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ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) has become a crucial approach in han-
dling the growing complexity of large models and vast datasets across multiple
fields such as Computer Vision or Natural Language Processing. Among the most
promising of these methods are Low-Rank Adaptation (LoRA) and its derivatives,
which fine-tune a pre-trained weight matrix W by introducing a low-rank update
matrix ∆W. While these approaches have demonstrated strong empirical perfor-
mance, they remain largely heuristic, with little theoretical grounding to explain
their behavior or guide the design of ∆W for different objectives. This lack of
theoretical insight limits our understanding of when these methods are most ef-
fective and how they can be systematically improved. In this paper, we propose
a theoretical framework for analyzing and designing LoRA-based methods, with
a focus on the formulation of ∆W. By establishing a deeper understanding of
the interplay between W and ∆W, we aim to enable more efficient and targeted
fine-tuning strategies, opening the door to novel variants that strike an optimal
balance between performance and efficiency. Our proposed method - Singular
Value Adaptation - uses insights from our theoretical framework to incorporate
inductive biases on the formulation of ∆W, leading to a PEFT method that is up
to 50× more parameter efficient that LoRA, while achieving comparable or better
performance across various vision and language tasks.

1 INTRODUCTION

Large pre-trained neural networks have become indispensable across a wide array of domains, in-
cluding natural language processing and computer vision, but fine-tuning them efficiently for spe-
cialized downstream tasks remains a significant challenge. The sheer scale of modern models makes
fine-tuning all parameters computationally expensive and often impractical. To address this, various
Parameter-Efficient Fine-Tuning (PEFT) methods have been developed, aiming to optimize model
adaptation while minimizing computational overhead. PEFT techniques, such as Adapters, Prompts
and Prefixes, Low-Rank Adaptation (LoRA), and their numerous variants, have gained popularity
due to their ability to fine-tune models by only modifying a small number of parameters, making the
process more efficient. These methods have been successfully deployed across various applications,
demonstrating impressive performance gains while significantly reducing resource requirements.
LoRA and its derivatives have in particular become widely prevelant, owing to the fact that these
methods give comparable or improved performance over other PEFT methods, and do not incur any
additional computational costs over the base model during inference.

Despite their success, there remains a lack of clarity regarding the underlying mechanisms that make
LoRA and its derivatives effective. Most formulations of the low-rank update matrix are largely
heuristic, with no studies on how different formulations affect the final merged matrix at inference.
Our analysis on the original pretrained and and adapted weight matrices of a ViT-Base model finds
that they do not significantly differ in terms of their rank (see table 1). Our findings reveal that most
pre-trained matrices are in fact full-rank or near-full-rank, all. Instead, in this paper, we hypothesize
that the effectiveness of LoRA based techniques may be driven by changes in the ”effective rank”
(Roy & Vetterli, 2007) of the model’s weight matrices during fine-tuning. In table 1, we show
initial observations supporting this hypothesis, where increases in the effective rank correlate with
improved model performance, as evidenced by our sample results (Fig 1 (left)).

Building on this observation, we propose a novel method explicitly designed to max-
imize the increase in effective rank under the constraint of few trainable parameters.
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Figure 1: (Left) Plot of change in rank and effective rank of various PEFT methods, relative to an average
baseline rank of 766.92 and an average baseline effective rank of 520.03 obtained from pre-trained ViT-Base
model Query and Value matrices. Accuracy over Base model is computed using a linear probe (LP). The
x-axis lists method names along with their respective accuracies on Stanford Cars dataset. (Right) Plot of
accuracy per parameter for various PEFT methods, based on experiments conducted across 7 datasets using ViT-
Base architecture. Accuracy for each method is displayed above the corresponding bar, number of trainable
parameters for each method is provided in legend. Our PEFT method, SiVA, achieves significant parameter
reduction while maintaining high accuracy, consistently delivering best accuracy per parameter performance.

Method Accuracy Parameters Rank Effective Rank

Base + LP 25.76 - 766.92 520.03

LoRA 45.38 581K 766.97 (+0.05) 520.06 (+0.03)
FourierFT 46.11 72K 767.85 (+0.90) 579.61 (+59.6)
VeRA 15.98 48K 767.26 (+0.34) 480.84 (-39.2)
SiVA (Ours) 59.51 9.7K 767.85 (+0.93) 593.86 (+73.8)

Table 1: Table depicting the accuracy over the classification task
and the effective rank of the learned adapters on the Stanford Cars
dataset over the ViT-B16 model. This illustrates that while the rank
of the adapters are approximately equal across all methods, the ac-
curacy seems to significantly correlate with its effective rank. Our
method has the highest effective rank amongst the SoTA methods
presented above as well as an accuracy score ≈ 13.5% above them.
The values in the brackets indicate the increase in rank/effective
rank over the base model.

Our method, Singular Value
Adaptation (SiVA), is grounded
in theoretical insights about the
relationships between the structure of
the update matrix, its constraints on
the number of trainable parameters,
and its impact on the effective rank
on the final matrix post training. By
focusing on increasing the effective
rank while maintaining a minimal
parameter footprint, SiVA leverages
the strengths of low-rank adaptation
techniques while introducing new
mechanisms to optimize effective
rank growth. The contribution to the
final performance by each trained
parameter of SiVA - measured as performance per parameter (PPP) - is significantly higher
compared to existing methods, even those that aggressively attempt to minimize the parameters
via heuristic formulations of the LoRA update matrix (Kopiczko et al., 2024; Gao et al., 2024).
A visualization of the PPP for different methods on an image classification task is shown in Fig
1(right), with additional visualizations shown later with other experimental results.

(1) The first component of our overarching theory makes use of the observation that the effective
rank of a matrix is solely a function of its singular values. Based on this insight, we derive a relation
for the contribution made by each individual singular value update to the effective rank of the merged
matrix. (2) Next, we realize that to achieve parameter efficiency, we only need to update (train) a
subset of all singular values in each weight matrix of the base model. This leads us to derive that the
smaller singular values play a greater role in maximizing the effective rank of the final matrix, and
thus they are the ones that should be tuned, while the larger singular values can be left unchanged.
(3) Finally, we prove the intuitive result that the left and right singular vectors of the adapted matrix
should be aligned with those of the pre-trained weight matrix to maximize the effective rank (of the
adapted matrix). Overall, these three components reveal a simple formulation of the low-rank update
matrix - the update matrix can be written as the composition of three matrices U, V, and S∆W, as
∆W = US∆WVT, where U and V are the left and right singular vectors of a pre-trained weight
matrix, the lower elements of the diagonal matrix S∆W are learned using Gradient Descent, and the
other elements of S∆W are set to zero. (4) To conclude our theoretical insights, we show that this
formulation can achieve the minimum with zero loss in the least squares regression problem when
all singular values are trainable.

Our overall contributions can be summarized as follows: (i) We show that the performance of trans-
former models on downstream tasks is correlated to the effective ranks of the query and value matri-
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ces, an insight that was previously unknown; (ii) We propose a specialized structure for the composi-
tion of the update matrix, and theoretically show that the proposed structure maximizes the effective
rank of the merged weights post-training. We propose a simple, yet highly performant LoRA-based
approach inspired by our theoretical insights; (iii) We evaluate the performance of the proposed ap-
proach across several tasks spanning both Computer Vision and Natural Language Processing, and
show that our approach, despite having a simple formulation, outperforms state-of-the-art methods
in terms of performance-per-parameter by large margins. In terms of absolute performance across
different metrics, our approach achieves results comparable to or better than existing PEFT methods.

2 RELATED WORK

LoRA and Variants. LoRA-based PEFT methods solve the computational overhead of fine-tuning
large models by modelling the change in parameters as a low-rank matrix. Various decomposi-
tions of the low-rank matrix have been proposed, leading to an entire family of LoRA derivatives
(Kopiczko et al., 2024; Liu et al., 2024; Gao et al., 2024; Aghajanyan et al., 2021; Karimi Mahabadi
et al., 2021; Edalati et al.; Liao et al., 2023; He et al., 2023). The original LoRA formulation (Hu
et al., 2022) decomposed all weight matrices as a product of two rectangular learnable matrices
of specified rank. Dynamic-rank LoRA derivatives (Zhang et al., 2023; 2024; Ding et al., 2023;
Valipour et al., 2023; Haobo et al., 2024) methods further refine this approach by using adaptive
ranks for different layers. More recent works propose the use of pseudo-random vectors or matrices
to achieve aggressive parameter compression. NOLA (Koohpayegani et al., 2024) learns the coeffi-
cient of linear combination of pseudo-random matrices, while FourierFT (Gao et al., 2024) samples
a random spectral basis and learns the sparse spectral coefficients , using an Inverse Discrete Fourier
Transform to get the weight update matrix. In similar spirit, VeRA (Kopiczko et al., 2024) samples
two random matrices, and scales them by learnable factors before multiplying them to obtain the
update matrix. These methods are largely heuristic, without any underlying common principle that
guides the formulation of the weight update matrix.

Other PEFT Methods. Adapter Tuning methods (Pfeiffer et al., 2021; Houlsby et al., 2019b; Lei
et al., 2023; He et al.; Zhu et al., 2021) introduce task-specific parameters through small layers
(adapters) inserted within a pre-trained model. Prompt/Prefix Tuning methods (Li et al., 2023; Liu
et al.; Zhang et al.; Zhu & Tan; Wu et al., 2022; Ma et al., 2022; Lester & Constant; Liu et al.,
2023) prepend learnable vectors to the inputs of the model (prompts) or individual intermediate
layers (prefixes). Some other methods include BitFit (Zaken et al., 2022) which only tunes the
model biases and IA3 (Liu et al., 2022) which introduces additional parameters in the Self-Attention
module. All these methods increase the complexity of the base model, leading to increased inference
times and a requirement for additional space. LoRA derivatives do not suffer from this issue as the
newly learned parameters can be directly added to the parameters of the base model post training.

3 SIVA: FORMULATION AND METHODOLOGY

3.1 NOTATIONS AND PRELIMINARIES

Our work is based on the hypothesis that the performance of the adapted model is proportional to the
increase in effective rank caused by adding the learned matrix ∆W to the pre-trained weight matrix
W. Crucially, we want to maximize the effective rank while keeping the number of parameters
in ∆W minimum. Since adapter-based methods are usually applied to the square-shaped query
and value matrices in transformers, we restrict our formulation to square matrices. Formally, the
effective rank (Roy & Vetterli, 2007) of a square matrix A ∈ Rn×n is given by

erank(A) = eHA = eHΣA ,

where ΣA represents the diagonal matrix of singular values (σ1, σ2, ..., σn) of A. Here HΣA
:=

−
∑n

i=1 pilog(pi), where pi is the ith normalized singular value computed as pi = σi∑n
j=1 σk

. We
refer to HA as the entropy of matrix A. Furthermore, for a discrete random variable χ that obeys
a distribution P with finite support over n states (

⋃n
i=1 χi), we define H(P) = −

∑n
i=1 pi log(pi),

where pi = Prob(χ = χi). In this work, we restrict ourselves to dealing with discrete random
variables alone.

We posit that after fine-tuning the adapters attached to the query and value matrices, the effective
rank of the combined matrices should be greater than the original matrix to increase performance on
the downstream task. In other words, if W represents the original weight matrix of an adapted query
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or value, and ∆W represents the weight matrix provided by the adapter module post fine-tuning on
a downstream task, then erank(W +∆W) > erank(W). We observe that the effective rank
of the resulting matrix depends solely on its singular values. Based on this observation, we now
present our theory to analyze the conditions under which W +∆W has the highest effective rank
over W under certain constraints on ∆W.

3.2 THEORETICAL FORMULATION

Since the effective rank increases monotonically with the entropy H, we shift our focus towards the
analysis of H. We first derive an expression for computing the change in entropy of the combined
matrix over the original matrix, i.e. ∆H = HW+∆W −HW. Using this expression, we proceed to
show that for maximizing ∆H, the change in the ith singular value of W should be proportional to
its own magnitude.

The next part of our analysis uses this observation to find the ideal singular values to learn given that
we wish to constrain the number of parameters (here, singular values) that are trained. We proceed
to show that if all singular values are not freely tunable, it is optimal to tune the lower singular values
of W using ∆W. Additionally, we further show that for two different ∆W matrices that have the
same norm and the same number of tunable singular values, the one that has its singular vectors
aligned with the singular values of W results in the maximum increase in the effective rank.

We then show that this formulation - training only the lower singular values of W by adding an
appropriately crafted ∆W - achieves an optimal solution for the Linear Regression Problem, and
the proceed to adapt this method for fine-tuning transformers.

Lemma 1 (Change in Entropy). Given a random variable χ and any two distributions P, Q over
(
⋃n

i=1 χi), define δpi := P(χ = χi)−Q(χ = χi), and assume that such that |δpi| << 1, ∀1 ≤ i ≤
n. Then the change in entropy ∆Hq,p := H(q)−H(p) is given by: ∆Hq,p = −

∑n
i=1 δpi(log pi).

Our primary result investigates the optimal perturbations introduced by the adapter, ∆W, to the
pre-trained weight matrix, W. The proof outline begins by deriving a simplified representation of
the singular values of the adapted weight matrix, W +∆W, utilizing a first-order Taylor expansion
around the normalized singular values. A first-order approximation is sufficient in this case, as the
adjustment to the ith singular value, δσi, is generally much smaller in magnitude compared to the
corresponding singular value of W.

Subsequently, we employ our central technical Lemma 1 to analyze the distributions induced by the
normalized singular values of W +∆W and W, respectively. Maximizing the relevant entropy
reduces the problem to optimizing an objective function over the free variables δσi. To account
for regularization constraints on ∆W, a common practice in the PEFT literature (Hu et al., 2022),
we incorporate a constraint on the Frobenius norm of ∆W. The optimal adjustments for this con-
strained optimization are then derived using the method of Lagrange multipliers. The question of
whether these optimal adjustments scale linearly with the magnitude of the corresponding singular
values in W is resolved affirmatively in the following theorem.

Theorem 1 (Increase in Entropy under Singular Value Adjustment). Let A ∈ Rn×n be a matrix
with singular values σA

i ≥ 0 for i = 1, 2, . . . , n, and let SA =
∑n

i=1 σ
A
i . Consider perturbations

δσi ∈ R such that the singular values of A+B become σA+B
i = σA

i + δσi, for an arbitrary matrix
B ∈ Rn×n. Under the constraint ∥B∥2F =

∑n
i=1(δσi)

2 ≤ C, the maximum possible change in
entropy ∆H is:

∆Hmax =
√
C ·

√√√√ n∑
i=1

c2i , (1)

where ci = −

(
log

(
σA
i

SA

)
+HA

)
SA

. The optimal adjustments δσi are given by:

δσi = ci ·
√
C√∑n
j=1 c

2
j

. (2)

All proofs are provided in the Appendix. Even if one optimizes the singular values of W +∆W to
follow the structure outlined in Theorem 1, a critical question remains: how does this optimization
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contribute to parameter reduction when one might need to train n such singular values? This could
lead to the training of ∆W ∈ Rn×n, resulting in as many parameters as the original pre-trained
matrix, making it inefficient from a parameter-efficiency standpoint.

To address this, we introduce Theorem 2. It shows that if updates are restricted to only some k of
the singular values of W, while the remaining n−k singular values remain unchanged, it is optimal
under mild conditions to update the k smallest singular values. This can be intuitively expected in
the following sense: the entropy of a discrete random variable is maximized when the probabilities
of it taking different values are equi-probable. Formally, this result is derived by tweaking Equation
1 and utilizing the properties of the constants ci, as detailed in Theorem 1, which are further explored
in the Appendix.

Theorem 2 (Sparse, Optimal Modification of Singular Values to Maximize Entropy Increase). Let
A,B ∈ Rn×n be two matrices, with A being fixed. Suppose we are allowed to perturb at most k
singular values of A+B (i.e., at most k of the δσi are non-zero), using a matrix B ∈ Rn×n under the
constraint ∥B∥2F =

∑k
j=1(σ

B
j )2 ≤ C. To maximize the increase in entropy ∆H = HA+B −HA,

it is optimal to modify the k-smallest singular values of A.

Theorem 2 offers a significant reduction in the number of parameters that need to be trained, de-
pending on the desired downstream task performance (these requirements are encoded in the values
of k and C). However, this still involves learning parameters for the orthonormal matrices U∆W

and V∆W, which are part of the singular value decomposition (SVD) of ∆W. To further reduce
the number of parameters, we focus on minimizing the parameters to be trained in these orthonor-
mal matrices. It is easy to observe that no additional parameters would be required to learn these
matrices if, after training, the singular vectors of ∆W align with those of W, irrespective of the
initialization of the entries of ∆W. In fact, under mild conditions, this is precisely what we prove in
Theorem 3. This result is essential in justifying our formulation, where we explicitly constrain the
orthonormal matrices in the SVD of ∆W to be identical to those of W. This provides the second
major reduction in parameters compared to other PEFT methods, as we ultimately only train scalar
values representing adjustments to the pre-trained weights W. The proof primarily follows a greedy
argument, relying on Lemma 1 and a result from first-order perturbation theory (Stewart, 1998).

Learning coefficients for linear combinations has been explored in prior work (Koohpayegani et al.,
2024; Kopiczko et al., 2024; Gao et al., 2024), where adapter weights are formulated as linear
combinations of matrices from a basis of randomly chosen matrices. In contrast, our approach
utilizes fixed deterministic matrices derived from the pre-trained model. An additional advantage of
our method is that it remains invariant to the implementation of random number generators, unlike
these other methods, and it does not require storing random seeds post-training. Furthermore, our
approach removes a significant constraint required by previous methods: we do not require the
adapter matrices to span the same random basis at every layer. Instead, at each layer the singular
vectors of the adapter matrix are aligned with the singular vectors of the corresponding weight
matrix, enhancing the expressivity of our method while avoiding cross-talk between weight matrices
across layers.

Theorem 3 (Alignment of Singular Vectors w.r.t Pretrained Weights). Let A ∈ Rn×n be a matrix
with singular values σA

i arranged in descending order (σA
1 ≥ σA

2 ≥ · · · ≥ σA
n ≥ 0) and corre-

sponding left and right singular vectors uA
i and vA

i . Let B ∈ Rn×n be a fixed matrix with exactly k
nonzero singular values σB

j (with σB
1 ≥ σB

2 ≥ · · · ≥ σB
k > 0) and corresponding singular vectors

uB
j and vB

j . Under the constraint ∥B∥2F =
∑k

j=1(σ
B
j )2 = C, the maximum increase in entropy

∆H = HA+B −HA is achieved when the following happen, in order:

1. First, the singular vectors of B corresponding to its largest singular value are aligned with the
singular vectors of A corresponding to its smallest singular value; specifically, uB

j = uA
n−j+1

and vB
j = vA

n−j+1 for j = 1, 2, . . . , k.

2. Since the largest singular value of B is now aligned, ∆H is further maximized by aligning the
next largest singular value of B with the next smallest singular vector of A, and so on recursively,
for all k singular values of B.

Therefore, the largest increase in entropy is achieved by aligning the singular values of B in de-
creasing order with the singular vectors of A in increasing order of their indices.
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Theorems 1–3 provide a strong theoretical foundation for the PEFT formulation that we introduce
as SiVA. However, to rigorously establish that SiVA achieves optimal performance, we need to
connect this formulation directly to the loss function used during training. It is important to note
that we present experiments for SiVA on large, deep networks, such as ViT-B16 (small/large), which
incorporate multiple non-linearities and attention heads, thereby inducing complex inductive biases
into the learned weights. Fully characterizing the trajectory of the solutions derived by SiVA under
these conditions is highly non-trivial and left as future work.

Instead, we show that in a simpler Linear Regression setting, there exist weight matrices ∆W whose
singular vectors align with those of W (SiVA form) and are within the set of weight matrices that
minimize the loss function. The proof uses a standard proof-by-contradiction approach: we begin
by assuming that no such solution exists, and then construct an optimal solution of the SiVA form
for the regression task. By demonstrating the existence of this optimal solution, we invalidate the
original assumption, proving that a SiVA-form solution is optimal for the linear regression task. The
proof is constructive and can be derived using standard derivative-based optimization techniques.
Theorem 4 (SiVA Style Solutions Lie in Set of Minimizers for Linear Regression). Let A ∈ Rm×n

be a full-rank matrix with singular value decomposition A = UAΣAV
⊤
A , where UA ∈ Rm×n and

VA ∈ Rn×n are orthogonal matrices, and ΣA ∈ Rn×n is a diagonal matrix with positive entries
σA1, σA2, . . . , σAn. Let x ∈ Rn and y ∈ Rm be given vectors. Define B = UASV

⊤
A , where

S ∈ Rn×n is a diagonal matrix with entries σ1, σ2, . . . , σn. Consider the Mean Squared Error:

L(σ1, . . . , σn) = ∥(A+B)x− y∥2 .

Then, L(σ1, . . . , σn) is minimized by choosing

σi =
u⊤
i y

v⊤i x
− σAi,

for each i such that v⊤i x ̸= 0, where ui and vi are the i-th columns of UA and VA, respectively.

3.3 METHOD

This section outlines the implementation of our method. We use insights from our theoretical ob-
servations to develop a PEFT method that is conceptually simple, aggressively parameter-efficient,
and highly performant. Our approach directly draws inspiration from our theoretical framework,
and is based on the following hypothesis - Modification of a small subset of singular values of the
pre-trained model weights is sufficient to achieve high performance, while simultaneously limiting
the number of parameters to be trained. We formulate ∆W such that it selectively updates the
lower singular values of a pre-trained weight matrix W when added to it. The pseudocode outlining
the various components of SiVA is presented in Algorithm 1.

Formally, let W be the weight matrix to be adapted to a downstream task by adding the update
matrix ∆W. We compose ∆W as product of three matrices U, S, and VT, where U and V are
the left and right singular vectors of W respectively (Theorem 4). Note that this initialization of U
and V is a one-time operation, performed only when attaching the SiVA module to the base layer.
S is a diagonal matrix whose values are optimized using Gradient Descent.

To achieve parameter efficiency, we only train k diagonal elements of S, corresponding to the sin-
gular values of W that need to be modified. The remaining singular values are frozen, along with
U and VT. Only the lowest singular values are chosen for training (Theorem 3). Analogous to
the observation made by AdaLoRA (Zhang et al., 2023) about the suboptimal choice of having the
same rank for each update matrix, maintaining a constant number of k per layer can also be subop-
timal. Therefore, we determine k in each layer based on the variance captured by the corresponding
eigenvalues. We pick the singular values corresponding to the eigenvalues that capture the bottom
(1− perc)% of the variance, where perc is a hyperparameter. The pseudocode for computing k for
a given value of perc is presented in the get values and vectors function in Algorithm 1.

4 EXPERIMENTS AND RESULTS

We evaluate the performance of SiVA across computer vision (CV) and natural language processing
(NLP) datasets. For CV, SiVA fine-tunes (1) vision transformers (ViT) (Dosovitskiy et al., 2021) in
Base and Large variants for image classification. For NLP, SiVA is applied to (2) RoBERTa-Large
(Liu et al., 2020) for natural language understanding on the GLUE (Wang et al., 2018) benchmark,
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LoRA SiVA

Figure 2: Visualization of LoRA (left) against SiVA (right). Compared to LoRA, SiVA has significantly fewer
trainable components. Additionally, all frozen components in SiVA are derived from the base matrix itself.
Algorithm 2 PyTorch-style Pseudocode for our method, SiVA

class SiVA(nn.Module):
def __init__(

self,
perc: float, # only train the singular values corresponding to the eigenvalues
# capturing bottom (1 - perc)% variance
base_layer: nn.Module # pre-trained layer,

):
# definitions
self.perc = perc
self.base_layer = base_layer

# Get the the vector of lower singular values,
# and corresponding left and right singular vectors
self.U, S, self.V = self.get_values_and_vectors(base_layer.weight)
self.S = nn.Parameter(torch.zeros_like(S))

def get_values_and_vectors(self, matrix):
U, S, V = torch.svd(matrix)
# Calculate the total variance (sum of squared singular values)
total_variance = (S**2).sum()

# Calculate the cumulative sum of squared singular values
cumulative_variance = torch.cumsum(S**2, -1)

# Find the number of singular values that capture perc% of the variance
num_frozen_singular_values = torch.searchsorted(

cumulative_variance,
self.perc * total_variance

) + 1

num_trainable_singular_values = S.shape[0] - num_singular_values

reduced_U = U[:, -num_trainable_singular_values:]
reduced_S = S[-num_trainable_singular_values:]
reduced_V = V[:, -num_trainable_singular_values:]
return reduced_U, reduced_S, reduced_V

def forward(self, x):
result = self.base_layer(x)
W = self.U @ self.S.diag() @ self.V.t()
result += F.linear(x, W)
return result

(3) GPT-2 (Medium) (Radford et al., 2019) for natural language generation on the E2E dataset (Wang
et al., 2023), and (4) LLaMA2-7B (Touvron et al., 2023) for instruction tuning. In each case, along
with standard performance metrics for the task, we also report the performance per parameter. This
quantity indicates how much each trained parameter contributes to the final performance on average.
Additionally, we study the effects of: (1) using singular vectors derived from original weights versus
random matrices, and (2) using upper versus lower singular values.

4.1 IMAGE CLASSIFICATION

Models and Datasets. SiVA is evaluated on the image classification task using the Vision Trans-
former (ViT) (Dosovitskiy et al., 2021), in both Base and Large variants. The models are pre-trained
on the ImageNet-21K dataset (Ridnik et al.), and fine-tuned on OxfordPets (Parkhi et al., 2012)(37
classes), CIFAR10 (10 classes) (Krizhevsky, 2009), EuroSAT (10 classes) (Helber et al., 2019), RE-
SISC45 (45 classes) (Cheng et al., 2017), StanfordCars (196 classes) (Krause et al., 2013), FGVC
(100 classes) (Maji et al.), and CIFAR100 (100 classes) (Krizhevsky, 2009). We compare SiVA
against two established parameter-efficient fine-tuning (PEFT) methods: LoRA (Hu et al., 2022)
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and FourierFT (Gao et al., 2024). Additionally, we also show results for training a single Linear
Layer on top of the base model (LP) and full fine-tuning of the base model (FF). We reuse baseline
numbers from FourierFT to ensure fairness.

Implementation Details. SiVA is evaluated against Full Fine-tuning (FF), Linear Probing (LP, fine-
tuning the classification head only), LoRA (Hu et al., 2022), and FourierFT (Gao et al., 2024). For
LoRA, FourierFT and SiVA , we fine-tune the query and value matrices in ViT. We report the results
for using using r = 16 for LoRA, n = {3000} for FourierFT, and perc = 0.95 for SiVA . Learning
rates and weight decay are tuned, with a maximum of 10 training epochs. Hyperparameters are
provided in Table 7 in the Appendix.

Model Method # Trainable
Parameters OxfordPets StanfordCars CIFAR10 EuroSAT FGVC RESISC45 CIFAR100 Avg.

V
iT

-B
as

e LP - 90.28±0.43 25.76±0.28 96.41±0.02 88.72±0.13 17.44±0.43 74.22±0.10 84.28±0.11 68.16
FF 85.8M 93.14±0.40 79.78±1.15 98.92±0.05 99.05±0.09 54.84±1.23 96.13±0.13 92.38±0.13 87.75

LoRA (Hu et al., 2022) 581K 93.19±0.36 45.38±0.41 98.78±0.05 98.44±0.15 25.16±0.16 92.70±0.18 92.02±0.12 77.95
FourierFT (Gao et al., 2024) 72K 93.21±0.26 46.11±0.24 98.58±0.07 98.29±0.04 27.51±0.64 91.97±0.31 91.20±0.14 78.12
SiVA 9.7K 95.16±0.53 59.51±0.4 98.75±0.07 98.25±0.04 47.43±1.7 92.58±0.35 90.67±0.10 83.19

V
iT

-L
ar

ge

LP - 91.11±0.30 37.91±0.27 97.78±0.04 92.64±0.08 24.62±0.24 82.02±0.11 84.28±0.11 72.91
FF 303.3M 94.43±0.56 88.90±0.26 99.15±0.05 99.04±0.08 68.25±1.63 96.43±0.07 93.58±0.19 91.4

LoRA (Hu et al., 2022) 1.57M 94.82±0.09 73.25±0.36 99.13±0.03 98.63±0.07 42.32±0.98 94.71±0.25 94.87±0.10 85.39
FourierFT (Gao et al., 2024) 144K 94.46±0.28 69.56±0.30 99.10±0.04 98.65±0.09 39.92±0.68 93.86±0.14 93.31±0.09 84.12
SiVA 30.3K 95.98±0.2 79.61±0.52 99.16±0.07 98.65±0.1 54.19 ±1.9 94.52±0.2 92.39±0.3 87.79

Table 2: Fine-tuning results with ViT Base and Large models on different image classification datasets. We
report the accuracy (%) after 10 epochs. Avg. represents the average accuracy of each method on all datasets.
We show the best performance across PEFT methods in bold, and underline the next best PEFT method.

Results. Table 2 presents the results across seven image classification datasets. All three adapter-
based methods significantly outperform Linear Probing. SiVA achieves comparable or better per-
formance with two orders of magnitude fewer parameters compared to LoRA and an order of
magnitude fewer parameters compared to FourierFT, which is a method that attempts to aggres-
sively reduce number of parameters over LoRA. We also outperform other methods on performance
per parameter metric by a significant margin (see Fig 1), achieving state-of-the-art results on all
benchmark datasets.

4.2 NATURAL LANGUAGE UNDERSTANDING

Models and Datasets. SiVA is evaluated on the GLUE benchmark (Wang et al., 2018), cover-
ing various natural language understanding tasks such as sentence classification, paraphrase detec-
tion, and natural language inference. We fine-tune the RoBERTa-Large model (Liu et al., 2020)
for this evaluation. We compare our approach to multiple other parameter-efficient fine-tuning ap-
proaches: Full Fine-tuning (FF), where all parameters are updated during fine-tuning, starting from
pre-trained weights and biases; Bitfit (Zaken et al., 2022), where the biases are tuned while keeping
all other parameters fixed; Three variants of Adapter Tuning Houlsby et al. (2019a), which intro-
duces two-layer adapters between frozen transformer layers; LoRA (Hu et al., 2022), which formu-
lates parameter updates as a product of two low-rank matrices; DyLoRA (Valipour et al., 2023) and
AdaLoRA (Zhang et al., 2023) both of which dynamically optimize the rank of LoRA matrices;
VeRA (Kopiczko et al., 2024), which employs “scaling vectors” to adapt a pair of frozen random
matrices shared between layers for weight updates, and finally, FourierFT (Gao et al., 2024), which
leverages the Inverse Fourier Transform to learn parameters in the frequency domain and translate
them into the weight space.

Implementation Details. We train singular values corresponding to the bottom 5% variance of
weight matrices (i.e., perc = 0.95 across 24 layers). For all six GLUE tasks, we tune the learning
rates of the head and SiVA parameters. The fine-tuning setup is similar to Hu et al. (2022), targeting
the query and value matrices in each transformer block, with full fine-tuning of the classification
head. Hyperparameters are detailed in Table 9 in the Appendix.

Results. Table 3 summarizes the results. We present the mean over five random seeds with the
best epoch selected. SiVA matches or surpasses baseline methods with significantly fewer trainable
parameters, including Full Fine-tuning in some cases, such as for MRPC. We outperform other
methods on performance per parameter metric by a large margin (See Fig 3).
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Method # Trainable
Parameters

SST-2
(Acc.)

MRPC
(Acc.)

CoLA
(MCC)

QNLI
(Acc.)

RTE
(Acc.)

STS-B
(PCC) Avg.

FF 356M 96.4 90.9 68 94.7 86.6 92.4 88.2
AdptP (Pfeiffer et al., 2021) 3M 96.1±0.3 90.2±0.7 68.3±1.0 94.8±0.2 83.8±2.9 92.1±0.7 87.6
AdptP (Pfeiffer et al., 2021) 0.8M 96.6±0.2 89.7±1.2 67.8±2.5 94.8±0.3 80.1±2.9 91.9±0.4 86.8
AdptH (Houlsby et al., 2019b) 6M 96.2±0.3 88.7±2.9 66.5±4.4 94.7±0.2 83.4±1.1 91.0±1.7 86.8
AdptH (Houlsby et al., 2019b) 0.8M 96.3±0.5 87.7±1.7 66.3±2.0 94.7±0.2 72.9±2.9 91.5±0.5 84.9

LoRA (Hu et al., 2022) 0.8M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8
FourierFT (Gao et al., 2024) 0.048M 96.0±0.2 90.9±0.3 67.1±1.4 94.4±0.4 87.4±1.6 91.9±0.4 88.0
VeRA (Kopiczko et al., 2024) 0.061M 96.1±0.1 90.9±0.7 68.0±0.8 94.4±0.2 85.9±0.7 91.7±0.8 87.8
SiVA 0.023M 96.2±0.1 91.4±0.4 68.4±0.9 94.2±0.1 87.1±0.1 92.0±0.1 88.22

Table 3: Performance of various fine-tuning methods with RoBERTa Large on 6 tasks of the GLUE benchmark.
We report the Matthew’s correlation coefficient (MCC) for CoLA, Pearson correlation coefficient (PCC) for
STS-B and accuracy (Acc.) for all the remaining tasks. We report the mean result of 5 runs with different
seeds, each using different random seeds. The best results across PEFT methods for each dataset are shown in
bold, and the second best results are underlined. Higher is better for all metrics except the number of trainable
parameters, where lower is better.

Figure 3: (Left) Accuracy per parameter for SST-2, MPRC,QNLI and RTE datasets. Accuracy for each method
on each dataset is displayed above the corresponding bar, while number of trainable parameters for each method
is provided in legend. (Right) Matthew’s correlation coefficient (MCC)/ Pearson correlation coefficient (PCC)
per parameter for CoLA/STS-B dataset. MCC/PCC for each method is displayed above corresponding bar,
while number of trainable parameters for each method is provided in legend. SiVA demonstrates significantly
better performance per parameter across the results.

4.3 NATURAL LANGUAGE GENERATION

Models and Datasets. SiVA is evaluated on the E2E NLG task (Wang et al., 2023), using GPT-2
Medium (354M) model. The E2E dataset includes about 42,000 training samples and 4,600 samples
each for validation and testing in the restaurant domain.

Method # Trainable
Parameters BLEU NIST METEOR ROUGE-L CIDEr

FT 354.92M 68.2 8.62 46.2 71.0 2.47
AdptL 0.37M 66.3 8.41 45.0 69.8 2.40
AdptL 11.09M 68.9 8.71 46.1 71.3 2.47
AdptH 11.09M 67.3 8.5 46.0 70.7 2.44
LoRA 0.35M 68.9 8.76 46.6 71.5 2.53
FourierFT 0.048M 69.1 8.82 47.0 71.8 2.51

SiVA 0.044M 69.7 8.81 46.5 71.3 2.48

Table 4: Results with GPT-2 Medium on E2E dataset.
For all metrics other than the number of trainable pa-
rameters, higher values are better. Best results across
PEFT methods are shown in bold, and second best re-
sults are underlined.

Implementation Details. We reuse baseline
results from previous works, except for LoRA
and SiVA , which are fine-tuned using a linear
learning rate scheduler over five epochs. The
batch size and learning rate are tuned, and the
last epoch is selected for evaluation across three
runs. Hyperparameters are detailed in Table 8
in the appendix.

Results. As shown in Table 4, SiVA achieves
comparable or better performance than state-of-
the-art methods across all metrics. SiVA does
this with the lowest number of parameters, with
order of magnitude fewer parameters compared
to LoRA.
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4.4 INSTRUCTION TUNING

Models and Datasets. Instruction tuning (Ouyang et al., 2022; Wei et al.; Mishra et al., 2022)
involves fine-tuning models on paired prompts and responses. We apply VeRA, FourierFT and SiVA
to LLaMA2 (Touvron et al., 2023), fine-tuning the LLaMA2-7B variant on the Alpaca dataset (Taori
et al., 2023), which contains 51K instruction-following demonstrations. For evaluation, we generate
responses to questions from MT-Bench (mtb), with GPT-4 scoring responses on a scale of 10. Since
the GPT-4 model has likely changed since the baseline numbers were published, we evalute the
generations from baseline methods and SiVA using the model behind the OpenAI API at the time of
writing.

Model Method # Parameters Score

LLAMA2 7B
VeRA 327K 4.41
FourierFT 64K 4.31
SiVA 51K 4.36

Table 5: Scores on MT-Bench Benchmark after
tuning on the Alpaca dataset. Scores are provided
by GPT-4 as judge.

Implementation Details. For FourierFT, we use
n = 1000 and use r = 1024 for VeRA. For our
method, we use perc = 0.997. All methods are
trained for one epoch. Hyperparameters are pro-
vided in Table 10 in the Appendix.

Results. Table 5 shows the results for LLaMA2-7B.
We only run on this variant due to compute and budget constraints. SiVA performs on par with other
methods, with fewer parameters than either. Practical examples are presented in Appendix A.3.

4.5 ANALYSIS

Due to its inherent simplicity, our method comprises few components that can be altered or ablated.
We concentrate on two primary aspects informed by our theoretical framework for this analysis: (1)
The selection of a random set of singular vectors for constructing ∆W, rather than deriving them
from W (referred to as “SiVA -Random”). This approach parallels the methodology of utilizing a
random basis as seen in (Gao et al., 2024; Koohpayegani et al., 2024; Kopiczko et al., 2024); and (2)
Training the upper singular values instead of the lower ones (designated as “SiVA -Top”). In both
scenarios, we maintain the parameter count at each layer consistent with our standard formulation
and use the same hyperparameters for training.

Dataset EuroSAT FGVC OxfordPets

SiVA 98.25±0.04 47.43±1.7 95.16±0.53

SiVA -Random 97.98 44.31 94.29
SiVA -Top 91.06 41.26 93.20

Table 6: Performance across diff datasets with random
bases in ∆W and by training top singular values

We report the results of this analysis in Table
6 for three image classification datasets using
ViT-Base. Expectedly, we see a drop perfor-
mance when we use random singular vectors,
and when training the upper singular values.

5 CONCLUDING REMARKS

In this work, we introduce Singular Value Adaptation (SiVA), a novel, simple and efficient PEFT
technique which is grounded in theoretical insights. SiVA increases the effective rank by selec-
tively training only a subset of singular values in the adapter weight matrices, ∆W. The method’s
efficiency stems from two core principles: (1) Sparsity, where instead of updating all singular val-
ues of the pre-trained weight matrix W, SiVA updates only the k-smallest singular values, with k
determined adaptively at each layer based on the cumulative sum of singular values and a hyperpa-
rameter perc. This often leads to k being much smaller than the total number of singular values.
(2) Alignment, where the singular vectors of the adapter matrix ∆W are aligned with those of W.
This alignment reduces the need to train additional parameters, avoiding the necessity of training
the singular vectors U∆W and V∆W as would be required with arbitrary updates. These principles
allow SiVA to dramatically reduce the number of trainable parameters while maintaining or exceed-
ing performance on large-scale datasets. Experimental results show SiVA achieves a 2× to 50×
reduction in trainable parameters compared to existing PEFT methods like LoRA and FourierFT,
while still achieving competitive performance. SiVA’s low parameter count makes it especially ad-
vantageous for applications requiring frequent model switching or the storage of many fine-tuned
models. Reuse of significant parts of the base model makes it ideal for tasks like domain adaptation,
continual learning, and multi-task learning, where maintaining a backbone of shared information
while adapting to specific downstream tasks is crucial.

As future work, SiVA’s parameter efficiency on Transformer architectures can be linked to the archi-
tecture’s inductive bias (Tarzanagh et al., 2023) and the cross-entropy loss. Additionally, exploring
the relationship between SiVA’s singular values and the intrinsic rank (Aghajanyan et al., 2021)
could help clarify how closely SiVA approaches the optimal number of parameters required for each
task.
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ETHICAL CONSIDERATIONS AND REPRODUCIBILITY STATEMENT

• Human Subjects: Our work does not make use of any human subjects. All datasets used in our
work are publicly available and do not involve human subjects.

• Results: All results that we report are honestly executed and accurate to the best of our knowledge.

• Potential Harmful Insights/Methods/Applications: Our work does not have potential negative
impact of harmful applications.

• Research Integrity: We have attempted to make best efforts to properly research existing works
and ideas in the domain and have compared against contemporary benchmarks fairly.

We have provided the complete pseudocode of our approach in Algorithm 1 for purposes of re-
producibility. Additionally, we provide all hyperparameters used for training our models in the
Appendix (Tables 7, 9, 10, 8). We shall also release the complete code of our method used to obtain
our reported results post acceptance.
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