et al. [2023], which externalizes the90

agent’s reasoning process via a Thought-Action-Observation loop. While this offers high transparency91

and is effective for dynamic tasks, its step-by-step deliberation incurs significant latency and token92

costs in more structured domains like data analysis.93

To improve efficiency, the Planner-Executor model separates a high-level planner from a deter-94

ministic executor Wang et al. [2023]. In this model, the planner typically must discover the entire95

workflow from scratch. An alternative approach, which we explore, is to provide the agent with a96

predefined workflow structure, shifting the planning task from open-ended generation to strategic97

selection within that structure.98

2.2 State Management as the Core Challenge99

The ephemeral context of LLMs makes robust state management a central challenge for any task100

requiring continuity, as interruptions can reset an agent’s progress Packer et al. [2023], Shinn et al.101

[2023]. Stateful design patterns have emerged to address this, such as graph-based workflows that102

pass state objects between nodes LangChain Team [2024], or Finite State Machines (FSMs) that103

provide process grounding through explicit state transitions Wu et al. [2024a].104

A key distinction in this area is between process state—the current step in an execution flow—and105

analytical state, which is the evolving semantic context of an exploration (e.g., cumulative filters,106

1Codes, Dataset, and Benchmark available at: https://osf.io/buxma/files/osfstorage?view_
only=f7de66430a7b42e0acbc6330ecedd255
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transformations). While existing solutions primarily address the former, the latter is often left107

unstructured within conversational history, presenting a challenge for efficient, long-term reasoning108

in analytical dialogues.109

2.3 Core Capabilities for Data Interaction110

An effective data agent must wield a suite of specialized tools, whose state-of-the-art is continually111

advancing.112

Text-to-SQL. Accurate SQL generation over complex databases requires effective schema linking113

to provide the LLM with only the relevant schema subset Li et al. [2024], An et al. [2025]. This114

is commonly solved with retrieval-based methods Wu et al. [2024b], with advanced multi-hop115

techniques used to find relationships across disparate tables Zhang et al. [2024].116

Data-to-Insight. Communicating results involves Data-to-Text generation, where ensuring seman-117

tic fidelity to the source data is a primary challenge Harkous et al. [2020], or Text-to-Visualization.118

The dominant technique for visualization is prompting an LLM to generate executable plotting119

code Dibia [2023], Weng et al. [2025]. The components in our proposed system build upon these120

state-of-the-art capabilities, integrating them into a managed, stateful environment.121

3 The SEA Methodology122

The Stateful Execution Environment (SEA) is a specialized infrastructure designed to facilitate123

efficient, multi-turn agentic reasoning for complex data analytics. Our methodology is founded on124

the principle that by explicitly modeling the domain’s inherent, predictable workflow structure, we125

can create a highly optimized environment. We formalize this workflow as a Stateful Execution126

Directed Acyclic Graph (DAG), which serves as the central state representation for our agent. This127

allows us to decompose the overall process into two distinct macro-stages: (1) large-scale, high-128

latency Data Subsetting, followed by (2) localized, low-latency Insight Generation. This process is129

operationalized by a Planner–Executor architecture, as illustrated in Figure 2.130

Figure 2: The SEA architecture. At turn t, the Planner receives user query qt and the lightweight
Twin Summary DAG S′

t−1. It performs node classification to select an entry-point ventry and generates
a plan Pt. The Executor then executes the plan, calling the necessary tools which access the heavy
artifacts in the Main State DAG St−1. Each tool updates both state representations, producing the
final state (St, S′

t) for the next turn.

Having defined the environment’s structure, we now formalize the agent’s interaction with it through131

its three core components: the action space (A), the state space (S), and the core operational loop132

governed by the Planner (P) and Executor (X ).133
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3.1 The Action Space (A): A Composable Analytics Toolset134

The agent’s capabilities are materialized through the action space A, a suite of five specialized,135

deterministic tools. These tools are the vertices of our workflow graph and are designed for fine-136

grained, collaborative execution.137

SchemaRetriever This tool initiates the workflow by mapping user intent to specific data tables. It138

operates a two-stage process: an offline semantic indexing step where enriched JSON table summaries139

are embedded into a vector database, and an online retrieve-and-rerank mechanism that uses dense140

retrieval followed by LLM-based reranking to return the precise set of tables required, critically141

enabling multi-table JOIN reasoning. The tool also returns a reasoning string to justify its chosen142

table names.143

QuerySynthesizer This tool executes the Data Subsetting macro-stage. It receives the table144

schemas from the SchemaRetriever and the user’s intent from the Planner. It then generates145

and executes a complex SQL query against the data warehouse, returning a single, unified pandas146

DataFrame. With the collaboration of SchemaRetriever, it is also able to handle multi-table JOIN147

cases.148

AIAnalytics This tool begins the Localized Insight Generation macro-stage. It operates on the149

manageable DataFrame subset from the previous step, generating and executing pandas code to150

produce the final, user-facing analytical DataFrame.151

InsightSummarizer A data-to-text agent that ingests the final analyzed DataFrame and generates a152

concise, narrative summary of the key findings tailored to the user intent.153

ChartGenerator A code-generating agent that takes the final DataFrame’s structured schema as154

input. It determines a suitable visualization type, then generates and executes Python code to render155

the chart.156

3.2 The State Space (S): A Dual-Representation DAG157

The environment’s state is encoded in a Stateful Execution Directed Acyclic Graph (DAG),158

G = (V,E). For the conversational analytics task in our case, this is a 5-node linear159

graph: SchemaRetriever → QuerySynthesizer → AIAnalytics → {InsightSummarizer,160

ChartGenerator}. Vertices V correspond to the tools in our action space, and directed edges161

E represent the immutable data dependencies. To resolve the fundamental tension between the162

need for a rich, high-fidelity state and the context limitations of LLMs, we introduce a novel Dual-163

Representation State Model.164

The Main State DAG (S) This is the ground-truth state of the environment. Each vertex v ∈ V165

caches the complete, computationally “heavy” artifact from its last execution—the full pandas166

DataFrame, the rendered image file. This state is exclusively accessed by the deterministic Executor167

and the tools themselves.168

The Twin Summary DAG (S′) This is a lightweight, symbolic representation of S, designed169

explicitly as the observation provided to the Planner Agent. Each vertex in S′ stores high-signal,170

low-token metadata that proxies the Main State: the chosen table names along with a reasoning171

string for this choice, generated SQL and pandas code, and structured JSON schemas of intermediate172

DataFrames. This allows the Planner to reason about the environment’s state without being inundated173

by raw data.174

3.3 The Core Operational Loop: Planner–Executor Interaction175

Remark. When ventry = v0, the purge clears stale artifacts but does not invalidate Pt: the plan176

is specified relative to the root and depends only on (qt,M) and the fixed DAG structure, not on177

previous heavy artifacts. The triggering query qt also seeds the new session memory, ensuring the178

Planner never operates from an empty context.179
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Algorithm 1: SEA Planner–Executor Operational Loop

Input :Incoming stream of user queries {qt}Tt=1 (revealed sequentially)
Output :Per-turn analysis artifacts (summary + chart)

1 Initialize Main State DAG S0, Twin Summary DAG S′
0, Planner memory M ← ∅

2 for each incoming query qt do
3 Update Planner memory M ←M ∪ {qt}

// –- Planner Phase –-
4 ventry ← πselect(S

′
t−1, qt,M)

5 Pt ← ordered JSON plan over subgraph G(ventry)
// –- State Carry-Forward –-

6 St ← St−1; S′
t ← S′

t−1

// –- Executor Phase –-
7 for tool a ∈ Pt do
8 Execute a deterministically with parameters
9 St[va]← artifact(a)

10 S′
t[va]← metadata(a)

11 end
// –- Session Lifecycle Check –-

12 if ventry = v0 // root node, SchemaRetriever
13 then

// topic switch detected → start new session
14 Reset St, S

′
t ← ∅

15 Reset M ← {qt} // memory primed with current query
16 end
17 end

The interaction between the agent and the environment is governed by this operational loop. The180

Planner (P) is stochastic and exploratory; the Executor (X ) is deterministic and state-updating. This181

separation guarantees both flexibility in planning and reliability in execution.182

The Planner Agent (P) The Planner is an LLM-based agent whose primary task is reframed from183

workflow discovery to strategic path optimization. We model this as a node classification problem.184

At each conversational turn t, the Planner’s policy, π, takes the user query qt, the Twin Summary185

DAG S′
t−1, and the session memory M to select an optimal entry-point vertex, ventry ∈ V :186

ventry = πselect(S
′
t−1, qt,M). (1)

This vertex represents the earliest stage in the workflow whose state is invalidated by the new query.187

The Planner then generates an ordered JSON plan, Pt, for subgraph execution starting from ventry,188

including contextually enriched parameters for each tool.189

The Deterministic Executor (X ) The Executor functions as the state transition mechanism of the190

environment. It receives the plan from P and deterministically executes the specified tool sequence.191

For each tool call, it updates both the Main State DAG (St) with the heavy artifact and the Twin192

Summary DAG (S′
t) with its corresponding metadata. The Executor also manages control flow, such193

as the parallel execution of the ChartGenerator and InsightSummarizer.194

3.4 Context and Memory: A Session-Lifecycle Approach195

SEA employs a session-based memory lifecycle, a deliberate design choice that diverges from196

generic, infinite-context mechanisms. Generalist methods, such as retrieval over full conversational197

history, risk introducing context drift and semantic ambiguity when applied to the precise, state-198

dependent nature of data analysis, where remnants of a prior, unrelated analysis can degrade planning199

accuracy.200

Our session-lifecycle approach, formalized in the final block of Algorithm 1, provides a robust201

solution. A session is defined as a continuous dialogue on a single analytical topic. The Planner’s202

memory (M ) within a session is limited to the user’s raw query history, used for contextual enrichment.203
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When the Planner identifies a query as a complete topic switch—a decision materialized when it204

selects the initial node of the DAG as its entry-point (ventry = v0)—it triggers a purge event. The205

entire state, including both DAG representations (S and S′) and the Planner’s internal memory (M ),206

is reset.207

This design represents a principled trade-off. We sacrifice zero-shot state reuse for cross-topic208

comparisons, which must be handled as new sessions. In return, we gain a robust, self-cleaning209

memory system that entirely prevents context pollution and ensures planning reliability across long-210

running interactions, aligning with the observed “deep dive then switch” workflow of human data211

analysts.212

Details on system implementation has been provided in Appendix A.213

4 The GloboMart Benchmark Environment214

To rigorously evaluate SEA’s multi-turn, join-heavy reasoning capabilities, we developed the Globo-215

Mart benchmark, as existing datasets lack the necessary conversational depth and schematic com-216

plexity. The environment features a synthetic but realistic e-commerce data warehouse with 8217

interconnected tables (up to 6M rows each) structured in a join-heavy star schema, an industry218

standard for analytics.219

Complementing the data, we curated a benchmark of 100 conversational queries structured as220

multi-turn dialogues. These are designed to probe key capabilities, including an agent’s ability to221

handle complex multi-table joins, reuse state efficiently in follow-ups, and manage memory during222

abrupt topic switches. A detailed description of the dataset architecture and the benchmark are223

provided in Appendix B and released publicly with our source code.2224

5 Evaluation225

To assess the efficacy of the SEA framework, we conduct a comprehensive, multi-level evaluation on226

our new GloboMart benchmark. Due to the absence of publicly available, end-to-end conversational227

analytics systems that perform both data discovery and insight generation over large data warehouses,228

a direct comparative baseline is not feasible. Therefore, we adopt a rigorous intrinsic evaluation229

methodology, designed to answer three core questions: (1) Does the Planner Agent reason correctly230

by selecting the optimal execution path? (2) Are the system’s key components and final output231

accurate and efficient? (3) What does the Planner’s dynamic behavior look like in a real conversation?232

5.1 Planner Performance: Entry-Point Classification and Path Fidelity233

Our central thesis is that SEA reframes the Planner’s task into a strategic node classification problem.234

We evaluate this directly by analyzing the execution plans generated by the Planner against manually235

annotated ground-truth plans for each of our 100 benchmark queries.236

Entry-Point Accuracy We treat the selection of the first tool in the plan as a direct measure of237

the Planner’s success at the node classification task. The accuracy is measured as the percentage of238

queries where the Planner’s chosen entry-point action exactly matches the ground truth.239

Path Fidelity To measure the overall alignment of the generated plan’s reasoning trajectory with240

the ground truth, we compute the normalized Levenshtein distance. This metric captures the total241

misalignment by calculating the minimum number of single-token edits (insertions, deletions, or242

substitutions) required to change one sequence into the other. For two tool call sequences Pi and P ∗
i243

of lengths m and n, the Levenshtein distance L(Pi, P
∗
i ) is formally defined as:244

Li,j =


max(i, j) if min(i, j) = 0,

min


Li−1,j + 1

Li,j−1 + 1

Li−1,j−1 + I(Pi[i] ̸= P ∗
i [j])

otherwise.
(2)

2GloboMart dataset and the SEA source code available at: https://osf.io/buxma/files/osfstorage?
view_only=f7de66430a7b42e0acbc6330ecedd255
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We report the normalized distance, L(Pi, P
∗
i )/max(m,n), to account for varying plan lengths.245

5.2 Task Success and System Efficiency246

We evaluate the accuracy of a critical component and the final system output using a strict, binary247

classification (pass/fail) approach, complemented by an analysis of conversational latency.248

Schema Retrieval Accuracy The ability of the SchemaRetriever to identify the correct set of249

tables is a prerequisite for generating correct joins. We evaluate this as a binary task: a ’pass’ is250

awarded only if the set of table names returned by the tool exactly matches the ground-truth set251

required to answer the query.252

Final Output Correctness The end-to-end system response for each of the 100 queries was253

independently judged by two expert data analysts. A response is marked as a ’pass’ only if both254

analysts agreed that the final artifacts (DataFrame, visualization, and commentary) were entirely255

correct and fulfilled the user’s intent. Any error, including minor miscalculations or misleading256

commentary, resulted in a ’fail’.257

Conversational Latency Beyond correctness, a key measure of success for a conversational258

system is its interactive performance. To demonstrate the practical efficiency gains from our stateful259

architecture, we present illustrative latency measurements for fresh queries versus stateful follow-up260

queries. This analysis quantifies the significant reduction in response time achieved by bypassing the261

expensive Data Subsetting stage on follow-up queries.262

5.3 Qualitative Analysis of Planner Behavior263

To provide an intuitive, qualitative understanding of the Planner’s dynamic path selection in a264

multi-turn dialogue, we refer to the visualization presented in Figure 1. This figure renders the265

execution paths chosen by the Planner for a representative 4-query conversational slice from our266

benchmark (one initial query and three subsequent follow-ups). It offers a clear demonstration of267

the "multi-port entry" mechanism in action, showing how the Planner intelligently reuses state by268

initiating subsequent executions at deeper nodes in the DAG (as conceptualized in Figure 2), thereby269

avoiding redundant computation. The complete, annotated evaluation benchmark is provided in the270

supplementary material for full reproducibility.271

6 Results and Discussion272

Our evaluation demonstrates the effectiveness of the SEA framework across planner performance,273

component accuracy, and system efficiency. The key quantitative results on the GloboMart benchmark274

are summarized in Table 1.275

Table 1: Quantitative evaluation results on the GloboMart benchmark. Planner performance is
measured by its ability to select the correct entry-point and follow the optimal execution path. System
accuracy is evaluated on the critical schema retrieval step and the end-to-end output. Latency figures
highlight the efficiency gains from state reuse.

Category Metric Score
Planner Performance

Entry-Point Accuracy 95.65%
Path Fidelity (1 - Norm. Levenshtein) 92.68%

System Accuracy & Component-Level Success
Schema Retrieval Accuracy 84.06%
Final Output Correctness (Human Eval) 84.06%

System Efficiency
Avg. Latency (Fresh Query) 53.40 s
Avg. Latency (Stateful Follow-up) 34.10 s
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The results strongly support our central thesis. The Planner achieves 95.65% accuracy in the276

entry-point classification task, indicating that it can reliably identify the optimal point to resume277

the workflow. High path fidelity (92.68%) further confirms that once the entry-point is chosen, the278

subsequent plan generation is robust. This validates our approach of simplifying the agent’s task279

from open-ended planning to strategic node selection within a structured environment.280

The end-to-end system achieves a final correctness of 84.06% under strict human evaluation. Cru-281

cially, this is identical to the Schema Retrieval Accuracy. This alignment reveals that the primary282

bottleneck and source of failure is the initial data discovery step. When the SchemaRetriever283

correctly identifies the required tables, the downstream deterministic tools (QuerySynthesizer,284

AIAnalytics) are highly reliable in executing the correct logic.285

The practical benefit of SEA’s stateful design is evident in the latency metrics. Stateful follow-up286

queries bypass the high-latency Data Subsetting stage, where the QuerySynthesizer’s server call287

to the big data backend consumes the most time. As illustrated in the example in Figure 3, this288

state reuse can lead to dramatic performance gains. The follow-up query, which enters the DAG at a289

later stage, achieves a 70.7% reduction in response time, which is critical for maintaining a fluid,290

interactive conversational experience.291

Figure 3: A conversational example illustrating latency reduction via state reuse. Query 1 initiates a
new analysis, running the full DAG and incurring high latency from the data subsetting call. Query 2,
a direct follow-up, reuses the cached DataFrame, entering the DAG at a later stage (AIAnalytics)
and achieving a 70.7% reduction in response time.

Query Latency
1. What was the total marketing budget last year? 59.96 s
2. Compare budget to total spend by channel. 17.57 s

7 Conclusion292

In this work, we introduced SEA, a stateful execution environment designed to address the challenges293

of efficiency and reliability in conversational big data analytics. By modeling the analytical workflow294

as a structured DAG and introducing a dual-representation state model, SEA reframes the agent’s295

planning challenge into a more robust node classification task. This structured approach deliberately296

separates high-latency data subsetting from low-latency insight generation, enabling efficient state297

reuse across conversational turns.298

Our evaluation on the newly created GloboMart benchmark demonstrates the efficacy of this approach.299

The SEA planner achieved 95.65% accuracy in selecting the correct workflow entry-point, resulting300

in high end-to-end task success and a dramatic reduction in conversational latency for follow-up301

queries. These results highlight a broader principle for agent design: structuring the environment302

with domain-specific priors is a powerful mechanism for improving agent performance and reliability,303

shifting the burden from pure LLM reasoning to strategic optimization within a well-defined process.304

While effective, our work has limitations that suggest avenues for future research. The current305

workflow DAG is static; future systems could learn or dynamically construct these graphs to handle306

more varied analytical tasks. Our session-based memory model prevents context drift but limits307

cross-topic reasoning, pointing towards a need for more advanced memory architectures. Finally,308

with schema retrieval identified as the primary performance bottleneck, targeted improvements in309

this area represent a clear path toward even higher system accuracy. We believe that further research310

into co-designing agents and their environments will be critical to unlocking the full potential of311

LLM-based systems.312
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Appendices382

A System Implementation Setup Details383

We instantiated the SEA methodology into a concrete system for empirical validation. The core384

components were implemented using the following configuration:385

LLM Configuration We employed a two-tiered model strategy to balance reasoning capability386

with latency. For the strategic, high-level reasoning required by the Planner Agent (P), we use387

the Gemini Pro model Google [2024]. For the more constrained, latency-sensitive tasks performed388

by the individual tools—including the reranking in SchemaRetriever and the code generation in389

QuerySynthesizer and AIAnalytics—we utilize the lightweight Gemini Flash model.390

Infrastructure The action space A is realized as a suite of microservices. Each tool is exposed as391

a distinct API endpoint, developed with FastAPI and served by Uvicorn Ramírez [2018], Encode392

[2018]. The semantic indexing for the SchemaRetriever is implemented using ChromaDB as the393

vector store Chroma [2023], populated with embeddings generated by a Sentence Transformers model394

Reimers and Gurevych [2019]. For our research prototype, the Main State (S) and Twin Summary395

(S′) DAGs are managed in-memory as Python dictionaries.396

Data Backend The GloboMart dataset is stored as Parquet files on AWS S3 Amazon Web Services397

[2025], and is accessed for real-time querying via a Databricks environment configured with Unity398

Catalog Databricks [2025]. The final user-facing conversational interface is also exposed as an API399

endpoint. The complete, containerized codebase is provided in the supplementary materials to ensure400

full reproducibility.401

B The GloboMart Analytics Dataset & Conversational Query Set402

This appendix provides a comprehensive guide to the GloboMart benchmark environment, which403

was created to rigorously evaluate conversational data analysis systems. The environment consists404

of a large-scale, realistic e-commerce data warehouse and a corresponding set of 70 multi-turn405

conversational queries. The dataset has been provided in the supplementary material https://osf.406

io/buxma/files/osfstorage?view_only=f7de66430a7b42e0acbc6330ecedd255.407
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B.1 Part 1: The GloboMart Data Warehouse408

Business Context & Narrative GloboMart is a fictional global retailer with five years of simulated409

operations. The dataset captures the entire customer journey, enabling analysis across market-410

ing, web engagement, sales, and fulfillment. It is designed to answer business questions such411

as campaign effectiveness (Dim_Marketing, Fact_Web_Analytics), user behavior on the web-412

site (Fact_Web_Analytics), drivers of profitability (Fact_Sales), and supply chain efficiency413

(Dim_Shipments).414

Generation Methodology The dataset was programmatically generated using a Python-based415

simulation engine to ensure temporal consistency and analytical depth. The simulation logic, which416

ran day-by-day over a five-year period, injected realistic business patterns:417

• Seasonality: Sales volumes for relevant product categories (e.g., ’Electronics’) were in-418

creased in corresponding quarters (e.g., Q4).419

• Event-Driven Spikes: Sales were multiplied on weekends and holidays.420

• Customer Popularity: A power-law distribution ensures a realistic concentration of sales421

among a small number of customers and products.422

• Correlated Events: Website conversion events are directly linked to transactional records423

in Fact_Sales.424

Schema Architecture: The Star Schema The data warehouse employs a classic star schema,425

optimized for high-performance analytical queries. This join-heavy architecture features central Fact426

tables surrounded by descriptive Dimension tables.427

Figure 4: The star schema of the GloboMart data warehouse. Central fact tables (Fact_Sales,
Fact_Web_Analytics) are linked to surrounding main dimension tables that provide descriptive
context. Remaining two are similarily linked.

B.2 Part 2: The Conversational Query Set428

The benchmark contains 70 queries structured into conversational sessions to test a system’s ability429

to manage context, handle ambiguity, and reuse results.430

Join Complexity The query set intentionally tests performance on joins of varying complexity.431

• Single-Table Queries: e.g., "What is the average session duration?"432

• Two-Table Joins: e.g., "What were the total sales by product category?"433

• Three/Four-Table Joins: e.g., "What was the total profit from ‘High-Value’ customers in434

‘India’ last quarter?"435

Multi-Turn Conversational Flows Queries are grouped to mimic natural data exploration.436

• Drill-Downs: A user starts broad and gets more specific. (e.g., "Total sales last year"→437

"...broken down by country"→ "...just for ‘Electronics’.")438

• Topic Switches: A user finishes one line of inquiry and starts a new one, testing the439

session lifecycle. (e.g., "Thanks for the sales data. Now show me marketing campaign440

performance.")441
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Diverse Analytical Intent & Output The phrasing of queries is designed to elicit a wide range of442

analytical outputs and test presentation capabilities.443

• Analysis Types: Queries cover trend analysis, comparative analysis, and hypothetical444

scenarios.445

• Output Formats: Phrasing prompts for various outputs including KPI cards, data tables,446

natural language summaries, and diverse chart types (bar, line, geographic maps).447

• Ambiguity and Corrections: The benchmark includes natural language phenomena like448

ambiguous requests ("show me top products") and user corrections ("sorry, I meant...").449
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NeurIPS Paper Checklist450

1. Claims451

Question: Do the main claims made in the abstract and introduction accurately reflect the452

paper’s contributions and scope?453

Answer: [Yes]454

Justification: The abstract and introduction claim that structuring the agent’s environment455

simplifies the planning task and improves efficiency for conversational data analytics. Our456

experimental results in Section 6 directly validate this, showing high planner accuracy457

(95.65%) on its simplified task and a 36% average latency reduction from state reuse.458

Guidelines:459

• The answer NA means that the abstract and introduction do not include the claims460

made in the paper.461

• The abstract and/or introduction should clearly state the claims made, including the462

contributions made in the paper and important assumptions and limitations. A No or463

NA answer to this question will not be perceived well by the reviewers.464

• The claims made should match theoretical and experimental results, and reflect how465

much the results can be expected to generalize to other settings.466

• It is fine to include aspirational goals as motivation as long as it is clear that these goals467

are not attained by the paper.468

2. Limitations469

Question: Does the paper discuss the limitations of the work performed by the authors?470

Answer: [Yes]471

Justification: We discuss the limitations of our work in the Conclusion (Section 7). We472

identify the schema retrieval component as the primary performance bottleneck and discuss473

the scope of generalizability beyond our synthetic, e-commerce-focused benchmark.474

Guidelines:475

• The answer NA means that the paper has no limitation while the answer No means that476

the paper has limitations, but those are not discussed in the paper.477

• The authors are encouraged to create a separate "Limitations" section in their paper.478

• The paper should point out any strong assumptions and how robust the results are to479

violations of these assumptions (e.g., independence assumptions, noiseless settings,480

model well-specification, asymptotic approximations only holding locally). The authors481

should reflect on how these assumptions might be violated in practice and what the482

implications would be.483

• The authors should reflect on the scope of the claims made, e.g., if the approach was484

only tested on a few datasets or with a few runs. In general, empirical results often485

depend on implicit assumptions, which should be articulated.486

• The authors should reflect on the factors that influence the performance of the approach.487

For example, a facial recognition algorithm may perform poorly when image resolution488

is low or images are taken in low lighting. Or a speech-to-text system might not be489

used reliably to provide closed captions for online lectures because it fails to handle490

technical jargon.491

• The authors should discuss the computational efficiency of the proposed algorithms492

and how they scale with dataset size.493

• If applicable, the authors should discuss possible limitations of their approach to494

address problems of privacy and fairness.495

• While the authors might fear that complete honesty about limitations might be used by496

reviewers as grounds for rejection, a worse outcome might be that reviewers discover497

limitations that aren’t acknowledged in the paper. The authors should use their best498

judgment and recognize that individual actions in favor of transparency play an impor-499

tant role in developing norms that preserve the integrity of the community. Reviewers500

will be specifically instructed to not penalize honesty concerning limitations.501

3. Theory assumptions and proofs502
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Question: For each theoretical result, does the paper provide the full set of assumptions and503

a complete (and correct) proof?504

Answer: [NA]505

Justification: This paper introduces an empirical system and a benchmark; it does not present506

theoretical results, theorems, or formal proofs.507

Guidelines:508

• The answer NA means that the paper does not include theoretical results.509

• All the theorems, formulas, and proofs in the paper should be numbered and cross-510

referenced.511

• All assumptions should be clearly stated or referenced in the statement of any theorems.512

• The proofs can either appear in the main paper or the supplemental material, but if513

they appear in the supplemental material, the authors are encouraged to provide a short514

proof sketch to provide intuition.515

• Inversely, any informal proof provided in the core of the paper should be complemented516

by formal proofs provided in appendix or supplemental material.517

• Theorems and Lemmas that the proof relies upon should be properly referenced.518

4. Experimental result reproducibility519

Question: Does the paper fully disclose all the information needed to reproduce the main ex-520

perimental results of the paper to the extent that it affects the main claims and/or conclusions521

of the paper (regardless of whether the code and data are provided or not)?522

Answer: [Yes]523

Justification: We provide comprehensive details of our experimental setup, including the524

dataset architecture, benchmark design, and evaluation metrics in Section 4 and Appendix B.525

Further implementation details, including the specific LLM used and system architecture,526

are provided in Appendix A.527

Guidelines:528

• The answer NA means that the paper does not include experiments.529

• If the paper includes experiments, a No answer to this question will not be perceived530

well by the reviewers: Making the paper reproducible is important, regardless of531

whether the code and data are provided or not.532

• If the contribution is a dataset and/or model, the authors should describe the steps taken533

to make their results reproducible or verifiable.534

• Depending on the contribution, reproducibility can be accomplished in various ways.535

For example, if the contribution is a novel architecture, describing the architecture fully536

might suffice, or if the contribution is a specific model and empirical evaluation, it may537

be necessary to either make it possible for others to replicate the model with the same538

dataset, or provide access to the model. In general. releasing code and data is often539

one good way to accomplish this, but reproducibility can also be provided via detailed540

instructions for how to replicate the results, access to a hosted model (e.g., in the case541

of a large language model), releasing of a model checkpoint, or other means that are542

appropriate to the research performed.543

• While NeurIPS does not require releasing code, the conference does require all submis-544

sions to provide some reasonable avenue for reproducibility, which may depend on the545

nature of the contribution. For example546

(a) If the contribution is primarily a new algorithm, the paper should make it clear how547

to reproduce that algorithm.548

(b) If the contribution is primarily a new model architecture, the paper should describe549

the architecture clearly and fully.550

(c) If the contribution is a new model (e.g., a large language model), then there should551

either be a way to access this model for reproducing the results or a way to reproduce552

the model (e.g., with an open-source dataset or instructions for how to construct553

the dataset).554
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(d) We recognize that reproducibility may be tricky in some cases, in which case555

authors are welcome to describe the particular way they provide for reproducibility.556

In the case of closed-source models, it may be that access to the model is limited in557

some way (e.g., to registered users), but it should be possible for other researchers558

to have some path to reproducing or verifying the results.559

5. Open access to data and code560

Question: Does the paper provide open access to the data and code, with sufficient instruc-561

tions to faithfully reproduce the main experimental results, as described in supplemental562

material?563

Answer: [Yes]564

Justification: We provide open access to the GloboMart dataset, the conversational bench-565

mark, and the source code for the SEA framework. A URL is provided in a footnote in566

Section 4, and detailed documentation is in the supplementary material and Appendix B.567

Guidelines:568

• The answer NA means that paper does not include experiments requiring code.569

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/570

public/guides/CodeSubmissionPolicy) for more details.571

• While we encourage the release of code and data, we understand that this might not be572

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not573

including code, unless this is central to the contribution (e.g., for a new open-source574

benchmark).575

• The instructions should contain the exact command and environment needed to run to576

reproduce the results. See the NeurIPS code and data submission guidelines (https:577

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.578

• The authors should provide instructions on data access and preparation, including how579

to access the raw data, preprocessed data, intermediate data, and generated data, etc.580

• The authors should provide scripts to reproduce all experimental results for the new581

proposed method and baselines. If only a subset of experiments are reproducible, they582

should state which ones are omitted from the script and why.583

• At submission time, to preserve anonymity, the authors should release anonymized584

versions (if applicable).585

• Providing as much information as possible in supplemental material (appended to the586

paper) is recommended, but including URLs to data and code is permitted.587

6. Experimental setting/details588

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-589

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the590

results?591

Answer: [Yes]592

Justification: Full details of the experimental setting, including the LLM used for the Planner,593

system architecture, and evaluation protocols, are provided in Appendix A.594

Guidelines:595

• The answer NA means that the paper does not include experiments.596

• The experimental setting should be presented in the core of the paper to a level of detail597

that is necessary to appreciate the results and make sense of them.598

• The full details can be provided either with the code, in appendix, or as supplemental599

material.600

7. Experiment statistical significance601

Question: Does the paper report error bars suitably and correctly defined or other appropriate602

information about the statistical significance of the experiments?603

Answer: [No]604
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Justification: Due to the high cost of running the full 100-query benchmark and conducting605

human evaluations, we report results from a single comprehensive run. We acknowledge606

that reporting error bars over multiple runs would strengthen our results, but this was607

computationally prohibitive for the current work.608

Guidelines:609

• The answer NA means that the paper does not include experiments.610

• The authors should answer "Yes" if the results are accompanied by error bars, confi-611

dence intervals, or statistical significance tests, at least for the experiments that support612

the main claims of the paper.613

• The factors of variability that the error bars are capturing should be clearly stated (for614

example, train/test split, initialization, random drawing of some parameter, or overall615

run with given experimental conditions).616

• The method for calculating the error bars should be explained (closed form formula,617

call to a library function, bootstrap, etc.)618

• The assumptions made should be given (e.g., Normally distributed errors).619

• It should be clear whether the error bar is the standard deviation or the standard error620

of the mean.621

• It is OK to report 1-sigma error bars, but one should state it. The authors should622

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis623

of Normality of errors is not verified.624

• For asymmetric distributions, the authors should be careful not to show in tables or625

figures symmetric error bars that would yield results that are out of range (e.g. negative626

error rates).627

• If error bars are reported in tables or plots, The authors should explain in the text how628

they were calculated and reference the corresponding figures or tables in the text.629

8. Experiments compute resources630

Question: For each experiment, does the paper provide sufficient information on the com-631

puter resources (type of compute workers, memory, time of execution) needed to reproduce632

the experiments?633

Answer: [Yes]634

Justification: We provide details on the computational resources used for our experiments,635

including the type of GPU, the LLM API used for the Planner, and average query execution636

times, in Appendix A.637

Guidelines:638

• The answer NA means that the paper does not include experiments.639

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,640

or cloud provider, including relevant memory and storage.641

• The paper should provide the amount of compute required for each of the individual642

experimental runs as well as estimate the total compute.643

• The paper should disclose whether the full research project required more compute644

than the experiments reported in the paper (e.g., preliminary or failed experiments that645

didn’t make it into the paper).646

9. Code of ethics647

Question: Does the research conducted in the paper conform, in every respect, with the648

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?649

Answer: [Yes]650

Justification: We have reviewed the NeurIPS Code of Ethics and believe our research, which651

focuses on a synthetic dataset and system development for data analytics, conforms to its652

principles.653

Guidelines:654

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.655

• If the authors answer No, they should explain the special circumstances that require a656

deviation from the Code of Ethics.657
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-658

eration due to laws or regulations in their jurisdiction).659

10. Broader impacts660

Question: Does the paper discuss both potential positive societal impacts and negative661

societal impacts of the work performed?662

Answer: [Yes]663

Justification: We discuss the broader societal impacts in the Conclusion. Positive impacts664

include democratizing data access for non-technical users, while potential negative impacts665

include the risk of users over-relying on or misinterpreting AI-generated insights.666

Guidelines:667

• The answer NA means that there is no societal impact of the work performed.668

• If the authors answer NA or No, they should explain why their work has no societal669

impact or why the paper does not address societal impact.670

• Examples of negative societal impacts include potential malicious or unintended uses671

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations672

(e.g., deployment of technologies that could make decisions that unfairly impact specific673

groups), privacy considerations, and security considerations.674

• The conference expects that many papers will be foundational research and not tied675

to particular applications, let alone deployments. However, if there is a direct path to676

any negative applications, the authors should point it out. For example, it is legitimate677

to point out that an improvement in the quality of generative models could be used to678

generate deepfakes for disinformation. On the other hand, it is not needed to point out679

that a generic algorithm for optimizing neural networks could enable people to train680

models that generate Deepfakes faster.681

• The authors should consider possible harms that could arise when the technology is682

being used as intended and functioning correctly, harms that could arise when the683

technology is being used as intended but gives incorrect results, and harms following684

from (intentional or unintentional) misuse of the technology.685

• If there are negative societal impacts, the authors could also discuss possible mitigation686

strategies (e.g., gated release of models, providing defenses in addition to attacks,687

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from688

feedback over time, improving the efficiency and accessibility of ML).689

11. Safeguards690

Question: Does the paper describe safeguards that have been put in place for responsible691

release of data or models that have a high risk for misuse (e.g., pretrained language models,692

image generators, or scraped datasets)?693

Answer: [NA]694

Justification: Our work does not release a new pre-trained language model or a scraped695

dataset with high-risk content. The released assets are a synthetic dataset generated without696

real user data and source code for our system, which we deem to pose no direct high risk for697

misuse.698

Guidelines:699

• The answer NA means that the paper poses no such risks.700

• Released models that have a high risk for misuse or dual-use should be released with701

necessary safeguards to allow for controlled use of the model, for example by requiring702

that users adhere to usage guidelines or restrictions to access the model or implementing703

safety filters.704

• Datasets that have been scraped from the Internet could pose safety risks. The authors705

should describe how they avoided releasing unsafe images.706

• We recognize that providing effective safeguards is challenging, and many papers do707

not require this, but we encourage authors to take this into account and make a best708

faith effort.709

12. Licenses for existing assets710
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in711

the paper, properly credited and are the license and terms of use explicitly mentioned and712

properly respected?713

Answer: [Yes]714

Justification: We credit the open-source libraries and specify the large language model used715

in our work in Appendix A. The terms of use for the proprietary LLM API were respected716

during our research.717

Guidelines:718

• The answer NA means that the paper does not use existing assets.719

• The authors should cite the original paper that produced the code package or dataset.720

• The authors should state which version of the asset is used and, if possible, include a721

URL.722

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.723

• For scraped data from a particular source (e.g., website), the copyright and terms of724

service of that source should be provided.725

• If assets are released, the license, copyright information, and terms of use in the726

package should be provided. For popular datasets, paperswithcode.com/datasets727

has curated licenses for some datasets. Their licensing guide can help determine the728

license of a dataset.729

• For existing datasets that are re-packaged, both the original license and the license of730

the derived asset (if it has changed) should be provided.731

• If this information is not available online, the authors are encouraged to reach out to732

the asset’s creators.733

13. New assets734

Question: Are new assets introduced in the paper well documented and is the documentation735

provided alongside the assets?736

Answer: [Yes]737

Justification: We provide comprehensive documentation for our new assets, the GloboMart738

dataset and conversational benchmark, in Appendix B. The documentation includes the739

generation methodology, schema, and query design principles, and is released alongside the740

assets.741

Guidelines:742

• The answer NA means that the paper does not release new assets.743

• Researchers should communicate the details of the dataset/code/model as part of their744

submissions via structured templates. This includes details about training, license,745

limitations, etc.746

• The paper should discuss whether and how consent was obtained from people whose747

asset is used.748

• At submission time, remember to anonymize your assets (if applicable). You can either749

create an anonymized URL or include an anonymized zip file.750

14. Crowdsourcing and research with human subjects751

Question: For crowdsourcing experiments and research with human subjects, does the paper752

include the full text of instructions given to participants and screenshots, if applicable, as753

well as details about compensation (if any)?754

Answer: [Yes]755

Justification: Details of our human evaluation protocol, including the guidelines and criteria756

given to the expert evaluators for assessing the end-to-end quality of system responses, are757

provided in Appendix A. No external crowdsourcing was used.758

Guidelines:759

• The answer NA means that the paper does not involve crowdsourcing nor research with760

human subjects.761
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• Including this information in the supplemental material is fine, but if the main contribu-762

tion of the paper involves human subjects, then as much detail as possible should be763

included in the main paper.764

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,765

or other labor should be paid at least the minimum wage in the country of the data766

collector.767

15. Institutional review board (IRB) approvals or equivalent for research with human768

subjects769

Question: Does the paper describe potential risks incurred by study participants, whether770

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)771

approvals (or an equivalent approval/review based on the requirements of your country or772

institution) were obtained?773

Answer: [NA]774

Justification: Our research involved expert human evaluators (the authors) assessing the qual-775

ity of system-generated text and visualizations. This task poses minimal risk to participants776

and, in our institutional context, did not require formal IRB approval.777

Guidelines:778

• The answer NA means that the paper does not involve crowdsourcing nor research with779

human subjects.780

• Depending on the country in which research is conducted, IRB approval (or equivalent)781

may be required for any human subjects research. If you obtained IRB approval, you782

should clearly state this in the paper.783

• We recognize that the procedures for this may vary significantly between institutions784

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the785

guidelines for their institution.786

• For initial submissions, do not include any information that would break anonymity (if787

applicable), such as the institution conducting the review.788

16. Declaration of LLM usage789

Question: Does the paper describe the usage of LLMs if it is an important, original, or790

non-standard component of the core methods in this research? Note that if the LLM is used791

only for writing, editing, or formatting purposes and does not impact the core methodology,792

scientific rigorousness, or originality of the research, declaration is not required.793

Answer: [Yes]794

Justification: The core of our proposed SEA framework is an LLM-based planner, as795

described throughout the paper (e.g., Section ??). The LLM’s role as the agent’s reasoning796

engine is a central and non-standard component of our system’s architecture.797

Guidelines:798

• The answer NA means that the core method development in this research does not799

involve LLMs as any important, original, or non-standard components.800

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)801

for what should or should not be described.802

20

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Agentic Architectures for Data Analytics
	State Management as the Core Challenge
	Core Capabilities for Data Interaction

	The SEA Methodology
	The Action Space (A): A Composable Analytics Toolset
	The State Space (S): A Dual-Representation DAG
	The Core Operational Loop: Planner–Executor Interaction
	Context and Memory: A Session-Lifecycle Approach

	The GloboMart Benchmark Environment
	Evaluation
	Planner Performance: Entry-Point Classification and Path Fidelity
	Task Success and System Efficiency
	Qualitative Analysis of Planner Behavior

	Results and Discussion
	Conclusion
	System Implementation Setup Details
	The GloboMart Analytics Dataset & Conversational Query Set
	Part 1: The GloboMart Data Warehouse
	Part 2: The Conversational Query Set


