
Fast Optimizer Benchmark

Simon Blauth*,1 Tobias Bürger*,1 Zacharias Häringer*,1 Jörg K.H. Franke1 Frank Hutter2,1

*These authors contributed equally to this work, sharing first authorship
1University of Freiburg
2ELLIS Institute Tübingen

Abstract In this paper, we present the Fast Optimizer Benchmark (FOB), a tool designed for evalu-
ating deep learning optimizers during their development. The benchmark supports tasks
from multiple domains such as computer vision, natural language processing, and graph
learning. The focus is on convenient usage, featuring human-readable YAML configurations,
SLURM integration, and plotting utilities. FOB can be used together with existing hyperpa-
rameter optimization (HPO) tools as it handles training and resuming of runs. The modular
design enables integration into custom pipelines, using it simply as a collection of tasks. We
showcase an optimizer comparison as a usage example of our tool. FOB can be found on
GitHub: https://github.com/automl/FOB.

Keywords: benchmark, deep learning, neural network, training algorithms, optimizer

1 Introduction

Deep learning training algorithms, often simply called optimizers, play an integral role in the
training process of modern AI models. Therefore, improving optimizers’ development is a valuable
contribution to the research community. One of the challenges of developing new optimizers
is to measure their performance accurately. Researchers need fast, reliable, and reproducible
performance measures starting from the early stages of the development cycle.

Our aim with this tool is to provide a first indication whether a new optimizer has potential. To
achieve this, we offer a user-friendly development platform that can be easily extended to meet
individual needs when comparing different optimizers. We provide tasks from different domains,
baseline optimizers, and a convenient way to run experiments with our YAML configuration
workflow. Other convenience features like SLURM integration and plotting utilities are also
included. Results can be reproduced by sharing the configuration YAML file. A fixed collection of
tasks is not only necessary for an optimizer benchmark but is also a valuable resource for other
applications. Due to the modular design, the provided tasks can be reused in custom training
pipelines or together with existing HPO tools. The tool is also convenient to set up because it does
not require dataset registration, cutting down on initial setup time.

1.1 Related Work

In this section, we review several existing benchmarks that are relevant to our work.
AlgoPerf [Dahl et al., 2023] is an extensive optimizer benchmark that focuses on large tasks and
implements a time-to-result benchmark with fixed hardware requirements. However, it has limita-
tions due to the necessity for dataset registration and its restriction to large-scale tasks only. For a
competitive benchmark result it is still the better option.
MLPerf [Mattson et al., 2020] includes a variety of large tasks but lacks a unified structure to
compare optimizers independently of the tasks. Each task requires a separate setup and execution,
making it less convenient for benchmarking optimizers.
DeepOBS [Schneider et al., 2019] was an early benchmark, but except for one it only features very

AutoML 2024 Workshop Track © 2024 the authors, released under CC BY 4.0

mailto:blauths@cs.uni-freiburg.de
mailto:buergert@cs.uni-freiburg.de
mailto:haeringz@cs.uni-freiburg.de
mailto:frankej@cs.uni-freiburg.de
https://github.com/automl/FOB
https://creativecommons.org/licenses/by/4.0/


small tasks. Additionally, it is now considered obsolete with AlgoPerf being its successor.
Deep Learning Benchmark Suite1 only features image datasets and focuses on evaluating accelera-
tors and frameworks rather than optimizers.
Benchopt [Moreau et al., 2022] is a benchmarking suite with a focus on machine learning. It also
features one small deep learning task and uses yaml configurations similar to FOB.

1.2 Measuring Optimizer Performance

Optimizer performance can be measured in two primary ways.
The first method focuses on the time to achieve a certain score, either a predefined performance
threshold or the peak performance of the training run. The second method involves fixing the
training duration and then measuring the final performance. This can be done by setting a fixed
number of epochs or by limiting the wall time.
Another important aspect is the optimizer’s sensitivity to its hyperparameters. Optimizers with
good defaults that are easy to tune are more desirable, as they reduce the need for extensive tuning
and make it easier to achieve optimal performance across different tasks.

The decision for FOB is to train for a fixed number of epochs and then report the best and last
performance. This strategy ensures that scores are available even for underperforming optimizers
or those with suboptimal hyperparameter configurations. By using epochs instead of wall time,
we maintain hardware independence, although this approach can be exploited by optimizers with
heavy computations. The chosen number of epochs also influences the outcome: a tight limit favors
faster optimizers, while a more generous limit favors those achieving better peak performance.

2 Methods

Our tool is built upon the deep learning framework PyTorch Lightning [Falcon and The PyTorch
Lightning team, 2019]. It follows the same abstraction idea and organizes essential deep learning
components into exchangeable and extensible modules. The two key modules are Tasks and
Optimizers. Training and evaluation are handled by the core engine. Users can decide which
task-optimizer pair to train; they can configure training parameters and optimizer hyperparameters,
and specify some model parameters. Configurations are written in human-readable YAML files.
Users can quickly assess their results with heatmaps that are being plotted after the evaluation of
the model finishes.

2.1 Optimizer

Besides optimizers, learning rate schedulers are important for adjusting parameter updates during
training. In this benchmark, we treat both together as the optimizer being evaluated. A small
collection of optimizers has been implemented as baselines, and to reproduce results from literature
references. In addition to SGD with Momentum [Sutskever et al., 2013] and Adafactor [Shazeer
and Stern, 2018], the baselines include implementations of AdamW [Loshchilov and Hutter, 2019]
and AdamCPR [Franke et al., 2023], all with a cosine annealing scheduler [Loshchilov and Hutter,
2017].

2.1.1 Adding an Optimizer. In an optimizer benchmark, it is a common use case to add your own
optimizer and compare it against a baseline. This process was designed to be easy and convenient.
One can add their own implementation of an optimizer by simply following the template in the
repository. The Python code is added in a single file and no further understanding of the complete
code base is required. The user has to implement a function with the following API.

1 configure_optimizers(model: GroupedModel , config: OptimizerConfig)

2 -> OptimizerLRScheduler:

1https://github.com/HewlettPackard/dlcookbook-dlbs

2

https://github.com/automl/FOB


2.2 Tasks

The benchmarking process involves multiple tasks, each comprising a predefinedmodel architecture,
training, validation, and test datasets, along with specified performance metrics. As this benchmark
aims to be budget-friendly, each task must be appropriately sized. Training times are constrained
to ensure completion of the full suite within one day on a single node with 4 GPUs. The tasks cover
a range of domains, model architectures, and sizes to ensure generalization and fair comparisons.
Popular domains, such as computer vision and natural language processing, have been allocated
the largest share of training time.

TheMNIST, Classification Small, Classification and Segmentation tasks from the computer vision
domain utilize the MNIST, CIFAR-100, ImageNet-64, and ADE20K datasets [Chrabaszcz et al., 2017;
Krizhevsky, 2009; Lecun et al., 1998; Zhou et al., 2017]. We employ models such as MLP, ResNet,
Wide-ResNet, and SegFormer [He et al., 2016; Xie et al., 2021; Zagoruyko and Komodakis, 2016].

In the Translation task from the natural language processing domain, the goal is to translate
between English and German sentences from the WMT17 dataset [Macháček and Bojar, 2013]
using a small T5 transformer [Raffel et al., 2020].

For the Graph Tiny and Graph tasks, we utilize the Cora dataset and the molecular ogb-molhiv
dataset [Hu et al., 2020; McCallum et al., 2000]. We leverage graph neural network models such as
a simple Graph Convolutional Network (GCN) and a Graph Isomorphism Network (GIN) [Kipf and
Welling, 2017; Xu et al., 2019].

Lastly the Tabular task employs a FT-Transformer on the tabular California Housing dataset
[Gorishniy et al., 2021; Kelley Pace and Barry, 1997].

Dataset Model Problem Type GPUs Runtime
MNIST MLP Image Classification 1 1 min
Cora GCN Node Classification 1 1 min
California Housing FT Transformer Tabular Regression 1 2 min
CIFAR100 Resnet18 Image Classification 1 10 min
ogbg-molhiv GIN Graph Property Prediction 1 20 min
Imagenet-64x64 Wide ResNet Image Classification 4 4 h
MIT Scene Parse SegFormer Semantic Segmentation 4 5 h
WMT17(en-de) T5 small Machine Translation 4 6 h

Table 1: The ensemble of tasks in FOB. Runtime was measured on 4xA100 40GB GPUs, 128GB RAM.
For comprehensive details, refer to the repository.

2.2.1 Modifying a Task. Minor modifications can be applied to the models used, with certain parameters
already accessible through the YAML configuration files. Common examples include adjustments
to train transformations, dropout rates, and hidden channel sizes. Furthermore, users can easily
adapt existing tasks by making a single code change and adding an entry to the default.yaml file,
such as modifying the activation function.
Users can also introduce their own tasks, enabling coverage of more domains where specific
optimizers may excel. To facilitate user contributions, the repository includes a template and
instructions for adding custom tasks.

2.3 Usage

Our tool tries to cover a wide range of use cases. We want users to be able to get started quickly
but also give them the freedom to integrate it into their existing workflows.

3

https://github.com/automl/FOB
https://github.com/automl/FOB


2.3.1 Running Experiments. Users specify their experimental setup through a single YAML configuration
file. Once the configuration is set, the tool handles all other aspects of running the experiment,
including data loading, model training, and evaluation. This makes it easy to set up and run
experiments without needing to write any code. FOB also has a built-in grid-search functionality
to explore hyperparameters. Tasks and optimizers come with sensible default values, and users
have the option to overwrite them as needed by simply including them in their experiment files.
We suggest referring to the corresponding default YAML files to explore all available configurable
options. The repository contains several helpful examples of experiments for reference.

2.3.2 Integration with Existing Tools. For more advanced HPO, users can integrate FOB with existing
HPO tools like SMAC [Lindauer et al., 2022] or Optuna [Akiba et al., 2019]. Although advanced
HPO is not built into FOB, its engine supports training and checkpointing, allowing users to resume
runs. Examples using SMAC are provided in the repository, showcasing how to implement this
integration. In section 3, we present experimental results that were obtained using SMAC.

2.3.3 Using Tasks in Your Own Pipeline. The modular design of FOB allows researchers to use it purely
as a collection of tasks and integrate them into their own frameworks or benchmarking setups.
This enables researchers to benefit from FOB’s task collection without being constrained by the
tool’s architecture. For pointers on how you might do this see appendix C. An example of this use
case is available in our repository, demonstrating how to use FOB tasks with NePS [Stoll et al.,
2023].

3 Experiments

We conducted experiments using SMAC [Lindauer et al., 2022] on four of our smaller tasks to
evaluate the performance of three optimizers: AdamW, AdamCPR, and SGD [Franke et al., 2023;
Loshchilov and Hutter, 2019; Sutskever et al., 2013]. For experiments utilizing our full suite of tasks,
refer to appendix D.

The hyperparameters of each optimizer were tuned using SMAC, see appendix A for the search
space. Multi-Fidelity-Optimization was used with the training epochs as budget. The intensifier
used was Hyperband [Li et al., 2018] with 𝜂 = 3. Each optimizer was tuned for 250 trials with 10%
initial configurations. For each optimizer, we took the best configuration returned by SMAC and
retrained them on three seeds 𝑠 ∈ {1, 2, 3} to obtain the test performance detailed in table 2. For
each task and optimizer, we report the test performance of the last model checkpoint as well as the
test performance of the model checkpoint with the best validation performance. The models were
trained using A100 and A40 GPUs on the HELIX cluster.

Task Class. Small Graph Graph Tiny Tabular
Metric Accuracy ↑ ROC AUC ↑ Accuracy ↑ RMSE ↓
AdamCPR best 77.2 ± 0.16 75.57 ± 3.13 80.27 ± 0.32 0.403 ± 0.011
AdamW best 77.29 ± 0.17 75.75 ± 1.04 80.63 ± 1.0 0.401 ± 0.008
SGD best 77.27 ± 0.28 75.89 ± 0.58 14.47 ± 3.45 0.419 ± 0.007
AdamCPR last 77.1 ± 0.2 76.86 ± 1.06 79.5 ± 0.61 0.399 ± 0.005
AdamW last 77.18 ± 0.14 75.86 ± 0.35 81.4 ± 0.35 0.401 ± 0.005
SGD last 77.0 ± 0.49 75.99 ± 1.34 14.83 ± 3.67 0.421 ± 0.008

Table 2: Performance per task of best hyperparameter configuration found by SMAC evaluated on
three seeds.

4

https://github.com/automl/FOB
https://github.com/automl/FOB


3.1 Discussion

On the Classification Small task, all optimizers performed similarly, with AdamW slightly out-
performing the others. For the Graph task, AdamCPR last achieved the highest performance,
demonstrating an advantage over the other optimizers. On the Graph Tiny task, AdamW achieved
the highest score, while SGD performed poorly. In the Tabular task, the results were similar across
all optimizers, with AdamCPR achieving the best result.

Overall, both AdamW and AdamCPR performed similarly, obtaining consistent results across
the tasks. In contrast, SGD exhibited clear weaknesses, particularly in the Graph Tiny and Tabular
tasks, where its performance was significantly lower than that of AdamW and AdamCPR.

4 Broader Impact & Limitations

Large-scale benchmarks can require high computational efforts. We aim to mitigate this issue
by including small tasks in our benchmark suite. When running the entire suite, especially with
many hyperparameter configurations, the computations can still be expensive. For example our
experiment detailed in appendix D required approximately 2400 GPU hours on A100 GPUs. With
an estimated carbon efficiency of 0.432 kg of CO2 per kWh, the total carbon emission from this
experiment is approximately 260 kg of CO2. In contrast, our experiment in section 3, which only
used smaller tasks, required approximately 165 GPU hours and 18 kg of CO2. This shows that the
inclusion of smaller tasks with a modular approach enables researchers to conduct experiments
with smaller environmental footprints. We do not expect any new societal risk to arise from this
work since we only use already existing models and publicly available datasets.

The limitations of our contribution include the absence of very large tasks in our benchmark,
which might lead to some aspects not being captured correctly. However, there are already tools
that achieve this (e.g. AlgoPerf [Dahl et al., 2023]). Also, some fields of deep learning like speech
recognition are not covered. Since our tool is designed to be extensible, we hope that these gaps
might be filled in the future. Since we built our tool upon PyTorch Lightning [Falcon and The
PyTorch Lightning team, 2019], we are restricted to the hardware supported by that framework, so
some hardware might not work with FOB.

5 Conclusion

In this paper, we introduced the Fast Optimizer Benchmark (FOB), a convenient and extensible
tool designed for evaluating deep learning optimizers across diverse tasks. FOB supports tasks
from multiple domains, offers easy configuration through YAML files, and includes features such
as SLURM integration to support distributed computing on clusters. Additionally, the modular
design of FOB facilitates its use for various purposes, including hyperparameter optimization (HPO),
by allowing easy integration with other tools. We showcased the usage of FOB and conducted
experiments to demonstrate its capabilities.

An important open question remains for future work: To what degree do the results of this
benchmark correlate with larger, related benchmarks? Establishing a reliable and cost-effective
proxy for extensive benchmarks like AlgoPerf would greatly benefit the research community.

Acknowledgements. The authors acknowledge support by the state of Baden-Württemberg through
bwHPC and the German Research Foundation (DFG) through grant INST 35/1597-1 FUGG.

5



References

Akiba, T. et al. (2019). “Optuna: A Next-generation Hyperparameter Optimization Framework”.
In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. Ed. by A. Teredesai et al. ACM,
pp. 2623–2631. url: https://doi.org/10.1145/3292500.3330701.

Chrabaszcz, P., I. Loshchilov, and F. Hutter (2017). A Downsampled Variant of ImageNet as an
Alternative to the CIFAR datasets. arXiv: 1707.08819 [cs.CV].

Dahl, G. E. et al. (2023). Benchmarking Neural Network Training Algorithms. arXiv: 2306.07179
[cs.LG].

Falcon, W. and The PyTorch Lightning team (2019). PyTorch Lightning. Version 1.4. url: https:
//github.com/Lightning-AI/lightning.

Franke, J. K. H. et al. (2023). Constrained Parameter Regularization. arXiv: 2311.09058 [cs.LG].
Gorishniy, Y. et al. (2021). “Revisiting Deep Learning Models for Tabular Data”. In: Advances in

Neural Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Ed. byM. Ranzato et al., pp. 18932–18943.
url: https://proceedings.neurips.cc/paper/2021/hash/9d86d83f925f2149e9edb0ac3b49229c-
Abstract.html.

He, K. et al. (2016). “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, pp. 770–778. url: https://doi.org/10.1109/CVPR.2016.90.

Hu, W. et al. (2020). “Open Graph Benchmark: Datasets for Machine Learning on Graphs”. In:
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by H. Larochelle et al.
url: https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-
Abstract.html.

Kelley Pace, R. and R. Barry (1997). “Sparse spatial autoregressions”. In: Statistics & Probability Letters
33.3, pp. 291–297. url: https://www.sciencedirect.com/science/article/pii/S016771529600140X.

Kipf, T. N. and M. Welling (2017). “Semi-Supervised Classification with Graph Convolutional
Networks”. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net. url: https://openreview.
net/forum?id=SJU4ayYgl.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech. rep.
Lecun, Y. et al. (1998). “Gradient-Based Learning Applied to Document Recognition”. In: Proceedings

of the IEEE 86, pp. 2278–2324.
Li, L. et al. (2018). “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization”.

In: Journal of Machine Learning Research 18.185, pp. 1–52. url: http://jmlr.org/papers/v18/16-
558.html.

Lindauer, M. et al. (2022). “SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
Optimization”. In: J. Mach. Learn. Res. 23, 54:1–54:9. url: http : / / jmlr.org/papers/v23/21-
0888.html.

Loshchilov, I. and F. Hutter (2017). “SGDR: Stochastic Gradient Descent with Warm Restarts”. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. url: https://openreview.net/forum?id=
Skq89Scxx.

Loshchilov, I. and F. Hutter (2019). “Decoupled Weight Decay Regularization”. In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. url: https://openreview.net/forum?id=Bkg6RiCqY7.

6

https://doi.org/10.1145/3292500.3330701
https://arxiv.org/abs/1707.08819
https://arxiv.org/abs/2306.07179
https://arxiv.org/abs/2306.07179
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://arxiv.org/abs/2311.09058
https://proceedings.neurips.cc/paper/2021/hash/9d86d83f925f2149e9edb0ac3b49229c-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/9d86d83f925f2149e9edb0ac3b49229c-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7


Macháček, M. and O. Bojar (2013). “Results of the WMT13 Metrics Shared Task”. In: Proceedings
of the Eighth Workshop on Statistical Machine Translation. Sofia, Bulgaria: Association for
Computational Linguistics, pp. 45–51. url: https://aclanthology.org/W13-2202.

Mattson, P. et al. (2020). “MLPerf Training Benchmark”. In: Proceedings of Machine Learning and Sys-
tems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. Ed. by I. S. Dhillon, D. S. Papailiopoulos,
and V. Sze. mlsys.org. url: https://proceedings.mlsys.org/book/309.pdf.

McCallum, A. K. et al. (2000). “Automating the Construction of Internet Portals with Machine Learn-
ing”. In: Information Retrieval 3.2, pp. 127–163. url: https://doi.org/10.1023/A:1009953814988.

Moreau, T. et al. (2022). “Benchopt: Reproducible, efficient and collaborative optimization bench-
marks”. In: NeurIPS. url: https://arxiv.org/abs/2206.13424.

Raffel, C. et al. (2020). “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer”. In: J. Mach. Learn. Res. 21, 140:1–140:67. url: http://jmlr.org/papers/v21/20-
074.html.

Schneider, F., L. Balles, and P. Hennig (2019). “DeepOBS: A Deep Learning Optimizer Benchmark
Suite”. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net. url: https://openreview.net/forum?id=rJg6ssC5Y7.

Shazeer, N. and M. Stern (2018). “Adafactor: Adaptive Learning Rates with Sublinear Memory
Cost”. In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by J. G. Dy and A. Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, pp. 4603–4611. url: http://proceedings.mlr.
press/v80/shazeer18a.html.

Stoll, D. et al. (2023). Neural Pipeline Search (NePS). Version 0.11.0. url: https://github.com/automl/
neps.

Sutskever, I. et al. (2013). “On the importance of initialization and momentum in deep learning”.
In: Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013. Vol. 28. JMLR Workshop and Conference Proceedings. JMLR.org,
pp. 1139–1147. url: http://proceedings.mlr.press/v28/sutskever13.html.

Xie, E. et al. (2021). “SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers”. In: Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Ed. by
M. Ranzato et al., pp. 12077–12090. url: https://proceedings.neurips.cc/paper/2021/hash/
64f1f27bf1b4ec22924fd0acb550c235-Abstract.html.

Xu, K. et al. (2019). “How Powerful are Graph Neural Networks?” In: 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
url: https://openreview.net/forum?id=ryGs6iA5Km.

Zagoruyko, S. and N. Komodakis (2016). “Wide Residual Networks”. In: Proceedings of the British
Machine Vision Conference 2016, BMVC 2016, York, UK, September 19-22, 2016. Ed. by R. C. Wilson,
E. R. Hancock, and W. A. P. Smith. BMVA Press. url: http://www.bmva.org/bmvc/2016/papers/
paper087/index.html.

Zhou, B. et al. (2017). “Scene Parsing through ADE20K Dataset”. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE
Computer Society, pp. 5122–5130. url: https://doi.org/10.1109/CVPR.2017.544.

7

https://aclanthology.org/W13-2202
https://proceedings.mlsys.org/book/309.pdf
https://doi.org/10.1023/A:1009953814988
https://arxiv.org/abs/2206.13424
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=rJg6ssC5Y7
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
https://github.com/automl/neps
https://github.com/automl/neps
http://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.neurips.cc/paper/2021/hash/64f1f27bf1b4ec22924fd0acb550c235-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/64f1f27bf1b4ec22924fd0acb550c235-Abstract.html
https://openreview.net/forum?id=ryGs6iA5Km
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
https://doi.org/10.1109/CVPR.2017.544


Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See section 4

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See section 4

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?
https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same
benchmarks, data (sub)sets, available resources)? [Yes] See section 3.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,
search spaces, hyperparameter tuning)? [Yes] All of the experimental details are either
specified in the paper or in our repository.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account
for the impact of randomness in your methods or data? [Yes] Some experiments were
conducted on multiple seeds see appendix D. Others had only one seed, see section 3. We
always disclose the seeds used.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or
splits)? [Yes] Where applicable, see appendix D.

(e) Did you report the statistical significance of your results? [No] We did not report the
statistical significance explicitly. However, we mention whether results are statistically
significant in our discussion, see appendix D.3.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] Our contribu-
tion contains a tabular dataset as well as other real datasets. The evaluation was achievable
using real datasets, eliminating the need for surrogate ones.

(g) Did you compare performance over time and describe how you selected the maximum
duration? [Yes] We monitored the training with tensorboard and selected training durations
manually. We tried to keep training as short as possible while still achieving reasonable
performance.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [Yes] See table 1 and section 4

(i) Did you run ablation studies to assess the impact of different components of your approach?
[N/A] Our tool offers a huge range of customization options. Running ablation studies on
all of them is not feasible.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results, including all requirements (e.g., requirements.txt with explicit versions), random
seeds, an instructive README with installation, and execution commands (either in the
supplemental material or as a url)? [Yes] See repository.

8

https://2022.automl.cc/ethics-accessibility/
https://github.com/automl/FOB


(b) Did you include a minimal example to replicate results on a small subset of the experiments
or on toy data? [Yes] See repository.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute
and understand your code? [Yes] See repository.

(d) Did you include the raw results of running your experiments with the given code, data, and
instructions? [Yes] See release in our repository, we added the raw results as a zip file.

(e) Did you include the code, additional data, and instructions needed to generate the figures
and tables in your paper based on the raw results? [Yes] See repository.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating if the license requires it? [N/A] We used publicly available datasets.

(c) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]We use only publicly available datasets and existing
models.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]
See repository.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,
GitHub or Hugging Face)? [Yes] See repository.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A] We did not use crowdsourcing or conducted research with human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A] We did not use crowdsourcing or conducted research
with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A] We did not use crowdsourcing or conducted research
with human subjects.

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We did not include
theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] We did not include
theoretical results.

9

https://github.com/automl/FOB
https://github.com/automl/FOB
https://github.com/automl/FOB
https://github.com/automl/FOB
https://github.com/automl/FOB
https://github.com/automl/FOB


A Hyperparameter Search Spaces

The searchspace detailed in table 3 was used as an input for SMAC [Lindauer et al., 2022]. For more
details on the experiment refer to section 3.

Hyperparameter AdamW AdamCPR SGD
Learning Rate Log [1e-5, 1e-1] Log [1e-5, 1e-1] Log [1e-5, 1e-1]
Minimal LR Log [0.1%, 10%] Log [0.1%, 10%] Log [0.1%, 10%]
LR Warmup Log [0.1%, 100%] Log [0.1%, 100%] Log [0.1%, 100%]
Weight Decay Log [1e-5, 1] - Log [1e-5, 1]
1 − 𝛽1 Log [1e-2, 2e-1] Log [1e-2, 2e-1] -
𝛽2 [0.9, 0.999] [0.9, 0.999] -
Momentum - - [0, 1]
Kappa Init Param - Log [1, 19550] -
Kappa Init Method - warm_start -

Table 3: The respective hyperparameter search spaces for the AdamW, AdamCPR and SGD optimizers
used in the SMAC experiment.

B Usage Example: YAML configuration

Here we provide some examples of how a user can configure FOB using YAML configuration files.

1 task:

2 name: mnist

3 max_epochs: 10

4 model:

5 num_hidden: 42

6 optimizer:

7 name: adamw_baseline

8 learning_rate: 1.0e-2

Training on the MNIST task for 10 epochs.
It is possible to make some changes to
the model like the number of hidden units.
AdamW is used as an optimizer and the learn-
ing rate is set. All parameters that are not
specified in the configuration are taken from
a default file.

Figure 1: A YAML configuration to start a small MNIST experiment.

1 task:

2 name: mnist

3 max_epochs: 10

4 model:

5 num_hidden: [128, 256]

6 optimizer:

7 - name: adamw_baseline

8 beta2: 0.98

9 - name: sgd_baseline

10 momentum: 0.5

11 engine:

12 seed: [42, 47]

This example showcases how we can specify
lists in the YAML file to perform a gridsearch.
FOB essentially computes the cartesian prod-
uct of all lists in an experiment configuration.
In this example we have 2 model sizes, 2 op-
timizers and 2 seeds, resulting in 8 training
runs in total.

Figure 2: A YAML configuration to compare different settings on the MNIST task.

10



1 task:

2 name: classification_small

3 optimizer:

4 - name: adamcpr_fast

5 learning_rate:

6 [1.e-1, 1.e-2, 1.e-3, 1.e-4]

7 kappa_init_param:

8 [1, 2, 4, 8, 16]

9 - name: adamw_baseline

10 learning_rate:

11 [1.e-1, 1.e-2, 1.e-3, 1.e-4]

12 weight_decay:

13 [10, 1, 1.e-1, 1.e-2, 1.e-3]

14 engine:

15 seed: [1, 2, 3]

16 evaluation:

17 output_types: [pdf , png]

18 plot:

19 x_axis:

20 - optimizer.kappa_init_param

21 - optimizer.weight_decay

This is the configuration used to perform the
experiment of fig. 6. Here we have 2 optimiz-
ers each evaluated for 4x5 hyperparameter
configurations on 3 seeds each for a total of
120 trials. We also showcase our plotting util-
ities which are specified in the same YAML
file. Running this file directly results in fig. 6.

Figure 3: The YAML configuration used to create the comparison on Classification Small in fig. 6.

C Python example

Below we give you a starting point if you want to handle training yourself but still want to make
use of the tasks from FOB. This snippet shows that given a configuration (like the result from
parsing a YAML file) you can easily access the Lightning Module and Datamodule comprising the
task.

1 from pytorch_fob import Engine

2 # create your config , e.g.

3 config = {"task": "mnist"}

4 engine = Engine ()

5 engine.parse_experiment(config)

6 run = next(engine.runs())

7 model , datamodule = run.get_task ()

8 # run your custom training pipeline ...

Figure 4: Using FOB tasks in your own pipeline.

D Case Study: comparing AdamCPR and AdamW

To demonstrate the benefits of our contribution, we include a case study of comparing the AdamW
[Loshchilov and Hutter, 2019] and the AdamCPR [Franke et al., 2023] optimizer on our set of tasks.

D.1 Experimental Setup

We use a Cosine-Annealing learning rate scheduler with linear warmup. The minimum learning
rate of the cosine decay is set to 1% of the initial learning rate. For all tasks, we perform a
gridsearch over two hyperparameters. Both optimizers sweep over the learning rate, while the
second hyperparameter depends on the optimizer: weight decay for AdamW and the Kappa-Init-
Parameter for AdamCPR. We choose the ’warm-start’ (Kappa-I𝑠 ) setting for AdamCPR, so the
Kappa-Init-Parameter corresponds to the number of steps until fixing the regularization. We

11



Task Classification Class. Small MNIST Segmentation
Metric Accuracy ↑ Accuracy ↑ Accuracy ↑ mIoU ↑

AdamCPR best 69.15 ± 0.07 77.54 ± 0.16 97.29 ± 0.19 35.59 ± 0.21
AdamW best 69.79 ± 0.04 77.87 ± 0.25 97.61 ± 0.08 35.52 ± 0.12
AdamCPR last 69.22 ± 0.08 77.54 ± 0.16 97.34 ± 0.19 35.35 ± 0.24
AdamW last 69.67 ± 0.1 77.79 ± 0.25 97.63 ± 0.08 35.45 ± 0.19

Table 4: Maximal performance of the computer vision tasks gridsearch. All values are given in %.

Task Graph Graph Tiny Tabular Translation
Metric ROC AUC ↑ Accuracy ↑ RMSE ↓ BLEU ↑

AdamCPR best 76.72 ± 2.12 81.93 ± 0.72 0.396 ± 0.004 26.4 ± 0.1
AdamW best 77.18 ± 1.4 82.03 ± 0.64 0.398 ± 0.006 26.25 ± 0.22
AdamCPR last 76.42 ± 0.45 79.9 ± 0.7 0.398 ± 0.005 26.4 ± 0.1
AdamW last 77.4 ± 1.31 80.1 ± 0.82 0.397 ± 0.005 26.25 ± 0.22

Table 5: Maximal performance of the gridsearch on the Graph, Graph Tiny, Tabular and Translation
tasks. All values except for RMSE are given in %.

implemented the Kappa-Init-Parameter as a factor of the steps for the learning rate warmup. For
the number of learning rate warmup steps, we use 1% of the total steps. This means that the
Kappa-Init-Parameter can be a value between 0 and 100.
For the choice of values in the search grid we follow [Franke et al., 2023, Section 5.2] and use
values evenly spaced on a log10 scale for learning rate and weight decay, while the values for the
Kappa-Init-Parameter are evenly spaced on a log2 scale. We usually started with a small grid and
expanded it in the directions where the best values were at the borders.
The models were trained using A100 and A40 GPUs on the HELIX cluster. For the exact details
please refer to the baseline configurations in the repository.

D.2 Results

Here we present the results of our experiments grouped by each task. All experiments were
repeated with three seeds 𝑠 ∈ {1, 2, 3}, over which we computed the standard deviation. For each
task and optimizer, we report the test performance of the last model checkpoint as well as the test
performance of the model checkpoint with the best validation performance.
For each task, we present plots of the performance across the entire search grid. The plots show
the test performance of the checkpoint with the highest validation performance, essentially an
early-stopping setting.

12

https://github.com/automl/FOB


0.125 0.25 0.5 1.0
Kappa Init Param

0.
00

01
0.

00
1

0.
01

L
ea

rn
in

g
R

at
e

58.15
±(0.07)

58.06
±(0.09)

57.95
±(0.09)

58.05
±(0.05)

69.06
±(0.12)

69.15
±(0.07)

68.92
±(0.27)

68.49
±(0.17)

66.02
±(0.13)

66.88
±(0.06)

68.03
±(0.16)

68.06
±(0.07)

AdamCPR on classification

0.01 0.1 1.0 10.0
Weight Decay

0.
00

01
0.

00
1

0.
01

57.22
±(0.18)

57.94
±(0.03)

64.28
±(0.14)

69.54
±(0.08)

63.62
±(0.15)

65.6
±(0.03)

69.79
±(0.04)

62.88
±(0.47)

64.39
±(0.06)

67.77
±(0.26)

58.94
±(1.12)

1.83
±(1.59)

AdamW on classification

56

58

60

62

64

66

68

70

72

T
es

t
T

op
1

A
cc

Figure 5: AdamW needs high weight decay regularization.
AdamCPR performs best with few warmup steps.

1.0 2.0 4.0 8.0 16.0
Kappa Init Param

0.
00

01
0.

00
1

0.
01

0.
1

L
ea

rn
in

g
R

at
e

66.14
±(0.16)

66.14
±(0.22)

66.27
±(0.09)

66.3
±(0.23)

66.38
±(0.12)

77.41
±(0.23)

77.54
±(0.16)

77.39
±(0.14)

77.32
±(0.09)

76.48
±(0.24)

70.57
±(0.34)

72.43
±(0.32)

74.98
±(0.28)

76.96
±(0.44)

76.17
±(0.24)

30.13
±(4.57)

37.23
±(2.67)

44.76
±(1.33)

55.48
±(1.95)

64.76
±(0.54)

AdamCPR on classification small

0.001 0.01 0.1 1.0 10.0
Weight Decay

0.
00

01
0.

00
1

0.
01

0.
1

66.35
±(0.31)

66.37
±(0.07)

66.78
±(0.33)

71.06
±(0.43)

75.34
±(0.07)

75.29
±(0.32)

75.35
±(0.19)

76.39
±(0.15)

77.87
±(0.25)

66.57
±(1.67)

74.5
±(0.25)

74.92
±(0.31)

76.88
±(0.19)

63.61
±(1.0)

22.33
±(0.59)

65.14
±(1.05)

65.42
±(1.78)

28.32
±(1.54)

4.99
±(1.06)

1.79
±(0.42)

AdamW on classification small

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

T
es

t
A

cc
u

ra
cy

Figure 6: The best hyperparameters for AdamW are the same as for the Classification task (fig. 5).
Generally, the grid elements that overlap between these tasks look similar in terms of relative
performance. For AdamCPR we sadly cannot make this comparison as we chose different
values between the tasks. However, we can observe that while peak performance is better
for AdamW, more configurations reach a high score for AdamCPR.
Note that our hyperparameters are different from the ones used in [Franke et al., 2023]. For
a comparison more closely following the original, check appendix D.4.

13



0.5 1.0 2.0 4.0
Kappa Init Param

0.
00

01
0.

00
1

0.
01

L
ea

rn
in

g
R

at
e

76.18
±(0.49)

76.72
±(2.12)

76.27
±(0.84)

76.46
±(1.13)

71.53
±(5.45)

75.07
±(0.73)

74.32
±(1.65)

75.23
±(1.33)

69.68
±(0.51)

69.29
±(0.81)

69.08
±(2.05)

71.67
±(2.28)

AdamCPR on graph

0.0 0.001 0.01 0.1
Weight Decay

0.
00

01
0.

00
1

0.
01

77.17
±(0.43)

76.3
±(1.06)

77.18
±(1.4)

76.69
±(1.38)

75.45
±(0.44)

76.7
±(1.4)

75.54
±(0.47)

75.76
±(0.95)

75.21
±(1.7)

73.58
±(3.38)

73.94
±(2.88)

74.7
±(0.96)

AdamW on graph

66

68

70

72

74

76

78

80

T
es

t
R

O
C

-A
U

C

Figure 7: AdamW outperforms AdamCPR on the Graph task.

0.5 1.0 2.0 4.0 8.0 16.0 32.0
Kappa Init Param

0.
00

1
0.

01
0.

1
1.

0
L

ea
rn

in
g

R
at

e

41.87
±(8.48)

75.83
±(2.54)

75.73
±(2.42)

76.03
±(2.47)

75.93
±(2.25)

75.67
±(2.41)

76.07
±(2.84)

76.33
±(3.36)

78.47
±(1.36)

78.33
±(1.43)

78.43
±(1.38)

78.37
±(1.44)

79.5
±(1.71)

80.5
±(0.82)

70.5
±(3.22)

75.97
±(3.02)

76.77
±(1.97)

79.37
±(0.67)

81.27
±(0.38)

81.8
±(0.72)

81.93
±(0.72)

49.13
±(10.75)

40.37
±(3.74)

39.2
±(2.34)

41.97
±(3.27)

46.03
±(6.99)

75.67
±(2.84)

71.63
±(4.2)

AdamCPR on graph tiny

0.0 0.0001 0.001 0.01 0.1 1.0
Weight Decay

0.
00

1
0.

01
0.

1
1.

0

75.7
±(2.71)

75.73
±(2.74)

75.8
±(2.78)

75.8
±(2.79)

75.77
±(2.66)

76.1
±(2.87)

80.43
±(0.87)

80.47
±(0.93)

80.43
±(0.87)

80.5
±(1.01)

80.43
±(0.97)

80.17
±(1.07)

81.97
±(0.75)

81.83
±(0.57)

81.7
±(0.52)

81.77
±(0.49)

82.03
±(0.64)

80.77
±(1.05)

73.33
±(1.59)

73.83
±(3.46)

72.97
±(1.01)

71.83
±(2.42)

72.37
±(2.4)

37.9
±(9.04)

AdamW on graph tiny

70

72

74

76

78

80

82

84

T
es

t
A

cc
u

ra
cy

Figure 8: On Graph Tiny there is little to no response to weight decay. For AdamW there is almost no
change in performance for different weight decay values. AdamCPR performs poorly for
this task and converges to AdamW without weight decay for higher Kappa-Init-Parameter
(CPR warmup steps).

14



0.5 1.0 2.0 4.0 8.0 16.0 32.0
Kappa Init Param

0.
00

1
0.

01
0.

1
L

ea
rn

in
g

R
at

e
66.14
±(0.61)

66.73
±(0.57)

78.39
±(4.41)

91.68
±(0.41)

93.43
±(0.37)

94.82
±(0.27)

95.45
±(0.29)

79.55
±(3.79)

93.8
±(0.49)

95.91
±(0.27)

96.86
±(0.17)

97.22
±(0.19)

97.29
±(0.19)

97.15
±(0.16)

96.5
±(0.1)

97.09
±(0.15)

93.3
±(5.55)

86.87
±(8.58)

78.03
±(8.9)

80.79
±(4.8)

77.52
±(8.6)

AdamCPR on mnist

0.001 0.01 0.1 1.0
Weight Decay

0.
00

1
0.

01
0.

1

95.8
±(0.13)

95.8
±(0.14)

95.86
±(0.04)

95.17
±(0.13)

96.96
±(0.18)

97.1
±(0.22)

97.61
±(0.08)

96.5
±(0.06)

79.74
±(12.35)

77.97
±(8.83)

96.83
±(0.2)

93.14
±(5.2)

AdamW on mnist

86

88

90

92

94

96

98

100

T
es

t
A

cc
u

ra
cy

Figure 9: The performance on MNIST behaves similar to the one on Graph Tiny (8); AdamCPR seems
to offer little benefit over plain AdamW without weight decay.

1.0 4.0 16.0 64.0
Kappa Init Param

0.
00

03
16

0.
00

1
0.

00
31

6
L

ea
rn

in
g

R
at

e

24.63
±(0.15)

28.68
±(0.09)

30.89
±(0.18)

31.63
±(0.14)

33.85
±(0.4)

34.27
±(0.12)

34.44
±(0.17)

34.6
±(0.22)

35.14
±(0.41)

35.42
±(0.09)

35.59
±(0.21)

35.3
±(0.18)

AdamCPR on segmentation

0.0 0.001 0.01 0.1
Weight Decay

0.
00

03
16

0.
00

1
0.

00
31

6

31.71
±(0.21)

31.65
±(0.11)

31.74
±(0.18)

31.57
±(0.1)

34.8
±(0.07)

34.76
±(0.19)

34.54
±(0.35)

34.76
±(0.15)

35.52
±(0.12)

35.47
±(0.17)

35.3
±(0.12)

35.46
±(0.18)

AdamW on segmentation

30

31

32

33

34

35

36

37

38

T
es

t
m

ea
n

In
te

rs
ec

ti
on

ov
er

U
n

io
n

Figure 10: Segmentation shows minimal sensitivity to weight decay adjustments and changes in the
number of CPR warmup steps. However, AdamCPR performs slightly better here.

15



0.5 1.0 2.0 4.0 8.0
Kappa Init Param

0.
00

01
0.

00
1

0.
01

L
ea

rn
in

g
R

at
e

0.407
±(0.003)

0.406
±(0.004)

0.407
±(0.003)

0.406
±(0.002)

0.405
±(0.003)

0.396
±(0.004)

0.401
±(0.011)

0.402
±(0.008)

0.403
±(0.004)

0.396
±(0.007)

0.448
±(0.004)

0.454
±(0.019)

0.446
±(0.011)

0.439
±(0.011)

0.45
±(0.007)

AdamCPR on tabular

0.001 0.01 0.1 1.0 10.0
Weight Decay

0.
00

01
0.

00
1

0.
01

0.408
±(0.006)

0.407
±(0.003)

0.407
±(0.003)

0.406
±(0.001)

0.477
±(0.002)

0.401
±(0.005)

0.4
±(0.01)

0.4
±(0.006)

0.398
±(0.006)

0.554
±(0.016)

0.507
±(0.01)

0.522
±(0.008)

0.401
±(0.005)

0.432
±(0.005)

0.544
±(0.016)

AdamW on tabular

0.38

0.40

0.42

0.44

0.46

0.48

T
es

t
R

o
ot

M
ea

n
S

q
u

ar
e

E
rr

or
(R

M
S

E
)

Figure 11: Both optimizers perform well on the tabular task, nevertheless AdamCPR performs slightly
better.

0.5 1.0 2.0
Kappa Init Param

0.
00

03
16

0.
00

1
0.

00
31

6
L

ea
rn

in
g

R
at

e

25.12
±(0.1)

25.21
±(0.07)

25.34
±(0.13)

26.13
±(0.07)

26.4
±(0.1)

26.16
±(0.03)

25.39
±(0.01)

0.09
±(0.05)

0.01
±(0.01)

AdamCPR on translation

0.01 0.1 1.0
Weight Decay

0.
00

03
16

0.
00

1
0.

00
31

6

25.27
±(0.12)

25.15
±(0.11)

20.47
±(0.23)

0.36
±(0.27)

26.25
±(0.22)

21.79
±(0.14)

0.01
±(0.01)

26.1
±(0.08)

22.0
±(0.12)

AdamW on translation

20

22

24

26

28

30

32

34

T
es

t
B

le
u

Figure 12: On the Translation task AdamCPR outperforms AdamW. However, AdamW shows high
responsiveness to weight decay. A better configuration might be found when searching
closer to the current optimal weight decay.

D.3 Discussion

When comparing the results of these experiments, one should consider their purpose. They were
not solely conducted to compare the two optimizers but were also driven by the goal of exploring
the best achievable performance, to set appropriate standards.
In our experiments, the quality of optimizers is primarily evaluated by their peak performance.
However, only a limited number of configurations are explored and it is unlikely that a global
optimum was found. We assume that the influence of convergence speed is not substantial since the
highest validation performance was usually before the final epoch. Reasonable initial search spaces
were iteratively expanded to find the best configurations. Thus the sensitivity of the optimizer
to its hyperparameters had some influence on the measured peak performance. In the sense that
a robust optimizer has a higher chance of finding a good hyperparameter configuration. Since
both optimizers heavily depend on their hyperparameters, it was not feasible to use the same

16



values across all tasks without significantly increasing the experiment budget or sacrificing peak
performance.
In our experiments, both optimizers perform similarly. It depends on the task which optimizer has
the better score. However, the difference is usually really small, to a point where it probably is
negligible and shows little statistical significance. While either shows its own characteristics, we
can not determine a superior optimizer based on these results.

D.4 AdamCPR on Classification Small

Here we present a setup close to the experiment in [Franke et al., 2023, Section 5.2]. The hyper-
paramters were set to match those of the authors and we use a subset of their search grid. Most
notably, we set the minimum learning rate to 10% its initial value instead of 1% its initial value as in
our experiment (appendix D.1). Also we do not use trivial augment and add label_smoothing=0.1.
The number of learning rate warmup steps is set to 500.

0.5 1.0 2.0 4.0 8.0 16.0 32.0
Kappa Init Param

0.
00

01
0.

00
1

0.
01

0.
1

L
ea

rn
in

g
R

at
e

66.13
±(0.62)

66.02
±(0.41)

66.12
±(0.4)

65.99
±(0.04)

66.09
±(0.03)

65.55
±(0.44)

65.28
±(0.51)

75.86
±(0.27)

75.94
±(0.42)

76.19
±(0.33)

76.05
±(0.19)

75.43
±(0.09)

74.97
±(0.37)

74.96
±(0.5)

66.95
±(0.62)

70.28
±(1.29)

74.06
±(0.18)

75.44
±(0.36)

75.35
±(0.43)

74.99
±(0.31)

74.79
±(0.26)

37.07
±(4.55)

50.93
±(1.08)

61.77
±(0.8)

67.13
±(0.6)

69.64
±(0.83)

68.42
±(0.89)

68.53
±(0.57)

AdamCPR on classification small

0.0 0.0001 0.001 0.01 0.1 1.0
Weight Decay

0.
00

01
0.

00
1

0.
01

0.
1

65.28
±(0.68)

65.67
±(0.54)

65.23
±(0.49)

65.38
±(0.73)

65.76
±(0.58)

69.16
±(0.39)

75.08
±(0.54)

75.01
±(0.13)

74.87
±(0.08)

74.91
±(0.4)

75.84
±(0.18)

73.59
±(0.14)

74.91
±(0.24)

74.79
±(0.23)

75.43
±(0.16)

75.33
±(0.35)

73.77
±(0.48)

55.08
±(1.94)

67.68
±(0.34)

68.04
±(0.75)

69.31
±(0.38)

67.96
±(0.27)

36.83
±(3.45)

5.53
±(2.29)

AdamW on classification small

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

T
es

t
A

cc
u

ra
cy

Figure 13: Hyperparameters matching those used in [Franke et al., 2023], resulting accuracies closely
match those reported in that work.

17


	Introduction
	Related Work
	Measuring Optimizer Performance

	Methods
	Optimizer
	Adding an Optimizer

	Tasks
	Modifying a Task

	Usage
	Running Experiments
	Integration with Existing Tools
	Using Tasks in Your Own Pipeline


	Experiments
	Discussion

	Broader Impact & Limitations
	Conclusion
	Hyperparameter Search Spaces
	Usage Example: YAML configuration
	Python example
	Case Study: comparing AdamCPR and AdamW
	Experimental Setup
	Results
	Discussion
	AdamCPR on Classification Small


