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ABSTRACT

Large language models (LLMs) demand extensive memory capacity during both
fine-tuning and inference. To enable memory-efficient fine-tuning, existing methods
apply block-wise quantization techniques, such as NF4 and AF4, to the network
weights. We show that these quantization techniques incur suboptimal quantization
errors. Therefore, as a first novelty, we propose an optimization approach for block-
wise quantization. Using this method, we design a family of quantizers named
4-bit block-wise optimal float (BOF4), which consistently reduces the quantization
error compared to both baseline methods. We provide both a theoretical and a data-
driven solution for the optimization process and prove their practical equivalence.
Secondly, we propose a modification to the employed normalization method based
on the signed absolute block maximum (BOF4-S), enabling further reduction
of the quantization error and empirically achieving less degradation in language
modeling performance. Thirdly, we explore additional variations of block-wise
quantization methods applied to LLMs through an experimental study on the
importance of accurately representing zero and large-magnitude weights on the
one hand, and optimization towards various error metrics on the other hand. Lastly,
we introduce a mixed-precision quantization strategy dubbed outlier-preserving
quantization (OPQ) to address the distributional mismatch induced by outlier
weights in block-wise quantization. By storing outlier weights in 16-bit precision
(OPQ) while applying BOF4-S, we achieve top performance among 4-bit block-
wise quantization techniques w.r.t. perplexity.

1 INTRODUCTION

Driven by scaling the transformer architecture to billions of parameters, large language models
(LLMs) have achieved remarkable performance in language modeling tasks. However, their size
poses significant challenges for deployment, particularly in memory-constrained settings. Numerous
post-training quantization (PTQ) techniques have been developed to mitigate this, reducing the
memory footprint of the weights and, in many cases, improving inference speed (Frantar et al., [2023
Lin et al 2024; |Xiao et al.|, [2023} [Liu et al.| [2024)). Fine-tuning imposes even greater memory
demands, making it challenging to adapt LLMs on consumer-grade GPU hardware. To address this,
Dettmers et al.| (2023)) introduced QLoRA, a memory-efficient fine-tuning method that combines
4-bit quantization of pre-trained weights with low-rank adaptation (LoRA) (Hu et al.| [2022). For
quantization, Dettmers et al.| (2023)) propose 4-bit NormalFloat (NF4), a quantization method with
a fixed codebook. This method normalizes blocks of network weights by their absolute maximum
(block-wise absmax normalization). Unlike calibration-data-based PTQ methods, NF4 is data-
free. This means that NF4 quantizes weights without computing network activations, making the
quantization process itself far more efficient in terms of both time and memory, while maintaining
acceptable accuracy degradation at 4 bits per weight. |Dettmers et al|(2023) claim that the NF4
codebook is information-theoretically optimal due to its equal utilization of the 16 reconstruction
levels. However, Yoshidal (2023) demonstrates that this claim is incorrect. We add that equal
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utilization of reconstruction levels is not a theoretically justified criterion for the optimality of a
quantizer. |Yoshida) (2023)) also proposes an alternative codebook (AF4) designed to address the
shortcomings of NF4.

In this work, we show that neither NF4 nor AF4 minimizes the quantization error of the network
weights. For the first time, we provide a rigorous mathematical analysis of block-wise absmax
quantization and explore multiple design variations through an experimental study. As a first
contribution, we derive an expectation-maximization (EM) algorithm inspired by Lloyd’s algorithm
(Lloyd, |1982)) that computes the correct, information-theoretically optimal codebook for block-wise
absmax quantization w.r.t. the mean absolute error (MAE) or mean squared error (MSE) criterion.
Additionally, we propose an alternative normalization technique: Instead of normalizing blocks
by their absolute maximum value, we normalize by the signed absolute maximum. This simple
modification results in a significant reduction of the quantization error. Using our EM algorithm, we
compute a family of optimal codebooks which we refer to as 4-bit block-wise optimal float (BOF4),
or BOF4-S when signed normalization is used. Furthermore, we identify that block-wise absmax
quantization is sensitive to outlier weights affecting the distribution of the normalized weights. We
address this by introducing an outlier-preserving quantization (OPQ) that stores outliers in 16-bit
precision. When combined with BOF4-S, OPQ substantially improves perplexity over NF4 and AF4.

The paper is structured as follows: Section [2] reviews related work on block-wise quantization.
Section [3|outlines our mathematical analysis and novel quantization methods. Section [4]details the
experimental setup, and Section [5 presents and discusses the results. We conclude in Section [6]

2 RELATED WORK

Block-wise quantization based on blocks of input values normalized by their absolute maximum
was introduced by Dettmers et al.|(2022) as a method for quantizing optimizer states during neural
network training. Subsequent works (Dettmers et al., 2023}, [Yoshida, [2023} [Dotzel et al.l [2024)
applied this technique to LLM network weights for memory-efficient fine-tuning. We refer to this
quantization method as block-wise absmax quantization.

2.1 BLOCK-WISE ABSMAX QUANTIZATION

In block-wise absmax quantization network weights wy, ; € R are first grouped into blocks, with
block indices b € B = {1, ..., B}, and indices of weights within a block i € Z = {1, ..., I}, where
B € Nis the number of blocks, and I € N the block size. Then, the weights are normalized by the
absolute maximum weight in their respective block:

max

wy r?e%(‘wb’lh beB (1)

. Wi
Thi = umax

b
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Next, each normalized weight x;, ; is quantized independently using scalar quantization. The absolute
block maxima w;'**, commonly referred to as quantization constants, are stored in addition to the
quantized weights for later decoding. Overall, the block-dependent quantization function Q() for

weights wy, ; is defined as

Qolun) =™ Q) = wp™ - Qlav), G)
b

where Q() is a block-independent quantization function.

2.2 4-BIT BLOCK-WISE QUANTIZATION FOR LLMS

In this section, we discuss the previous block-wise absmax quantization that our work builds upon.

4-bit NormalFloat (NF4) : NF4 (Dettmers et al.|[2023)) is a 4-bit scalar quanitzer for block-wise
absmax quantization. The L = 2* = 16 reconstruction levels #(¢), ¢ € £ = {1,...,L} are
computed based on quantiles of the assumed Gaussian network weight distribution py = N (0, 02).
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Dettmers et al.|(2023) claim that their construction leads to equal utilization of the 16 reconstruction
levels. However, this was already shown to be incorrect by |Yoshida (2023). Furthermore, an equal
probability for all codebook points is not a general criterion for the optimality of a quantizer. Instead,
quantization aims at rate-distortion optimality (Berger, 2003). Accordingly, a codebook assigning
equal probability to each codebook point is only optimal for uniformly distributed input data. This
has been well-known for decades, most prominently through the necessary conditions for optimality
that underpin Lloyd’s algorithm (Lloyd\ [1982).

4-Bit AbnormalFloat (AF4): [Yoshida (2023) analyzes the distribution of normalized network
weights and performs direct minimization of the mean absolute error (MAE) to obtain a block-wise
absmax quantization codebook for normally distributed network weights, named AF4. This quantizer
aims to correct an oversight in the design of NF4 (Dettmers et al., [2023)), which does not account
for the dependence of the distribution of normalized weights on the block size. However, Yoshida’s
optimization method targets the minimum MAE of normalized weights MAE(zy, ;, Q(24.;)), instead
of minimizing the end-to-end quantization error of the network weights MAE(wy i, Qp(wp.;))-

Both NF4 and AF4 contain reconstruction levels at -1, 0, and 1, such that the weight of the largest
absolute value in a block is represented in full 16-bit precision, while the zero is represented without
error. Not including these reconstruction levels leads to significantly worse MAE, mean squared error
(MSE), and perplexity. We confirm this in Appendix

3 METHODS

In this section, we introduce our methods for optimizing 4-bit block-wise absmax quantization.

3.1 NOVEL BLOCK-WISE Signed ABSMAX NORMALIZATION

Instead of normalization by the absolute block maximum, as described in Section[2.T]and commonly
used in existing quantization methods such as NF4 and AF4, we propose a different normalization
approach: block-wise signed absmax normalization. In NF4 and AF4, two reconstruction levels are
intentionally constrained to (1) = —1 and #(16) = 1, respectively, ensuring that the weight w,™*"
with the largest magnitude in each block b is quantized without error. This empirically improves
quantization performance. However, we notice that for network weights in general position, each
block b of the normalized weights x;, ; contains only one of the two endpoints, either —1 or 1. This
observation motivates the idea to normalize the weights by the signed absolute block maximum. By

doing so, normalization always maps w(bmax) to 1, instead of to 1 or —1 with equal probability. This

preserves exact quantization of wl(,max) while constraining only Z(16) = 1, as illustrated in Fig. 1} The

additional free reconstruction level (1) adds a degree of freedom for optimizing the non-uniform
codebook, thereby improving the achievable quantization error. Formally, in block-wise signed
absmax normalization, the quantization constants wy*** from (T)) are selected by

max

wp™ = wy j+  with j* = arg_enéax|wb7i|, beB. “4)
?

Except for this modification, we proceed with quantization as before, using (2)) and (3). Note that no
runtime overhead is incurred during inference or fine-tuning as decoding of the quantized weights is
unchanged.

3.2 NOVEL 4-BIT BLOCK-WISE OPTIMAL FLOAT (BOF4 / BOF4-S)

To determine optimal quantization codebooks w.r.t. the MSE and MAE criteria, we design an
expectation-maximization (EM) algorithm based on Lloyd’s algorithm (Lloyd, [1982), a well-known
algorithm for quantizer design. In each maximization step, the reconstruction levels &(¢) € R, ¢ €
L ={1,...L} are set to the centroids of their respective Voronoi region Ry = [{({—1),£(¥)), with
decision boundaries £(¢), ¢ € L&) = {0,1,..., L}, where £(0) = —oc and £(L) = oc. However,
in block-wise absmax quantization, the codebook is applied to normalized weights x; ;, whereas our
goal is to minimize the quantization error of the quantized unnormalized weights Qp(ws,;) relative
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Figure 1: The blue histograms show the distributions of normalized weights px () for block-wise
absolute absmax normalization (left) and block-wise signed absmax normalization (right) assuming
Gaussian network weights. Also shown are the resulting reconstruction levels Z(¢) (V fixed,
¥ optimized) and decision thresholds £(¢) (dashed lines), after minimizing the MSE(W, Q(W)) for
normally distributed network weights W = (wy, ;) with wy, ; ~ pw = N(0, 1) and block size I = 64.
For absolute absmax normalization, we compute the 4-bit block-wise optimal float (BOF4, left),
requiring three fixed reconstruction levels (-1, 0, 1). In contrast, when using signed normalization,
we obtain BOF4-S (right), in which the largest absolute value in a block and zero are precisely
represented by only two fixed reconstruction levels (0, 1), which reduces the quantization error.

to the original weightsﬂ wp,;. This introduces a mismatch between the optimization target and the
weight distribution directly used in Lloyd’s algorithm. To resolve this, we mathematically derive an
optimal solution for the centroid update. We name the resulting quantizer 4-bit block-wise optimal
float (BOF4). When signed absmax normalization is used, we refer to it as BOF4-S. A complete
derivation is provided in Appendix D] resulting codebooks in Appendix [E] major results follow here.

MSE: Let W be a random variable representing a continuous, zero-symmetric distribution of
network weights. We further define two derived random variables X and M representing the
normalized weights and absolute block maxima, respectively. Our goal is to find a reconstruction
level &(¢) that minimizes the MSE quantization error for those network weights that fall into a fixed
region R, after block-wise absmax normalization. By analytical optimization (Appendix 26)),
we obtain the solution for the updated centroid as

[m? Ex[X | M=m, X € R(]-pm(m) - [Fx(z | M=m) €O dm
() = 0 X M [ X ]g(e 1) 7 ©)

00 §(L
J5Zm2 - par(m) - [Fx(a | M=m)]S) | dm

where the probability density function (PDF) px of the normalized weights, the cumulative distribu-
tion function (CDF) Fx of normalized weights, and the expectation E[X | M =m, X € R,] can
be computed directly from the known CDF Fy;r and PDF pyy of the network weights, see Appendix
(31). A detailed derivation and simplified solution for the special case of Gaussian network
weights is also provided in Appendix (see (34)). Equation (5) can be solved by numerical
integration. Alternatively, the centroid can be approximated by Monte-Carlo estimation based on
samples drawn from the distribution pyy of network weights as (see Appendix (©4)

2.
(o) - Lo ®)
D ke, Wi

where ), € Ry are the normalized weights that fall into region R, k € K = {1, ..., K} being
their indices, and wy, is the absolute block maximum w;*** of the block b containing x.

"Minimizing the quantization error of normalized weights x;, ; leads to worse perplexity; see Appendix@
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MAE: A similar optimization can be performed for the MAE criterion, as detailed in Appendix

D.2.2(39), yielding
> 1
/0 m - par(m) - (Fx(i(é) | M=m)] - 3 [Fx(x| M:m)]igﬁ’_l)) dm = 0. %)

The zero of the left-hand-sided monotonous function in Z(¢) can be found using the bisection method
in combination with numerical integration. Moreover, using the Monte-Carlo method, the centroid
can be estimated as the weighted median (see Appendix [D.3](69))

K,
() = medianw (21, ..., TK,; W1, - .., WK, ) —}rfréz}icx {x,i} Zwk Z wk}. ®)
£
k=rk+1

To constrain certain reconstruction levels during Lloyd’s algorithm to specific values, e.g., -1, 0, 1,
we initialize them with their predetermined values and skip their recomputation in each iteration.
Note that for a fixed weight distribution, the EM algorithm only needs to be executed once, offline,
and therefore adds no runtime cost during quantization of the network weights.

3.3 NOVEL OUTLIER-PRESERVING QUANTIZATION (OPQ)

Extreme outlier weights lead to suboptimal scaling of the associated block during block-wise absmax
normalization. Therefore, block-wise quantization methods typically require small block sizes to
limit the number of affected parameters. This increases the memory required to store the quan-
tization constants. 7o enable larger block sizes and accordingly a smaller memory footprint, our
outlier-preserving quantization (OPQ) approach stores outlier weights separately in bf loat 16 and
additionally uses a 64-bit integer for each of them to address the outlier in the (flattened) weight
tensor of the respective layer. We define outliers for each weight block independently as weights with
an absolute value greater than the g-quantile of absolute block maxima after normalization of the
block to a unit standard deviation. Formally, a weight wy, ; is classified as an outlier if and only if

w,i| > on - Fiy' (a), )
Where oy is the corrected sample standard deviation of the b- th block (see l-) in Appendix
Fy, () the quantile function of absolute block maxima (see (11) in Append1 ,and g € [0, 1]
is a hyperparameter controlling the number of affected outhers Before quantlzatlon we exclude
outliers from the tensor by replacing them with zero, so that they are not considered in the subsequent
(signed) block maximum search. Note that OPQ can be combined with either BOF4 or BOF4-S. For
an in-depth explanation of our OPQ design choices, see Appendix

4 EXPERIMENTAL SETUP
In this section, we discuss our choices for the experimental evaluation of quantization methods.

Quantized Models: For evaluation, we apply quantization to three families of pre-trained LLM:s:
Llama-3.1/3.2 (Dubey et al.l2024), Owen-2 .5 (Yang et al.;[2024), and Mistral-7B-v0. 3
(Jiang et al. 2023). By benchmarking across a diverse set of LLMs, we aim to demonstrate the
generalizability of our method.

Evaluated Quantization Methods: We evaluate our proposed BOF4 and BOF4-S approaches,
optimized w.r.t. either MAE or MSE. For the optimization, we always assume Gaussian network
weights to ensure comparability to the baseline methods NF4 (Dettmers et al., 2023) and AF4
(Yoshidal 2023)). However, we evaluate all approaches (of course) on real LLMs with weights, which
are known to be only approximately Gaussian, see Appendix [C] For the evaluation of OPQ, we
performed a limited hyperparameter search, resulting in ¢ = 0.95, see Appendix[G.2} The optimized
BOF4 and BOF4-S codebooks are provided in Appendix

Fine-Tuning Method: In addition to inference with quantization, we benchmark LLMs fine-tuned
with quantization using the QLoRA method (Dettmers et al.,2023). The models are fine-tuned for
instruction following using the Unnatural Instructions dataset (Honovich et al.l [2023) or for code
generation using the Magicoder-OSS-Instruct-75K dataset (Wei et al), [2024). Further details and
hyperparameters can be found in Appendix
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Figure 2: MAE (left) and MSE (right) quantization error of our quantization methods BOF4 and
BOFA4-S optimized for MAE (left, *) or MSE (right, o) compared to the baselines NF4 and AF4 for
Gaussian network weights W = (wy, ;) with w; ; ~ N(0, 1) depending on the block size 1.

Metrics: In order to show that our approach incurs reduced quantization errors, we report the
mean squared error (MSE) and mean absolute error (MAE) of network weights. Following prior
work (Frantar et al.| [2023} |Lin et al.| [2024; Xiao et al., [2023)), we assess the language modeling
abilities of quantized models based mainly on the perplexity (PPL) measured on the WikiText-2
(Merity et al.l 2017) and LAMBADA (Paperno et al.;,[2016) datasets. The perplexity on WikiText-2 is
computed using the rolling log-likelihood with a maximum sequence length of 2048, as it is common
in literature. Additionally, we evaluate the accuracy (ACC) in the NLP tasks MMLU (Hendrycks
et al.,|2021)), ARC-Challenge (Clark et al.l 2018), HellaSwag (Zellers et al.,2019)), PIQA (Bisk et al.|
2020), SIQA (Sap et al.,|2019), and WinoGrande (Sakaguchi et al., [2021]).

5 RESULTS AND DISCUSSION

Quantization Error: In Fig.[2] we compare the MAE and MSE quantization errors of our proposed
BOF4 and BOF4-S quantization methods with the baselines NF4 and AF4, assuming ideally Gaussian-
distributed network weights. Accordingly, the results shown are independent of any particular LLM
the methods are applied to. All compared quantizers constrain reconstruction levels such that 0
and the weight of the largest absolute value in a block are quantized without error, or in full 16-bit
resolution, respectively. The error is computed empirically based on 22° samples.

We observe that all investigated block-wise quantizers show increasing MAE / MSE with increasing
block size I. This is expected, as larger block sizes will have larger block maxima, which in turn
increases average error for the many non-maximum weights in the block. All of our proposed
methods BOF4(-S), optimized w.r.t. both MAE and MSE, are equal to or better than each of the two
baselines NF4 and AF4. Note that AF4 (Yoshida, [2023)) was presented in some MAE-optimized
form, which explains its poor MSE performance for medium- or large-sized blocks. Our signed
normalization method BOF4-S achieves lower MAE and MSE scores than any other investigated
quantization approach.

Quantization Error and Perplexity: Tab.|l[shows a comparison of the MAE and MSE quantization
errors, as well as perplexity (PPL), evaluated on the weights of three pre-trained LLMs: L1lama-3.1
8B, Qwen—-2.5 7B, and Mistral 7B. Results for additional (smaller) models are provided in
Appendix [J] Note that our intention is not to compare PPL between the various LLMs, but rather
between the various quantizer options.

We observe that our basic BOF4 approaches are equal to or lower in quantization error than the
baselines NF4 and AF4 when optimized for the particular metric MAE / MSE. The respective methods
with signed normalization (BOF4-S) clearly outperform the non-signed BOF4 approaches in all cases,
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Table 1: Quantization error (MAE and MSE) and perplexity (PPL) on WikiText-2 of quantization
methods applied to the network weights of three LLMs with block size I = 64. Best result in each
column in bold, second best underlined.

Llama-3.1 8B Qwen-2.5 7B Mistral 7B
MAE| MSE| PPL| MAE| MSE| PPL| MAE|l| MSE| PPL|
le—3 1le—6 le—4 le—8 le—3 le—6
NF4 0.977 1.637 8.53 1.202  2.391 9.89 2.256 8.439 8.90
AF4 1.006 1.762  8.51 1.234 2562 991 2.324 9.085 8.90

BOF4 (MAE) 0976 1.621 852 1202 2370 9.89 2256 8.360 8.90
BOF4 (MSE) 0994 1566 851 1.228 2310 9.94 2296  8.075 8.89
BOF4-S (MAE) 0936 1.508 849 1.152 2204 9.87 2,162 7.777  8.90

+ OPQ 0.918 1.457 8.46 1.121  2.101 9.82 2.121 7.514  8.89
BOF4-S (MSE) 0.954 1.441 8.46 1.179 2126  9.88 2.204 7.430 8.88
+ OPQ 0932 1367 843 1.140 1981 9.83 2.153 7.052 8.87
9.2 4 —h— NP4 9.2 4 —— NF4
AF4 AF4

==tje==BOF4-S (MAE) === BOF4-S (MSE)
9.0 1 BOF4-S (MAE) 9.0 1 BOF4-S (MSE)

=¥ LopQ -G
8.8 1 8.8 1
8.6 8.6
8.4 8.4

T T T T T T T T T T T T T T T T

25 26 27 28 29 210 211 212 25 26 27 28 29 210 211 212

block size I block size I

Figure 3: Perplexity of L1ama—-3.1 8B on WikiText-2 after quantization with NF4, AF4, and our
BOF4-S optimized w.r.t. MAE (left, %) or MSE (right, o) for different block sizes I, with and without
outlier-preserving quantization (OPQ, dashed line).

and accordingly, the baselines NF4 and AF4 as well. We emphasize that MAE- and MSE-optimized
BOFA4(-S) schemes show the lowest quantization errors for their respective optimization metric. This
empirically confirms our derived centroid update rules (7) and (5), along with the underlying Gaussian
distribution assumption of the LLM network weights. Analyzing perplexity, BOF4-S is equal to
(in a single case) or better than each of the baselines, indicating that the lower quantization error
also pays off in terms of an improved language modeling accuracy. Our proposed outlier-preserving
quantization (OPQ) variant provides a further consistent performance improvement, as it lowers
MAE and MSE quantization errors and perplexity in all cases.

Comparative Effect of MAE and MSE Optimization: Tab.[T|also shows the language modeling
perplexity of the quantization methods on the WikiText-2 dataset (Merity et al.,|2017). This allows us
to compare the effectiveness of BOF4(-S) optimized for MAE and MSE. We report both error metrics
(MAE, MSE) for the quantized model weights w.r.t. the original model weights.

We observe the tendency of MSE-optimized BOF4(-S) methods to yield better (i.e., lower) perplexity
than the MAE-optimized version, with only Qwen-2.5 7B being an exception with a 0.01 point
perplexity advantage for MAE optimization. Overall, the best-performing of our proposed schemes is
BOF4-S (MSE) with OPQ, as it ranks either first or second among all other investigated methods in
each metric.

Fig. [B|shows the perplexity of L1ama-3 8B on the WikiText-2 (Merity et al., 2017) and LAMBADA
(Paperno et al., 2016)) datasets after quantization with NF4, AF4, and our BOF4-S optimized w.r.t.
MAE (left) and MSE (right). Furthermore, Fig. 3] reports the effect of utilizing the proposed outlier-
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Table 2: Inference results of 4-bit scalar quantization methods evaluated using multiple LLMs with
block size I = 64. The evaluated metrics are the perplexity on the WikiText-2 and LAMBADA
dataset, and the accuracy on the MMLU (few-shot), ARC-Challenge, HellaSwag, PIQA, SIQA, and
WinoGrande benchmarks. Best result in each column in bold, second best underlined, BF16 excluded.

Model Quantizer WikiText2 Lambada MMLU ARC-C HellaSwag PIQA  SIQA WinoGrande NAV
PPLL  PPL|l ACCt ACC+ ACCt ACCT ACCT ACCt  ACCt

BF16 10.12 490 540 424 553 767 472 690 357

NF4 1072 545 523 410 544 763 47.0 683 344

Llama-3.2 AF4 1074 551 528 405 544 766 474 693  35.0
3B BOF4 (MSE) 1073 535 526 421 540 767 464 688  34.8
+0PQ 10.67 517 529 421 541 769 464 684 348

BOF4-S (MSE) 10.67 532 526 420 543 76.1 463 685 345

+0PQ 10.64 525 525 418 542 762 465 695 349

BF16 1242 591 651 446 550 781 496 685 395

NF4 1236 7.16 630 431 536 717 508 672 382

Qwen-2.5 AF4 13.08 682 633 435 542 781 506  68.5 389
3B BOF4 (MSE) 1246 684 635 462 538 717 498 685 392
+0PQ 1248 690 631 462 541 715 502 676 389

BOF4-S (MSE) 1250  6.53 635 46.5 538 773 500 682  39.1

+0PQ 1235 643 635 466 540 775 508 691 397

preserving quantization (OPQ) in combination with BOF4-S. A corresponding figure including our
BOF4 is given in Fig.[13]in Appendix []]

Fig. [3| (left) shows that our MAE-optimized BOF4-S methods reveal a lower PPL than both baselines
up to block sizes of I < 2%. The MAE-optimized baseline AF4 shows some strengths for very large
block sizes I > 2!, which, however, are not practically relevant.. When comparing to Fig. 3 (right),
we observe that our MSE-optimized BOF4-S methods generally achieve a lower perplexity than
both baselines and also than their MAE-optimized counterparts on the left. This trend becomes even
more pronounced with increasing block size I. The overall better performance of our MSE-optimized
BOF4(-S) approaches leads us to focus on these in the following experiments.

Comparison to NF4 and AF4 for Inference: Tab.[2|shows the perplexity and accuracy of various
quantized LLMs in the 3B regime on common NLP benchmarks. In addition, a normalized average
accuracy (NAV ACC) is computed that accounts for the chance-level accuracy in each benchmark;
for details about this metric, see Appendix Kl Results for smaller and larger models are provided in
Appendix [} Furthermore in Appendix [[]we provide additional inference evaluations demonstrating
an application of our methods to calibration-data-based GPTQ quantization (Frantar et al., [2023)).

Analyzing accuracy over the various benchmarks reveals that rank orders of models can be quite
different in different benchmarks. Accordingly, such accuracy results should be interpreted with care.
Our normalized average accuracy metric (last column) helps in identifying overall trends. For the
Llama-3.2 3B model we see only slightly varying NAV ACC results, with AF4 and our BOF4-S
+OPQ approach being close-by on first and second rank. On Qwen-2.5 3B, our favored BOF4-S
+0OPQ method has the overall best NAV ACC, even outperforming the BF16 reference. As we hardly
claim to be better than 16 bit weight representation, we note once more the variance in the accuracy
metric in general. Among the two benchmarks reporting perplexity, our proposed BOF4-S +OPQ
method ranks three times first and one time second, outperforming both baselines, NF4 and AF4.. In
addition, OPQ incurs only a small runtime overhead during inference, as shown in Appendix

Note that the perplexity advantage of BOF4-S (+OPQ) was achieved despite the only partly valid
Gaussian weight assumption in the design of our codebook. Our method also supports codebook
optimization w.r.t. better-fitting distributions, which might even further improve performance.

Fine-Tuning with Quantization: Tables|3|and |4|show the results for quantized fine-tuning using
QLoRA (Dettmers et al.|[2023) with various quantizers. Llama-3.2 3Bis fine-tuned for instruction
following and code generation, respectively, and evaluated on corresponding task-specific benchmarks.
For comparison, we apply LoRA fine-tuning (Hu et al., 2022) to the original, unquantized weights in
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Table 3: Prompt-level and instruction-level Table 4: Accuracy (%) on the HumanEval+
accuracy (%) on IFEval after fine-tuning and MBPP+ benchmarks after fine-tuning
Llama-3.2 3B for instruction following us- L1lama-3.2 3B for code generation using 4-
ing 4-bit quantization with block size I = 64. bit quantization with block size I = 64.

Prompt-level Instr.-level ~AVG MBPP+ HumanEval+ AVG

ACC 1 ACC 1t ACC 1t ACC 1t ACC 1 ACC 1t
Base Model 21.1 33.6 27.3 Base Model 349 17.1 26.0
BF16 23.5 342 28.8 BF16 37.8 30.5 342
NF4 24.4 35.0 29.7 NF4 34.1 244 29.3
AF4 23.3 34.1 28.7 AF4 32.8 232 28.0
BOF4 (MSE) 26.8 36.5 31.6 BOF4 (MSE) 344 244 294
+0PQ 25.0 34.8 29.9 +0OPQ 354 244 29.9
BOF4-S (MSE)  24.4 351 298 BOF4-S (MSE) 35.7 262  31.0
+ OPQ 25.0 35.0 30.0 + OPQ 36.5 274 32.0

bfloat16 representation (BF16). We find fine-tuning to be stable with all quantization methods. In
addition to the task-specific accuracy metrics in Tables[3|and 4] we also report the average accuracy
(AVG ACC).

From a bird’s-eye view over both tasks (tables) we observe the strength of BOF4-S +OPQ being
confirmed: For instruction following, it ranks second in AVG ACC, and for code generation, it ranks
first—in both cases being better than NF4 and AF4.

Table 3] interestingly, reports our BOF4 approach as by far the best for instruction following. The
OPQ variant for this particular downstream task is not the best. Accordingly, we keep in mind that
for fine-tuning towards a specific task it might be advised to investigate which of our four proposed
MSE-optimized BOF4 quantizers (signed vs. unsigned, with or without OPQ) performs best.

In Table [ we observe for the code generation task that the previously best BOF4 is still equal to
or better than the NF4 and AF4 baselines. The other three of our BOF4 variants are, however, even
better in this case, with BOF4-S +OPQ being clearly ahead of all investigated approaches. The
second rank is clearly taken by BOF4-S without OPQ. This again confirms the recommendation that
BOF4-based quantization of fine-tuned LLMs is best done after a small ablation study among the
four MSE-optimized BOF4 quantizers. For limitations of our work, see Appendix [Al

6 CONCLUSIONS

In this paper, we analyzed block-wise absmax quantization for large language models (LLMs) and
derived an expectation-maximization algorithm to minimize the quantization error. The resulting
family of quantizers, termed 4-bit block-wise optimal float (BOF4), reduces the weight quantization
error over previously published block-wise absmax quantizers such as NF4 (Dettmers et al., [2023)
and AF4 (Yoshidal [2023). We also presented an improvement to the normalization technique
by normalizing blocks of weights using their signed absolute maximum rather than the absolute
maximum, which further reduces the quantization error and empirically mitigates the negative
effect of quantization on perplexity. Our experimental study confirmed the importance of precisely
representing zero and outlier network weights, and found that optimization w.r.t. the mean squared
error (MSE) criterion results in lower perplexity compared to mean absolute error (MAE) optimization.
Finally, we introduced outlier-preserving quantization (OPQ), a mixed-precision strategy for block-
wise absmax quantization, which yields a significant perplexity advantage, especially at larger block
sizes. We find that our methods can outperform NF4 and AF4 not only for inference, but also when
used for fine-tuning with quantization, achieving higher accuracy on the target tasks.

Overall, our proposed methods can enable improved fine-tuning and inference for LLMs on consumer-
grade hardware by boosting performance without increasing the memory footprint, thereby facilitating
broader participation in both the scientific investigation and the application of LLMs.
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REPRODUCIBILITY STATEMENT

For the sake of reproducibility, we make the source code for fine-tuning and inference evaluations, as
well as codebook optimization, available at https://github.com/ifnspaml/bof4. In Appendix [E} we
provide some of the quantization codebooks resulting from our optimization algorithm. Additional
codebooks are also provided in the GitHub repository. For our theoretical results, we state all
assumptions and provide a detailed derivation in Appendix

ACKNOWLEDGMENTS

This work was partially funded by the German Federal Ministry for Research, Technology and
Aeronautics (Bundesministerium fiir Forschung, Technologie und Raumfahrt, BMFTR) under the
KI4ALL project (funding code: 16DHBKI055).

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, et al. QuaRot: Outlier-Free 4-Bit
Inference in Rotated LLMs. In Proc. of NeurIPS, pp. 100213-100240, Vancouver, BC, Canada,
December 2024.

Toby Berger. Rate-Distortion Theory. Wiley, 2003.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, et al. PIQA: Reasoning about Physical Commonsense
in Natural Language. In Proc. of Alll, pp. 7432-7439, New York, NY, USA, February 2020.

Richard L. Burden and J. Douglas Faires. Numerical Analysis. Brooks/Cole, 2010.

Peter Clark, Isaac Cowhey, Oren Etzioni, et al. Think You Have Solved Question Answering? Try
ARGC, the AI2 Reasoning Challenge. arXiv, March 2018.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit Optimizers via Block-wise
Quantization. In Proc. of ICLR, pp. 1-19, virtual, April 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLORA: Efficient Finetuning
of Quantized LLMs. In Proc. of NIPS, pp. 10088-10115, New Orleans, LA, USA, December
2023.

Jordan Dotzel, Yuzong Chen, Bahaa Kotb, et al. Learning from Students: Applying t-Distributions to
Explore Accurate and Efficient Formats for LLMs. In Proc. of ICML, pp. 11573-11591, Vienna,
Austria, July 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, et al. The Llama 3 Herd of Models. arXiv, July
2024. arXiv: 2407.21783.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate Quantization for
Generative Pre-trained Transformers. In Proc. of ICLR, pp. 1-16, Kigali, Rwanda, May 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, et al. The Language Model Evaluation Harness, December
2024. URL https://doi.org/10.5281/zenodo.14506035.

Dan Hendrycks, Collin Burns, Steven Basart, et al. Measuring Massive Multitask Language Under-
standing. In Proc. of ICLR, pp. 1-27, virtual, May 2021.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural Instructions: Tuning
Language Models with (Almost) No Human Labor. In Proc. of ACL, pp. 14409-14428, Toronto,
ON, Canada, July 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, et al. LoRA: Low-Rank Adaptation of Large Language
Models. In Proc. of ICLR, pp. 1-13, virtual, April 2022.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, et al. Mistral 7B. arXiv, October 2023.
arXiv: 2310.06825.

10


https://github.com/ifnspaml/bof4
https://doi.org/10.5281/zenodo.14506035

Published as a conference paper at ICLR 2026

Ji Lin, Jiaming Tang, Haotian Tang, et al. AWQ: Activation-Aware Weight Quantization for On-
Device LLM Compression and Acceleration. In Proc. of MLSys, pp. 87-100, Santa Clara, CA,
USA, May 2024.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is Your Code Generated by
ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation.
In Proc. of NeurlPS, pp. 21558-21572, New Orleans, LA, United States, December 2023.

Zechun Liu, Changsheng Zhao, Igor Fedorov, et al. SpinQuant: LLM Quantization with Learned
Rotations. arXiv, May 2024. arXiv: 2405.16406.

Stuart P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information Theory, 28
(2):129-137, March 1982.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In Proc. of ICLR, pp.
1-10, New Orleans, LA, USA, May 2019.

Vladimir Malinovskii, Andrei Panferov, Ivan Ilin, et al. HIGGS: Pushing the Limits of Large
Language Model Quantization via the Linearity Theorem. In Proc. of NAACL, pp. 10857-10886,
Albuquerque, NM, United States, April 2025.

Stephen Merity, Caiming Xiong, James Bradbury, et al. Pointer Sentinel Mixture Models. In Proc. of
ICLR, pp. 1-15, Toulon, France, April 2017.

D. B. Owen. A Table of Normal Integrals. Communications in Statistics - Simulation and Computation,
9(4):389-419, 1980.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, et al. The LAMBADA Dataset: Word
Prediction Requiring a Broad Discourse Context. In Proc. of ACL, pp. 1525-1534, Berlin, Germany,
August 2016.

Colin Raffel, Noam Shazeer, Adam Roberts, et al. Exploring the Limits of Transfer Learning with
a Unified Text-to-Text Transformer. Journal of Machine Learning Research, 21(140):1-67, jan
2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, et al. WinoGrande: An Adversarial
Winograd Schema Challenge at Scale. Commun. ACM, 64(9):99-106, August 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, et al. Social IQa: Commonsense Reasoning about Social
Interactions. In Proc. of EMNLP-IJCNLP, pp. 4463—4473, Hong Kong, China, November 2019.

Mart van Baalen, Andrey Kuzmin, Ivan Koryakovskiy, et al. GPTVQ: The Blessing of Dimensionality
for LLM Quantization. arXiv, February 2024. arXiv: 2402.15319.

Yuxiang Wei, Zhe Wang, Jiawei Liu, et al. Magicoder: Empowering Code Generation with OSS-
INSTRUCT. In Proc. of ICML, pp. 52632-52657, Vienna, Austria, July 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, et al. SmoothQuant: Accurate and Efficient Post-Training
Quantization for Large Language Models. In Proc. of ICML, pp. 38087-38099, Honolulu, HI,
USA, July 2023.

An Yang, Baosong Yang, Beichen Zhang, et al. Qwen2.5 Technical Report. arXiv, December 2024.
arXiv: 2412.15115.

Davis Yoshida. NF4 Isn’t Information Theoretically Optimal (and That’s Good). arXiv, 6 2023.
arXiv: 2306.06965.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, et al. HellaSwag: Can a Machine Really Finish Your
Sentence? In Proc. of ACL, pp. 4791-4800, Florence, Italy, July 2019.

11



Published as a conference paper at ICLR 2026

APPENDIX

A LIMITATIONS

Our evaluation focuses on comparisons with data-free quantization techniques and does not include
post-training quantization (PTQ) methods that rely on calibration data. While quantization based on
calibration data typically achieves better accuracy, we believe that data-free techniques are valuable
because they are significantly more efficient in terms of time and memory required for quantizing the
weights. Note that our contributions are compatible with and can be effectively applied to calibration-
data-based PTQ methods, as demonstrated in Appendix [} Furthermore, the accuracy results of the
utilized language modeling benchmarks may not be sensitive enough to reflect minor differences
between quantization methods. We partially mitigate this issue by computing a normalized average
accuracy score and relying more on perplexity as our primary metric. While we choose to evaluate
our method to optimize quantization under the assumption of a Gaussian weight distribution to ensure
a fair comparison with NF4 and AF4, our algorithm does not rely on a particular distribution. When
applying double quantization as proposed by Dettmers et al.| (2023)), i.e., additionally quantizing the
quantization constants beyond BF16, signed normalization would require an extra bit per block to
encode the sign, raising memory consumption from 4.127 to 4.143 bits per weight. Without this, the
improvement in the quantization error by using BOF4-S may be slightly diminished, since the input
range of the quantizer for the quantization constants is doubled.

In future work, we want to combine our approach with Hadamard transformations of network weights
used by recent quantization methods to ensure a Gaussian weight distribution (Ashkboos et al.,
2024; Malinovskii et al., [2025). Furthermore, we would like to investigate in more detail how our
contributions are best applied to calibration-data-based PTQ.

B ABLATION ON CONSTRAINED (I.E., FIXED) RECONSTRUCTION LEVELS

In Tab. 5] we evaluate the importance of precisely representing zero weights and absolute block
maxima. We use the term “’precise” in this context for an error-free representation of a zero weight
and for a 16-bit representation of absolute block maxima. We measure the perplexity on WikiText-2
(Merity et al.,2017) of L1ama-3.1-8B quantized with BOF4 for all four possible combinations of
fixed (i.e., constrained) reconstruction levels Z(¢) from 0 and £1.

Table 5: The quantization error (MAE and MSE) and perplexity (PPL) on WikiText-2 of BOF4
with block size I = 64 using different combinations of fixed reconstruction levels applied to the
network weights of L1ama-3.1-8B. Best result in each column in bold.

Constrained MAE| MSE| PPL|
reconstruction levels (le—4) (le—6)

%] 9.881 1.506  8.81
{0} 9.904 1516 8.57
{1,-1} 9914 1555 8.78
{0,1,—1} 9.936 1.566  8.51

We observe that fixing all (-1, 0, and 1) yields the best performance w.r.t. perplexity, even though the
additional constraints on the codebook inevitably increase the quantization error. This confirms that
the design choice of NF4 (Dettmers et al., 2023 and AF4 (Yoshida, [2023)) to include these values as
reconstruction levels is sound.

C WEIGHT DISTRIBUTION OF LARGE LANGUAGE MODELS

Dettmers et al.|(2023) analyze the distribution of weight rows in a 7B LLaMa model to support the
assumption of a Gaussian weight distribution for quantization. They perform a Shapiro-Wilk test
on the rows and find that only 7.5% are non-Gaussian-distributed. We conduct a similar analysis
for Llama-3.1 3Band Qwen-2.5 3B to evaluate whether this assumption holds for the models

12



Published as a conference paper at ICLR 2026

used in this work. Instead of entire weight rows, we use blocks, since these are the units to which the
quantizer is applied, and because the number of elements per row often exceeds the sample size at
which the Shapiro-Wilk test produces reliable p-values. Using block size I = 64 and a significance
threshold of 0.05 for the p-value, the test only identifies 6.9% and 10.5% of blocks as non-Gaussian
for Llama—-3.1 8B and Qwen-2.5 8B, respectively. When outliers are filtered prior to the test,
as in OPQ (according to @I)), the fraction of non-Gaussian blocks decreases further to 4.6% and 6.5%,
respectively. This indicates that assuming Gaussian-distributed weights for codebook optimization is
reasonable for a large majority of the quantized blocks.

D FULL DERIVATION OF THE CORRECT OPTIMAL RECONSTRUCTION LEVELS

D.1 DISTRIBUTION OF NORMALIZED WEIGHTS

To derive an optimized code for quantization, we first characterize the distribution of normalized
weights. Yoshida performs a similar analysis, assuming zero-mean, unit-variance normally-distributed
network weights wy, ; ~ N(0, 1) (Yoshidal [2023). In the following, we generalize this analysis to
weights distributed as any symmetric, zero-mean probability distribution. The weights wy, ; are
considered i.i.d. samples from a random variable W with the probability density function (PDF)
pw and cumulative distribution function (CDF) Fy. Similarly, X is a random variable describing
the distribution of the normalized weights with PDF px and CDF F'x. A third random variable M
describes the distribution of absolute or signed block maxima wj;***. Fig. 4] shows an estimation of
px (x = xp,;) in case wy ; ~ pw = N(0,1). We observe that the distribution of normalized weights
concentrates around zero with increasing block size I. Furthermore, the discrete fraction representing
the absolute block maxima at the edges (-1 and 1) is inversely proportional to the block size I, as we
will formalize later in (T6).

PDF for a Fixed Absolute Block Maximum: First, we analyze the distribution of normalized
weights X for a fixed absolute block maximum M = m = w;"** (I). The PDF px (x) with z € R
assigns a probability mass of % to both z = —1 and x = +1 since in the non-degenerated case there
is exactly one value of maximum magnitude in each block of I weights. The remaining probability
mass of 1%1 forms a continuous, non-uniform probability distribution on the interval (—1,1).

For a fixed absolute block maximum m = w;*** € RT, the continuous portion of the CDF of X is

FE™(@ | M=m) = P[X < z||X| <1, M =m)]
= P[W < mz||W| < m]
_ PW <ma A |W| < m]
P[[W| < m]
_ Fy (mz) — Fyy (—m)
Fw (m) — Fw(=m)
= Fw,_ mx), (10)

o (
for z € [0, 1], where Fyy,_, . is the CDF Fyy of weights truncated to the interval [—m, m].

Distribution of Absolute Maxima: We continue with the distribution of the absolute block maxima,
defined by the random variable M. First, due to the statistical independence of weights wj, ; within a
block, the CDF of M is given by

Fy(m) = P[|wb’1| <my|wpal <m, ..., |wp ] < m]
i€
= Flyy(m), (11)

13
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block size I = 64 block size I = 1024

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 4: Empiric estimation of the PDF px, resulting from block-wise absmax normalization, in
case of Gaussian network weights based on 229 samples x for different block sizes 1.
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Figure 5: Example CDF Fx (z) for absolute and signed block-wise absmax normalized Gaussian
network weights © = x;,; and block size I = 8.

where Fyy| is the CDF of |W|. Taking the derivative of F'; using the chain rule, we obtain the PDF
of M:

parlm) = - Fi(m)

_ d
=1-Fy (m)- 3, Fiwi(m)

= 1By (m) - - (2Fw(m) ~ 1)

— 21 Bl (m) - pu (m) (12)

In the derivation of (I2)), we use the fact that the PDF is the derivative of the CDF, and we use the
equality

Fw (m) = Pl[-m <W < m]

= Fw(m) — (1 — Fw(m))
= 2Fy (m) — 1, (13)

exploiting the symmetry of py, w.r.t. zero.
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CDF of the Normalized Weights: Now, the continuous part of the CDF Fx (z), —1 < z < 1,
can be calculated using the law of total probability by integrating over all possible values of the
block-wise absolute maximum M = m, and weighting each block-maximum-dependent CDF with
the corresponding probability density ps(m) as follows:

FM"(x) = P[Xp; < z| | X] < 1]
= / py(m) - FE™"(z | M =m)dm. (14)
0
By substituting the terms pa(m) and F¢™(x | M =m) using (12) and (10), we obtain

F"(x) =21 - / Fiyl (m)pw (m) - Fw,_,, (ma) dm. ()
0

Considering that F’x ¢on contains the fraction % of the probability mass, whereas +1 and —1 each
occur with probability %, the CDF of X can be characterized as

0, ifz < —1
Fx(z) =14 & + 5AF(x), if-1<z<1. (16)
1 ifz>1

)

For signed block-wise absmax quantization, the continuous part of the distribution remains unchanged
due to the symmetry of py w.r.t. zero. Only the discrete probability mass of 1/1 is now allocated
entirely to X = 1, resulting in the CDF

0, ifex < —1
Fx(z) = AP (z), if-1<z<1. (17)
1 ifr>1

The CDF F'x (z) for an example Gaussian weight distribution wy, ; ~ pw = N(0,1) with block
size I = 8 for both absolute and signed block-wise absmax quantization is shown in Fig.[5] We
observe that, in the case of absolute block-wise absmax normalization, the CDF F'x exhibits two
discontinuities at x = —1 and x = 1, whereas, for signed absmax normalization, there is only one
discontinuity at x = 1.

D.2 CENTROIDS FOR BLOCK-WISE NORMALIZED WEIGHTS

In the following, we show how Lloyd’s algorithm (Lloyd,|[1982) can be modified to minimize the
MSE(W, Q(W)) or MAE(W, Q(W)) quantization error when using block-wise absmax quantiza-
tion, where @ : R — R denotes the overall block-wise absmax quantization function. Lloyd’s
algorithm is applied to the normalized weights distributed according to X, whereas the quantization
error should be minimized end-to-end for the distribution of original network weights W. We demon-
strate how the centroid criterion for a reconstruction level Z(¢) of aregion Ry = [£(¢—1),£(¢)) can be
reformulated to account for this discrepancy. Specifically, we derive a mathematical formula enabling
the direct computation of the updated reconstruction level &(¢) for any continuous distribution of
network weights that is symmetrical w.r.t. zero and has a known PDF py, and CDF Fyy . Furthermore,
we consider the special case of Gaussian weights pyy = N(0, 1), which allows further simplification
in the case of the MSE criterion.

It should also be noted that the assignment of regions according to the nearest neighbor criterion
remains unchanged from Lloyd’s algorithm. The proof that the nearest neighbor criterion is still a
necessary condition for optimality, even when applied to normalized weights, is trivial. Therefore,
showing that our modified centroid criterion is a second necessary condition for optimality is sufficient
to prove the local optimality of any solution to which our algorithm converges.

D.2.1 MSE OPTIMIZATION

First, we minimize the MSE quantization error MSE(W, Q(W)) = Ey [(W — Q(W))?] with Ew[]
being the expectation w.r.t. the weights 1.
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General Centroid Criterion: Our goal is to find a reconstruction level (¢) that minimizes the
MSE quantization error for normalized weights that fall into region R:

#(£) = arg min MSE,(W, Q(W)) = arg min Eyy [(W — Q(W))? | X € Ry, (18)
&eR Z€eR
where & represents a candidate value of the reconstruction level utilized for normalized weights

falling into region R, within @), MSE,(W, Q(W)) is the MSE quantization error of weights that fall
into region R, after normalization.

Next, to enable analytical minimization of the reconstruction error, we use the law of total expectation

BlA) = Es[Eald | B = | T EA| B =] p(b) db. (19)

— 00
to express the expectation (I8) as an integral over expectations conditioned on a fixed block maximum
M =m:

Ew[(W - Q(W))* | X € Ry
:/0 par(m | X € Re) - Ew [(W = QW) | M=m, X € Ry] dm. 20)

This reformulation allows us to express the expectation in terms of the random variable X and the
sought reconstruction level 2:

Ew[(W—QW))* | M=m, X € Ry
=Ex[(m-X—m-2)° | M=m, X € Ry
=m? Ex[(X —2)*| M=m, X € R 1)

Substituting (21) into (20), we obtain the new formulation of an MSE-optimal reconstruction level

2(0) = argmin/ pu(m | XERy) -m? Ex[(X —&)* | M=m, X €R] dm. (22)
&eR  Jo
To find the optimal reconstruction level &, we set the derivative w.r.t. £ equal to zero:
d
dz

/ pu(m| X €Ry) -m? Ex[(X —2)° | M=m, X € R;]dm
0

:/ m?-2(2 —Ex[X | M=m, X € Ry]) - pu(m| X € R¢)dm =0 (23)
0

Rearranging for £ yields
Joom? Ex[X | M=m, X € R¢]-pu(m | X € Ry)dm
JoSm? pu(m | X € Re)dm '

B(0) =2 = (24)

To compute this, we must express all quantities in terms of the known PDF py, and CDF Fyy. To
accomplish this, we analyze the PDF pys(m | X € Ry) of the weight maximum conditioned on the
region R,. Using Bayes’ theorem, we can express this as

pa(m | X € Ry) = POl E B L=
pu(m) - (Fx(£(0) | M=m) — Fx(£(t—1) | M=m))
P[X € 'Rg]

(25)
The PDF of the weight maximum pys(m) is known from (12), and the CDF Fix (z | M =m) for
the continuous part of the distribution is known from (I0). The special case of the non-continuous

outermost regions is considered separately. With this and (24)), the updated reconstruction level can
be expressed as (major analytical result for MSE-optimized codebook reconstruction levels)

2(0) = Jo¥m? Bx[X | M=m, X € R par(m) - [Fx(w | M=m)|§(; | dm (26)
= pos Y] !
Jo m*-pu(m) - [Fx (x| M:m>]§e)_1> dm
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Here, we use the notation [Fx (z | M:m)]zgll) =Fx (W) | M=m)— Fx(&({—-1) | M=m).
Using the known PDF py and CDF Fyy, pys(m) is obtained by (12), while Fy (z | M =m) is
obtained by (10). Hence, only the conditional expectation Ex[X | M =m, X € R,] of normalized
weights X requires further analysis.

Expectation of Normalized Weights: To compute the optimal reconstruction level Z(¢) according
to (26), we require a method to determine the expected value of the normalized weights, conditioned
on the absolute block maximum M = m and the region R, = [(£—1),&(¢)). First, we analyze
Ex[X | M=m, X € Ry] under the assumption that the region is contained in the continuous part
of the distribution R, C (—1, 1). The conditional mean is given by
M=

Ex[X | M—m, X € Ry] = Jr, 2px (T | m) dx

fm px(z | M=m)dx

B fRz apx (x| M=m)
Fx (&) | M=m) — Fx(§({=1) | M=m)
We know from (10) that Fix (x | M =m) for the continuous part of the distribution R, € (—1,1)

can be expressed as Fyy,_, . (mz) using the CDF of W truncated to the interval [—m, m]. The
derivative w.r.t. z represents the corresponding PDF

27)

d
px(z | M=m)= @FW[fm,m] (ma) = MPW(_ py m] (ma), (28)

where py, ,, fora,b € R and a < b is the PDF py truncated to the interval [a, b], formally defined

as

~ pw(w) - g ) (w)
Fy (b) — Fw(a)’

where g : R — {0, 1} is the indicator function with I}, ) (w) = 1 < a < w < b. Note that

our assumption Ry C (—1,1) implies —1 < X < 1, and therefore I|_,, ) (max) = 1. Using this

observation and (29), we get

pW[a,b] (’LU) (29)

Jr, M pwi_, ., (M) dz
FW[_m,m] (mg(g)) - FW[—m‘m] (mg(g_ 1)) '
This expression can be simplified, since pw,_,, ., (ma) and Fy,_, . (mx), shown in (10), share the
common denominator Fy (m) — Fy (—m), yielding (to be used in )

Ex[X | M=m, X € R =

(30)

/. ,m -z pw(mz)ds
Ex[X | M=m, X € Ri] = p e ) = F (mé(e—1)) Gh

Simplified Solution for Gaussian Network Weights: In the following, we adopt the common
assumption that the network weights are distributed according to a zero-mean unit-variance Gaussian
pw (w) = g(w) == N(w;0,1), enabling further simplification. Furthermore, we denote the CDF of
the zero-mean unit-variance Gaussian as G(w) = Fy (w). Additionally, we utilize the solution to
the indefinite integral (Owenl 1980\ equation (101))

1
[ agtma) =~ g(ma) + (2
with C € R. By applying this solution to (31]), we obtain

XX | M=, X € R = = -1 o
Substituting this into the centroid criterion results in
s = o R par(m) - [Px(e | M=m)]glydm
JoZm? par(m) - [Fx (x| M=m)]§, ) dm
sy = Jom Lol - (26m) -2 - glm)dm s
Joom? - [Gma)] g, - (2G(m)=1)1=2 - g(m) dm

for Ry € (—1,1). The integrals can be solved using numerical integration.
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Expectation of the Outermost Reconstruction Levels: Next, we consider the edge case, where
the centroid of the outermost region is to be computed, e.g., —1 < £(/—1) < 1 < £(¢), for the
rightmost region. In this case, we can decompose the overall expectation in (26)) as follows

Ex[X | M=m,X € R/]
= PE(U-1) <X <l |M=m,X Ry -E[X | M=m,E({—-1) < X < 1]
+PX=1|M=mXeR -1 (36)

The expectation Ex [X | M =m, X € R,] is decomposed into the expectation over the continuous
part Ex[X | M =m,&(¢ — 1] < X < 1) and the complementary case X = 1, each weighted by
their respective probability. For the continuous part, we can compute the expectation with (33)). The
fraction of the probability mass in R, that is allocated to X = 1 can be computed as
PX=1|M=m,X € Ry
PX=1,X€e€Ry| M=m]
P[X e Ry | M=m]
PX=1|M=m]
P[X eRy | M:m]
P[X=1| M=m)]
PlE(l—-1) < X<1| M=m]+ P[X=1| M=m]
For block-wise absmax normalization without signed absmax, a fraction of - 57 of the probability
mass is allocated to 1, whereas the £ - L is contained in the continuous part of the distribution. We
can use the CDF F{#™(z | M = m) = Fy,_, . (mx) to find the fraction of the probability mass
contained in the continuous part of R:
PE(l-1) < X<1| M=m]
=P-1<X<1|M=m]-PE(l-1) <X |-1<X <1, M=m]
= % (1 FEE(e-1) | M=m))

_ 1= o L Feomt(—e(e—1) | M=m), (38)

utilizing the symmetry of F°"*() w.r.t. zero in the final step. Concerning , we obtain
P X=1|M=m,X € R

1
21
A -Fr (€t —1) | M=m)) + 5
1
= 39
2T~ DFE (&) | M=m) + 1 o
where Fi™(z | M = m) = Fw,_, . (mx) is the CDF of X on the continuous part of the
dlStI‘lbuthH derived in (T0). The derivation for the leftmost reconstruction level is symmetric. When
using signed absmax normalization, a probability of 3 7 is assigned to 1, and we obtain instead
PX=1|M=m,X € Ry
1
— , 40
(= DE (~€(0—1) | M=m)) + 1 o

for the rightmost reconstruction level, while the leftmost reconstruction level requires no special
treatment.

(37

Additionally, for the centroid according to (18]), we require Fx (x | M =m). For the continuous part
of the d1str1but10n (—1 < X < 1) the solution is provided by (I0). Accounting for the probability
mass fraction 7 distributed to —1 and 1, we obtain for absolute block-wise absmax normalization:

0, ifex < —1
Fx(z|M=m)={ &+ F(z | M=m), if-1<z<1 (41)
1 ife >1,

)
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and for signed block-wise absmax normalization:

0, ifo < —1
Fx(z|M=m)={ L2Fe"(z | M=m), if-1<z<1 (42)
1 ifz > 1.

)

It should also be noted that the computation for the continuous part of the distribution with CDF
F™(z | M =m) is identical for both signed and absolute block-wise absmax normalization. This
is because the distribution of normalized weights only differs in the probability mass assigned to
each of the endpoints —1 and 1. Moreover, these edge cases are typically not evaluated, since the
outermost reconstruction levels are usually constrained to —1 and 1 and are not updated during
Lloyd’s algorithm.

D.2.2 MAE OPTIMIZATION

We derive a condition for the centroid that minimizes the MAE quantization error MAE(W, Q(W)).
We show that the condition minimizes the MAE by reducing the problem to the well-known fact that
the median minimizes the mean absolute deviation from a set of points. Beginning analogously to
Section[D.2.1] we arrive at the following criterion for optimality:

() = argmin/ m-Ex|[|X —&| | M=m, X €Ry| - pu(m | X €Ry) dm. (43)
zerR  Jo

Thus, we define the objective function we aim to minimize as

o0
g(&) = / m~EX[|X —Z| | M=m, XGRd ‘pu(m | XeRy)dm (44)
0

Using the definition of the expected value, we have

Ex[|X — 2| | M=m, X eR,] :/ px(x | M=m,XeRy) - |T — z|dz. (45)
Re

so that

g(i"):/ m-pu(m | XeRy) -px(x| M=m, XERy) - |Z —z|dzdm.  (46)
0o Jr,

We swap the order of integration:

g(i:):/ [/ m-py(m | XeRy) px(x| M=m,Xe€Ry)dm| |& —z|dx.  (47)
Re LJO

Now, we define a “’re-weighted” PDF
JoSm-pu(m | XERy) -px (x| M=m, X €R,)dm

= )
pz) = S (48)
() Jo m-pu(m| XeRy)dm
with which the objective function can be rewritten as
(o)
g(2) :/ m - par(m | XERe)dm-/ p(z) - |& — x| da. (49)
0 Re

Since we search for arg min, g(&), we can ignore the first integral in as it is only a constant
factor, and our objective function becomes

o) = [ ila)-[o—alds (50)
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It is a well-known fact that for any PDF j(), the expected absolute deviation
é‘:»—)/ p(z) - |z — z|dz (5D

is minimized by the median of the distribution with PDF p(z). That is, if & = %(¢) is the minimum
of g(&), then it satisfies

0 1
/ p(x)de = f/ p(x) dx. (52)
2 Jr,

— 00

The denominator [~ m - pas(m | X € Ry) dm in 1| can be eliminated from both sides of l)
allowing us to redefine p as

p(x) = m-py(m | X€Ry) - px(z | M=m, X €Ry)dm. (53)
0

Now, substituting the definition of p(z) into the left-hand side of , we have

z(0) z(0) 0o
/ ﬁ(x)dx:/ {/ m-pM(m|X6’Rg)-pX(a:Mzm,XeRg)dm] dex.
—0o0 0

— 00

— 00

00 2(0)
:/ m-pu(m | X eRy) - l/ px(m|M:m,X€R4)dx1 dm. (54)
0

The inner integral is the conditional CDF of X given M =m and X € R,. Thus,

z(0) e
/ ﬁ(x)dx:/ pu(m | XeRy) -m- Fx(z(0) | M=m, X €R,)dm. (55)
0

— 00

Similarly, the total mass in R, on the right-hand side of (52)), is

/ ﬁ(m)dx:/mm~pM(m|X€Rg)dm. (56)
Re 0

Substituting (53) and (56) into (52), we obtain the new condition for optimality:

/ m-py(m | XeRy) - Fx(2(f) | M=m, X €Ry)dm
0

1 o0
:5/ m-par(m | X €Ry) dm. (57)
0

Rearranging yields

/oom par(m | X €Ry) - (FX(§:(£) | M=m, X €Ry) ) dm = 0. (58)
0

1
2

Finally, we use the definition of the truncated CDF and the characterization of pa;(m | X € Ry) from

([23) to obtain

/O e parm) - (Fx(a0) | M=m) — L [Fx(e | M=m)] & Yam=0.| (9

All expressions can be computed directly from the known PDF py; and CDF Fyy of W, using (12)),
(@T), @2). Thus, we can use this equation in Lloyd’s algorithm to determine the centroid by numerical
integration in combination with some method for finding the root of the monotonous function in &(¢)
on the left-hand side of @I), such as the bisection method. (Burden & Faires, [2010} pp. 48 ff.)
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D.3 EMPIRICAL CENTROID COMPUTATION

In Section we have derived theoretical solutions for the centroid computation in block-wise
absmax quantization. However, computing the resulting integrals numerically might suffer from
precision issues preventing a straight-forward implementation. Therefore, we additionally provide a
simpler method to compute the centroid Z(¢) of a region R, using Monte-Carlo estimation based on
samples drawn from the network weight distribution. This method has the additional advantage that
it can be applied to empirically collected weights from existing pre-trained networks rather than an
assumed parametric distribution.

We first sample weights W = (W) = (wp,;) € RP*! grouped into B blocks each with I weights
from the distribution of network weights pyy. Then, we normalize the weights by their respective
block maxima w}"®* obtaining the normalized weights X € RB*! = (X)) = (z,;). The objective
now becomes to minimize the quantization error of the sampled weights J(W, Q(W)), where
J is either MAE() or MSE() and Q(W) is the result of applying the quantization function Q()
element-wise to each row W, of W. We apply Lloyd’s algorithm based on empirical data to the
generated weights with a modified centroid criterion, which is derived in the following for both MAE

and MSE optimization.

MSE Optimization: Our first goal is to minimize the MSE of the network weights based on the
sampled weights W. We can express MSE(W, Q(W)) in terms of an MSE of the normalized
weights as follows:

MSE(W, Q(W)) = (wy,i — Qp(we,))*

U:J‘H
~

o
m
o]
M
N

]
~

- = (1 = ™ - Qla,)?

‘ -
o
m
o]
M
N

B 1 (wi™)? -+ (w05 — Q(p,4))?
beB ie
(wi™)? - MSE(X,, Q(Xs)), (60)
beB

o]
N

W=~ W

where w;"®* for the bth block Wy, € (wyp ;) is computed according to , and Q() is the block-
independent quantization function (3) that is utilized to quantize normalized weights.

Next, we show how the centroid computation using Lloyd’s algorithm must be modified to update the
reconstruction level Z(¢) in a specific interval [£(£—1),£(£)) using empirical samples of normalized
weights X = (z3;), such that the MSE of the weights MSE,(W, Q(W)) for that interval is
minimized. Let zx, k € K, = {1,..., K}, be those normalized weights x;; that fall into the
interval [£(¢—1),&(¢)) in the bth block, and w;, = wp™* the absolute or signed block maximum
corresponding to the normalized weight xj,. Using (60), we can conclude that the contribution of the
(th interval to the overall MSE is
1

— 2 N2
MSE,/(W, Q(W)) = 2= > _ (wi)* - (wx = 2)%. (61)
ke,
We minimize by computing the derivative w.r.t.  according to
d 2
—MSE/(W,Q(W)) = —— 2o (xp — @ 62
G MSE(W.Q(W)) = — = k; w - (w = @), (62)
14

and setting it equal to 0, allowing us to ignore the constant factor:
2 A 2 2 A
OzZwk-(xk—x(ﬁ))zZwk~ajk—2wk-x (63)
ke, ke, ke,
Rearranging for &, we obtain the optimal reconstruction level in the /th interval as
2
ZkG’C@ wk "Lk

20 =3 =
Zkel(:z wi

) (64)
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which is the weighted mean of weights zj, in the interval [£(¢—1),£({)), weighted by their corre-
sponding squared absolute or signed block maxima w?. Tab. [8| (discussed in Appendix @) further
supports the equivalence of this Monte-Carlo method with the theoretical solution given in (3).

MAE Optimization: A similar derivation can be made for the optimization of the MAE. Given
fixed normalized network weights x, k € ICy, with associated absolute block maxima wy, k € Ky,
we are searching for
z(¢) = argmin MAE,(W,Q(W)) = arg min Z w - |z — & (65)
i, z ke,

Therefore, we define the function we aim to minimize as
F@) =Y wi- |z, — 2| (66)
ke,

where z,, k € Ky, are those normalized network weights contained in the interval [£(£—1),&(¢)).
Further, we assume, w.l.o.g. that the normalized network weights xj, are in ascending order: x; <
xTo <...Z=z K-

Obviously, the minimum must satisfy 1 < f(Z) < zg,. Consider two distinct, consecutive
normalized weights z,, T, 1 With T, # T.y1. Let 2, < T < T+€ < z,41 for some € € R*. Now,
we can show the monotonicity of f() on the interval (z, 1) as follows:

Ky

flE+e) =) wp-(Fte—az) + Y wp-(on — (&+¢)
k=1

k=r+1

K K
:Zwk . e—i—Zwk . (i—xk)
k=1 k=1

:(iwk— S we) e+ £(3) 67)

Therefore, f(Z) is monotonously decreasing on the interval (z,, €41) if

K K
> wp < Z wi, (68)
k=1

k=r+1

and monotonously increasing otherwise. Let k™ be the largest index x for which holds.
Then, f(&) is monotonously decreasing for & < x,ma and monotonously increasing for & >  med.
Therefore, f () must be minimal at £ = 2 ,.mea. The point & ,.mes is known as the weighted median of
Ty, k € KCy, with weights wy.

In conclusion, the optimal reconstruction level & (¢) under the MAE criterion during the iteration of
Lloyd’s algorithm for normalized network weights is computed as the weighted median

K Ky
#(0) = & = medianw (x1, ..., TK,; W1, ..., WEK,) = r;lea’%({:rﬁ| Zwkg Z wk}, (69)
k=1 k=rk+1

for xy,, k € Ky, in ascending order x1 <x9 <...<zf,, both in the case of block-wise absolute and
signed absmax normalization. In both cases, wy, represents the weight with the largest absolute value
in the block containing xy.

E OPTIMAL QUANTIZATION CODEBOOKS

Tab. [6] and Tab. [7 display the codebooks that were computed using the EM algorithm outlined in
Section[3.2] In Tab.[f] the reconstruction levels of BOF4 and BOF-S optimized w.r.t. both MAE and
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Table 6: Reconstruction levels Z(¢) of BOF4 and BOF4-S optimized w.r.t. MAE and MSE for block

size I = 64.

BOF4

BOF4-S

MAE-opt. &(¢)

MSE-opt. Z(¥)

MAE-opt. &(¢)

MSE-opt. % ()

Nele BEN e WU, BN UL S R IS

-1.0
-0.7026305794715881
-0.5272703766822815
-0.3946738243103027
-0.2832144796848297
-0.1835313588380814
-0.090308666229248
0.0
0.0789600014686584
0.1598792523145676
0.244986355304718
0.3372218906879425
0.441359281539917
0.565777063369751
0.7299178242683411
1.0

-1.0
-0.7535245418548584
-0.579203724861145
-0.4385998845100403
-0.3167679905891418
-0.2059924453496933
-0.1015387624502182
0.0
0.0887245312333107
0.1793769598007202
0.2741499841213226
0.3758211433887482
0.4884937703609467
0.6187058687210083
0.7790452241897583
1.0

-0.8018798232078552
-0.6076051592826843
-0.468828022480011
-0.3559602797031403
-0.2576169371604919
-0.1677481383085251
-0.0827366262674332
0.0
0.0789434835314751
0.1597966849803925
0.2448495477437973
0.3371480107307434
0.4412573873996735
0.5656819343566895
0.7298068404197693
1.0

-0.8568463921546936
-0.6692874431610107
-0.5235266089439392
-0.4004882574081421
-0.2910638153553009
-0.1900092959403992
-0.0938529595732689
0.0
0.0887671709060669
0.1794802695512772
0.2743096053600311
0.3760197460651398
0.4886530041694641
0.6188603639602661
0.7791395783424377
1.0

Table 7: Reconstruction levels i (£) of BOF4-S optimized w.r.t. MSE for various block sizes I.

4(¢) for BOF4-S (MSE)

I =32

I =64

I =128

I =256

OO0 I NP W~

-0.8732797503471375
-0.6907446384429932
-0.5437039136886597
-0.4173701703548431
-0.3038933575153351
-0.1986017823219299
-0.0981557220220566
0.0
0.0925938412547112
0.187048003077507
0.2855197489261627
0.3907126188278198
0.506283164024353
0.6379748582839966
0.7956376671791077
1.0

-0.8568463921546936
-0.6692874431610107
-0.5235266089439392
-0.4004882574081421
-0.2910638153553009
-0.1900092959403992
-0.0938529595732689
0.0
0.0887671709060669
0.1794802695512772
0.2743096053600311
0.3760197460651398
0.4886530041694641
0.6188603639602661
0.7791395783424377
1.0

-0.83739173412323
-0.6462452411651611
-0.5028634667396545
-0.3836247622966766
-0.2783779501914978
-0.1815713942050934
-0.0896477326750755
0.0
0.0850915610790253
0.1720834821462631
0.2632072865962982
0.3613293170928955
0.4707452654838562
0.5988966822624207
0.761027991771698
1.0

-0.8146829009056091
-0.6221838593482971
-0.4820549190044403
-0.3669650852680206
-0.2659871876239777
-0.1733742356300354
-0.0855776593089104
0.0
0.0815095230937004
0.1649149656295776
0.2524392008781433
0.3470274209976196
0.4531534314155579
0.578848659992218
0.7418596744537354
1.0

MSE are shown for an example block size I = 64. Tab.[7|shows the reconstruction levels of our
top-performing quantizer BOF4-S optimized w.r.t. MSE for additional practical block sizes I < 256.

Furthermore, Tab. [ presents a comparison of the BOF4 (MSE) reconstruction levels computed with
two different implementations. In the first solution, the centroid is computed based on an empirical
approach by the Monte-Carlo method using Gaussian-distributed data according to (6)), while the
second (theoretical) solution is computed data-independently using our implementation of (5) based
on numerical integration. The variance in the finite number of Gaussian samples on the one hand,
and numerical inaccuracies on the other hand, cause minor differences in reconstruction levels. The
MSE between the theoretical and empirical solution is computed as (in dB)

Siee PIX € Ry - (#t0e0(0) — 3mP(£))*

MSE =10 - IOgIO del: P[X c RZ] . jtheo(€)2

dB, (70)
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Table 8: Reconstruction levels of BOF4 (MSE) for block size I = 64 using either the empirical
method (2°™P(/)) or the theoretical solution (*"¢°(¢)) for the computation of centroids. The third

column shows the absolute deviation between corresponding reconstruction levels.

Empirical solution

Theoretical Solution
:Etheo ( Z)

Deviation

|j:emp (6) _ jtheo (f) |

—_
QOO NP WN=|

—
(O, I NS (S R

-1.0
-0.7535245418548584
-0.579203724861145
-0.4385998845100403
-0.3167679905891418
-0.2059924453496933
-0.1015387624502182
0.0
0.0887245312333107
0.1793769598007202
0.2741499841213226
0.3758211433887482
0.4884937703609467
0.6187058687210083
0.7790452241897583

-1.0
-0.7535689203869577
-0.5792681492535123
-0.4386720084478466
-0.3168191039791481
-0.2060291109696586
-0.1015640796456471
0.0
0.0887646748673216
0.1794535266886747
0.274249773841407
0.375951029286045
0.4885925268369112
0.6187715546288008
0.7790828367844242

0.0

0.0000443785320993
0.0000644243923673
0.0000721239378063
0.0000511133900062
0.0000366656199653
0.0000253171954289
0.0

0.0000401436340109
0.0000765668879545
0.0000997897200843
0.0001298858972968
0.0000987564759645
0.0000656859077925
0.0000376125946659

—
@)}

1.0 1.0 0.0

where £ = {1,...,16}. With the results from Tab. 8] we obtain MSE = —56.34dB. This
demonstrates the practical equivalence of both implementations.

F OPTIMIZING THE QUANTIZATION ERROR OF NORMALIZED WEIGHTS

Instead of minimizing the end-to-end quantization error MAE(W, Q(W)) or MSE(W, Q(W)) of the
network weights wy, ; as in BOF4(-S), see Section [3.2] equations and (5), one could alternatively
minimize the quantization error MAE(X, Qy(X)) or MSE (X, @)(X)) of the normalized weights
2y 4. In comparison to BOF4(-S), optimizing the quantization error of normalized weights is more
straightforward and can be achieved using Lloyd’s algorithm (Lloyd} |1982) with standard centroid
update rules. For MAE minimization, the centroid of a Voronoi region R, is computed based on
samples from the network weight distribution with PDF pyy, as the median of normalized weights
xp €R,withk € Ko ={1,..., K}

#(¢) = median(z1,...,rx,) (71)
For MSE minimization, the optimal centroid is the mean
W)= = 3 (72)
ZT = Kz Tk -

ke,

Note that BOF4(-S) modifies these centroid conditions by introducing an additional weighting of
the normalized network weights z;, depending on the absolute block maxima wy, of their respective
block (see (8) for MAE and (€] for MSE).

We empirically compare the two optimization strategies. A 4-bit codebook minimizing
MSE(X, Qy(X)) is computed with Lloyd’s algorithm using centroids as defined in (72). Then,
the perplexity of Llama-3.1 8B on WikiText-2 is measured for both this codebook (72)) and BOF4
(MSE) (6). Figure [6] shows the difference in perplexity PPLgor — PPLyxorw between the two
optimization approaches, with PPLpor referring to the perplexity achieved by BOF4 (MSE), and
PPLxorwu referring to the perplexity when using the codebook that minimizes MSE(X, @y (X)).
For all values of I, the difference is negative, indicating that BOF4 (MSE) consistently achieves
lower perplexity than the codebook minimizing the MSE of normalized weights.
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Figure 6: Difference in perplexity on WikiText-2 of Llama-3.1 8B quantized with BOF4
(PPLpor) vs. a codebook minimizing MSE of normalized weights (PPLxogM). Lower val-
ues indicate better performance of BOF4.

G FURTHER DETAILS ON OUTLIER-PRESERVING QUANTIZATION (OPQ)

G.1 DESIGN CONSIDERATIONS

We use a method to identify outliers that depends on the standard deviation o}, of weights within a
block b rather than on a fixed threshold, as the scaling of individual blocks within a neural network
layer’s weight tensor can vary greatly. Accordingly, we normalize the weights in each block to a
standard deviation of 1, dividing by the sample estimate

1 _
op = ﬁ ;(wb’i — wb)27 be 87 (73)

where w, = % ZiEI wp,; denotes the sample mean of weights wy ; in block b. Furthermore, to
make the method generally applicable to different distributions pyy of network weights, we use the
expected distribution of absolute block maxima w}*** (pys from @])) to determine the threshold at
which a normalized weight wy,; is classified as an outlier. Specifically, we use the g-quantile of the
distribution of absolute block maxima with PDF pj,; for some value g close to 1 as the threshold.
Intuitively, this means that a normalized weight counts as an outlier if its absolute value is larger than
a fraction ¢ of all absolute block maxima, assuming that the actual distribution of network weights
would ideally adhere to our distribution assumption pyy .

Fig.[/|illustrates the detection of outliers. The blue histogram represents a block of absolute network
|wp,4 |

weights s normalized by the standard deviation op,. The PDF p,/ (see ) describes the
theoretical distribution of absolute block maxima, indicating where the largest absolute non-outlier
weight is expected. In this example, we define outliers as absolute weights exceeding the 95th
percentile of the expected absolute block maxima, denoted by F' A}l (0.95), the inverse of the CDF
F taken from (TT). An example outlier is highlighted by red hatching.

Fig. [§] illustrates the advantage of applying OPQ to the network weights W, which are almost
Gaussian-distributed with only a small fraction of outlier weights that are highly unlikely to occur in
Gaussian-distributed data. While OPQ stores the outlier weights (red color) in 16-bit precision, the
non-outlier weights (blue color) are subject to normalization. On the right side in Fig.[§] the resulting
normalized weights X without and with OPQ are shown for the weights that are no absolute block
maxima, i.e., z € (—1, 1). Without applying OPQ, the outliers affect the scaling of their blocks during
normalization, resulting in a distribution of normalized weights X that is more concentrated around
the mean than the distribution p§2™* for which the quantizer was optimized. This is because during
normalization, each block b is divided by its absolute maximum w;'**. If W contains outliers, w;"**
is larger than expected for many blocks, leading to smaller normalized weights, which lets a quantizer
operate in the underload regime, thereby being suboptimal w.r.t. its rate-distortion characteristics. On
the other hand, when OPQ is used, the outlier weights are replaced with the placeholder value of 0 in
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Figure 7: Illustration of OPQ outlier detection. The histogram of absolute weights % of an

example block b with block size I = 64 normalized to a unit standard deviation is shown in blue.
Weights are identified as outliers (red hatching) iff they are greater than F];f (0.95), i.e., expected
to be greater than ¢ = 95% of the absolute block maxima |w}**| according to the assumption of
Gaussian-distributed network weights wy, ;. The corresponding PDF pj, of absolute block maxima
|wi*®*| is shown as a black solid line.

Hist(W) Hist(X) Hist(X)
non-outlier weights w/o OPQ w/ OPQ

I outlier weights
normalized weights X

theoretical PDF pS™®

block-wise
absmax
normalization
O B E—— T T T T T T
—4 0 4 -1 0 1 -1 0 1
T T

Figure 8: Effect of outlier-preserving quantization (OPQ) on the distribution of normalized network
weights. The histogram of original network weights W containing some outlier weights (red) and
non-outliers (blue) is shown on the left. The normalized network weights X that are not -1 or 1
are shown on the right with and without OPQ. The theoretical PDF pS2"* of the continuous part of
normalized weights X is shown for comparison. The PDF p$¢™* is computed under the assumption of
Gaussian-distributed network weights, whereas the true network weights W contain (non-Gaussian)
outliers.

the weight tensor W before normalization. Consequently, the distribution of normalized weights X
is much more similar to the theoretically expected PDF pS2™*. We chose this method for managing
outliers, instead of abandoning the assumption of Gaussian network weights, because we observe
that most rows of weight matrices in LLMs are very close to Gaussian, whereas only some blocks
follow a super-Gaussian distribution with a small number of large-magnitude outlier weights. This
observation is also supported by Dettmers et al.| (2023 Appendix I). In practice, the design of OPQ
enables one to control the expected number of weights stored in high precision via the choice of the
hyperparameter q.
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Figure 9: Relative perplexity (PPL) improvement on WikiText-2 validation split and relative
memory overhead in relation to memory utilized by 4-bit quantized weights for OPQ at various
model sizes and values of the hyperparameter gq. All results use BOF4-S (MSE) with block size
I =64.

Note that the reconstruction levels of BOF4 or BOF4-S, shown in Tabs. E] and|/| remain unchanged
when OPQ is used.

G.2 HYPERPARAMETER ABLATION

We perform a hyperparameter ablation to analyze the influence of the OPQ hyperparameter ¢ on the
quantized model’s performance and the additional memory cost compared to block-wise absmax
quantization without OPQ. Fig. 0] presents the results for various Llama 3 models ranging from 1
billion to 70 billion parameters and hyperparameter choices ¢ € {0.9,0.95,0.97,0.99,1.0}. The
relative perplexity improvement from OPQ is calculated as

PPL,.s — PPL(q)

APPL(q) = PPL.; (74)
where PPL(q) is the perplexity of the quantized model on the WikiText-2 (Merity et al., 2017) vali-
dation split using BOF4-S (MSE) with OPQ at a specific value for the hyperparameter ¢, and PPL,¢
is the reference perplexity resulting from BOF4-S (MSE) without OPQ. The memory overhead is
calculated in relation to the memory usage by 4-bit quantized layers, excluding layers that are not
quantized, such as the embedding and final layers.

We observe that OPQ yields a substantially larger relative perplexity improvement for the
Llama-3.1 70B model compared to the other significantly smaller LLMs with 1...8 billion
parameters. Notably, this improvement is achieved without any increase in relative memory over-
head. This suggests that, in very large LLMs, preserving weight outliers is even more critical for
maintaining performance. For a fixed value of g, the relative memory overhead is similar between
model sizes. For instance, at ¢ = 0.95 the overhead ranges from 1.32% and 1.79% for all evaluated
models. In smaller LLMs, decreasing g below 0.95 provides only marginal perplexity gains while
increasing memory overhead. For very large models, however, choosing a lower value of ¢ < 0.95
may be viable if the deployment hardware can accommodate the additional memory overhead, since
perplexity continues to improve beyond this point. Based on these observations, we recommend
q = 0.95 as a robust hyperparameter choice across model sizes.

Additionally, we analyze how the block size I affects the choice of the hyperparameter ¢ by measuring
the additional memory cost (Fig.[T0) and the perplexity on the WikiText-2 validation split (Fig. [TT),
using L1lama—-3.1 8B as an example.
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overhead of BOF4 (MSE) applied to
Llama-3.1 8B as a fraction of the total
memory required by the quantized model af-
ter block-wise absmax quantization, includ-
ing the quantization constants.

on the WikiText-2 validation split after quan-
tization with BOF4 (MSE) using OPQ with
various values of the hyperparameter q.

We observe that the memory overhead decreases as the block size I increases. Moreover, the positive
effect of OPQ on perplexity increases with increasing block size. For instance, when setting ¢ = 0.9,
the memory overhead at block size I = 32 is approximately 3% while the effect on perplexity is low.
Meanwhile, at larger block sizes, the effect on perplexity becomes more pronounced and OPQ only
incurs a minimal memory overhead, even for ¢ = 0.9. Across block sizes, we find that ¢ = 0.95
(light-green curves) leads to an acceptable fraction of weights stored in high precision, even for small
block sizes, and consistently improves perplexity at every tested block size. This confirms our earlier
observation from Fig. [9]that ¢ = 0.95 is a robust hyperparameter choice.

G.3 RUNTIME OVERHEAD

We additionally evaluate the runtime overhead of OPQ. Figure[T2]shows the time required to generate
1000 tokens with Llama-3.1 8B on an NVIDIA RTX 4070 Ti Super GPU using block-wise
absmax quantization without and with OPQ. We use a batch size of 1 and start generating from
an empty context. Note that the particular block-wise absmax quantization method that is used
does not influence the decoding runtime, since NF4, AF4, BOF4, and BOF4-S all utilize the same
implementation of decoding, only differing in the values of the reconstruction levels &(¢). We
measure a runtime overhead of 2.88% on average for OPQ, which is nearly constant in the block size
I, with the largest measured overhead being 3.84%. This shows that OPQ only incurs a minimal
runtime overhead.

H TRAINING AND EVALUATION DETAILS

Our hyperparameter choices align closely with those used by Dettmers et al. during the original
evaluation of the QLoRA method (Dettmers et al., 2023). We use the AdamW optimizer (Loshchilov:
& Hutter, 2019) with a constant learning rate of 4 - 10~°, configured with the exponential decay rates
B1 = 0.9 and B> = 0.999. We perform supervised fine-tuning for 1875 steps using batch size 16.
Furthermore, we use gradient clipping with a max_grad_norm parameter of 0.3. A dropout with
a 10% dropout rate is applied to the LoRA layers. In contrast to Dettmers et al.| (2023), we do not
perform double qunaitzation, i.e., the quantization constants are not further quantized.

We use the LM Evaluation Harness by EleutherAl (Gao et al.,2024)) (MIT License) for the evaluation
on the NLP benchmarks. The code generation benchmarks HumanEval+ and MBPP+ are provided
by the EvalPlus framework (Liu et al.,|2023) (Apache 2.0 License).
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Figure 12: Time to generate 1000 tokens starting from an empty context with and without OPQ,
depending on the block size I, evaluated on L1ama-3.1 8B using a batch size of 1

All fine-tuning runs were conducted on a single A100 40GB GPU. Each run finished in less than
8 hours. For perplexity and accuracy evaluations, either an NVIDIA RTX 3080 with 10GB of
memory or an A100 40GB was used. Each evaluation run of a (quantized) model on our set of NLP
benchmarks required at most 24 hours.

I APPLICATION TO CALIBRATION-DATA-BASED QUANTIZATION

For most experiments, we evaluate BOF4 in a data-free setting, where quantization is determined
solely by the network weights rather than by network activations computed with the help of calibration
data. This ensures a fair comparison with the data-free methods NF4 and AF4, which we improve
upon. While data-free quantization offers this comparability, post-training data-aware methods
often achieve higher accuracy. Data-aware approaches, such as GPTQ (Frantar et al.| 2023), AWQ
(Lin et al., [2024), and SmoothQuant (Xiao et al., [2023)), leverage calibration data to optimize the
assignment of network weights to reconstruction levels. Most of these methods rely on uniform
quantization, yet the uniform codebook can be readily replaced with a non-uniform one. In fact,
the use of non-uniform codebooks in GPTQ has already been explored by [van Baalen et al.| (2024).
Furthermore, GPTQ natively supports operating on normalized blocks of weights (referred to as
groups by (Frantar et al., [2023)), making it a natural framework to evaluate our BOF4 method
in a data-aware setting. Moreover, GPTQ can be trivially modified to use our signed block-wise
normalization (Section[3.1)) method and OPQ (Section 3.3).

As a proof of concept, we experimentally evaluate this approach. |[Frantar et al.|(2023)) demonstrate
that GPTQ already works well with larger block sizes between 128 and 1024. Accordingly, we
evaluate all methods at block size I = 128. As calibration data, we use 512 samples from the C4
dataset (Raffel et al.,[2020]).

The results are shown in Tab. [J] We observe that using GPTQ with non-uniform BOF4 (MSE)
quantization significantly improves perplexity and average accuracy compared to the uniform quan-
tization from the original GPTQ proposal. Further improvements are achieved by adding signed
normalization (BOF4-S) and outlier-preserving quantization (OPQ). Overall, perplexity is reduced
from 8.60 to 8.34 on WikiText2 and from 4.32 to 3.93 on Lambada, while normalized average
accuracy improves from 42.0% to 42.8%. This significantly closes the gap to full-precision (BF16)
inference. Furthermore, we observe that non-uniform quantization generally improves perplexity
and accuracy significantly: non-uniform, data-free quantization performs better than uniform, data-
aware GPTQ in both perplexity metrics and competitively in terms of accuracy. This highlights that
non-uniform quantization is a viable option that should be considered in cases where memory is
the main concern and improving inference speed is secondary. Our results demonstrate that our
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Table 9: Inference with GPTQ quantization (Frantar et al., 2023 with block size I = 128
and various underlying codebooks evaluated using L1lama—3.1 8B. Best-performing data-free
methods are shown for comparison. The evaluated metrics are the perplexity on the WikiText-2 and
LAMBADA dataset, and the accuracy on the MMLU (few-shot), ARC-Challenge, HellaSwag, PIQA,
SIQA, and WinoGrande benchmarks. Best result in each column in bold, second best underlined,
BF16 excluded.

Quantizer WikiText2 Lambada MMLU ARC-C HellaSwag PIQA SIQA WinoGrande NAV
PPL | PPL| ACCT ACCtT ACCT ACCT ACCT ACC 1t ACC 1
BF16 7.94 396 63.0 513 60.0 80.0 47.0 73.8 43.4
BOF4-S (MSE) 8.57 4.04 614 483 593 79.7 465 72.4 41.5
+0OPQ 8.48 4.05 61.7 489 593 798 46.7 73.0 42.0
GPTQ, uniform 8.60 432 609 502 593 792 472 72.9 42.0

GPTQ, BOF4 (MSE) 841 396 620 499 593 792 474 73.0 423
GPTQ, BOF4-S (MSE) 836  3.92 623 498 595 790 481 725 423
+0PQ 834 393 622 505 593 797 473 737 428

contributions—BOF4 codebook optimization, signed normalization, and OPQ—can be naturally
incorporated into calibration-data-based quantization methods, yielding clear benefits.

J  ADDITIONAL EVALUATIONS

In Tab.[I0} the quantization error and perplexity results for the Llama-3.1 8B and the Qwen-2.5
7B models are shown. Note that Tab. [I0]corresponds to Tab. [T} the latter just showing larger models.
Similar to the larger models, we observe that our BOF4(-S) quantizers perform at least as well and
usually better than the baseline methods in the quantization error metric (MAE or MSE) for which
the particular codebook is optimized. Furthermore, the BOF4-S quantizers using our signed absmax
normalization significantly improve all metrics over BOF4 with absolute absmax normalization.
When additionally applying OPQ to the BOF4-S quantizers, performance in all metrics improves
further. The lowest errors are achieved by BOF4-S +OPQ, using the codebook optimized for the
particular error metric. Interestingly, for the Qwen—-2.5 3B model, our MAE-optimized methods
generally achieve better perplexity, suggesting that the target error metric for optimization, which
leads to the best performance, may vary depending on the LLM.

Fig.|13|shows perplexity results for BOF4 on the WikiText-2 and LAMBADA datasets. Note that Fig.
[I3] corresponds to Fig.[3] the latter reporting on BOF4-S, however. We observe that for most block
sizes I, the perplexity of BOF4 optimized w.r.t. MAE or MSE is similar to that of the best-performing
baseline method. Adding OPQ significantly reduces perplexity, particularly when used with MSE
optimized codebooks and at large block sizes.

Tab. |1 1] displays additional perplexity and accuracy measurements for the larger L1ama—-3 8B,
Qwen-2.5 7B, and the tiny Qwen-2.5 0. 5B. Note that Tab.[TT|corresponds to Tab.[2] the latter
reporting on small 3B models. Our best BOF4 quantization method consistently outperforms the
baseline methods, NF4 and AF4, in terms of perplexity on WikiText-2 and LAMBADA, except
when applied to the Qwen-2.5 7B model, where NF4 achieves a surprisingly low perplexity on
LAMBADA—surpassing even the performance of the unquantized BF16 model. Note, however, that
for the Qwen-2.5 7B model, each of our four proposed BOF4(-S) methods performs as well as
or better than NF4 in the NLP benchmarks’ normalized average accuracy (NAV) metric. Overall
normalized average accuracy (NAV) results from the language modeling benchmarks do not indicate
a single quantizer or approach that consistently performs best.

The OPQ variant proves particularly effective for the smaller Qwen-2.5 0.5B model, where it
significantly improves perplexity over the respective quantizer without OPQ and both baselines NF4
and AF4.
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Table 10: Quantization error (MAE and MSE) and perplexity (PPL) on WikiText-2 of quantization
methods applied to the network weights of two 3B regime LLMs with block size I = 64. Best result
in each column in bold, second best underlined.

Llama-3.1 3B

Qwen-2.5 3B

MAE| MSE| PPL| MAE| MSE| PPL|
le—3 1le—6 le—3 1le—6
NF4 1.399 3333 10.72 1.822 5722 12.13
AF4 1.441 3.588 10.71 1.862 6.118 13.48
BOF4 (MAE) 1.399 3302 10.72 1.821 5.670 12.16
BOF4 (MSE) 1424 3191 10.73 1.862 5526 12.46
BOF4-S (MAE) 1.341 3.071 10.68 1.746 5274 12.07
+ OPQ 1.316 2971 10.63 1.689 5.026 12.05
BOF4-S (MSE) 1.367 2936 10.66 1.788 5.087 12.41
+ OPQ 1.336  2.791 10.64 1.719 4739 12.36
9.2 1 —A— N 9.2 1/ —A— NF4
AF4 AF4
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Figure 13: Perplexity of L1ama-3.1 8B on WikiText-2 after quantization with NF4, AF4, and
our BOF4 optimized w.r.t. MAE (left, %) or MSE (right, o) for different block sizes I, without and
with outlier-preserving quantization (OPQ, dashed line).

K DEFINITION OF THE NORMALIZED AVERAGE ACCURACY METRIC

To determine an overall accuracy score for a model over multiple benchmarks, we employ a normal-
ized average accuracy that accounts for the chance level accuracy achievable by random guessing
on each benchmark. For example, some benchmarks use a multiple-choice format with four answer
options. In this case, random guessing would yield an accuracy of 25%. To ensure that no benchmark
disproportionately influences the average accuracy, we normalize the accuracy of multiple-choice
benchmarks such that random guessing is expected to yield 0% and answering all queries correctly
yields 100%. The normalized accuracy is calculated as

7 ACC — ACCghance
ACChorm = 1 — ACChance ’

where ACCpance is the chance-level accuracy. This normalized average accuracy ACCoppy 18
reported in Tabs. [2]and[T1] abbreviated as NAV ACC.

(75)
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Table 11: Inference results of 4-bit scalar quantization methods evaluated using additional LLMs
with block size I = 64. The evaluated metrics are the perplexity on the WikiText-2 and LAMBADA
dataset, and the accuracy on the MMLU (few-shot), ARC-Challenge, HellaSwag, PIQA, SIQA, and
WinoGrande benchmarks. Best result in each column in bold, second best underlined, BF16 excluded.

Model Quantizer WikiText2 Lambada MMLU ARC-C HellaSwag PIQA  SIQA WinoGrande NAV
PPL | PPL] ACCT ACCtT ACCT ACCT ACCT ACCT  ACC?T

BF16 794 396 630 513 600 800 47.0 738 434

NF4 853 441 612 491 59.1 789 474 736 420

Llama=3.1  Apy4 851 438 61.6 499 591 795 470 73.6 424
8B BOF4 (MSE) 847 425 61.7 504 593 789 464  73.1 42.0
+OPQ 847 425 617 504 593 789 464  73.1 42.0

BOF4-S (MSE) 847 429 61.7 485 595 792 462 728 416

+OPQ 843 429 619 492 595 797 465 725 419

BF16 950 453 715 482 600 787 548 727 458

NF4 991 448 707 467 590 789 542 1.7 446

Qwen-2.5 AF4 990 470 706 472 589 783 545 702 440
7B BOF4 (MSE) 995 483 707 482 592 787 54.1 713 44.8
+OPQ 9.85 473 706 474 592 789 542 722 450

BOF4-S(MSE) 9.88 479 70.8 484 592 786 543 706 446

+OPQ 983 467 706 485 593 786 544  71.1  44.8

BF16 19.64 1695 475 295 406 702 444 564  21.1

NF4 2224 2520 448 283 388 69.5 444 566 197

Qwen-2.5 AF4 2214 27.17 435 285 390 689 433 56.8 19.1
0.5B BOF4 (MSE) 2222 2728 451 299 391 695 429 545 19.1
+OPQ 2172 24.61 450 290 390 694 435 556 193

BOF4-S (MSE) 23.02 2664 442 304 391 680 437 556 19.1

+OPQ 21.88 2290 442 296 388 684 434 567 192
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