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Figure 1: Illustration of how the “SpatialHand” can manipulate objects in images from 3D prespec-
tive. With the basic ability to insert objects with 6DoF control (top row), allowing for any-degree
rotation (middle row), and precise 3D movement (bottom row).

ABSTRACT

We introduce SpatialHand, a novel framework for generative object insertion with
precise 3D control. Current generative object manipulation methods primarily op-
erate within the 2D image plane, but often fail to grasp 3D scene complexities,
leading to ambiguities in an object’s 3D position, orientation, and occlusion rela-
tions. SpatialHand addresses this by conceptualizing object insertion from a true
“3D perspective,” enabling manipulation with a complete 6 Degrees-of-Freedom
(6DoF) controllability. Specifically, our solution naturally and implicitly encodes
the 6DoF pose condition by decomposing it into 2D location (via masked image),
depth (via composited depth map), and 3D orientation (embedded into latent fea-
tures). To overcome the scarcity of paired training data, we develop an automated
data construction pipeline using synthetic 3D assets, rendering, and subject-driven
generation, complemented by visual foundation models for pose estimation. We
further design a multi-stage training scheme to progressively drive SpatialHand
to robustly follow multiple complex conditions. Extensive experiments reveal our
approach’s superiority over existing alternatives and its great potential for enabling
more versatile and intuitive AR/VR-like object manipulation within images.
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1 INTRODUCTION

Manipulating an object within the 3D scene of images is a fundamental capability in AR/VR envi-
ronments and real-world content creation workflows (Biener et al., 2020; Mendes et al., 2019; Yu
et al., 2021; Besançon et al., 2021; Monteiro et al., 2021; Gardony et al., 2021). Despite current
generative object insertion and movement methods (Xie et al., 2023; Yang et al., 2023; Huang et al.,
2025; Chen et al., 2024a; Podell et al., 2023; Rombach et al., 2022) having achieved significant ad-
vancements in object identity preservation and contextual blending, they primarily operate in the 2D
plane and lack the understanding or control over the underlying 3D scene layout within the image.

In this work, we revisit generative object manipulation from a 3D perspective. Here, “3D per-
spective” refers to inserting or moving an object with a specified 6DoF Pose (3D location and 3D
orientation), forming correct spatial alignment and occlusion relation with other objects in the scene.

To enable efficient and effective object manipulation in 3D perspective, we propose SpatialHand,
a practical solution that implicitly encodes an object’s 6DoF pose. Although it’s challenging for
image generation models to directly understand 3D location, we observe that they can effectively
follow 2D masks and depth maps. Based on this, we represent the 3D location as a combination
of 2D position and depth. By introducing geometry-aware masked images and depth maps, we
can precisely control object placement and ensure realistic occlusion relationships. Besides, the 3D
orientation is embedded into the latent features as additional guidance for object pose.

Despite our architecture modification enabling the model to natively encode specified 6DoF pose
information, the lack of paired training data remains a challenge. To address this, we first leverage
advanced 3D generation models (Yang et al., 2024c; Zhao et al., 2025) to create a large collection of
high-quality 3D assets. Based on these assets, we introduce two strategies to complementarily pro-
duce the target images: 1) Rendering the assets in virtual scenes using a rendering engine (Blender,
2025). 2) Blending the assets with subject-driven image generation models (OpenAI, 2025; Wu
et al., 2025). Finally, we apply visual foundation models (Liu et al., 2024; Ren et al., 2024; Yang
et al., 2024b;a; Wang et al., 2024b; Kirillov et al., 2023) to estimate the object’s 6DoF pose from
these synthetic images.

Given the multiple types of spatial guidance our model should follow, we design a multi-stage
training scheme to progressively teach the model to understand and follow complex spatial cues. We
initialize our model with a subject-driven generation model (Wu et al., 2025) to inherit the identity
preservation capabilities. Then, we first train on single-object images to drive the model to generate
novel views of objects with a specified 3D orientation. Afterwards, we use multi-object complex
scenes to learn further controllable 3D positioning and achieve realistic occlusion relationships.

We evaluate our method both quantitatively and qualitatively across various tasks and scenes. The re-
sults demonstrate a new level of controllability in object insertion from the 3D perspective, enabling
intuitive AR/VR-like object manipulation and several novel 3D-aware content creation applications.

In summary, our contributions are four-fold:

• We highlight the “3D perspective” of the generative object manipulation task, aligning with
how humans manipulate objects in the AR/VR environment. Our approach enables precise
control over object 6DoF pose and eliminates the ambiguity in 2D image inpainting.

• We decompose the 6DoF pose into 2D location, depth, and 3D orientation, allowing our
model to naturally and implicitly encode spatial condition information.

• We develop a stable and automated training data curation pipeline using high-quality syn-
thetic 3D assets, rendering engine, and subject-driven image generation models.

• We employ a multi-stage, decoupled training approach that enables the model to progres-
sively adapt to complex spatial conditions, achieving robust spatial control.
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Figure 2: Motivation of SpatialHand. 2D inpainting for object insertion/movement suffers from
location ambiguity (in front of or behind existing elements?) and orientation ambiguity (facing right
or left?). SpatialHand resolves these by adding extra depth and orientation conditions for spatially
controlled object manipulation.

2 RELATED WORK

2.1 GENERATIVE OBJECT MANIPULATION

With the advancement of generative models (Rombach et al., 2022; Podell et al., 2023; Peebles &
Xie, 2023; Labs, 2024), many methods now use inpainting to place objects into scene images, guided
by visual or textual conditions. Text-guided inpainting methods (Zhang et al., 2023a; Avrahami
et al., 2022; Yu et al., 2023) can easily generate objects described in text within the inpainting mask
of existing images. Paint-by-Example (Yang et al., 2023) and AnyDoor (Chen et al., 2024a) enable
visual reference objects by using visual features as additional conditions. UniReal (Chen et al.,
2024b) and ObjectMover (Yu et al., 2025) take it a step further by leveraging prior knowledge of
video generation models, using data from videos or game engines to achieve more realistic and
plausible object replacement.

Although these methods perform well in preserving object identity and environmental interactions,
their reliance on simple 2D inpainting masks leads to ambiguity in the results. As shown in Fig. 2,
they cannot determine whether an inserted object should appear in front of or behind existing objects,
or whether it should face left or right. To address this, our work considers the object manipulation
task from the 3D perspective, enabling precise object insertion & movement with a specified 3D
location and pose.

2.2 3D-AWARE IMAGE EDITING

Recently, several works (Michel et al., 2023; Wu et al., 2024; Yenphraphai et al., 2024; Wang et al.,
2024a; Pandey et al., 2024) have tried to edit and manipulate the content in 2D images from the
3D space, like location translation and object rotation. Object-3DIT (Michel et al., 2023) collects
a synthetic dataset and learns 3D-aware image editing guided by language instructions. Diffusion
Handles (Pandey et al., 2024) and Diff3DEdit (Wang et al., 2024a) convert 2D images into 3D point
clouds to manipulate objects directly in 3D space. Image Sculpting (Yenphraphai et al., 2024), on
the other hand, models the object’s 3D mesh and performs edits on the mesh itself. These point
cloud- or mesh-based methods use complicated techniques to maintain consistency in the resulting
images, such as feature injection, DreamBooth tuning (Ruiz et al., 2023), ControlNet (Zhang et al.,
2023b), and noise inversion (Song et al., 2020).

Although existing methods offer explicit 3D control, they introduce significant complexity and la-
tency, and often fail to capture the full geometric structure of the 2D image. For example, point
clouds cannot represent the back side of objects, limiting large rotations, while synthetic meshes
struggle with reshaping occlusion relationships. In contrast, our method leverages implicit 3D guid-
ance and a one-stage image generation model, significantly simplifying the whole process while
supporting more diverse and comprehensive 3D editing capabilities.

3
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Figure 3: Overall pipeline of SpatialHand. We focus on object insertion as our primary task due to
its flexibility. SpatialHand decomposes the 6DoF object pose into 3D location (2D mask and depth
map) and 3D orientation. These spatial conditions, along with free-view object reference images
and text captions, are incorporated into the diffusion transformer’s input tokens.

3 METHOD

Our main goal is to place an object into an image with a specific 6DoF pose (3D location and ori-
entation), and form realistic occlusion relationship. To this end, we modify the standard diffusion
transformer model to enable decomposed spatial condition input (Sec. 3.1), curate large-scale train-
ing data pairs (Sec. 3.2) and introduce a progressive training scheme (Sec. 3.3) to effectively teach
the model to follow spatial guidance.

3.1 MODEL DESIGN

Preliminary Our framework is built upon the advanced open-sourced text-to-image model,
FLUX-Dev.1 (Labs, 2024), which employs the MM-DiT structure. The original MM-DiT block
takes the concatenation of noisy image tokens X ∈ RN×D and text condition tokens CT ∈ RL×D

as input, where N , L are the length of image and text tokens, and D is the latent dimension. The
combined token sequence is projected into Query Q, Key K, and Value V representations, and is
globally interacted with the multi-modal attention mechanism:

Attn([X,CT]) = Softmax(
QKT

√
d

)V (1)

To repurpose the standard text-to-image generation model for object insertion, we first extend the
input sequence with background and object reference conditions. Specifically, we embed the masked
scene image Cmask and the reference object Cobj (provided as image and caption) into tokens with
the pretrained VAE and text encoder, and concatenate them with the noisy image tokens as additional
conditional inputs. The results sequence can be formulate as [X,Cmask,Cobj].

3D Location Condition Using only the masked scene and reference object, as previous methods,
provides limited 2D positional control. A simple 2D mask cannot determine an object’s precise
location in actual 3D space, leading to both location and orientation ambiguities, as shown in Fig. 2.

To resolve these ambiguities and enable precise 3D positioning, we further introduce an additional
composited depth map to explicitly define the desired insertion depth. We first predict the scene’s
depth map using Depth Anything (Yang et al., 2024b), then modify the depth values within the
masked region to match the target placement. In real practice, this target depth can be user-friendly
and intuitively specified by simply clicking on the desired ground position.

To preserve realistic occlusions and foreground consistency, we further propose geometry-aware
composition. By comparing the scene’s depth map and the intended placement depth, we identify
masked foreground objects that should remain visible. These objects, in front of the insertion place,
are preserved in both the masked scene and depth map, ensuring correct occlusion (i.e., foreground
objects stay in front of the inserted object).
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Figure 4: Pipeline of training data curation. We start with high-quality synthetic 3D assets. Using
a rendering engine and subject-driven generation, we simulate how humans place objects in 3D
space. Then, we employ a series of visual foundation models to estimate the 3D information within
images.

In summary, our method extracts the scene’s depth map, marks the depth value of the desired location
on it. Besides, we further use geometry-aware composition to refine the occlusion relationship and
produce the geometry-aware masked image C̃mask and depth map C̃depth. The input token sequence
is further extend to [X, C̃mask, C̃depth,Cobj].

3D Orientation Condition After determining the 3D location, our method additionally enables
specification of the object’s 3D orientation to achieve full 6DoF controllability. Previous novel view
synthesis methods (Liu et al., 2023; Wu et al., 2024) primarily operate through relative rotations
from reference views, limiting their effectiveness in textual-only scenarios. In contrast, we focus on
modeling semantic object orientation that aligns with an object’s canonical front-facing direction.
Our method incorporates absolute target orientations as direct conditions rather than relying on
relative rotation.

We describe the 3D orientation of an object with three parameters: azimuth φ, elevation θ, and
in-plane rotation δ, following Orient Anything (Wang et al., 2024b). To introduce the orientation
parameters as a condition for the diffusion transformer, we apply a zero-initialized MLP projector
P (·) to map them into the latent dimension and add them into the object reference conditions. The
final input token sequence can be formulated as [X, C̃mask, C̃depth,Cobj + P ([φ, θ, δ])].

3.2 TRAINING DATA CURATION

For placing object with specific 6DoF pose, ideal training data pairs should cover: 1) Object Con-
dition: textual caption and visual image from difference view for the reference object, 2) Target
Image: target scenes with placed object, and 3) 6DoF Guidance: object location, depth and ori-
entation annotations. The lack of paired data is another obstacle for 3D-aware object replacement.
To overcome this, we develop an automated data curation pipeline that simulates real-world object
placements through three steps:

Step 1: 3D Object Assets Synthesis In the real world, the first step of placing objects is obtaining
the actual 3D-form object. Inspired by recent advances in 3D generation models (Yang et al., 2024c;
Zhao et al., 2025; Xiang et al., 2024), we synthesize 3D object assets from category names for
comprehensive data coverage. With the high-quality 3D mesh, the multi-view renderings can serve
as visual object conditions, and associated captions are native textual object conditions. Specifically,
we leverage Hunyuan-3D 2.0 (Zhao et al., 2025) to generate 43k 3D assets from 10k common object
category names, render 20 random views for each object, and employ Qwen-2.5-VL (Bai et al.,
2025) to produce corresponding captions.

Step 2: Object Placement Simulation To mimic the process of placing 3D objects in the real
world, we design two complementary object placement methods: 1) Simulated Placement: Using
the Blender simulation platform (Blender, 2025), we randomly arrange and render 3D assets to
generate diverse 6DoF poses and occlusion patterns across scenes. This approach ensures perfect
object identity preservation but sacrifices scene diversity and complexity. 2) Generative Placement:
Leveraging subject-driven image generation models, UNO (Wu et al., 2025) and ChatGPT-4o (Ope-
nAI, 2025), we blend multiple objects into realistic scenes with natural arrangements. This method

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

enhances contextual diversity and plausibility, albeit with slightly weaker identity consistency. By
combining the two complementary strategies, we balance geometric and identity precision (Blender)
with rich environmental variation (generative models), providing scalable, diverse, and reliable tar-
get images.

Step 3: 3D Information Estimation Given the visual and textual reference object along with the
target image containing the reference object, the final step involves estimating the object’s spatial
pose within the target image as 6DoF guidance. First, we use Grounding-DINO (Liu et al., 2024) and
Segment Anything (Kirillov et al., 2023) to detect the 2D position (bounding box and segmentation
mask). Second, the target image’s depth map is predicted using Depth Anything (Yang et al., 2024b),
and the placed objects’ average depths are computed within its segmented region. Finally, we infer
the 3D orientation of the reference object using Orient Anything (Wang et al., 2024b).

Statistic We collect 43k diverse 3D assets spanning a wide range of object categories. Using sim-
ulated placement and generative placement techniques, we generate 100k and 450k target images,
respectively. To ensure data quality, we implement a rigorous filtering process that removes: (1)
samples with low DINO similarity scores to reference objects and (2) cases with low bounding box
or orientation confidence. This quality control process results in 370k high-fidelity object-image-
pose training pairs.

3.3 TRAINING SCHEMES

Achieving generative 3D-aware object placement and manipulation necessitates that the model ad-
here to several conditions: object identity, 2D location, depth map, and 3D orientation. To facilitate
robust learning amidst these intricate constraints, we introduce a progressive training scheme.

Stage 0: Identity-Preservation Pre-training Object identity preservation is the most fundamen-
tal ability of our tasks. Therefore, we initialize our model with the pre-trained FLUX-1 dev (Labs,
2024) model and the LoRA adapter (Wu et al., 2025) trained for subject-driven generation tasks,
ensuring the model inherently possesses object identity preservation capabilities from the beginning
of training.

Stage 1: Novel View Synthesis Fine-Tuning Then we focus on training the model to comprehend
object orientations and generate novel views with specific 3D orientations. To this end, we randomly
select two renderings of the same 3D object as object reference and target images, and incorporate
estimated orientation predictions from Orient Anything as guidance for training.

Stage 2: 3D-aware Insertion Fine-Tuning Finally, we refine the model’s ability to realistically
insert objects into scenes with specified poses. Using the dataset introduced in Section 3.2, we train
the model to accurately position objects while maintaining background.

Implementation Details We initialize our model using the pre-trained FLUX-1 dev (Labs, 2024)
framework, along with the LoRA adapter provided in UNO (Wu et al., 2025). For stages 1 and 2 in
Section 3.3, we employ the AdamW (Loshchilov & Hutter, 2017) optimizer with a learning rate of
1e-4 and batch size of 8 , using a cosine scheduler. We utilize LoRA (Hu et al., 2022) with the rank
of 512 for fine-tuning, and the model is trained for 60k steps in Stage 1 and 20k steps in Stage 2. All
the experiments are conducted on 8×A100 GPUs.

4 EXPERIMENTS

4.1 3D-AWARE OBJECT INSERTION

Alternative Baseline Considering there is no existing object insertion method that supports pose
condition, we select the advancing image editing model, GPT-4o (OpenAI, 2025), Gemini-2.0-
Flash (Google, 2025b) and Nano Banana (Gemini-2.5-Flash Image) (Google, 2025a), as our base-
lines. To incorporate pose guidance, we input the background scene, composited depth map, and
reference object into the unified image generation models, along with a detailed instruction specify-
ing the desired 3D location and orientation. Detailed examples are provided in the Appendix.
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Visual+Textual Condition Textual-only Condition

Objective Subjective Objective Subjective

DINO↑ AbsRel↓ Acc@30°↑ Fidelity↑ Adherence↑ CLIP↑ AbsRel↓ Acc@30°↑ Fidelity↑ Adherence↑

Gemini-2.0-Flash 81.2 33.2 16.0 3.51 2.10 65.7 32.3 18.6 4.10 1.87
GPT-4o 80.5 38.6 20.2 4.13 2.67 66.1 47.5 19.1 4.31 2.13

Nano Banana 80.9 32.1 17.5 3.63 2.25 66.5 32.5 19.5 4.25 1.97
SpatialHand 81.7 19.8 52.0 4.30 4.27 72.5 18.7 47.0 4.25 4.53

Table 1: Quantitative comparison results on 3D-aware object insertion. Object similarity in the
generated image to the reference is measured using DINO↑ and CLIP↑. AbsRel↓ evaluates the
accuracy of the inserted object’s depth position, and Acc@30°↑ measures its orientation accuracy.
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Figure 5: Qualitative comparison on 3D-aware object insertion. Red arrow indicates the desired
orientation, and green arrow denotes the left side of the corresponding pose. Zoom in for best view.

Benchmark Specifically, we manually select 20 images (including both real and synthetic sam-
ples) as scene images, and choose 20 high-quality 3D objects from Objaverse (Deitke et al., 2023) as
reference objects. We use the renderings and captions from Qwen2.5VL of 3D assets as visual and
textual object conditions, respectively. For each scene image, we manually annotate two suitable
poses as insertion targets. Our benchmark contains 800 test samples for different kinds of object
conditions input (visual+textual and textual-only), amounting to 1,600 test samples in total.

Evaluation Metric For identity preservation, we compute the DINO (Oquab et al., 2023) feature
similarity between the result image and the rendering under the target pose of the reference object,
and the CLIP (Radford et al., 2021) feature similarity between the result image and the textual
conditions. For depth alignment, we compute the absolute relative depth error (AbsRel) between the
target depth and the inserted object’s depth. For orientation alignment, we calculate the accuracy
within a 30° angular error tolerance (Acc@30°) between the target and the actual orientation of the
inserted object. We also conduct human subjective study, where annotators rate each result image
from 1 to 5 based on two criteria: “Object Fidelity” and “Pose Adherence”.

Main Results Comparative results are provided in Tab. 1 and Fig. 5. First, SpatialHand shows
state-of-the-art object ID consistency in both visual+textual and textual-only inputs. More impor-
tantly, objects inserted by our method adhere better to the specific pose regarding depth and orienta-
tion (lower AbsRel and higher Acc@30°). Even the most advanced instruction-based image editing
model, GPT-4o, struggles to understand and maintain the desired spatial state from textual instruc-
tion, highlighting the necessity of our carefully designed 3D location and orientation conditions.

4.2 3D-AWARE OBJECT MOVEMENT

Alternative Baseline For 3D-aware object movement task, we compare several 3D-aware image
editing methods, including Object3DiT (Michel et al., 2023) and Diffusion Handles (Pandey et al.,
2024), which support 3D object rotation and translation in existing images. Additionally, we also in-
clude advanced unified instruction-based image editing models, Gemini-2.0-Flash (Google, 2025b),
GPT-4o (OpenAI, 2025) and Nano Banana (Gemini-2.5-Flash Image) (Google, 2025a), as baselines.

7
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Rotation Translation Occlusion

Objective Subjective Objective Subjective Objective Subjective

Acc@30°↑ Fidelity↑ Adherence↑ mIoU↑ AbsRel↓ Fidelity↑ Adherence↑ VLM-Acc↑ Fidelity↑ Adherence↑

Object3DiT 31.4 2.78 3.22 0.45 35.4 2.36 3.56 55.2 1.67 2.31
Diffusion Handles 20.7 3.01 3.05 0.28 20.7 2.76 3.34 49.7 1.78 2.05

Gemini-2.0-Flash 18.3 3.43 2.56 0.22 27.3 3.27 2.65 49.2 3.13 2.67
GPT-4o 19.5 3.87 2.67 0.24 38.2 3.74 2.37 59.5 3.68 3.16

Nana Banana 20.5 3.53 2.73 0.25 26.3 3.53 2.72 50.1 3.21 2.78

SpatialHand 47.8 3.89 4.17 0.72 17.9 4.12 4.56 82.6 3.57 4.53

Table 2: Quantitative comparison on 3D-aware object movement.
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Figure 6: Qualitative comparison on 3D-aware object movement.

Our spatialHand method achieves 3D movement by following two processes: removing the object,
then inserting it back with the target pose.

Benchmark We divide 3D-aware object movement into three sub-tasks: 1) horizontal rotation, 2)
3D translation, and 3) handling occlusion (moving objects between foreground and occluded posi-
tions). For each sub-task, we collect 50 images and annotate 2 manipulations per image, resulting
in 100 samples per sub-task and 300 samples in total.

Evaluation Metric We measure accuracy within 30° angular error (Acc@30°) with Orient Any-
thing, and translation adherence, average box IoU (mIoU) and absolute relative depth error (AbsRel),
using DINO-grounding and Depth Anything. For occlusion, advanced VLM, Qwen2.5VL (Bai et al.,
2025), is tasked to check occlusion correctness (VLM-Acc). Human studies about “Object Fidelity”
and “Pose Adherence” are also employed.

Main Results Tab. 2 presents the quantitative results for different 3D-aware object movement
tasks. Our model exhibits superior advantages over each sub-task. On representative subjective
metrics, our method show significantly better object fidelity and spatial state adherence compared to
both specialized 3D-aware image editing methods and general image editing methods. Fig. 6 further
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Row Geometry Training stage Input condition DINO↑ AbsRel↓ Acc@30°↑

1 Yes Stage 1&2 Visual+Textual 81.7 19.8 52.0
2 Yes Stage 1&2 Visual Only 78.8 18.5 46.8
3 No Stage 1&2 Visual+Textual 80.2 25.5 48.8
4 Yes Stage 2 Visual+Textual 79.8 18.2 28.7

Table 3: Ablation study on 3D-aware object insertion task. “Geometry” indicates whether geometry-
aware composition is used for 3D location condition (Sec. 3.1). “Training Stage” refers to different
training strategies (Sec. 3.3). “Input Condition” represents different forms of object reference.

Scene
Object
Image

Object Scene w/o Geometry-aware Composition with Geometry-aware Composition

Scene
Object
Image

Figure 7: Effect of geometry-aware composition. We sequentially present the masked scene, depth
map, and synthesized images, with and without applying geometry-aware composition.

provides qualitative comparisons of different methods on various subtasks. Methods that explicitly
operate on point clouds, like Diffusion Handlers, struggle with large rotations and occlusions due to
missing back structure in monocular point clouds. Furthermore, methods relying on textual instruc-
tions often fail to describe the complex spatial editing intentions. In contrast, our method implicitly
encodes the desired spatial state, enabling diverse 3D-aware editing while avoiding ambiguity.

4.3 ABLATION STUDY

Impact of Textual Condition First, we examine the effect of the textual object condition. Com-
paring rows 1 and 2 in Tab. 3 shows that extra caption information significantly helps maintain object
identity during insertion. Considering that VLMs perform well and are widely used for captioning
tasks, using VLM captions for visual-only scenarios is a practical choice for real-world applications.

Geometry-aware Composition Fig. 7 visualizes the geometry-aware composition process de-
scribed in Sec. 3.1. It shows that the geometry-aware masked image and depth map better capture
occlusion between inserted and existing objects, and also preserve foreground object identity. More-
over, the higher depth error of row 3 compared to row 1 in Tab. 3 quantitatively demonstrates that
geometry-aware composition is effective for controlling object position.

Progressive Training Scheme Row 4 in Tab. 3 shows the result of removing stage 1 from our
progressive training (Sec. 3.3). We observe that skipping the fine-tuning for novel view synthesis
markedly harms the model’s orientation-following capability, as indicated by the lower orientation
accuracy, Acc@30°. This confirms our progressive training scheme’s effectiveness in helping the
model understand object orientation and handle complex conditions.

5 CONCLUSION

We introduce SpatialHand to virtually insert or move objects in existing images, operating from a
“3D perspective.” It uniquely encodes the 6DoF object pose as 2D location, depth, and 3D orien-
tation cues. To overcome data scarcity and ensure robust adherence to complex spatial conditions,
we develop an automated data curation pipeline and a progressive training scheme. Extensive ex-
periments demonstrate SpatialHand’s superiority over existing approaches, showcasing its strong
potential to advance more intuitive and versatile VR/AR-like object manipulation within images.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
natural images. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 18208–18218, 2022.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.
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A MORE VISUALIZATION COMPARISON
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Figure 8: More qualitative comparison on 3D-aware object insertion

More visualization results on 3D-aware object insertion are shown in Figure 8. It shows that our
method achieves excellent performance in both 3D position and orientation control during object
insertion, while maintaining the consistency of the inserted objects. In contrast, GPT-4o and Gemini-
2.0-Flash perform poorly in terms of orientation control and background preservation.

Figure 9 shows more visualization results about object movement. Our method can perform better in
rotation, translation, and occlusion handling, while the other four models show lower success rates in
operations. Diffusion Handles and GPT-4o perform poorly in background preservation. Gemini-2.0
demonstrates a lack of understanding of bounding boxes.

B PROMPT FOR GPT-4O, GEMINI-2.0-FLASH AND NANO-BANANA

For a fair evaluation of GPT-4o and Gemini-2.0-Flash’s performance, we use the following prompt
for object insertion: ”Insert the item in the second picture into the first picture(background), and
depth map is provided as the third picture, the boxed area’s depth is the average depth of the item
should be placed, the caption of the item is {caption}, the item should orient to camera with azimuth
{orientation[0]}, polar {orientation[1]}, rotation {orientation[2]},{’common knowledge’}” where
’common knowledge’ includes the coordinate system and definitions of the three rotation angles.
This prompt contains all the information that we input into our model.

For GPT-4o, we utilize the mask functionality in the API to constrain the regions where objects can
be modified during insertion. However, from the results, GPT-4o does not strictly follow this mask,
exhibiting cases where objects extend beyond the bounding box and background changes occur.

For object movement, we draw the bounding box of the object in the background to indicate the
target position with the prompt: ”Move the item in the picture to the new position, which is marked
by the red box. Depth map is provided as the third picture, the boxed area’s depth is the average
depth of the item should be placed. The caption of the item is {caption}, the item should orient to
camera with azimuth {orientation[0]}, polar {orientation[1]}, rotation {orientation[2]} ,{’common
knowledge’}”

C QUANTITATIVE ABLATION STUDY

For the ablation study of Geometry-aware Composition, we have shown the results in Figure 7.
Figure 10 visualizes results for the ablation study of the Impact of Textual Condition and Progressive
Training Scheme.
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Figure 9: More qualitative comparison on 3D-aware object insertion
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Figure 10: More qualitative comparison on 3D-aware object insertion

The results show that Textual Condition plays a crucial role in maintaining object consistency when
changing object orientation. Without the Textual Condition, the features of the inserted object can-
not be fully preserved. Additionally, single-stage training shows poor performance in orientation
control, which demonstrates the effectiveness of our Progressive Training Scheme.

D USAGE OF LARGE LANGUAGE MODELS

We utilized Large Language Models (LLMs) for sentence-level refinement during the drafting of this
manuscript. Our experiments featured several key baselines that are Multimodal Large Language
Models (MLLMs), including GPT-4o, Gemini-2.0-flash, and Nano-Banana. Section B thoroughly
explains how we prompted and used these MLLMs.

E LIMITATION AND FUTURE WORK

Under the current paradigm, an object’s orientation and its 2D bounding box are somewhat inter-
dependent. The box’s aspect ratio should generally match the object’s expected shape under the
specific orientation. For instance, a car’s side view requires a wider inpainting box than its front
view. A significant conflict between these can make it harder for the model to apply the orienta-
tion correctly. Making location and orientation conditions more independent is a meaningful future
direction.
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