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Abstract

Distributionally Robust Optimization (DRO), as a popular method to train robust models
against distribution shift between training and test sets, has received tremendous attention
in recent years. In this paper, we propose and analyze stochastic algorithms that apply to
both non-convex and convex losses for solving Kullback–Leibler divergence constrained DRO
problem. Compared with existing methods solving this problem, our stochastic algorithms
not only enjoy competitive if not better complexity independent of sample size but also just
require a constant batch size at every iteration, which is more practical for broad applications.
We establish a nearly optimal complexity bound for finding an ϵ-stationary solution for
non-convex losses and an optimal complexity for finding an ϵ-optimal solution for convex
losses. Empirical studies demonstrate the effectiveness of the proposed algorithms for solving
non-convex and convex constrained DRO problems.

1 Introduction

Large-scale optimization of DRO has recently garnered increasing attention due to its promising performance
on handling noisy labels, imbalanced data and adversarial data (Namkoong & Duchi, 2017; Zhu et al., 2019;
Qi et al., 2020a; Chen & Paschalidis, 2018). Various primal-dual algorithms can be used for solving various
DRO problems (Rafique et al., 2021; Nemirovski et al., 2009). However, primal-dual algorithms inevitably
suffer from additional overhead for handling a n dimensionality dual variable, where n is the sample size.
This is an undesirable feature for large-scale deep learning, where n could be in the order of millions or even
billions. Hence, a recent trend is to design dual-free algorithms for solving various DRO problems (Qi et al.,
2021; Jin et al., 2021; Levy et al., 2020).

In this paper, we provide efficient dual-free algorithms solving the following constrained DRO problem, which
are still lacking in the literature,

min
w∈W

max
{p∈∆n:D(p,1/n)≤ρ}

n∑
i=1

piℓi(w) − λ0D(p, 1/n), (1)

∗Equal Contribution.
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where w denotes the model parameter, W is closed convex set, ∆n = {p ∈ Rn :
∑n

i=1 pi = 1, pi ≥ 0}
denotes a n-dimensional simplex, ℓi(w) denotes a loss function on the i-th data, D(p, 1/n) =

∑n
i=1 pi log(pin)

represents the Kullback–Leibler (KL) divergence measure between p and uniform probabilities 1/n ∈ Rn,
and ρ is the constraint parameter, and λ0 > 0 is a small constant. A small KL regularization on p is added
to ensure the objective in terms of w is smooth for deriving fast convergence.

There are several reasons for considering the above constrained DRO problem. First, existing dual-free
algorithms are not satisfactory (Qi et al., 2021; Jin et al., 2021; Levy et al., 2020; Hu et al., 2021). They are
either restricted to problems with no additional constraints on the dual variable p except for the simplex
constraint (Qi et al., 2021; Jin et al., 2021), or restricted to convex analysis or have a requirement on the
batch size that depends on accuracy level (Levy et al., 2020; Hu et al., 2021). Second, the Kullback–Leibler
divergence measure is a more natural metric for measuring the distance between two distributions than
other divergence measures, e.g., Euclidean distance. Third, compared with the KL-regularized DRO problem
without constraints, the above KL-constrained DRO formulation allows it to automatically decide a proper
regularization effect that depends on the optimal solution by tuning the constraint upper bound ρ. In other
words, solving the constrained DRO with ρ offers the capability of optimizing the temperature parameter
λ in Eq. (2), which corresponds to the log-sum-exponential form with a temperature parameter λ is
widely used in many ML/AI methods, e.g., constrastive self-supervised learning (Yuan et al., 2022; Qiu
et al., 2023b). Empirical studies have demonstrated that selecting an appropriate value for λ is crucial for
achieving good performance (Goel et al., 2022; Li et al., 2021a; Radford et al., 2021). Therefore, solving the
constrained distributionally robust optimization problem provides the added advantage of identifying an
optimal temperature during the training process.

The question to be addressed is the following:

Can we develop stochastic algorithms whose oracle complexity is optimal for both convex and non-convex
losses, and its per-iteration complexity is independent of sample size n without imposing any requirements
on the (large) batch size in the meantime?

We address the above question by (i) deriving an equivalent primal-only formulation that is of a compositional
form; (ii) designing two algorithms for non-convex losses and extending them for convex losses; (iii) establishing
an optimal complexity for both convex and non-convex losses. In particular, for a non-convex and smooth
loss function ℓi(w), we achieve an oracle complexity of Õ(1/ϵ3)1 for finding an ϵ-stationary solution; and
for a convex and smooth loss function, we achieve an oracle complexity of O(1/ϵ2) for finding an ϵ-optimal
solution. We would like to emphasize that these results are on par with the best complexities that can be
achieved by primal-dual algorithms (Huang et al., 2020; Namkoong & Duchi, 2016). But our algorithms have
a per-iteration complexity of O(d), which is independent of the sample size n. The convergence comparison
of different methods for solving (1) is shown in Table 1.

To achieve these results, we first convert the problem (1) into an equivalent problem:

min
w∈W

min
λ≥λ0

F (w, λ) := λ log
(

1
n

n∑
i=1

exp
(

ℓi(w)
λ

))
+ (λ − λ0)ρ. (2)

By considering x = (w⊤, λ)⊤ ∈ Rd+1 as a single variable to be optimized, the objective function is a
compositional function of x in the form of f(g(x)), where g(x) =

[
λ, 1

n

∑n
i=1 exp

(
ℓi(w)

λ

)]
∈ R2 and

f(g) = g1 log(g2) + g1ρ. However, there are several challenges to be addressed for achieving optimal
complexities for both convex and non-convex loss functions ℓi(w). First, the problem F (x) is non-smooth in
terms of x given the domain constraint w ∈ W and λ ≥ λ0. Second, the outer function f(g)’s gradient is
non-Lipschtiz continuous in terms of the second coordinate g2 if λ is unbounded, which is essential for all
existing stochastic compositional optimization algorithms. Third, to the best of our knowledge, no optimal
complexity in the order of O(1/ϵ2) has been achieved for a convex compositional function except for Zhang
& Lan (2021), which assumes f is convex and component-wisely non-decreasing and hence is not applicable
to (2).

1Õ omits a logarithmic dependence over ϵ.
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Table 1: Summary of algorithms solving KL-constrained DRO problem. Complexity represents the oracle
complexity for achieving E[dist(0, ∂̂F̄ (x))] ≤ ϵ or other first-order stationarity convergence for the non-convex
setting and E[F (x) − F (x∗)] ≤ ϵ for the convex setting. Per Iter Cost denotes the per-iteration computational
complexity. The algorithm styles include primal-dual (PD), primal only (P), and compositional (COM). “-"
means not available in the original paper.

Setting Algorithms Reference Complexity Batch Size Per Iter Cost Style

Non-convex

PG-SMD22 (Rafique et al., 2021) O(1/ϵ4) O(1) O(n + d) PD
AccMDA (Huang et al., 2020) O(1/ϵ3) O(1) O(n + d) PD

Dual SGM (Levy et al., 2020) - O(1) O(d) P
SCDRO This work O(1/ϵ4) O(1) O(d) COM

ASCDRO Õ(1/ϵ3) O(1) O(d) COM

Convex

FastDRO3 (Levy et al., 2020) O(1/ϵ3) O(1/ϵ) O( d
ϵ ) P

SPD (Namkoong & Duchi, 2016) O(1/ϵ2) O(1) O(n + d) PD
Dual SGM (Levy et al., 2020) O(1/ϵ2) O(1) O(d) P
RSCDRO This work O(1/ϵ3) O(1) O(d) COM

RASCDRO O(1/ϵ2) O(1) O(d) COM
To address the first two challenges, we derive an upper bound for the optimal λ assuming that ℓi(w) is bounded
for w ∈ W , i.e., λ ∈ [λ0, λ̃], which allows us to establish the smoothness condition of F (x) and f(g). Then we
consider optimizing F̄ (x) = F (x) + δX (x), where δX (x) = 0 if x ∈ X = {x = (w⊤, λ)⊤ : w ∈ W, λ ∈ [λ0, λ̃]}.
By leveraging the smoothness conditions of F and f , we design stochastic algorithms by utilizing a recursive
variance-reduction technique to compute a stochastic estimator of the gradient of F (x), which allows us to
achieve a complexity of Õ(1/ϵ3) for finding a solution x̄ such that E[dist(0, ∂̂F̄ (x̄))] ≤ ϵ. To address the third
challenge, we consider optimizing F̄µ(x) = F̄ (x) + µ∥x∥2/2 for a small µ. We prove that F̄µ(x) satisfies a
Kurdyka-Łojasiewicz inequality, which allows us to boost the convergence of the aforementioned algorithm
to enjoy an optimal complexity of O(1/ϵ2) for finding an ϵ-optimal solution to F̄ (x). Besides the optimal
algorithms, we also present simpler algorithms with worse complexity, which are more practical for deep
learning applications without requiring two backpropagations at two different points per iteration as in the
optimal algorithms.

In the existing analysis of compositional optimization algorithms, either (i) the problem is assumed to be
unconstrained, e.g., Qi et al. (2020a; 2021), or (ii) the complexity is sub-optimal, e.g., Ghadimi et al. (2020),
or (iii) the problem is restricted, e.g., the outer function f is convex and non-decreasing as assumed in (Zhang
& Lan, 2021). To the best of our knowledge, this is the first result for stochastic compositional optimization
with a domain constraint that enjoys the optimal complexities for both convex and non-convex objectives.

2 Related Work

DRO springs from the robust optimization literature (Bertsimas et al., 2018; Ben-Tal et al., 2013) and has
been extensively studied in machine learning and statistics (Ahmadi-Javid, 2012; Namkoong & Duchi, 2017;
Duchi et al., 2016; Staib & Jegelka, 2019; Deng et al., 2020; Qi et al., 2020b; Duchi & Namkoong, 2021), and
operations research (Rahimian & Mehrotra, 2019; Delage & Ye, 2010). Depending on how to constrain or
regularize the uncertain variables, there are constrained DRO formulations that specify a constraint set for
the uncertain variables, and regularized DRO formulations that use a regularization term in the objective
for regularizing the uncertain variables (Levy et al., 2020). Duchi et al. (2016) showed that minimizing
constrained DRO with f -divergence including a χ2-divergence constraint and a KL-divergence constraint, is
equivalent to adding variance regularization for the Empirical Risk Minimization (ERM) objective, which is
able to reduce the uncertainty and improve the generalization performance of the model.

Primal-Dual Algorithms. Many primal-dual algorithms designed for the min-max problems (Nemirovski
et al., 2009; Juditsky et al., 2011; Yan et al., 2019; Namkoong & Duchi, 2016; Yan et al., 2020; Song et al.,
2021; Alacaoglu et al., 2022) are applicable to solving (1) when ℓ is a convex function. For non-convex loss

2PG-SMD2 refers to PG-SMD algorithm under Assumption D2 in Rafique et al. (2021).
3FastDRO is name of the GitHub repository of Levy et al. (2020), and we use the name “FastDRO” to refer to the algorithm

based on mini-batch gradient estimator in Levy et al. (2020).
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functions, recently, Rafique et al. (2021) and Yan et al. (2020) proposed non-convex stochastic algorithms
for solving non-convex strongly convex min-max problems, which are applicable to solving (1) when ℓ is a
weakly convex function or smooth. Many primal-dual stochastic algorithms have been proposed for solving
non-convex strongly concave problems with a state of the art oracle complexity of O(1/ϵ3) for finding a
stationary solution (Huang et al., 2020; Luo et al., 2020; Tran-Dinh et al., 2020). However, the primal-dual
algorithms require maintaining and updating an O(n) dimensional vector for updating the dual variable.

Constrained DRO. Wang et al. (2021) studies the Sinkhorn distance constraint DRO, a variant of
Wasserstein distance based on entropic regularization. An efficient batch gradient descent with a bisection
search algorithm has been proposed to obtain a near-optimal solution with an arbitrarily small sub-optimality
gap. However, no non-asymptotic convergence results are established in their paper. Duchi & Namkoong
(2021) developed a convex DRO framework with f -divergence constraints to improve model robustness. The
author developed the finite-sample minimax upper and lower bounds and the non-asymptotic convergence
rate of O(1/

√
n), and provided the empirical studies on real distributional shifts tasks with existing interior

point solver (Udell et al., 2014) and gradient descent with backtracking Armijo line-searches (Boyd et al.,
2004). However, no stochastic algorithms that directly optimize the considered constrained DRO with
non-asymptotic convergence rates are provided in their paper.

Recently, Levy et al. (2020) proposed sample independent algorithms based on gradient estimators for solving
a group of DRO problems in the convex setting. To be more specific, they achieved a convergence rate of
Õ(1/ϵ2) for the χ2-constrained/regularized and CVaR-constrained convex DRO problems and the batch
size of logarithmically dependent on the inverse accuracy level O(log(1/ϵ)) with the help of multi-level
Monte-Carlo (MLMC) gradient estimator. For the KL-constrained DRO objective and other more general
setting, they achieve a convergence rate of O(1/ϵ3) under a Lipschitz continuity assumption on the inverse
CDF of the loss function and a mini-batch gradient estimator with a batch size in the order O(1/ϵ) (please
refer to Table 3 in Levy et al. (2020)). In addition, Levy et al. (2020) also proposed a simple stochastic
gradient method for solving the dual expression of the DRO formulation, which is called Dual SGM. In terms
of convergence, they only discussed the convergence guarantee for the χ2-regularized and CVaR penalized
convex DRO problems (cf. Claim 3 in their paper). However, there is still gap for proving the convergence
rate of Dual SGM for non-convex KL-constrained DRO problems due to similar challenges mentioned in
the previous section, in particular establishing the smoothness condition in terms of the primal variable
and the Lagrangian multipliers (denoted as x, ν, η respectively in their paper). This paper makes unique
contributions for addressing these challenges by (i) removing η in Dual SGM and deriving the box constraint
for our Lagrangian multiplier λ for proving the smoothness condition; (ii) establishing an optimal complexity
in the order of O(1/ϵ3) in the presence of non-smooth box constraints, which, to the best of our knowledge,
is the first time for solving a non-convex constrained compositional optimization problem.

Furthermore, it is noteworthy that the KL-constrained DRO formulation (2) offers a distinct advantage over
the KL-regularized DRO problem without constraints. Specifically, the proposed algorithms enable automatic
determination of an optimal regularization effect for the constrained DRO (2) upon the optimizing of λ,
through the fine-tuning of the constraint upper bound ρ. This innovative approach has been empirically
demonstrated to yield significant efficacy in the realm of contrastive learning, as substantiated by the findings
of Qiu et al Qiu et al. (2023b).

Regularized DRO. DRO with KL divergence regularization objective has shown superior performance for
addressing data imbalanced problems (Qi et al., 2021; 2020a; Li et al., 2020; 2021b). Jin et al. (2021) proposed
a mini-batch normalized gradient descent with momentum that can find a first-order ϵ stationary point
with an oracle complexity of O(1/ϵ4) for KL-regularized DRO and χ2 regularized DRO with a non-convex
loss. They solve the challenge that the loss function could be unbounded. Qi et al. (2021) proposed online
stochastic compositional algorithms to solve KL-regularized DRO. They leveraged a recursive variance
reduction technique (STORM (Cutkosky & Orabona, 2019)) to compute a gradient estimator for the model
parameter w only. They derived a complexity of Õ(1/ϵ3) for a general non-convex problem and improved it
to O(1/(µϵ)) for a problem that satisfies an µ-PL condition. Qi et al. (2020a) reports a worse complexity for
a simpler algorithm for solving KL-regularized DRO. Li et al. (2020; 2021b) studied the effectiveness of KL
regularized objective on different applications, such as enforcing fairness between subgroups, and handling
the class imbalance.
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Compositional Functions and DRO. The connection between compositional functions and DRO formu-
lations have been observed and leveraged in the literature. Dentcheva et al. (2017) studied the statistical
estimation of compositional functionals with applications to estimating conditional-value-at-risk measures,
which is closely related to the CVaR constrained DRO. However, they do not consider stochastic optimization
algorithms. To the best of our knowledge, Qi et al. (2021) was the first to use stochastic compositional
optimization algorithms to solve KL-regularized DRO problems. Our work is different in that we solve
KL-constrained DRO problems, which is more challenging than KL-regularized DRO problems. The benefits
of using compositional optimization for solving DRO include (i) we do not need to maintain and update a
high dimensional dual variable as in the primal-dual methods (Rafique et al., 2021); (i) we do not need to
worry about the batch size as in MLMC-based stochastic methods (Levy et al., 2020; Hu et al., 2021).

Optimizing the Temperature Parameter. Our formulation and algorithm can be applied to optimizing
the temperature parameter in the temperature-scaled cross-entropy loss, which has wide applications in
machine learning and artificial intelligence, e.g., knowledge distillation Hinton et al. (2015) and self-supervised
learning (Chen et al., 2020). Recently, Qiu et al. (2023a) leveraged the optimization technique proposed in this
paper for optimizing the individualized temperature parameter in the global contrastive loss of self-superivsed
learning.

3 Preliminaries

Notations: Let ∥ · ∥ denotes the Euclidean norm of a vector or the spectral norm of a matrix. And
x = (w⊤, λ)⊤ ∈ Rd+1, gi(x) = exp( ℓi(w)

λ ) and g(x) = Ei∼D[exp( ℓi(w)
λ )] where D denotes the training set and

i denotes the index of the sample randomly generated from D. Let fλ(·) = λ log(·) + λρ, and ∇fλ(g) = λ
g

denotes the gradient of f in terms of g. Let ΠX (·) denote an Euclidean projection onto the domain X . Let
[T ] = {1, . . . , T} and τ ∼ [T ] denotes a random selected index. We make the following standard assumptions
regarding to the problem (2).
Assumption 1. There exists R, G, C, and L such that

(a) The domain of model parameter W is bounded such that there exists R > 0 it holds ∥w∥ ≤ R for any
w ∈ W

(b) ℓi(w) is L-smooth, i.e., ∥∇ℓi(w1) − ∇ℓi(w2)∥ ≤ L∥w1 − w2∥, ∀w1, w2 ∈ W, i ∈ D.

(c) ℓi(w) is G-Lipschitz continuous function and bounded by C, i.e., ∥∇ℓi(w)∥ ≤ G and |ℓi(w)| ≤ C for
all w ∈ W and i ∈ D.

(d) There exists a positive constant ∆ < ∞ and an initial solution (w1, λ1) such that F (w1, λ1) −
min
w∈W

min
λ≥λ0

F (w, λ) ≤ ∆.

Assumption 2. Let σg, σ∇g be positive constants and σ2 = max{σg, σ∇g}. For i ∈ D, assume that
E[∥gi(x) − g(x)∥2] ≤ σ2

g , E[∥∇gi(x) − ∇g(x)∥2] ≤ σ2
∇g

.

Remark: Assumption 1 (a), i.e., the boundness condition of W is also assumed in Levy et al. (2020), which
is mainly used for convex analysis. Assumption 1(b), (c), i.e., the Lipstchiz continuity and smoothness of loss
function, and the variance bounds for gi and its gradient in Assumption 2 can be derived from Assumption
1 (b), such that E[∥gi(x) − g(x)∥2] ≤ E[∥gi(x)∥2] ≤ exp( 2C

λ0
), and E[∥∇gi(x) − ∇g(x)∥2] ≤ E[∥∇gi(x)∥2] ≤

exp( 2C
λ0

)(G2 + C2

λ0
)4

However, F (w, λ) is not necessarily smooth in terms of x = (w⊤, λ)⊤ if λ is unbounded. To address this
concern, we prove that optimal λ is indeed bounded.
Lemma 1. The optimal solution of the dual variable λ∗ to the problem (2) is upper bounded by λ̃ = λ0 + C/ρ,
where C is the upper bound of the loss function and ρ is the constraint parameter.

4We would like to point out that the variance bound and the smoothness constant LF are exponentially dependent on the
problem parameters, so are these constants in some other stochastic methods solving constrained DRO, like Dual SGM in Levy
et al. (2020).
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Thus, we could constrain the domain of λ in the DRO formulation (2) with the upper bound λ̃ , and obtain
the following equivalent formulation:

min
w∈W

min
λ0≤λ≤λ̃

λ log
(

1
n

n∑
i=1

exp
(

ℓi(w)
λ

))
+ λρ. (3)

The upper bound λ̃ guarantees the smoothness of F (w, λ) and the smoothness of fλ(·), which are critical for
the proposed algorithms to enjoy fast convergence rates.

Lemma 2. F (w, λ) is LF -smooth for any w ∈ W and λ ∈ [λ0, λ̃], where LF = λ̃L2
g + 2Lg + λ̃L∇g + 1 + λ̃.

Lg and L∇g are constants independent of sample size n and explicitly derived in Lemma 7 .

Below, we let X = {x|w ∈ W, λ0 ≤ λ ≤ λ̃}, δX (x) = 0 if x ∈ X , and δX (x) = ∞ if x /∈ X . The problem (3)
is equivalent to :

min
x∈Rd+1

F̄ (x) := F (x) + δX (x), (4)

Since F̄ is non-smooth, we define the regular subgradient as follows.

Definition 1 (Regular Subgradient). Consider a function Φ : Rn → R and Φ(x̄) is finite at a point x̄. For a
vector v ∈ Rn, v is a regular subgradient of Φ at x̄, written v ∈ ∂̂Φ(x̄), if

lim inf
x→x̄

Φ(x) − Φ(x̄) − v⊤(x − x̄)
∥x − x̄∥

≥ 0.

Since F (x) is differentiable, we use ∂̂F̄ (x) = ∇F (x) + ∂̂δX (x) (see Exercise 8.8 in Rockafellar & Wets
(1998)) in the analysis. Recall the definition of subgradient of a convex function F̄ which is denoted by ∂F̄ .
When F̄ (x) is convex, we have ∂̂F̄ (x) = ∂F̄ (x) (see Proposition 8.2 in Rockafellar & Wets (1998)). The
dist(0, ∂̂F̄ (x)) measures the distance between the origin and the regular subgradient set of F̄ at x. The oracle
complexity is defined below:

Definition 2 (Oracle Complexity). Let ϵ > 0 be a small constant, the oracle complexity is defined as the
number of processing samples z in order to achieve E[dist(0, ∂̂F̄ (x))] ≤ ϵ for a non-convex loss function or
E[F (x) − F (x∗)] ≤ ϵ for a convex loss function.

3.1 Equivalence Derivation

Before we move to the proposed algorithms in the next section, we derive the equivalence between equation
between equations (1), (2), and (3). Recall the original KL-constrained DRO problem:

min
w∈W

max
{p∈∆n:D(p,1/n)≤ρ}

n∑
i=1

piℓi(w) − λ0D(p, 1/n),

where ∆n = {p ∈ Rn :
∑n

i=1 pi = 1, 0 ≤ pi ≤ 1}, D(p, 1/n) is the KL divergence and λ0 is a small positive
constant.

In order to tackle this problem, let us first consider the robust loss

max
{p∈∆n:D(p,1/n)≤ρ}

n∑
i=1

piℓi(w) − λ0D(p, 1/n).

And then we invoke the dual variable λ to transform this primal problem to the following form

max
p∈∆n

min
λ̄≥0

n∑
i=1

piℓi(w) − λ̄(D(p, 1/n) − ρ) − λ0D(p, 1/n).

6
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Since this problem is concave in term of p given w, by strong duality theorem, we have

max
p∈∆n

min
λ̄≥0

n∑
i=1

piℓi(w) − λ̄(D(p, 1/n) − ρ) − λ0D(p, 1/n)

= min
λ̄≥0

max
p∈∆n

n∑
i=1

piℓi(w) − λ̄(D(p, 1/n) − ρ) − λ0D(p, 1/n).

Let λ = λ̄ + λ0, we have

min
λ̄≥0

max
p∈∆n

n∑
i=1

piℓi(w) − λ̄(D(p, 1/n) − ρ) − λ0D(p, 1/n)

= min
λ≥λ0

max
p∈∆n

n∑
i=1

piℓi(w) − λ(D(p, 1/n) − ρ) − λ0ρ.

Then the original problem is equivalent to the following problem

min
w∈W

min
λ≥λ0

max
p∈∆n

n∑
i=1

piℓi(w) − λ(D(p, 1/n) − ρ) − λ0ρ,

Next we fix x = (w⊤, λ)⊤ and derive an optimal solution p∗(x) which depends on x and solves the inner
maximization problem. We consider the following problem

min
p∈∆n

−
n∑

i=1
piℓi(w) + λD(p, 1/n).

which has the same optimal solution p∗(x) with our problem.

There are three constraints to handle, i.e., pi ≥ 0, ∀i and pi ≤ 1, ∀i and
∑n

i=1 pi = 1. Note that the constraint
pi ≥ 0 is enforced by the term pi log(pi), otherwise the above objective will become infinity. As a result, the
constraint pi < 1 is automatically satisfied due to

∑n
i=1 pi = 1 and pi ≥ 0. Hence, we only need to explicitly

tackle the constraint
∑n

i=1 pi = 1. To this end, we define the following Lagrangian function

Lx(p, µ) = −
n∑

i=1
piℓi(w) + λ

(
log n +

n∑
i=1

pi log(pi)
)

+ µ(
n∑

i=1
pi − 1),

where µ is the Lagrangian multiplier for the constraint
∑n

i=1 pi = 1. The optimal solutions satisfy the KKT
conditions:

− ℓi(w) + λ (log(p∗
i (x)) + 1) + µ = 0 and

n∑
i=1

p∗
i (x) = 1.

From the first equation, we can derive p∗
i (x) ∝ exp(ℓi(w)/λ). Due to the second equation, we can conclude

that p∗
i (x) = exp(ℓi(w)/λ)∑n

i=1
exp(ℓi(w)/λ)

. Plugging this optimal p∗(w) into the inner maximization problem, we have
n∑

i=1
p∗

i (x)ℓi(w) − λ

(
log n +

n∑
i=1

p∗
i (w) log(p∗

i (w))
)

= λ log
(

1
n

n∑
i=1

exp
(

ℓi(w)
λ

))
,

Therefore, we get the following equivalent problem to the original problem

min
w∈W

min
λ≥λ0

λ log
(

1
n

n∑
i=1

exp
(

ℓi(w)
λ

))
+ λρ.

which is Eq. (2) in the paper.

4 Stochastic Constrained DRO with Non-convex Losses

In this section, we present two stochastic algorithms for solving (4). The first algorithm is simpler yet
practical for deep learning applications. The second algorithm is an accelerated one with a better complexity,
which is more complex than the first algorithm.

7
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4.1 Basic Algorithm: SCDRO

A major concern of the algorithm design is to compute a stochastic gradient estimator of the gradient of
F (x). At iteration t, the gradient of F (xt) is given by

∇wF (xt) = ∇fλt
(g(xt))∇wg(xt)

∇λF (xt) = ∇fλt
(g(xt))∇λg(xt) + log(g(xt)) + ρ.

(5)

Both ∇λg(xt) and ∇wg(xt) can be estimated by unbiased estimator denoted by ∇gi(xt). The concern lies at
how to estimate g(xt) inside ∇fλt

(·). The first algorithm SCDRO is applying existing techniques for two-level
compositional function. In particular, we estimate g(xt) by a sequence of st, which is updated by moving
average st = (1 − β)st−1 + βgi(xt). Then we substitute g(xt) in ∇wF (xt) and ∇λF (xt) with st, and invoke
the following moving average to obtain the gradient estimators in terms of wt and λt, respectively,

vt = (1 − β)vt−1 + β∇fλt(st)∇wgi(xt) (6)
ut = (1 − β)ut−1 + β(∇fλt(st)∇λgi(xt) + log(st) + ρ).

Finally we complete the update step of xt by xt+1 = ΠX (xt − ηzt), where zt = (v⊤
t , ut)⊤.

Algorithm 1 SCDRO(x1, v1, u1, s1, η1, T1)
1: Input: w1 ∈ W, λ1 ≥ λ0, x1 = (w⊤

1 , λ1)⊤

2: Initialization: Draw a sample ξ1 ∼ D, and calcu-
late s1 = exp(ℓi(w1)/λ1),

v1 = ∇fλ1(s1)∇wgi(x1)) ∈ Rd

u1 = ∇fλ1(s1)∇λgi(x1) + log(s1) + ρ ∈ R

3: for t = 1, · · · , T do
4: Update xt+1 = ΠX (xt − ηzt)
5: Draw a sample ξi ∼ D
6: Let st+1 = (1 − β)st + βgi(xt+1)
7: Update vt+1, ut+1 according to (1):

vt = (1 − β)vt−1 + β∇fλt(st)∇wgi(xt)
ut = (1 − β)ut−1

+β(∇fλt
(st)∇λgi(xt) + log(st) + ρ).

8: end for
9: return: (xτ , vτ , uτ , sτ ), where τ ∼ [T ]

Algorithm 2 ASCDRO(x1, v1, u1, s1, η1, T1)
1: Input: w1 ∈ W, λ1 ≥ λ0, x1 = (w⊤

1 , λ1)⊤

2: Initialization: Draw a sample ξ1 ∼ D, and calcu-
late s1 = exp(ℓi(w1)/λ1),

v1 = ∇wgi(x1) ∈ Rd, u1 = ∇λgi(x1) ∈ R

3: for t = 1, · · · , T do
4: Update xt+1 = ΠX (xt − ηzt), where zt is given

in (8):
zt = (∇fλt(st)v⊤

t , ∇fλt(st)ut + log(st) + ρ)⊤

5: Draw a sample ξi ∼ D
6: Update st+1, vt+1, ut+1:

vt = ∇wgi(xt) + (1 − β)(vt−1 − ∇wgi(xt−1))
ut = ∇λgi(xt) + (1 − β)(ut−1 − ∇λgi(xt−1))
st = gi(xt) + (1 − β)(st−1 − gi(xt−1)).

7: end for
8: return: (xτ , vτ , uτ , sτ ), where τ ∼ [T ]

We would like to point out the moving average estimator for tracking the inner function g(w) is widely used
for solving compositional optimization problems (Wang et al., 2017; Qi et al., 2021; Zhang & Xiao, 2019;
Zhou et al., 2019). Using the moving average for computing a stochastic gradient estimator of a compositional
function was first used in the NASA method proposed in Ghadimi et al. (2020). The proposed method
SCDRO is presented in Algorithm 1. It is similar to NASA but with a simpler design on the update of xt+1.
We directly use projection after an SGD-tyle update. In contrast, NASA uses two steps to update xt+1. As
a consequence, NASA has two parameters for updating xt+1 while SCDRO only has one parameter η for
updating xt+1. It is this simple change that allows us to extend SCDRO for convex problems in the next
section. Below, we present the convergence rate of our basic algorithm SCDRO for a non-convex loss function.
Theorem 1. Suppose the Assumption 1 and 2 hold, and set β = 1√

T
, η = β

20L2
F

. Then after running

Algorithm 1 T iterations, we have E[dist(0, ∂̂F̄ (xτ ))2] ≤ (624σ2 + 280∆) L2
F√
T

+ 20L2
F ∆

T .

Remark: Theorem 1 shows that SCDRO achieves a complexity of O(1/ϵ4) for finding an ϵ-stationary point,
i.e., E[dist(0, ∂̂F̄ (xR))] ≤ ϵ for a non-convex loss function. Note that NASA (Ghadimi et al., 2020) enjoys the
same oracle complexity but for a different convergence measure, i.e., E[∥y(x, z) − x∥2 + ∥z − ∇F (x)∥2] ≤ ϵ
for a returned primal-dual pair (x, z), where y(x, z) =

∏
X [x − z]. We can see that our convergence

measure is more intuitive. In addition, we are able to leverage our convergence measure to establish the

8
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convergence for convex functions by using Kurdyka-Łojasiewicz (KL) inequality and the restarting trick as
shown in next section. In contrast, such convergence for NASA is missing in their paper. Compared with
stochastic primal-dual methods (Rafique et al., 2021; Yan et al., 2020) for the min-max formulation (1), their
algorithms are double looped and have the same oracle complexity for a different convergence measure, i.e.,
E[dist(0, ∂̂F̄ (x∗))2] ≤ γ2∥x − x∗∥2] ≤ ϵ for some returned solution x, where x∗ is a reference point that is not
computable. Our convergence measure is stronger as we directly measure E[dist(0, ∂̂F̄ (xτ ))2] on a returned
solution xτ . This is due to that we leverage the smoothness of F (·).

4.2 Accelerated Algorithm: ASCDRO

Our second algorithm presented in Algorithm 2 is inspired by Qi et al. (2021) for solving the KL-regularized
DRO by leveraging a recursive variance reduced technique (i.e., STORM) to estimate g(wt) and ∇g(wt) for
computing ∇wF (xt) and ∇λF (xt) in (5). In particular, we use vt for tracking ∇wg(xt), use ut for tracking
∇λg(xt), and use st for tracking g(xt), which are updated by:

vt = ∇wgi(xt) + (1 − β)(vt−1 − ∇wgi(xt−1))
ut = ∇λgi(xt) + (1 − β)(ut−1 − ∇λgi(xt−1))
st = gi(xt) + (1 − β)(st−1 − gi(xt−1)).

(7)

A similar update to st has been used in Chen et al. (2021) for tracking the inner function values for two-level
compositional optimization. However, they do not use similar updates for tracking the gradients as vt, ut.
Hence, their algorithm has a worse complexity.

Then we invoke these estimators into ∇wF (xt) and ∇λF (xt) to obtain the gradient estimator
zt = (∇fλt

(st)v⊤
t , ∇fλt

(st)ut + log(st) + ρ)⊤. (8)
Below, we show ASCDRO can achieve a better convergence rate in the non-convex loss function.

Theorem 2. Under Assumption 1 and 2, for any α > 1, let k = ασ2/3

LF
, w = max(2σ2, (16L2

F k)3) and
c = σ2

14LF k3 + 130L4
F . Then after running Algorithm 2 for T iterations with ηt = k

(w+tσ2)1/3 and βt = cη2
t , we

have E[dist(0, ∂̂F̄ (xτ ))2] ≤ O
(

log T
T 2/3

)
.

Remark: Theorem 2 implies that with a polynomial decreasing step size, ASCDRO is able to find an
ϵ-stationary solution such that E[dist(0, ∂̂F̄ (xR))] ≤ ϵ with a near-optimal complexity Õ(1/ϵ3). Note that
the complexity Õ(1/ϵ3) is optimal up to a logarithmic factor for solving non-convex smooth optimization
problems (Arjevani et al., 2019). State-of-the-art primal-dual methods with variance-reduction for min-
max problems (Huang et al., 2020) have the same complexity but for a different convergence measure, i.e,
E[ 1

γ ∥x −
∏

X [x − γ∇F (x)]∥] ≤ ϵ for a returned solution x.

5 Stochastic Algorithms for Convex Problems

In this section, we presented restarted algorithms for solving (3) with a convex loss function ℓi(w). The
key is to restart SCDRO and ASCDRO by using a stagewise step size scheme. We define a new objective
Fµ(x) = F (x)+µ∥x∥2/2 and correspondingly F̄µ(x) = Fµ(x)+δX (x), where µ is a constant to be determined
later. With this new objective, we have the following lemma.
Lemma 3. Suppose that ℓi(w) is convex for all i, then for all x ∈ X , F̄µ(x) satisfies the following Kurdyka-
Łojasiewicz (KL) inequality dist(0, ∂F̄µ(x))2 ≥ 2µ(F̄µ(x) − inf

x∈X
F̄µ(x)).

Lemma 3 allows us to obtain the convergence guarantee for convex losses. The idea of the
restarted algorithm is to apply SCDRO and ASCDRO to the new objective F̄µ(x) by adding µxt to
(∇fλt

(st)∇wgi(xt)⊤, ∇fλt
(st)∇λgi(xt) + log(st) + ρ)⊤ in Eq. (1) of Algorithm 1 and substituting zt in (8) of

Algorithm 2 by zt = (∇fλt
(st)v⊤

t , ∇fλt
(st)ut + log(st) + ρ)⊤ + µxt, and restarting SCDRO or ASCDRO with

a stagewise step size to enjoy the benefit of KL inequality of F̄µ(x). It is notable that a stagewise step size is
widely and commonly used in practice. The multi-stage restarted version of SCDRO and ASCDRO are shown
Algorithm 3, to which we refer as restarted-SCDRO (RSCDRO) and restarted-ASCDRO (RASCDRO).

9
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Algorithm 3 RSCDRO or RASCDRO
1: Input: w1 ∈ W, λ1 ∈ R+, x1 = (w⊤

1 , λ1)⊤

2: Initialization: The same as in SCDRO or ASCDRO
3: Let Λk = (xk, vk, uk, sk)
4: for k = 1, · · · , K do
5: Λk+1 = SCDRO(Λk, ηk, Tk) or Λk+1 = ASCDRO(Λk, ηk, Tk)
6: Change ηk, Tk according to Lemma 4 or Lemma 5
7: end for
8: return: xK

5.1 Restarted SCDRO for Convex Problems

In this subsection, we present the convergence rate of RSCDRO for convex losses. We first present a lemma
that states Fµ(xk) is stagewisely decreasing.
Lemma 4. Suppose Assumptions 1 and 2 hold, ℓi(w) is convex for all i, and Fµ(x1)−infx∈X Fµ(x) ≤ ∆µ < ∞.
Let ϵ1 = ∆µ, ϵk = ϵk−1/2, βk = min{ µϵk

cσ2 , 1
c }, ηk = min{ µϵk

12cL2
F

σ2 , 1
12cL2

F

} and Tk = max{ 384cL2
F σ2

µ2ϵk
,

384cL2
F

µ },
where c = 384L2

F . Run RSCDRO, then we have E[Fµ(xk) − inf
x∈X

Fµ(x)] ≤ ϵk for each stage k.

The above lemma implies that the objective gap E[Fµ(xk) − infx∈X Fµ(x)] is decreased by a factor of 2 after
each stage. Based on the above lemma, RSCDRO has the following convergence rate
Theorem 3. Under the same assumptions and parameter settings as Lemma 4, after K = O(log2(ϵ1/ϵ))
stages, the output of RSCDRO satisfies E[Fµ(xK) − infx∈X Fµ(x)] ≤ ϵ, and the oracle complexity is O(1/µ2ϵ).

As Fµ(xK) − Fµ(x∗) ≤ Fµ(xK) − infx∈X Fµ(x), where x∗ = arg minx∈X F (x). Therefore, if after K
stages it holds that E[Fµ(xK) − infx∈X Fµ(x)] ≤ ϵ/2 with an oracle complexity of O(1/µ2ϵ), we have
E[Fµ(xK) − Fµ(x∗)] ≤ ϵ/2 , i.e., E[F (xK) + µ∥xK∥2/2 − F (x∗) − µ∥x∗∥2/2] ≤ ϵ/2. By Assumption 1(a) W
is bounded by R, and then by setting µ = ϵ/(2(R2 + λ̃2)), with ∥x∥2 ≤ (R2 + λ̃2) we have

E[F (xK) − F (x∗)] ≤ ϵ

2 + (2(R2 + λ̃2))µ

2 ≤ ϵ

2 + ϵ

2 ≤ ϵ

with an oracle complexity of O(1/ϵ3), i.e, the following corollary holds.
Corollary 1. Let µ = ϵ/(2(R2 + λ̃2)). Then under the same assumptions and parameter settings as Lemma 4,
after K = O(log2(ϵ1/ϵ)) stages, the output of RSCDRO satisfies E[F (xK) − infx∈X F (x)] ≤ ϵ and the oracle
complexity is O(1/ϵ3).

Remark: Corollary 1 shows that RSCDRO achieves an oracle complexity of O(1/ϵ3) for finding an ϵ-optimal
solution. i.e., E[F (x) − F (x∗)] ≤ ϵ for the convex loss function with a geometrically decreasing step size in a
stagewise manner.

5.2 Restarted ASCDRO for Convex Problems

In this subsection, we establish a better convergence rate of RASCDRO for convex losses.
Lemma 5. Suppose Assumptions 1 and 2 hold, ℓi(w) is convex for all i, and Fµ(x1) − infx∈X Fµ(x) ≤
∆µ < ∞. Let ϵ1 = ∆µ, ϵk = ϵk−1/2, βk = min{ µϵk

cσ2 , 1
c }, ηk = min{

√
µϵk

24cLF σ2 , 1
24cL2

F

} and

Tk = max{ 192cLF σ
µ3/2√

ϵk
,

192cL2
F σ2

µϵk
,

192cL2
F

µ }, where c = 768L2
F . Run RASCDRO, then we have E[Fµ(xk) −

infx∈X Fµ(x)] ≤ ϵk for each stage k.

The above lemma implies that the objective gap E[Fµ(xk) − infx∈X Fµ(x)] is decreased by a factor of 2 after
each stage. Hence we have the following convergence rate for the RASCDRO.
Theorem 4. Under the same assumptions and parameter settings as Lemma 5, after K = O(log2(ϵ1/ϵ))
stages, the output of RASCDRO satisfies E[Fµ(xK) − infx∈X Fµ(x)] ≤ ϵ, and the oracle complexity is
O
(
max

(
1/µϵ, 1/µ3/2√

ϵ
))

.

By the same method of derivation of Corollary 1, the following corollary of Theorem 4 holds.
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Corollary 2. Let µ = ϵ/(2(R2 + λ̃2)). Then under the same assumptions and parameter settings as Lemma 5,
after K = O(log2(ϵ1/ϵ)) stages, the output of RASCDRO satisfies E[F (xK) − infx∈X F (x)] ≤ ϵ and the oracle
complexity is O(1/ϵ2).

Remark: Corollary 2 shows that RASCDRO achieves the claimed oracle complexity O(1/ϵ2) for finding an
ϵ-optimal solution, which is optimal for solving convex smooth optimization problems (Nemirovsky & Yudin,
1983). Finally, we note that a similar complexity was established in (Zhang & Lan, 2021) for constrained
convex compositional optimization problems. However, their analysis requires each level function to be
convex, which does not apply to our case as the outer function fλ(·) is non-convex.

6 Experiments

In this section, we verify the effectiveness of the proposed algorithms in solving imbalanced classification
problems. We show that the proposed methods outperform baselines under both the convex and non-convex
settings in terms of convergence speed, and generalization performance. In addition, we study the influence
of ρ to the robustness of different optimization methods in the supplement. All our results are conducted on
Tesla V100.

Baselines. For the comparison of convergence speed, we compare with different algorithms for optimizing
the same objective (1), including, stochastic primal-dual algorithms, namely PG-SMD2 (Rafique et al., 2021)
for a non-convex loss, and SPD (Namkoong & Duchi, 2016) for a convex loss, Dual SGM (Levy et al., 2020)
and mini-batch based SGD named FastDRO (Levy et al., 2020) for both convex and non-convex losses. For
the comparison of generalization performance, we compare with different methods for optimizing different
objectives, including the traditional ERM with CE loss by SGD with momentum (SGDM), KL-regularized
DRO solved by RECOVER (Qi et al., 2021), ABSGD (Qi et al., 2020a; Li et al., 2021b) and CVaR-constrained,
χ2-regularized/-constrained DRO optimized by FastDRO.

Datasets. We conduct experiments on four imbalanced datasets, namely CIFAR10-ST, CIFAR100-ST (Qi
et al., 2020b), ImageNet-LT (Liu et al., 2019), and iNaturalist2018 (iNaturalist 2018 competition dataset).
The original CIFAR10, CIFAR100 are balanced data, where CIFAR10 (resp. CIFAR100) has 10 (resp. 100)
classes and each class has 5K (resp. 500) training images. For constructing CIFAR10-ST and CIFAR100-ST,
we artificially construct imbalanced training data, where we only keep the last 100 images of each class for
the first half classes, and keep other classes and the test data unchanged. ImageNet-LT is a long-tailed subset
of the original ImageNet-2012 by sampling a subset following the Pareto distribution with the power value
6. It has 115.8K images from 1000 categories, which include 4980 for head class and 5 images for tail class.
iNaturalist 2018 is a real-world dataset whose class-frequency follows a heavy-tail distribution. It contains
437K images from 8142 classes.

Models. For a non-convex setting (deep model), we learn ResNet20 for CIFAR10-ST, CIFAR100-ST, and
ResNet50 for ImageNet-LT and iNaturalist2018, respectively. On CIFAR10-ST, CIFAR100-ST, we optimize
the network from scratch by different algorithms. For the large-scale ImageNet-LT and iNaturalist2018
datasets, we optimize the last block of the feature layers and the classifier weight with other layers frozen of a
pretrained ResNet50 model. This is a common training strategy in the literature (Kang et al., 2019; Qi et al.,
2020a). For a convex setting (linear model), we freeze the feature layers of the pretrained models, and only
fine-tune the last classifier weight. The pretrained models for ImageNet-LT, CIFAR10-ST, CIFAR100-ST are
trained from scratch by optimizing the standard cross-entropy (CE) loss using SGD with momentum 0.9 for
90 epochs. The pretrained ResNet50 model for iNaturalist2018 is from the released model by Kang et al.
(2019).

Parameters and Settings. For all experiments, the batch size is 128 for CIFAR10-ST and CIFAR100-ST,
and 512 for ImageNet-LT and iNaturalist2018. The loss function is the CE loss. The λ0 is set to 1e-3. The
(primal) learning rates for all methods are tuned in {0.01, 0.05, 0.1, 0.5, 1}. The learning rate for updating the
dual variable in PG_SMD2 and SPD is tuned in {1e-5, 5e-5, 1e-4, 5e-4)}. The momentum parameter β in our
proposed algorithms and RECOVER are tuned {0.1 : 0.1 : 0.9}. For RECOVER, the hyper-parameter λ is
tuned in {1, 50, 100}. The constrained parameter ρ is tuned in {0.1, 0.5, 1} for the comparison of generalization
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Figure 1: Training accuracy (%) , Testing accuracy (%) vs # of processed training samples for the convex
setting. ρ is fixed to 0.5 on CIFAR10-ST and CIFAR100-ST, and 0.1 on ImageNet-LT and iNaturalist2018.
The results are averaged over 5 independent runs.

Figure 2: Training accuracy (%), Testing accuracy (%) vs # of processed training samples for the non-convex
setting. ρ is fixed to 0.5 on all datasets. The results are averaged over 5 independent runs.
performance unless specified otherwise. The initial λ and Larange multiplier in Dual SGM are both tuned in
{0.1, 1, 10}. All our results are conducted on Tesla V100.

Convergence comparison between different baselines. In the convex setting, we compare RSCDRO
and RASCDRO with SPD, FastDRO and Dual SGM baselines. We report the training accuracy and testing
accuracy in terms of the number (#) of processing samples. We denote 1 pass of training data by 1 epoch.
We run a total of 3 epochs for CIFAR10-ST and CIFAR100-ST and decay the learning rate by a factor of 10
at the end of 2nd epoch. Similarly, we run 60 epochs and decay the learning rate at the 30th epochs for the
ImageNet-LT, and run 30 epochs and decay the learning rate at the 20th epoch for iNaturalist2018. In the
nonconvex setting, we compare SCDRO with two baselines, PG-SMD2 and FastDRO. We run 120 epochs for
CIFAR10-ST and CIFAR100-ST, and decay the learning rate by a factor of 10 at the 90th epoch. And we
run 30 epochs for ImageNet-LT and iNaturalist2018, and decay the learning rate at the 20th epoch.

Results. We first report the results for convex setting in Figures 1. It is obvious to see that RSCDRO
and RASCDRO are consistently better than baselines on CIFAR10-ST, CIFAR100-ST, and ImageNet-LT.
PD-SMD2 and Dual SGM have comparable results with our proposed algorithms on the iNaturalist2018 in
terms of training accuracy, but is worse in terms of testing accuracy. FastDRO has the worst performance on
all the datasets. RSCDRO and RASCDRO achieve comparable results on all datasets, however, the stochastic
estimator in RASCDRO requires two gradient computations per iteration, which incurs more computational
cost than RSCDRO. Hence, in the non-convex setting, we focus on SCDRO. Figure 2 reports the results
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Table 2: Testing Accuracy in Convex Setting
ImageNet-LT iNaturalist2018

KL-Constraint + SCDRO 24.08 (± 0.01) 55.63 (± 0.03)
CVaR-Constraint + FastDRO 17.23 (± 0.03) 54.52 (± 0.11)
χ2-Regularization + FastDRO 23.98 (± 0.01) 55.03 (± 0.03)

χ2-Constraint + FastDRO 23.61 (± 0.01) 53.71 (± 0.05)

Table 3: Testing Accuracy in Non-Convex Setting
ImageNet-LT iNaturalist2018

KL-Constraint + SCDRO 43.74 65.59
ERM+SGDM 43.36 64.42

KL-Regularization + RECOVER 42.68 64.57
KL-Regularization + ABSGD 43.44 65.01

for non-convex setting. We can see that SCDRO achieves the best performance on all the datasets. The
margin increases on the large scale ImageNet-LT and iNaturalist2018 datasets. For the three baselines, Dual
SGM has better testing performance than FastDRO and PD-SGM2 on CIFAR10-ST and CIFAR100-ST. On
the large scale data ImageNet-LT and iNaturalist2018, however, Dual SGM has the worst performance in
terms of the testing accuracy. Furthermore, SCDRO is more stable than FastDRO and Dual SGM in different
settings as the training of Dual SGM and FastDRO is comparable to SCDRO in convex settings and much
worse than SCDRO in non-convex settings.

Comparison with ERM and KL-regularized DRO. Next, we compare our method for solving KL-
constrained DRO (KL-CDRO) with 1) ERM+SGDM, and KL-regularized DRO (KL-RDRO) optimized
by RECOVER, ABSGD in the non-convex setting 2) CVaR-constrained DRO, χ2-regularized DRO χ2-
constrained DRO optimized by FastDRO in the convex setting. We conduct the experiments on the large-scale
ImageNet-LT and iNaturalist2018 datasets. The results shown in Table 2 and 3 vividly demonstrate that
our method for constrained DRO outperforms the ERM-based method and other popular f -divergence
constrained/regularized DRO in different settings.

Sensitivity to ρ. We study the sensitivity of different methods to ρ. The results on CIFAR10-ST and
CIFAR100-ST are shown in Table 4 in the supplement, which demonstrates that the testing performance is
sensitive to ρ. However, our method SCDRO is better than baselines PG-SMD2 and FastDRO for different
values of ρ.

Table 4: Test accuracy (%) of different methods for different constraint parameter ρ in the non-convex setting.
The results are averaged over 5 independent runs.

ρ 0.01 0.05 0.1 0.5 1

CIFAR10-ST
PG-SMD2 67.09 (± 0.59) 66.96 (± 0.71) 67.12 (± 0.61) 67.36 (± 0.36) 67.10 (± 0.61)
FastDRO 65.41 (± 0.33) 66.15 (± 0.09) 66.24 (± 0.63) 65.98 (± 0.45) 65.68 (± 0.52)
SCDRO 67.73 (± 0.39) 67.58 (± 0.48) 67.71 (± 0.43) 67.57 (± 0.28) 67.96 (± 0.50)

CIFAR100-ST
PG-SMD2 57.31 (± 0.09) 56.44 (± 0.17) 55.85 (± 0.19) 52.68 (± 0.40) 48.72 (± 0.25)
FastDRO 57.60 (± 0.32) 57.20 (± 0.42) 56.78 (± 0.40) 55.58 (± 0.62) 52.39 (± 0.31)
SCDRO 57.84 (± 0.15) 57.60 (± 0.15) 58.32 (± 0.43) 57.90 (± 0.26) 57.71 (± 0.24)
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7 Conclusions

In this paper, we proposed dual-free stochastic algorithms for solving KL-constrained distributionally robust
optimization problems for both convex and non-convex losses. The proposed algorithms have nearly optimal
complexity in both settings. Empirical studies vividly demonstrate the effectiveness of the proposed algorithm
for solving non-convex and convex constrained DRO problems.
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A Preliminary Lemmas

Lemma 6. For q ≥ 1, fλ(q) = λ log(q) + λρ is Lfλ
-Lipschitz continuous and L∇fλ

-smooth, where L∇fλ
=

Lfλ
= λ.

Remark: gi(w, λ) = exp( ℓi(w)
λ ) ≥ 1 as λ ≥ λ0 ∈ R+ and ℓi(w) ≥ 0 in problem (3). Thus g(x) =

1
n

∑n
i=1 gi(w, λ) ≥ 1. Then by this lemma we have ∥∇fλ(g(x))∥ ≤ λ and ∥∇fλ(g(x1)) − ∇fλ(g(x2))∥ ≤

λ∥g(x1) − g(x2)∥ for x, x1, x2 ∈ X .

Proof. For any q ≥ 1, we have
∇fλ(q) = λ

q
≤ λ

And for any q1, q2 ≥ 1, we have

∥∇fλ(q1) − ∇fλ(q2)∥ ≤
∥∥∥∥ λ

q1
− λ

q2

∥∥∥∥ ≤
∥∥∥∥ (q1 − q2)λ

q1q2

∥∥∥∥ ≤ λ∥q1 − q2∥

This complete the proof.

Lemma 7. Let LA = exp( C
λ0

)(G2

λ2
0

+ L
λ0

), LB = exp( C
λ0

)(CG
λ3

0
+ G

λ2
0
), LC = exp( C

λ0
)(CG+λ0G

λ3
0

) and LD =

exp( C
λ0

)(C2+2λ0C
λ4

0
). gi(w, λ) is Lg-Lipschtz continuous and L∇g-smooth in terms of (w, λ), where Lg =

exp( C
λ0

)( G
λ0

+ C
λ2

0
) and L∇g

=
√

L2
A + L2

B + L2
C + L2

D,

Proof. The gradient of gi(w, λ) is given as
∇w,λgi(w, λ)⊤ = (∇wgi(w, λ)⊤, ∇λgi(w, λ))

=
(

exp
(

ℓi(w)
λ

)
∇wℓi(w)

λ

⊤
, − exp

(
ℓi(w)

λ

)
ℓi(w)

λ2

)
.

Then by Assumption 1, we have

∥∇w,λgi(w, λ)∥ ≤ exp
(

ℓi(w)
λ

)(∥∥∥∥∇wℓi(w)
λ

∥∥∥∥+ ℓi(w)
λ2

)
λ≥λ0

≤ exp
(

C

λ0

)(
G

λ0
+ C

λ2
0

)
.

Thus, Lg = exp
(

C
λ0

)(
G
λ0

+ C
λ2

0

)
.

For for all (w, λ), (w′, λ′) ∈ X , we have
∥∇w,λgi(w, λ) − ∇w,λgi(w′, λ′)∥2

≤
∥∥∥∥exp

(
ℓi(w)

λ

)
∇wℓi(w)

λ
+ exp
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ℓi(w′)

λ′

)
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λ2 − exp
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.
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To bound the first term, we first check the Lipschitz continuous of exp( ℓi(w)
λ ) ∇wℓi(w)

λ with respect to w,∥∥∥∥∥∥
∇
(

exp
(

ℓi(w)
λ

)
∇wℓi(w)

λ

)
∇w

∥∥∥∥∥∥
≤

∥∥∥∥∥exp
(

ℓi(w)
λ

)(
∇wℓi(w)

λ

)(
∇wℓi(w)

λ

)⊤
∥∥∥∥∥+

∥∥∥∥exp
(

ℓi(w)
λ

)
∇2

wℓi(w)
λ

∥∥∥∥
(a)=

∥∥∥∥∥exp
(

ℓi(w)
λ

)(
∇wℓi(w)

λ

)⊤(∇wℓi(w)
λ

)∥∥∥∥∥+
∥∥∥∥exp

(
ℓi(w)

λ

)
∇2

wℓi(w)
λ

∥∥∥∥
(b)
≤ exp

(
ℓi(w)

λ

)∥∥∥∥(∇wℓi(w)
λ

)∥∥∥∥2
+
∥∥∥∥exp

(
ℓi(w)

λ

)
∇2

wℓi(w)
λ

∥∥∥∥
≤ exp

(
C

λ0

)(
G2

λ2
0

+ L

λ0

)
:= LA.

where equality (a) is due to the property of the norm of rank-one symmetric matrix and inequality (b) is due
to Cauchy-Schwarz inequality.

Therefore, we have ∥∥∥∥exp(ℓi(w)
λ

)∇wℓi(w)
λ

− exp(ℓi(w′)
λ

)∇wℓi(w′)
λ

∥∥∥∥2
≤ LA ∥w − w′∥2

Furthermore, it holds that∥∥∥∥∥∥
∇
(

exp
(

ℓi(w)
λ

)
∇wℓi(w)

λ

)
∇λ

∥∥∥∥∥∥ =
∥∥∥∥exp

(
ℓi(w)

λ

)
ℓi(w)∇wℓi(w)

λ3 + exp
(

ℓi(w)
λ

)(
∇wℓi(w)

λ2

)∥∥∥∥
≤ exp

(
C
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)(
CG

λ3
0

+ G

λ2
0

)
:= LB∥∥∥∥∥∥

∇
(

exp
(
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λ

)
ℓi(w)

λ2

)
∇w

∥∥∥∥∥∥ =
∥∥∥∥exp

(
ℓi(w)

λ

)
ℓi(w)∇wℓi(w)

λ3 + exp
(
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)
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∥∥∥∥
≤ exp

(
C

λ0
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(

exp
(
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)
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)
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∥∥∥∥∥∥ =
∥∥∥∥exp
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λ4 + exp
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≤ exp
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C
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As a result, we obtain
∥∇w,λgi(w, λ) − ∇w,λgi(w′, λ′)∥2

≤ L2
A ∥w − w′∥2 + L2

B ∥λ − λ′∥2 + L2
C ∥w − w′∥2 + L2

D ∥λ − λ′∥2

= (L2
A + L2

C) ∥w − w′∥2 + (L2
B + L2

D) ∥λ − λ′∥2

≤ (L2
A + L2

B + L2
C + L2

D)
∥∥(w⊤, λ) − (w′⊤, λ′)

∥∥2
.

Thus L∇g
=
√

L2
A + L2

B + L2
C + L2

D.

Lemma 8. F (w, λ) is LF -smooth, where LF = λ̃L2
g + 2Lg + λ̃L∇g

+ 1 + λ̃.

Remark: Lemma 6, 7 and Lemma 8 imply that L∇fλ
= Lfλ

≤ LF , Lg ≤ LF and LF ≥ 1.
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Proof. For all x1 = (w⊤
1 , λ1)⊤, x2 = (w⊤

2 , λ2)⊤ ∈ X , and let d(x) = (0, · · · , 0, log(g(x)) + ρ)⊤ ∈ Rd+1, by
expansion we have

∥∇F (x1) − ∇F (x2)∥
= ∥∇fλ1(g(x1))∇g(x1) + d(x1) − ∇fλ2(g(x2))∇g(x2) − d(x2)∥
≤ ∥∇fλ1(g(x1))∇g(x1) − ∇fλ2(g(x2))∇g(x2)∥ + | log(g(x1)) − log(g(x2))|
≤ ∥∇fλ1(g(x1))∇g(x1) − ∇fλ1(g(x2))∇g(x1)∥ + ∥∇fλ1(g(x2))∇g(x1) − ∇fλ2(g(x2))∇g(x1)∥

+ ∥∇fλ2(g(x2))∇g(x1) − ∇fλ2(g(x2))∇g(x2)∥ + |g(x1) − g(x2)|.
Noting the Lipschtiz continuous of g(x) and ∇g(x), we obtain

∥∇F (x1) − ∇F (x2)∥

≤ (L∇fλ1
Lg + 1)|g(x1) − g(x2)| + ∥∇g(x1)∥

g(x2) ∥λ1 − λ2∥ + Lfλ2
∥∇g(x1) − ∇g(x2)∥

(a)
≤ (L∇fλ1

L2
g + Lg)∥x1 − x2∥ + ∥∇g(x1)∥∥λ1 − λ2∥ + Lfλ2

L∇g ∥x1 − x2∥

≤ (L∇fλ1
L2

g + 2Lg + Lfλ2
L∇g

)∥x1 − x2∥
(b)
≤ (λ̃L2

g + 2Lg + λ̃L∇g + 1 + λ̃)∥x1 − x2∥.

where the inequality (a) is due to g(x2) ≥ 1 and the inequality (b) is due to the upper bound of λ. Thus,
LF = λ̃L2

g + 2Lg + λ̃L∇g
+ 1 + λ̃.

A.1 Proof of Lemma 1

Proof. Recall the primal problem:

p∗ = max
{p∈∆n,D(p,1/n)≤ρ}

n∑
i=1

piℓi(w) + λ0D(p, 1/n).

Invoking dual variable λ̄, we obtain the dual problem:

q∗ = min
λ̄≥0

max
p∈∆n

n∑
i=1

piℓi(w) − λ̄(D(p, 1/n) − ρ) − λ0D(p, 1/n). (9)

Set p̄ = (1/n, . . . , 1/n), which is a Slater vector satisfying D(p̄, 1/n) − ρ < 0. Applying Lemma 3 in (Nedić
& Ozdaglar, 2009), we have

|λ̄∗| ≤ 1
ρ

(
q∗ −

n∑
i=1

p̄iℓi(w) − λ0D(p̄, 1/n)
)

.

Since the primal problem is concave in term of p given w, we have p∗ = q∗. Therefore,

|λ̄∗| ≤ 1
ρ

(
p∗ −

n∑
i=1

p̄iℓi(w)
)

= 1
ρ

(
n∑

i=1
p̄∗

i ℓi(w) − λ0D(p∗, 1/n) −
n∑

i=1
p̄iℓi(w)

)

≤ C

ρ
, (10)

where the last inequality is because |ℓi(w)| ≤ C for w ∈ W. Let λ = λ̄ + λ0, we have

q∗ = min
λ≥λ0

max
p∈∆n

n∑
i=1

piℓi(w) − λ(D(p, 1/n) − ρ) − λ0ρ.

Section E will also show

q∗ = min
λ≥λ0

λ log
(

1
n

n∑
i=1

exp
(

ℓi(w)
λ

))
+ λ(ρ − ρ0).

By Eq. (10), we have the optimal solution of above optimization problem |λ∗| ≤ |λ̄∗| + λ0 ≤ λ0 + C
ρ , which

complete the proof
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B Proofs in Section 4

B.1 Technical Lemmas

Lemma 9. Suppose Assumption 2 holds and i ∼ D and s are initialized with s1 = exp( ℓi(w1)
λ1

). Then for
every t ∈ {1, · · · T} we have

E[∥g(xt+1) − st+1∥2] ≤ E

[
(1 − β)∥g(xt) − st∥2 +

2L2
g∥xt+1 − xt∥2

β
+ β2σ2

]
.

Taking summation of E[∥g(xt+1) − st+1∥2] from 1 to T , we have
T∑

t=1
E[∥g(xt) − st∥2] ≤ E

[
∥g(x1) − s1∥2

β
+

2L2
g

β2

T∑
t=1

∥xt+1 − xt∥2 + βTσ2

]
. (11)

Proof. Note that st+1 = (1 − β)st + βgi(xt+1) and E[g(xt+1) − gi(xt+1)]=0, then by simple expansion we
have

E[∥g(xt+1) − st+1∥2]
= E[∥β(g(xt+1) − gi(xt+1)) + (1 − β)(g(xt+1) − st)∥2]
= E[β2∥g(xt+1) − gi(xt+1)∥2 + (1 − β)2∥g(xt+1) − st∥2]

+ 2E[⟨g(xt+1) − gi(xt+1), g(xt+1) − st⟩]︸ ︷︷ ︸
0

= E[β2∥g(xt+1) − gi(xt+1)∥2 + (1 − β)2∥g(xt+1) − g(xt) + g(xt) − st∥2]. (12)

Invkoing Lemma 7 to Eq. (12) and recalling Assumption 2 , we obtain
E[∥g(xt+1) − st+1∥2]

(a)
≤ E[β2∥g(xt+1) − gi(xt+1)∥2 + (1 − β)2(1 + β)∥g(xt) − st∥2

+ (1 + 1
β

)(1 − β)2∥g(xt+1) − g(xt)∥2

(b)
≤ E

[
β2∥g(xt+1) − gi(xt+1)∥2 + (1 − β)∥g(xt) − st∥2 +

2L2
g∥xt+1 − xt∥2

β

]
(c)
≤ E

[
(1 − β)∥g(xt) − st∥2 +

2L2
g∥xt+1 − xt∥2

β
+ β2σ2

]
.

where the inequality (a) is due to (a+ b)2 ≤ (1 + β)a2 + (1 + 1
β )b2, the inequality (b) is because of (1−β)2 ≤ 1,

(1 + 1
β ) ≤ 2

β and the Lemma 7 and the inequality (c) is from Assumption 2.

Lemma 10. Under Assumption 1, run Algorithm 1 with ηLF ≤ 1/4, and then the output xR of Algorithm 1
satisfies

ER[dist(0, ∂̂F̄ (xR))2] ≤ 2 + 40LF η

T

T∑
t=1

∥zt − ∇F (xt)∥2 + 2∆
ηT

+ 40LF ∆
T

. (13)

Proof. The proof of this lemma follow the proof of Theorem 2 in (Xu et al., 2019).

Recall the update of xt+1 is
xt+1 = ΠX (xt − ηzt)

= arg min
x∈Rd+1

{δX (x) + ⟨zt, x − xt⟩ + 1
2η

∥x − xt∥2}.
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then by Exercise 8.8 and Theorem 10.1 of (Rockafellar & Wets, 1998) we know

−zt − 1
η

(xt+1 − xt) ∈ ∂̂δX (xt+1) ,

which implies that

∇F (xt+1) − zt − 1
η

(xt+1 − xt) ∈ ∇F (xt+1) + ∂̂δX (xt+1) = ∂̂F̄ (xt+1) . (14)

By the update of xt+1, we also have,

δX (xt+1) + ⟨zt, xt+1 − xt⟩ + 1
2η

∥xt+1 − xt∥2 ≤ δX (xt).

Since F (x) is smooth with parameter LF , then

F (xt+1) ≤ F (xt) + ⟨∇F (xt), xt+1 − xt⟩ + LF

2 ∥xt+1 − xt∥2.

Combing the above two inequalities, we get

⟨zt − ∇F (xt), xt+1 − xt⟩ + 1
2(1/η − L)∥xt+1 − xt∥2 ≤ F̄ (xt) − F̄ (xt+1).

That is
1
2(1/η − LF )∥xt+1 − xt∥2 ≤ F̄ (xt) − F̄ (xt+1) − ⟨zt − ∇F (xt), xt+1 − xt⟩

≤ F̄ (xt) − F̄ (xt+1) + η∥zt − ∇F (xt)∥2 + 1
4η

∥xt − xt+1∥2,

where the last inequality uses Young’s inequality ⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2

4 . Then by rearranging the above
inequality and summing it across t = 1, · · · , T , we have

T∑
t=1

1 − 2ηLF

4η
∥xt+1 − xt∥2 ≤ F̄ (x1) − F̄ (xT +1) +

T∑
t=1

η∥zt − ∇F (xt)∥2

≤ F̄ (x1) − inf
x∈X

F̄ (x) +
T∑

t=1
η∥zt − ∇F (xt)∥2

≤ ∆ +
T∑

t=1
η∥zt − ∇F (xt)∥2. (15)

By the same method used in the proof of Theorem 2 in Xu et al. (2019), we have the following inequality,
T∑

t=1
∥zt − ∇F (xt+1) + 1

η
(xt+1 − xt)∥2 ≤ 2

T∑
t=1

∥zt − ∇F (xt)∥2 + 2∆
η

+ (2L2
F + 3LF

η
)

T∑
t=1

∥xt+1 − xt∥2.

(16)

Recalling ηLF ≤ 1
4 and combining Eq. (15) and Eq. (16), we obtain

T∑
t=1

∥zt − ∇F (xt+1) + 1
η

(xt+1 − xt)∥2

(a)
≤ 2

T∑
t=1

∥zt − ∇F (xt)∥2 + 2∆
η

+ 5LF

η

(
1

1/4 − η1LF /2

(
η1∆ + η1

T∑
t=1

ηt∥zt − ∇F (xt)∥2

))
(b)
≤ 2

T∑
t=1

∥zt − ∇F (xt)∥2 + 2∆
η

+ 40LF ∆ + 40ηLF

T∑
t=1

∥zt − ∇F (xt)∥2. (17)

where inequality (a) is due to (2L2
F + 3LF

η ) ≤ 5LF

η and inequality (b) is due to 1
1/4−ηLF /2 ≤ 8.

Recalling Eq. (14) and the output rule of Algorithm 1, we have

ER[dist(0, ∂̂F̄ (xR))2] ≤ 1
T

T∑
t=1

∥zt − ∇F (xt+1) + 1
η

(xt+1 − xt)∥2. (18)
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Then by combining Eqs. (17,18) together we have the Lemma.

Lemma 11. Under Assumption 1, 2, run Algorithm 1 with η ≤ β

4LF

√
4+20L2

g

≤ 1
4LF

, and then we have

1
T

T∑
t=1

E[∥zt − ∇F (xt)∥2] ≤ 2E[∥z1 − ∇F (x1)∥2]
βT

+ ∆
ηT

+ 20LFE[∥g(x1) − s1∥2]
βT

+ 24βL2
F σ2.

Proof. To facilitate our proof statement, we define the following notations:
∇F (xt)⊤ = (∇wF (xt)⊤, ∇λF (xt)) = (∇fλt

(g(xt))∇wg(xt)⊤, ∇fλt
(g(xt))∇λg(xt) + log(g(xt)) + ρ)

∇̃F (xt)⊤ = (∇fλt
(g(xt))∇wgi(xt)⊤, ∇fλt

(g(xt))∇λgi(xt) + log(g(xt)) + ρ)
G(xt)⊤ = (Gwt

(xt)⊤, Gλt
(xt)) = (∇fλt

(st)∇wgi(xt)⊤, ∇fλt
(st)∇λgi(xt) + log(st) + ρ).

It is worth to notice that E[∇̃F (xt)] = ∇F (xt).

For every iteration t, by simple expansion we have
It = E[∥∇F (xt) − zt∥2]

= E[∥∇F (xt) − (1 − β)zt−1 − βG(xt)∥2]
= E[∥(1 − β)(∇F (xt) − ∇F (xt−1)) + (1 − β)∇F (xt−1) − (1 − β)zt−1 + β∇F (xt) − βG(xt)∥2]
= E[∥(1 − β) (∇F (xt) − ∇F (xt−1)︸ ︷︷ ︸

A

) + (1 − β) (∇F (xt−1) − zt−1)︸ ︷︷ ︸
B

∥2]

+ E[∥β(∇̃F (xt) − G(xt)︸ ︷︷ ︸
C

) + β (∇F (xt) − ∇̃F (xt))︸ ︷︷ ︸
D

∥2]

= E[(1 − β)2∥A∥2 + (1 − β)2∥B∥2 + β2∥C∥2 + β2∥D∥2 + 2(1 − β)(1 − β)⟨A, B⟩
+ 2β(1 − β)⟨A, C⟩ + 2β(1 − β)⟨A, D⟩ + 2(1 − β)β⟨B, C⟩ + 2(1 − β)β⟨B, D⟩ + 2β2⟨C, D⟩]

(a)= E[(1 − β)2∥A∥2 + (1 − β)2∥B∥2 + β2∥C∥2 + β2∥D∥2

+ 2(1 − β)2⟨A, B⟩ + 2(1 − β)β⟨C, B⟩ + 2β(1 − β)⟨A, C⟩ + 2β2⟨C, D⟩],
where the equality (a) is due to E⟨∇F (xt) − ∇F (xt−1), ∇F (xt) − ∇̃F (xt)⟩ = 0 and E⟨zt−1 −
∇F (xt−1), ∇F (xt) − ∇̃F (xt)⟩ = 0.

By Young’s inequality, we have (1 − β)2⟨A, B⟩ ≤ (1 − β)⟨A, B⟩ ≤ 2
β ∥A∥2 + (1−β)2β

8 ∥B∥2, 2β(1 − β)⟨C, B⟩ ≤
(1−β)2β

2 ∥B∥2 + 2β∥C∥2, 2β(1 − β)⟨A, C⟩ ≤ (1 − β)2∥A∥2 + β2∥C∥2 and 2β2⟨C, D⟩ ≤ β2∥C∥2 + β2∥D∥2.
Therefore, noting (1 − β) < 1 and 1/β > 1, we can obtain

It ≤ E[(1 − β)2∥A∥2 + (1 − β)2∥B∥2 + β2∥C∥2 + β2∥D∥2

+ 2
β

∥A∥2 + (1 − β)2β

2 ∥B∥2 + 2β∥C∥2 + (1 − β)2β

2 ∥B∥2

+ (1 − β)2∥A∥2 + β2∥C∥2 + β2∥C∥2 + β2∥D∥2]

≤ E[(1 − β)∥B∥2 + 4
β

∥A∥2 + 5β∥C∥2 + 2β2∥D∥2]. (19)
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Thus recalling the defintion of G(xt), ∇̃F (xt), ∇F (xt) and applying the smoothness and Lipschitz continuity
of fλ and g, we have

C = ∥∇̃F (xt) − G(xt)∥2

= ∥∇fλt(g(xt))∇wgi(xt) − ∇fλt(st)∇wtgi(xt)∥2

+ ∥∇fλt
(g(xt))∇λgi(xt) + log(g(xt)) − ∇fλt

(st)∇λgi(xt) − log(st)∥2

≤ ∥∇fλt
(g(xt))∇wgi(xt) − ∇fλt

(st)∇wt
gi(xt)∥2 + 2∥∇fλt

(g(xt))∇λgi(xt) − ∇fλt
(st)∇λgi(xt)∥2

+ 2∥ log(g(xt)) − log(st)∥2

(a)
≤ 2L2

gL2
∇fλt

∥st − g(xt)∥2 + 2∥st − g(xt)∥2

(b)
≤ 2L2

F ∥st − g(xt)∥2, (20)
where the inequality (a) is due to | log(g(xt)) − log(st)| ≤ |st − g(xt)| since g(xt) ≥ 1, st ≥ 1 for all
t = {1, · · · , T} by the definition and initialzation of gi(xt), st, and the inequality (b) is due to L2

gL2
∇fλt

+1 ≤ L2
F .

And by the similar method, we also have
D = ∥∇F (xt) − ∇̃F (xt)∥2

= ∥∇fλt
(g(xt))∇wg(xt) − ∇fλt

(g(xt))∇wgi(xt)∥2

+ ∥∇fλt
(g(xt))∇λg(xt) + log(g(xt)) + ρ − ∇fλt

(g(xt))∇λgi(xt) − log(g(xt)) − ρ∥2

= ∥∇fλt(g(xt))∇wg(xt) − ∇fλt(g(xt))∇wgi(xt)∥2

+ ∥∇fλt
(g(xt))∇λg(xt) − ∇fλt

(g(xt))∇λgi(xt)∥2

≤ L2
fλt

∥∇g(xt) − ∇gi(xt)∥2 ≤ L2
F ∥∇g(xt) − ∇gi(xt)∥2. (21)

Thus combining the Eqs. (19, 20, 21) and applying Assumption 2, we can obtain
E[∥zt − ∇F (xt)∥2]

= E[(1 − β)∥zt−1 − ∇F (xt−1)∥2 + 4
β

∥∇F (xt) − ∇F (xt−1)∥2

+ 5β∥∇̃F (xt) − G(xt)∥2 + 2β2∥∇F (xt) − ∇̃F (xt)∥2]

≤ E[(1 − β)∥zt−1 − ∇F (xt−1)∥2 + 4
β

L2
F ∥xt − xt−1∥2 + 10L2

F β∥g(xt) − st∥2] + 2β2L2
F σ2.

Taking summation of E[∥zt+1 − ∇F (xt+1)∥2] from 1 to T and invoking Lemma 9, we have
T∑

t=1
E[∥zt − ∇F (xt)∥2]

≤ E[∥∇F (x1) − z1∥2]
β

+ 4L2
F

β2

T∑
t=1

E[∥xt+1 − xt∥2] + 10L2
F β

T∑
t=1

E[∥g(xt) − st∥2] + 2β2LF σ2

≤ E[∥∇F (x1) − z1∥2]
β

+ 4L2
F

β2

T∑
t=1

E[∥xt+1 − xt∥2]

+ 10L2
F

(
E

[
∥g(x1) − s1∥2

β
+

2L2
g

β2

T∑
t=1

∥xt+1 − xt∥2

]
+ βTσ2

)
+ 2βL2

F Tσ2.
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Taking Eq. (15) into the above inequality, we have
T∑

t=1
E[∥zt − ∇F (xt)∥2]

≤ E[∥∇F (x1) − z1∥2]
β

+ (4L2
F

β2 +
20L2

F L2
g

β2 )
(

η

1/4 − ηLF /2

(
∆ + η

T∑
t=1

E[∥zt − ∇F (xt)∥2]
))

+ 10L2
F

(
E[∥g(x1) − s1∥2]

β
+ βTσ2

)
+ 2βL2

F Tσ2

(a)
≤ E[∥∇F (x1) − z1∥2]

β
+ (4L2

F

β2 +
20L2

F L2
g

β2 )
(

8η

(
∆ + η

T∑
t=1

E[∥zt − ∇F (xt)∥2]
))

+ 10L2
F

(
E[∥g(x1) − s1∥2]

β
+ βTσ2

)
+ 2βL2

F Tσ2

(b)
≤ E[∥z1 − ∇F (x1)∥2]

β
+ ∆

2η
+ 1

2

T∑
t=1

E[∥zt − ∇F (xt)∥2]

+ 10L2
F

(
E[∥g(x1) − s1∥2]

β
+ βTσ2

)
+ 2βL2

F Tσ2, (22)

where the inequality (a) is due to ηLF ≤ 1/4 and the inequality (b) is due to 8(4L2
F + 20L2

F L2
g)η2 ≤ β2

2 .

Rearranging terms and dividing T on both sides of Eq. (22), we compelte the proof.

B.2 Proof of Theorem 1

Proof. Since η = β
20L2

F

, LF ≥ 1 and LF ≤ Lg, it holds that η ≤ β

4LF

√
4+20L2

g

≤ 1
4LF

which satisfy the
assumptions of η in Lemma 10 and Lemma 11. Therefore, combining Lemma 10 and Lemma 11, we have

E[dist(0, ∂̂F̄ (xR))2]

≤ 2 + 40LF η

T

T∑
t=1

E[∥zt − ∇F (xt)∥2] + 2∆
ηT

+ 40LF ∆
T

≤ 12
T

T∑
t=1

E[∥zt − ∇F (xt)∥2] + 2∆
ηT

+ 20LF ∆
T

≤ 24E[∥z1 − ∇F (x1)∥2]
βT

+ 12∆
ηT

+ 240L2
FE[∥g(x1) − s1∥2]

βT
+ 288L2

F βσ2 + 2∆
ηT

+ 20L2
F ∆

T
. (23)

By the definition of s1 and Assumption 2, it holds that
E[∥s1 − g(x1)∥2] ≤ E[∥gi(x1) − g(x1)∥2] ≤ σ2. (24)

Since L2
gL2

∇fλ1
≤ L2

F and 2L2
fλ1

≤ L2
F , we have

E[∥z1 − ∇F (x1)∥2]
= ∥∇fλ1(gi(x1))∇gi(x1) − ∇fλ1(g(x1))∇g(x1)∥2

= ∥∇fλ1(gi(x1)∇gi(x1)) − ∇fλ1(g(x1))∇gi(x1) + ∇fλ1(g(x1))∇gi(x1) − ∇fλ1(g(x1)∇g(x1))∥2

(a)
≤ 2∥∇fλ1(gi(x1)) − ∇fλ1(g(x1))∥2∥∇gi(x1)∥2 + 2∥∇fλ1(gi(x1))∥2∥∇gi(x1) − ∇g(x1)∥2

≤ (2L2
gL2

∇fλ1
+ 2L2

fλ1
)σ2 ≤ 4L2

F σ2, (25)
where the inequality (a) is due to ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2.
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Combining Eqs. (23,24,25), we obtain
E[dist(0, ∂̂F̄ (xR))2]

≤ 24E[∥z1 − ∇F (x1)∥2]
βT

+ 12∆
ηT

+ 240L2
FE[∥g(x1) − s1∥2]

βT
+ 288L2

F βσ2 + 2∆
ηT

+ 20L2
F ∆

T

≤ 96L2
F σ2

βT
+ 12∆

ηT
+ 240L2

F σ2

βT
+ 288L2

F βσ2 + 2∆
ηT

+ 20L2
F ∆

T

≤ 96L2
F σ2

√
T

+ 240∆L2
F√

T
+ 528L2

F σ2
√

T
+ 40∆L2

F√
T

+ 20L2
F ∆

T

≤ (624σ2 + 280∆) L2
F√
T

+ 20L2
F ∆

T
.

This complete the proof.

C Proofs in Section 4.2

C.1 Technical Lemmas

Lemma 12. Let zt = ∇fλt(st)qt + qλt , where qt = (v⊤
t , ut)⊤, qλt = (0⊤, log(st) + ρ)⊤ and 0 ∈ Rd. Let

∥κt∥2 = ∥st − g(xt)∥2 + ∥vt − ∇wg(xt)∥2 + |ut − ∇λg(xt)|2. Under Assumption 1, run Algorithm 2, and then
for every t ∈ {1, · · · T} we have

∥zt − ∇F (xt)∥2 ≤ 4L2
F ∥κt∥2.

Proof. By simple expansion, it holds that
∥zt − ∇F (xt)∥2

= ∥∇fλt
(g(xt))∇wg(xt) − ∇fλt

(st)vt∥2

+ ∥∇fλt
(g(xt))∇λg(xt) − ∇fλt

(st)vt + log(g(xt)) − log(st)∥2

(a)
≤ 2∥∇fλt

(g(xt))∇wg(xt) − ∇fλt
(st)vt∥2 + 2∥∇fλt

(g(xt))∇λg(xt) − ∇fλt
(st)ut∥2

+ 2∥g(xt) − st∥2

= 2∥∇fλt(g(xt))∇g(xt) − ∇fλt(st)qt∥2 + 2∥g(xt) − st∥2, (26)
where the inequality (a) is because ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2, and | log(x) − log(y)| ≤ |x − y| for all x, y ≥ 1.

Applying the smoothness and Lipschitz continuity of fλ and g, we obtain
∥∇fλt(g(xt))∇g(xt) − ∇fλt(st)qt∥2

= ∥∇fλt
(g(xt))∇g(xt) − ∇fλt

(st)∇g(xt) + ∇fλt
(st)∇g(xt) − ∇fλt

(st)qt∥2

≤ 2∥∇fλt
(g(xt))∇g(xt) − ∇fλt

(st)∇g(xt)∥2 + 2∥∇fλt
(st)∇g(xt) − ∇fλt

(st)qt∥2

≤ 2L2
gL2

∇fλt
∥st − g(xt)∥2 + 2Lfλt

∥qt − ∇g(xt)∥2 + 2∥g(xt) − st∥2. (27)
Noting ∥qt − ∇g(xt)∥2] = ∥vt − ∇wg(xt)∥2 + |ut − ∇λg(xt)|2 and combining Eqs. (26, 27), we have

∥zt − ∇F (xt)∥2

≤ (4L2
gL2

∇fλt
+ 2)∥st − g(xt)∥2 + 4L2

fλt
∥qt − ∇g(xt)∥2

≤ 4L2
F ∥st − g(xt)∥2 + 4L2

F ∥qt − ∇g(xt)∥2

= 4L2
F (∥st − g(xt)∥2 + ∥vt − ∇wg(xt)∥2 + |ut − ∇λg(xt)|2).

This complete the proof.

Lemma 13. Under Assumption 1, 2, run Algorithm 2, and then for every t ∈ {1, · · · T} we have
E[∥κt+1∥2] ≤ (1 − βt)2E[∥κt∥2] + 8(1 − βt)2L2

FE[∥xt+1 − xt∥2] + 6β2
t σ2.
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Proof. Since st+1 = (gi(xt+1) + (1 − β)(st − gi(xt)), it holds that
E[∥st+1 − g(xt+1)∥2]
= E[∥gi(xt+1) + (1 − βt)(st − gi(xt)) − g(xt+1)∥2]
≤ E[∥(1 − βt)(st − g(xt)) + βt(gi(xt+1) − g(xt+1))

+ (1 − βt)(gi(xt+1) − gi(xt) − (g(xt+1) − g(xt)))∥2]
= E[(1 − βt)2∥st − g(xt)∥2] + E[∥βt(gi(xt+1) − g(xt+1)) (28)

+ (1 − βt)(gi(xt+1) − gi(xt) − (g(xt+1) − g(xt)))∥2],
where the last inequality is due to E[gi(xt+1) − g(xt+1)] = 0.

Noting E[⟨gi(xt+1) − gi(xt+1), g(xt+1) − g(xt)⟩] = E[∥(g(xt+1) − g(xt))∥2] and applying the Lipschitz contin-
uty of gi(x), we have

E[∥gi(xt+1) − gi(xt+1) − (g(xt+1) − g(xt))∥2]
= E[∥(gi(xt+1) − gi(xt+1)∥2 + ∥(g(xt+1) − g(xt))∥2 − 2 ⟨gi(xt+1) − gi(xt+1), g(xt+1) − g(xt)⟩]
= E[∥(gi(xt+1) − gi(xt+1)∥2 − ∥(g(xt+1) − g(xt))∥2]
≤ E[∥(gi(xt+1) − gi(xt+1)∥2]
≤ L2

gE[∥xt+1 − xt∥2]. (29)
Combining Eqs. (28, 29) and invoking the Lipschitz continuty of gi(x), under Assumption 2, we have

E[∥st+1 − g(xt+1)∥2]
≤ (1 − βt)2E[∥st − g(xt)∥2]

+ 2β2
t E[∥gi(xt+1) − g(xt)∥2] + 2(1 − βt)2E[∥gi(xt+1) − gi(xt+1) − (g(xt+1) − g(xt))∥2]

≤ (1 − βt)2E[∥st − g(xt)∥2] + 2β2
t σ2 + 2(1 − βt)2L2

gE[∥xt+1 − xt∥2]. (30)
In the same way, we also have

E[∥vt+1 − ∇wg(xt+1)∥2] ≤ (1 − βt)2E[∥vt − ∇wg(xt)∥2] + 2β2
t σ2 + 2(1 − βt)2L2

∇gE[∥xt+1 − xt∥2], (31)
E[|ut+1 − ∇λg(xt+1)|2] ≤ (1 − βt)2E[|ut − ∇λg(xt)|2] + 2β2

t σ2 + 2(1 − βt)2L2
∇gE[∥xt+1 − xt∥2]. (32)

Therefore, combining Eqs. (30, 32, 31), we obtain
E[∥κt+1∥2] ≤ (1 − βt)2E[∥κt∥2] + 6β2

t σ2 + 4(1 − βt)2(L2
∇g + L2

g)∥xt+1 − xt∥2)
≤ (1 − βt)2E[∥κt∥2] + 8(1 − βt)2L2

FE[∥xt+1 − xt∥2] + 6β2
t σ2,

where the last inequality applies (L2
∇g + L2

g) ≤ 2L2
F . This complete the proof.

Lemma 14. Under Assumption 1 and 2, for any α > 1, let k = ασ2/3

LF
, w = max(2σ2, (16L2

F k)3) and
c = σ2

14LF k3 + 130L4
F . Then with ηt = k

(w+tσ2)1/3 , βt = cη2
t and after running T iterations, Algrithm 2 satisfies

4L4
F

T∑
t=1

ηtE[∥κt∥2] ≤ E[∥κ1∥2]
η0

− E[∥κT +1∥2]
ηT

+
T∑

t=1
6c2η3

t σ2 + 64L2
F ∆.

Proof. Since w ≥ (16L2
F k)3, it is easy to note that

ηt ≤ η0 ≤ 1
16L2

F

≤ 1
4LF

.

In addition,

βt = cη2
t ≤ cη2

0 ≤ ( σ2

14LF k3 + 130L4
F ) 1

256L4
F

= σ2L3
F

14LF α3σ2
1

256L4
F

+ 65
128 = 1

14α3
1

2556L2
F

+ 65
128 ≤ 1.
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With ηt = k
(w+tσ2)1/3 , we obtain

1
ηt

− 1
ηt−1

= (w + tσ2)1/3 − (w + (t − 1)σ2)1/3

k

(a)
≤ σ2

3k(w + (t − 1)σ2)2/3

(b)
≤ σ2

3k(w/2 + tσ2)2/3 ≤ σ2

3k(w/2 + tσ2/2)2/3 = 22/3σ2

3k(w + tσ2)2/3

= 22/3σ2

3k3 η2
t

(c)
≤ 22/3

12LF k3 ηt ≤ σ2

7Lk3 ηt,

where the inequality (a) uses the inequality (x + y)1/3 − x1/3 ≤ yx−2/3

3 , the inequality (b) is due to w ≥ 2σ2,
and the inequality (c) is due to ηt ≤ 1

4LF
.

Noting βt = cη2
t and 0 ≤ (1 − βt) ≤ 1, by Lemma 13 we have

E[∥κt+1∥2]
ηt

− E[∥κt∥2]
ηt−1

≤ ( (1 − βt)2

ηt
− 1

ηt−1
)E[∥κt∥2] + 6c2η3

t σ2 + 8(1 − βt)2L2
F

ηt
E[∥xt+1 − xt∥2]

≤ (η−1
t − η−1

t−1 − 2cηt)E[∥κt∥2] + 6c2η3
t σ2 + 8(1 − βt)2L2

F

ηt
E[∥xt+1 − xt∥2]

≤ −260L4
F ηtE[∥κt∥2] + 6c2η3

t σ2 + 8(1 − βt)2L2
F

ηt
E[∥xt+1 − xt∥2], (33)

where the last inequality is due to η−1
t − η−1

t−1 − 2cηt ≤ σ2

7LF k3 ηt − 2( σ2

14LF k3 + 130L4
F )ηt ≤ −260L4

F ηt.

Taking summation of Eq. (33) from 1 to T , we have

260L4
F

T∑
t=1

ηtE[∥κt∥2] ≤ E[∥κ1∥2]
η0

− E[∥κT +1∥2]
ηT

+
T∑

t=1
6c2η3

t σ2 + 8L2
F

T∑
t=1

1
ηt
E[∥xt+1 − xt∥2]. (34)

In the same way with Eq. (15) and ηt ≤ η1, ∀t ≥ 1, we could also have
1 − 2η1LF

4

T∑
t=1

1
ηt

∥xt+1 − xt∥2 ≤
T∑

t=1

1 − 2ηtLF

4ηt
∥xt+1 − xt∥2 ≤ ∆ +

T∑
t=1

ηt∥zt − ∇F (xt)∥2. (35)

Noting η1LF ≤ 1
4 and invoking Lemma 12, we obtain

T∑
t=1

1
ηt
E[∥xt+1 − xt∥2] ≤ 4

1 − 2η1LF
(∆ +

T∑
t=1

ηtE[∥zt − ∇F (xt)∥2])

≤ 8∆ + 8
T∑

t=1
ηtE[∥zt − ∇F (xt)∥2]

≤ 8∆ + 32L2
F

T∑
t=1

ηtE[∥κt∥2]. (36)

Combining Eqs. (34, 36), we have

4L4
F

T∑
t=1

ηtE[∥κt∥2] ≤ E[∥κ1∥2]
η0

− E[∥κT +1∥2]
ηT

+
T∑

t=1
6c2η3

t σ2 + 64L2
F ∆. (37)

This complete the proof.

C.2 Proof of Theorem 2

Proof. Noting the monotonity of ηt and dividing η1
1/4−η1LF /2 on both sides of Eq. (35), we have

T∑
t=1

∥xt+1 − xt∥2 ≤ 1
1/4 − η1LF /2

(
η1∆ + η1

T∑
t=1

ηt∥zt − ∇F (xt)∥2

)
. (38)
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By the same method used in the proof of Theorem 2 in Xu et al. (2019), we have the following inequality,

∥zt − ∇F (xt+1) + 1
ηt

(xt − xt+1)∥2 ≤ 2∥zt − ∇F (xt)∥2 +
2
(
F̄ (xt+1) − F̄ (xt)

)
ηt

+ (2L2
F + 3LF

ηt
)∥xt+1 − xt∥2.

Multiplying ηt on both sides of the above inequality and taking summation from 1 to T , we have
T∑

t=1
ηt∥zt − ∇F (xt+1) + 1

ηt
(xt+1 − xt)∥2

(a)
≤ 2

T∑
t=1

ηt∥zt − ∇F (xt)∥2 + 2∆ + 5LF

(
1

1/4 − η1LF /2

(
η1∆ + η1

T∑
t=1

ηt∥zt − ∇F (xt)∥2

))
(b)
≤ 12

T∑
t=1

ηt∥zt − ∇F (xt)∥2 + 12∆, (39)

where inequality (a) is due to (2L2
F + 3LF

ηt
) ≤ 5LF

ηt
, inequality (b) is due to η1LF ≤ 1

4 and 1
1/4−η1LF /2 ≤ 8.

Combining Eqs. (37, 39) and invoking Lemma 12 we have
T∑

t=1
ηt∥zt − ∇F (xt+1) + 1

ηt
(xt+1 − xt)∥2

≤ 48L2
F

T∑
t=1

ηtE[∥κt∥2] + 12∆

≤ 12
(
E[∥κ1∥2]

η0
− E[∥κT +1∥2]

ηT
+

T∑
t=1

6c2η3
t σ2 + 64L2

F ∆
)

+ 12∆. (40)

Noting the monotonity of ηt and dividing TηT on both sides of Eq. (40), we obtain
1
T

T∑
t=1

∥zt − ∇F (xt+1) + 1
ηt

(xt+1 − xt)∥2

≤ 12
(
E[∥κ1∥2]
TηT η0

− E[∥κT +1∥2]
Tη2

T

+ 1
TηT

T∑
t=1

6c2η3
t σ2 + 64L2

F ∆
TηT

)
+ 12∆

TηT
. (41)

Combining Eqs. (18, 41) and noting
∑T

t=1 η3
t ≤ O(log T ), we get the conclusion that

E[dist(0, ∂̂F̄ (xR))2] ≤ 1
T

T∑
t=1

E[∥zt − ∇F (xt+1) + 1
ηt

(xt+1 − xt)∥2]

≤ 12
(
E[∥κ1∥2]
TηT η0

+ 1
TηT

T∑
t=1

6c2η3
t σ2 + 64L2

F ∆
TηT

)
+ 12∆

TηT

≤ O
(

log T

T 2/3

)
.

This complete the proof.

D Proofs in Section 5

D.1 Technical Lemmas

Lemma 15. If ℓi(w) is convex for all i, we can show that F (w, λ) is jointly convex in terms of (w, λ).
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Proof. We have

F (w, λ) = max
p∈∆n

n∑
i=1

piℓi(w) − λ(
n∑

i=1
pi log(npi) − ρ) − λ0ρ︸ ︷︷ ︸

G(w,λ,p)

.

Since G(w, λ, p) is jointly convex in terms of (w, λ) for every fixed p, F (w, λ) is jointly convex in terms of
(w, λ).

Lemma 16. Under Assumption 1, 2, run Algorithm 1 with η ≤ β

4LF

√
9+20L2

g

≤ 1
6LF

and apply SCDRO to

the new objective F̄µ(x) by adding µxt to (∇fλt(st)∇wgi(xt)⊤, ∇fλt(st)∇λgi(xt) + log(st) + ρ)⊤ in Eq. (1)
of Algorithm 1, where µ is a small constant to be determined later. Without loss of the generality, we assume
0 < µ ≤ 1

2 and then we have

1
T

T∑
t=1

E[∥zt − ∇Fµ(xt)∥2] ≤ 2E[∥z1 − ∇Fµ(x1)∥2]
βT

+ ∆µ

ηT
+ 20LFE[∥g(x1) − s1∥2]

βT
+ 24βL2

F σ2.

Proof. To facilitate our proof statement, we define the following notations:
∇Fµ(xt)⊤ = (∇wFµ(xt)⊤, ∇λFµ(xt))

= (∇fλt
(g(xt))∇wg(xt)⊤ + µw⊤

t , ∇fλt
(g(xt))∇λg(xt) + log(g(xt)) + ρ + µλt)

∇̃Fµ(xt)⊤

= (∇fλt(g(xt))∇wgi(xt)⊤ + µw⊤
t , ∇fλt(g(xt))∇λgi(xt) + log(g(xt)) + ρ + µλt)

Gµ(xt)⊤

= (Gwt(xt)⊤, Gλt(xt)) = (∇fλt(st)∇wgi(xt)⊤ + µw⊤
t , ∇fλt

(st)∇λgi(xt) + log(st) + ρ + µλt).
It is worth to notice that E[∇̃Fµ(xt)] = ∇Fµ(xt).

Since F (x) is LF -smooth, then we have Fµ(x) is LFµ-smooth, where LFµ = (LF + µ). Noting LF > 1 and
µ ≤ 1

2 , we obtain LF + µ ≤ 3
2 LF . For every iteration t, by simple expansion we have

It = E[∥∇Fµ(xt) − zt∥2]
= E[∥∇Fµ(xt) − (1 − β)zt−1 − βGµ(xt)∥2]
= E[∥(1 − β)(∇Fµ(xt) − ∇Fµ(xt−1)) + (1 − β)∇Fµ(xt−1) − (1 − β)zt−1 + β∇Fµ(xt) − βGµ(xt)∥2]
= E[∥(1 − β)(∇Fµ(xt) − ∇Fµ(xt−1)) + (1 − β)(∇Fµ(xt−1) − zt−1)∥2]

+ E[∥β(∇̃Fµ(xt) − Gµ(xt)) + β(∇Fµ(xt) − ∇̃Fµ(xt))∥2]
= E[∥(1 − β) (∇Fµ(xt) − ∇Fµ(xt−1)︸ ︷︷ ︸

A

) + (1 − β) (∇F (xt−1) − zt−1)︸ ︷︷ ︸
B

∥2]

+ E[∥β(∇̃F (xt) − G(xt)︸ ︷︷ ︸
C

) + β (∇F (xt) − ∇̃F (xt))︸ ︷︷ ︸
D

∥2].

The above inequality shows that the only difference between It in the proof of Lemma 11 and It in the proof
of Lemma 16 is term A.

Therefore, by the same method used in the proof of Lemma 11, we have
T∑

t=1
E[∥zt − ∇Fµ(xt)∥2]

≤ E[∥∇Fµ(x1) − z1∥2]
β

+ (
4L2

Fµ

β2 +
20L2

F L2
g

β2 )
(

η

1/4 − ηLFµ
/2(∆µ + η

T∑
t=1

E[∥zt − ∇Fµ(xt)∥2])
)

+ 10L2
F

(
E[∥g(x1) − s1∥2]

β
+ βTσ2

)
+ 2βL2

F Tσ2.
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By LFµ
≤ 3

2 LF and ηLFµ
≤ 3

2 ηLF ≤ 1/4, it holds that
T∑

t=1
E[∥zt − ∇Fµ(xt)∥2]

≤ E[∥∇Fµ(x1) − z1∥2]
β

+ (9L2
F

β2 +
20L2

F L2
g

β2 )
(

8η

(
∆µ + η

T∑
t=1

E[∥zt − ∇Fµ(xt)∥2]
))

+ 10L2
F

(
E[∥g(x1) − s1∥2]

β
+ βTσ2

)
+ 2βL2

F Tσ2

≤ E[∥z1 − ∇Fµ(x1)∥2]
β

+ ∆µ

2η
+ 1

2

T∑
t=1

E[∥zt − ∇Fµ(xt)∥2]

+ 10L2
F

(
E[∥g(x1) − s1∥2]

β
+ βTσ2

)
+ 2βL2

F Tσ2, (42)

where the last inequality is due to 8(9L2
F + 20L2

F L2
g)η2 ≤ β2

2 .

Rearranging terms and dividing T on both sides of Eq. (42), we complete the proof of this Lemma.

Lemma 17. At the k-th stage of RASCDRO, let βk = cη2
k and c = 512L4

F we have

1
8L2

F Tk

Tk∑
t=1

E[∥zt − ∇Fµ(xt)∥2] ≤ E[∥κk∥2]
βkTk

+ 6βkσ2 +
64L2

FE[∆µ
k ]ηk

βkTk
, (43)

where ∆µ
k = Fµ(xk) − infx∈X Fµ(x).

Proof. Recall the definition of ∥κt∥2 and by the same proof of Lemma 12 we have
∥zt − ∇Fµ(xt)∥2 ≤ 4L2

F ∥κt∥2. (44)
Denote κt at kth-stage as κt

k, and by Lemma 13, at the kth-stage in RASCDRO we have
E[∥κt+1

k ∥2] ≤ (1 − βk)2∥κt
k∥2 + 6β2

kσ2 + 8L2
F (1 − βk)2∥xt+1 − xt∥2

≤ (1 − βk)2t∥κk∥2 + 6β2
kσ2

t∑
i=1

(1 − βk)2(t−i)

+ 8L2
F (1 − βk)2

t∑
i=1

(1 − βk)2(t−i)∥xi+1 − xi∥2

≤ (1 − βk)2t∥κk∥2 + 6βkσ2 (45)

+ 8L2
F (1 − βk)2

t∑
i=1

(1 − βk)2(t−i)∥xi+1 − xi∥2.

Combining Eqs. (44,45), we obtain
1

4L2
F Tk

Tk∑
t=1

E[∥zt − ∇Fµ(xt)∥2]

≤ 1
Tk

Tk∑
t=1

E[(1 − βk)2∥κt
k∥2 + 6β2

kσ2 + 8L2
F (1 − βk)2∥xt+1 − xt∥2]

≤ 1
Tk

Tk∑
t=1

(1 − βk)2t−2E[∥κk∥2] + 6βkσ2 + 8L2
F (1 − βk)2

Tk

Tk∑
t=1

t−1∑
i=1

(1 − βk)2(t−i)E[∥xi+1 − xi∥2].
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Noting
∑Tk

t=1(1 − βk)2t−2 ≤ 1/βk and invoking Eq. (38), we have

1
4L2

F Tk

Tk∑
t=1

E[∥zt − ∇Fµ(xt)∥2]

≤ E[∥κk∥2]
βkTk

+ 6βkσ2 + 8L2
F (1 − βk)2

βkTk

Tk∑
t=1

E[∥xt+1 − xt∥2]

≤ E[∥κk∥2]
βkTk

+ 6βkσ2 + 8L2
F (1 − βk)2

βkTk

(
ηk

1/4 − ηkLFµ/2

(
E[∆µ

k ] + ηk

Tk∑
t=1

E[∥zt − ∇Fµ(xt)∥2]
))

≤ E[∥κk∥2]
βkTk

+ 6βkσ2 +
64L2

FE[∆µ
k ]ηk

βkTk
+ 64L2

F η2
k

βkTk

Tk∑
t=1

∥zt − ∇Fµ(xt)∥2],

where the last inequality is due to 1/(1/4 − ηkLFµ/2) ≤ 8, (1 − βk)2 ≤ 1, L2
∇g + L2

g ≤ 2L2
F .

Invoking βk = cη2
k and c = 576L4

F to above inequality, we get the conclusion that

1
8L2

F Tk

Tk∑
t=1

E[∥zt − ∇Fµ(xt)∥2] ≤ E[∥κk∥2]
βkTk

+ 6βkσ2 +
64L2

FE[∆µ
k ]ηk

βkTk
.

D.2 Proof of Lemma 3

Proof. Since ℓi(w) is convex for all i, by Lemma 15 we know F (x) is convex. And thus by the definition of
F̄µ(x) we have F̄µ(x) is a strongly convex function. Then by strong convexity, we have

F̄µ(y) ≥ F̄µ(x) + v⊤(y − x) + µ

2 ∥y − x∥2, ∀x, y ∈ X , v ∈ ∂F̄µ(x).
Then

inf
x∈X

F̄µ (x) ≥ min
y∈X

F̄µ(x) + v⊤(y − x) + µ

2 ∥y − x∥2

≥ min
y

F̄µ(x) + v⊤(y − x) + µ

2 ∥y − x∥2

= F̄µ(x) − ∥v∥2

2µ
, ∀v ∈ ∂F̄µ(x).

Hence, ∥v∥2

2µ ≥ F̄µ(x) − infx∈X F̄µ (x) , ∀v ∈ ∂F̄µ(x), which implies
dist(0, ∂F̄µ(x))2 ≥ 2µ

(
F̄µ(x) − F̄µ (x∗)

)
.

D.3 Proof of Lemma 4

Proof. We use inductions to prove E[∥zk − ∇Fµ(xk)∥2] ≤ µϵk/4, E[∥g(xk) − sk∥2] ≤ µϵk/4 and E[Fµ(xk) −
inf

x∈X
Fµ(x)] ≤ ϵk. Let’s consider the first stage in the beginning.

Let ϵ1 = ∆µ, thus E[Fµ(x1) − infx∈X Fµ(x)] ≤ ϵ1. And we can use a batch size of 4/µϵ1 for initialization.to
make sure E[∥∇Fµ(x1) − z1∥2] ≤ µϵ1/4,E[∥s1 − g(x1)∥2] ≤ µϵ1/4.

Suppose that E[∥g(xk−1) − sk−1∥2] ≤ µϵk−1/4, E[∥zk−1 − ∇Fµ(xk−1)∥2] ≤ µϵk−1/4 and E[Fµ(xk−1) −
infx∈X Fµ(x)] ≤ ϵk−1 . By setting βk−1 = min{ µϵk−1

384L2
F

σ2 , 1
384L2

F

}, ηk−1 = min{ µϵk−1
4608L4

F
σ2 , 1

4608L4
F

} and Tk−1 =

max{ 147456L4
F σ2

µ2ϵk−1
,

147456L4
F

µ }, it is easy to obtain that ηk−1 ≤ βk−1

4LF

√
9+20L2

g

. Therefore, invoking Lemma 16 we
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have
E[∥zk − ∇Fµ(xk)∥2]

≤ 1
Tk−1

Tk−1∑
t=1

E[∥zt − ∇Fµ(xt)∥2]

≤ E[2∥zk−1 − ∇Fµ(xk−1)∥2]
βk−1Tk−1

+
E[∆µ

k−1]
ηk−1Tk−1

+ 20LFE[∥g(xk−1) − sk−1∥2]
βk−1Tk−1

+ 24βkL2
F σ2

≤ µϵk−1

2βk−1Tk−1
+ ϵk−1

ηk−1Tk−1
+ 5LF µϵk−1

βk−1Tk−1
+ 24βk−1L2

F σ2.

Without loss of the generality, we consider the case µϵk−1/σ2 ≤ 1. By definition have βk−1 =
µϵk−1/(384L2

F σ2), ηk−1 = µϵk−1/(4608L4
F σ2) and Tk−1 = 147456L4

F σ2/(µ2ϵk−1), which imply
1

βk−1Tk−1
≤ µ

384L2
F

,
1

ηk−1Tk−1
≤ µ

32 and 24βk−1L2
F σ2 ≤ µϵk−1

16 .

Then, note LF ≥ 1, µ < 1 and ϵk = ϵk−1/2 we have

E[∥zk − ∇Fµ(xk)∥2] ≤ µ2ϵk−1

768L2
F

+ µϵk−1

16 + 5µ2ϵk−1

384LF
+ µϵk−1

8

≤ µϵk−1

768 + µϵk−1

32 + 5µϵk

192 + µϵk−1

16
= µϵk

192 + µϵk

16 + µϵk

40 + µϵk

8
≤ µϵk

4 .

Next we need to show E[∥g(xk) − sk∥2] ≤ µϵk/4 under the assumption that E[∥g(xk−1) − sk−1∥2] ≤ µϵk−1/4.

By Lemma 9, we have
E[∥g(xk) − sk∥2]

= 1
Tk−1

Tk−1∑
t=1

E[∥g(xt) − st∥2]

≤ E[∥g(xk−1) − sk−1∥2]
βk−1Tk−1

+
2L2

g

β2
k−1Tk−1

Tk−1∑
t=1

E[∥xt+1 − xt∥2] + βk−1σ2

≤ µϵk−1

4βk−1Tk−1
+

2L2
g

β2
k−1Tk−1

 ηk−1

1/4 − ηk−1LFµ
/2

E[∆µ
k−1] + ηk−1

Tk−1∑
t=1

E[∥zt − ∇Fµ(xt)∥2]


+ βk−1σ2,

where ∆µ
k−1 = Fµ(xk−1) − infx∈X Fµ(x). With 1/(1/4 − ηk−1LFµ

/2) ≤ 8, E[∥g(xk−1) − sk−1∥2] ≤ µϵk−1/4
and E[Fµ(xk−1) − infx∈X Fµ(x)] ≤ ϵk−1, it holds that

E[∥g(xk) − sk∥2] ≤ µϵk−1

2βk−1Tk−1
+

16L2
gηk−1ϵk−1

β2
k−1Tk−1

+
4L2

gη2
k−1µϵk−1

β2
k−1

+ βk−1σ2

≤ µϵk

384L2
F

+
L2

gµϵk−1

288L4
F

+
L2

gµϵk−1

36L4
F

+ µϵk−1

192L2
F

≤ µϵk

2 .
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Invoking Lemma 10, at (k − 1)-th stage (k > 1) we have
E[dist(0, ∂̂F̄µ(xk))2]

≤
2 + 40LFµ

ηk−1

Tk−1

Tk−1∑
t=1

E[∥zt − ∇Fµ(xt)∥2] +
2E[∆µ

k−1]
ηk−1Tk−1

+
40LFµE[∆µ

k−1]
Tk−1

≤
(2 + 40LFµ

ηk−1)µϵk−1

4 + 2ϵk−1

ηk−1Tk−1
+

40LFµ
ϵk−1

Tk−1

≤ 197µϵk

192 + µϵk

8 +
40LFµµϵk−1

147456L4
F

≤ 2µϵk,

where the second inequality is due to LFµ
ηk−1 ≤ (3/2)LF ηk−1 ≤ 1/1536.

Since Fµ(xk) ≤ F̄µ(xk) and infx∈X Fµ(x) = infx∈X F̄µ(x), applying Lemma 3 we have

E[Fµ(xk) − inf
x∈X

Fµ(x)] ≤ E[F̄µ(xk) − inf
x∈X

F̄µ(x)] ≤ 1
2µ

E[dist(0, ∂̂F̄µ(xk))2] ≤ 2µϵk

2µ
= ϵk.

This complete the proof of this Lemma.

D.4 Proof of Theorem 3

Proof. Invoking Lemma 4, then after K = O(log2(ϵ1/ϵ)) stages, we have
E[Fµ(xK) − inf

x∈X
Fµ(x)] ≤ ϵK = ϵ1

2K−1 = ϵ.

Since
∑K

k=1 2k = O(1/ϵ), the overall oracle complexity is
K∑

k=1
Tk + 4

µϵ1
≤ 36864σ2L4

F

K∑
k=2

1
µ2ϵk

+ 4
µϵ1

≤ 36864σ2L4
F

µ2ϵ

K∑
k=1

1
2k

+ 4
µϵ1

≤ O( 1
µ2ϵ

).

D.5 Proof of Corollary 1

It is easy to note that Fµ(xK) − Fµ(x∗) ≤ Fµ(xK) − infx∈X Fµ(x), where x∗ = arg minx∈X F (x). Therefore,
if after K stages it holds that E[Fµ(xK) − infx∈X Fµ(x)] ≤ ϵ/2 with an oracle complexity of O(1/µ2ϵ), we
have E[Fµ(xK) − Fµ(x∗)] ≤ ϵ/2 , i.e., E[F (xK) + µ∥xK∥2/2 − F (x∗) − µ∥x∗∥2/2] ≤ ϵ/2. By Assumption 1(a)
W is bounded by R, and then by setting µ = ϵ/(2(R2 + λ̃2)), with ∥x∥2 ≤ (R2 + λ̃2) we have

E[F (xK) − F (x∗)] ≤ ϵ

2 + (2(R2 + λ̃2))µ

2 ≤ ϵ

2 + ϵ

2 ≤ ϵ

with an oracle complexity of O(1/ϵ3).

D.6 Proof of Lemma 5

Proof. We use inductions to prove E[∥κk∥2] ≤ µϵk/16L2
F and E[Fµ(xk) − inf

x∈X
Fµ(x)] ≤ ϵk. Let’s consider

the first stage in the beginning.

Let ϵ1 = ∆µ, thus E[Fµ(x1) − infx∈X Fµ(x)] ≤ ϵ1. And we can use a batch size of 48L2
F /µϵ1 for initialization

to make sure E[∥κ1∥2] = E[∥s1 − g(x1)∥2 + ∥v1 − ∇wg(x1)∥2 + |u1 − ∇λg(x1)|2] ≤ µϵ1/16L2
F .

Suppose that E[∥κk−1∥2] ≤ µϵk−1/16L2
F and E[Fµ(xk−1) − infx∈X Fµ(x)] ≤ ϵk−1. By setting βk−1 =

min{ µϵk−1
768L2

F
σ2 , 1

768L2
F

}, ηk−1 = min{
√

µϵk−1
18432L3

F
σ2 , 1

18432L4
F

} and Tk−1 = max{ 147456L3
F σ

µ3/2√
ϵk−1

,
147456L4

F σ2

µϵk−1
,

147456L4
F

µ }.
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Then following the above Lemma 17, for k ≥ 1,

E[∥κk∥2] ≤ 1
4L2

F Tk−1

Tk−1∑
t=1

E[∥zt − ∇Fµ(xt)∥2]

≤ 2E[∥κk−1∥2]
βk−1Tk−1

+ 12βk−1σ2 +
128L2

FE[∆µ
k−1]ηk−1

βk−1Tk−1

≤ µϵk−1

4L2
F βk−1Tk−1

+ 12βk−1σ2 + 128L2
F ϵk−1ηk−1

βk−1Tk−1
.

Without loss of the generality, we consider the case µϵk−1/σ2 ≤ 1. By definition we have βk−1 =
µϵk−1/(768L2

F σ2), ηk−1 = √
µϵk−1/(9216L3

F σ), which imply
1

βk−1Tk−1
≤ 1

96L2
F

,
1

ηk−1Tk−1
≤ µ

8 and 12βkσ2 ≤ µϵk−1

64L2
F

.

Then, noting LF ≥ 1, µ < 1 and ϵk = ϵk−1/2 we have
E[∥κk∥2] ≤ µϵk−1

384L4
F

+ µϵk−1

64L2
F

+ µϵk−1

6912L4
F

≤ µϵk

192L2
F

+ µϵk

32L2
F

+ µϵk

3456L2
F

≤ µϵk

16L2
F

.

Then by Eq. (44), we have ∥zk − ∇Fµ(xk)∥2 ≤ 4L2
F ∥κk∥2 ≤ µϵk/4. Invoking Lemma 10, at (k − 1)-th stage

(k > 1) we have
E[dist(0, ∂̂F̄µ(xk))2]

≤
2 + 40LFµηk−1

Tk−1

Tk−1∑
t=1

E[∥zt − ∇Fµ(xt)∥2] +
2E[∆µ

k−1]
ηk−1Tk−1

+
40LFµ

E[∆µ
k−1]

Tk−1

≤
(2 + 40LFµηk−1)µϵk−1

2 + 2ϵk−1

ηk−1Tk−1
+

40LFµϵk−1

Tk−1

≤ 773µϵk

768 + µϵk

2 +
40LFµµϵk−1

73728L4
F

≤ 2µϵk,

where the second inequality is due to LFµ
ηk−1 ≤ (3/2)LF ηk−1 ≤ 1/3072.

Since Fµ(xk) ≤ F̄µ(xk) and infx∈X Fµ(x) = infx∈X F̄ µ(x), applying Lemma 3 we have

E[Fµ(xk) − inf
x∈X

Fµ(x)] ≤ E[F̄µ(xk) − inf
x∈X

F̄µ(x)] ≤ 1
2µ

E[dist(0, ∂̂F̄µ(xk))2] ≤ 2µϵk

2µ
= ϵk.

This complete the proof of this Lemma.

D.7 Proof of Theorem 4

Proof. Invoking Lemma 5, then after K = O(log2(ϵ1/ϵ)) stages, we have
E[Fµ(xK) − inf

x∈X
Fµ(x)] ≤ ϵK = ϵ1

2K−1 = ϵ.

Since
∑K

k=1 2k = O(1/ϵ), the overall oracle complexity is
K∑

k=1
Tk + 48L2

F

µϵ1
≤ O

(
K∑

k=2
max

(
1

µϵk
,

1
µ3/2√

ϵk

))
+ 48L2

F

µϵ1

≤ O

(
K∑

k=2
max

(
2k

µ
,

√
2k

µ3/2√
ϵk

))
+ 48L2

F

µϵ1

≤ O
(

max
(

1
µϵ

,
1

µ3/2√
ϵ

))
.
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This complete the proof.

E Derivation of the Compositional Formulation

Recall the original KL-constrained DRO problem:

min
w∈W

max
{p∈∆n:D(p,1/n)≤ρ}

n∑
i=1

piℓi(w) − λ0D(p, 1/n),

where ∆n = {p ∈ Rn :
∑n

i=1 pi = 1, 0 ≤ pi ≤ 1}, D(p, 1/n) is the KL divergence and λ0 is a small positive
constant.

In order to tackle this problem, let us first consider the robust loss

max
{p∈∆n:D(p,1/n)≤ρ}

n∑
i=1

piℓi(w) − λ0D(p, 1/n).

And then we invoke the dual variable λ to transform this primal problem to the following form

max
p∈∆n

min
λ̄≥0

n∑
i=1

piℓi(w) − λ̄(D(p, 1/n) − ρ) − λ0D(p, 1/n).

Since this problem is concave in term of p given w, by strong duality theorem, we have

max
p∈∆n

min
λ̄≥0

n∑
i=1

piℓi(w) − λ̄(D(p, 1/n) − ρ) − λ0D(p, 1/n)

= min
λ̄≥0

max
p∈∆n

n∑
i=1

piℓi(w) − λ̄(D(p, 1/n) − ρ) − λ0D(p, 1/n).

Let λ = λ̄ + λ0, we have

min
λ̄≥0

max
p∈∆n

n∑
i=1

piℓi(w) − λ̄(D(p, 1/n) − ρ) − λ0D(p, 1/n)

= min
λ≥λ0

max
p∈∆n

n∑
i=1

piℓi(w) − λ(D(p, 1/n) − ρ) − λ0ρ.

Then the original problem is equivalent to the following problem

min
w∈W

min
λ≥λ0

max
p∈∆n

n∑
i=1

piℓi(w) − λ(D(p, 1/n) − ρ) − λ0ρ,

Next we fix x = (w⊤, λ)⊤ and derive an optimal solution p∗(x) which depends on x and solves the inner
maximization problem. We consider the following problem

min
p∈∆n

−
n∑

i=1
piℓi(w) + λD(p, 1/n).

which has the same optimal solution p∗(x) with our problem.

There are three constraints to handle, i.e., pi ≥ 0, ∀i and pi ≤ 1, ∀i and
∑n

i=1 pi = 1. Note that the constraint
pi ≥ 0 is enforced by the term pi log(pi), otherwise the above objective will become infinity. As a result, the
constraint pi < 1 is automatically satisfied due to

∑n
i=1 pi = 1 and pi ≥ 0. Hence, we only need to explicitly

tackle the constraint
∑n

i=1 pi = 1. To this end, we define the following Lagrangian function

Lx(p, µ) = −
n∑

i=1
piℓi(w) + λ

(
log n +

n∑
i=1

pi log(pi)
)

+ µ(
n∑

i=1
pi − 1),

where µ is the Lagrangian multiplier for the constraint
∑n

i=1 pi = 1. The optimal solutions satisfy the KKT
conditions:

− ℓi(w) + λ (log(p∗
i (x)) + 1) + µ = 0 and

n∑
i=1

p∗
i (x) = 1.
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From the first equation, we can derive p∗
i (x) ∝ exp(ℓi(w)/λ). Due to the second equation, we can conclude

that p∗
i (x) = exp(ℓi(w)/λ)∑n

i=1
exp(ℓi(w)/λ)

. Plugging this optimal p∗(w) into the inner maximization problem, we have
n∑

i=1
p∗

i (x)ℓi(w) − λ

(
log n +

n∑
i=1

p∗
i (w) log(p∗

i (w))
)

= λ log
(

1
n

n∑
i=1

exp
(

ℓi(w)
λ

))
,

Therefore, we get the following equivalent problem to the original problem

min
w∈W

min
λ≥λ0

λ log
(

1
n

n∑
i=1

exp
(

ℓi(w)
λ

))
+ λρ.

which is Eq. (2) in the paper.
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