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ABSTRACT

Deep generative models have made significant progress in improving the diver-
sity and quality of generated data. Recently, there has been increased interest in
fair generative models. Fairness in generative models is important, as some bias
in the sensitive attributes of the generated samples could have severe effects in
applications under high-stakes settings (e.g., criminal justice, healthcare). In this
work, we conduct, for the first time, an in-depth study on fairness measurement, a
critical component to gauge the research progress of fair generative models. Our
work makes two contributions. As our first contribution, we reveal that there
exist considerable errors in the existing fairness measurement framework. We
attribute this to the lack of consideration for errors in the sensitive attribute classi-
fiers. Contrary to prior assumptions, even highly accurate attribute classifiers can
result in large errors in fairness measurement, e.g. a ResNet-18 for Gender with
∼97% accuracy could still lead to 4.98% estimation error when measuring the
fairness of a StyleGAN2 trained on the CelebA-HQ. As our second (major) con-
tribution, we address this error in the existing fairness measurement framework
by proposing a CLassifier Error-Aware Measurement (CLEAM). CLEAM applies
a statistical model to take into account the error in the attribute classifiers, leading
to significant improvement in the accuracy of fairness measurement. Our experi-
mental results on evaluating fairness of state-of-the-art GANs (StyleGAN2 (Kar-
ras et al., 2019) and StyleSwin (Zhang et al., 2021)) show that CLEAM is able to
significantly reduce fairness measurement errors, e.g. by 7.78% for StyleGAN2
(8.68%→0.90%), and by 7.16% for StyleSwin (8.23%→1.07%) when targeting
the Gender attribute. Furthermore, our proposed CLEAM has minimal additional
overhead when compared to the existing baseline. Code and instructions to repro-
duce the results are included in Supplementary.

1 INTRODUCTION

Recently, fair generative models have increasingly attracted more attention (Frankel & Vendrow,
2020; Choi et al., 2020; Humayun et al., 2022; Tan et al., 2020). In generative models, fairness is
defined as equal representation (Hutchinson & Mitchell, 2019) of some sensitive attributes. For
example, a fair generative model w.r.t. Gender has an equal probability of producing Male and
Female samples. This is an important research area as any bias in generated data could limit the
application efficacy of generative models. For instance, the super-resolution model PULSE (Menon
et al., 2020) is found to exhibit biases w.r.t. Race, where it outputs faces with lighter skin and colored
eyes, regardless of the input sample. Another example is the use of generative models for criminal
Suspect Face Generation (Jalan et al., 2020). Fairness w.r.t. Race and Gender in this application is
paramount to avoid inaccuracies e.g. racial profiling. Lastly, generative models are often used for
supplementing scarce datasets for the training of classifiers, where data is often limited e.g. medical
data, due to privacy concerns. Concerns arise when the bias within these supplementary data limits
or hurts the performance of the model. For example, Larrazabal et al. (2020) demonstrates that in
their disease diagnosis application on x-ray images, the classifier’s training datasets must be fair
w.r.t. Gender, and any bias degrades the performance of the classifier.

FAIRNESS MEASUREMENT. Recognizing the importance of fair generative models, several meth-
ods have been proposed to mitigate biases in generative models (Choi et al., 2020; Tan et al., 2020;
Frankel & Vendrow, 2020). In this work, instead, we focus on fairness measurement of deep gen-
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Figure 1: a⃝ An overview of the fairness measurement framework of a generative model. Since the
output samples from the generator are not labeled, the ground-truth (GT) class probabilities w.r.t.
a sensitive attribute (p∗) is unknown. The fairness measurement framework applies an attribute
classifier to estimate p∗. A key component in the framework is the estimation method. In the
existing framework (Baseline), the estimation method simply computes the mean value of the output
of the attribute classifier (p̂) to estimate p∗. Inaccuracies in the attribute classifier could result in
inaccurate estimates for p∗. In our proposed CLEAM, we propose Alg. 1 as an estimation method
to rectify the classifier output and estimate p∗ more accurately. b⃝ In our proposed CLEAM, we
model the classification error in the attribute classifier. See Sec. 3.2 for details. c⃝ Comparing
errors in fairness measurements: Baseline (Choi et al., 2020; Frankel & Vendrow, 2020; Tan et al.,
2020) and our proposed CLEAM, in estimating the GT value of p∗0 for SOTA StyleGAN2 (Karras
et al., 2019) and StyleSwin (Zhang et al., 2021). We conducted experiments for a range of attribute
classifiers, including ResNet-18 and VGG-16 as shown here for sensitive attributes Gender and
BlackHair. Each panel in the figure shows the baseline and CLEAM estimates for a particular GAN
on a certain sensitive attribute using an attribute classifier. We observe that fairness measurement
errors in baseline are significant, while CLEAM substantially reduces the errors in all setups e.g.
using ResNet-18 as the attribute classifier for Gender, error is reduced from 4.98% to 0.62%.

erative models, i.e. assessing and quantifying the bias of the generated data. Note that accurate
measurement of fairness is critical to reliably gauge the progress of bias mitigation techniques. The
general procedure of fairness measurement utilized in previous work to assess their proposed fair
generators (Choi et al., 2020; Tan et al., 2020; Frankel & Vendrow, 2020) is shown in Fig. 1.
Given a generator, first, a batch of samples is generated. These samples are then passed into an
attribute classifier, which classifies each sample w.r.t. an attribute. In previous work, the results of
the attribute classifier are directly taken as the estimation of bias. For example, if eight out of ten
generated face images are classified as Male, then the generator is deemed biased at 0.8 towards
Male. Then, the bias estimation could be fed to some fairness metric (e.g. L2-distance (Choi et al.,
2020), or KL-divergance (Tan et al., 2020)) to report the fairness of the generator. Critically, in
existing work, the effect of classification errors in the attribute classifiers has not been studied. In
particular, classification errors in the attribute classifiers are possible, and they could affect bias es-
timation of the generator. Although, one may argue that the attribute classification could be of high
accuracy, therefore the effect of classification error may not be significant. However, as there has not
been any in-depth study on this topic, the impact of the classification error remains unclear, casting
doubt on the results based on existing fairness measurements. Note that the attribute classifier is
indispensable for automated fairness measurement.

IN OUR WORK, we make two contributions to measuring fairness in generative models. As our
first contribution, we reveal that accuracy of the existing fairness measurement framework is not ad-
equate, due to a lack of consideration for the attribute classifier inaccuracy. Importantly, our results
suggest that using existing measurement framework, even in situations where the accuracy of the
attribute classifier is high, the error in fairness measurement could be significant, e.g. using ResNet-
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18 trained on Gender with ∼97% average accuracy, can lead up to 4.98%, and 5.49% estimation
error when measuring the fairness of StyleGAN2, and StyleSwin (Tab. 1). This undermines find-
ings in Choi et al. (2020); Tan et al. (2020); Frankel & Vendrow (2020) which are based on existing
fairness measurement frameworks, and do not account for the inaccuracy of the classifier.

To address this issue, as our second (major) contribution, we propose CLassifier Error-Aware Mea-
surement (CLEAM), a new method for bias estimation in the fairness measurement framework to
obtain point estimates (PE) and interval estimates (IE) of biases of generated data. More specifically,
in CLEAM, we model the classifier errors and use this model to rectify the errors and derive more
accurate estimation of bias. We evaluate the accuracy of CLEAM on fairness measurement using
state-of-the-art GANs (StyleGAN2 (Karras et al., 2019), and StyleSwin (Zhang et al., 2021)), which
were trained on large public datasets. We then compare the performance of CLEAM against the ex-
isting framework for fairness measurements. To evaluate the performance of the proposed method
under varying degrees of bias, we further design a controlled set of experiments using pseudo-
generators. Our experimental results show that CLEAM is accurate for fairness measurement for
both real generators and pseudo-generators (see Sec. 5). We remark that CLEAM is not a new fair-
ness metric, but an improved estimation of bias in the fairness measurement framework that could
achieve more accurate bias estimation for use in various fairness metrics.

One major challenge in analyzing the accuracy of fairness measurement is that generated data are
usually unlabeled w.r.t. sensitive attributes. We overcome this challenge by manually labeling sam-
ples output from two SOTA GANs (StyleGAN2 and StyleSwin) w.r.t. different attributes, resulting
in a new dataset with ∼9K samples for each GAN. These new datasets are utilized in our work to
evaluate the performance of existing fairness measurement framework and our proposed CLEAM.
We remark that these manually-labelled datasets are used solely in evaluation and are not used in
our proposed CLEAM.

2 FAIRNESS MEASUREMENT FRAMEWORK

Fig. 1(a) illustrates fairness measurement framework for generative models as in Choi et al. (2020);
Frankel & Vendrow (2020); Tan et al. (2020). Assume that, using some noise vector z ∼ qz as
input, a generative model Gθ synthesizes a sample xi ∼ qθ. Generally, as synthesized samples
are not labeled by the generator, the ground truth (GT) class probability of these samples w.r.t. a
sensitive attribute (denoted by p∗) is unknown. Therefore, an attribute classifier Cu is utilized to
estimate p∗. In particular, for each sample xi ∈ x, Cu(xi) = Pr(u|xi), where u is a one-hot
vector representation of the attribute, and Pr(u|xi) is the argmax classification. In existing work,
the expected value of the classifier output over a batch of samples, p̂ = Exi∼qθCu(xi) (or the
average of p̂ over multiple batches of samples), is used as an estimation of p∗. This estimate may
then be used in some fairness metric f to report the fairness value for the generator Gθ, e.g. fairness
discrepancy metric between p̂ and a uniform distribution p̄ (Choi et al., 2020; Teo & Cheung, 2021)
(see Supp. A.3 for some fairness metrics and their details). Note that the general assumption behind
existing framework is that with a reasonably accurate attribute classifier, p̂ could be an accurate
estimation of p∗. In the next section, we will present a deeper analysis of the effects of classifier
inaccuracy on fairness measurement, which suggests that even for highly accurate classifiers, the
measurement error could be rather significant.

Note that, one may argue that conditional GANs (CGANs) (Mirza & Osindero, 2014; Odena et al.,
2017) may be used to generate samples conditioning on the attributes and eliminate the need for an
attribute classifier. However, CGANs are not considered in previous works for fair generative models
due to several limitations. These include the lack of availability of a large dataset (with attribute
labelled) for training, the unreliability of output attribute labels and sample quality (Thekumparampil
et al., 2018), and exponentially increasing conditional terms by increasing numbers of attributes.

3 A CLOSER LOOK AT FAIRNESS MEASUREMENT

In this section, we take a closer look at the existing fairness measurement framework by examining
its performance in estimating p∗ of the samples generated by SOTA GANs. Our experimental results
reveal that the estimation errors of the current fairness measurement framework could be significant.
Then, we develop a statistical model for the attribute classifier output (Fig. 1(b)) to help us better un-
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Table 1: Comparing the point estimates of Baseline (Choi et al., 2020), Diversity (Keswani & Celis,
2021) and our proposed CLEAM measurement framework in estimating p∗ of datasets sampled from
(A) StyleGAN2 (Karras et al., 2019) and (B) StyleSwin (Zhang et al., 2021). The p∗0 value for each
GAN with a certain attribute is determined by manually hand-labeling the generated data (see Supp
F). We utilize four different classifier Resnet-18/34 (He et al., 2016), MobileNetv2 (Sandler et al.,
2018) and VGG-16 (Simonyan & Zisserman, 2014), with different accuracy α, to classify attributes
Gender and BlackHair, to obtain p̂. Each p̂ utilizes n = 400 samples and is evaluated for a batch-
size of s = 30. We repeat this for 5 experimental runs and report the mean error rate, per Eqn. 1.
More analysis with different n and s are included in Supp D.

(A) StyleGAN2
Classifier α = {α0, α1} Baseline(Choi et al., 2020) Diversity(Keswani & Celis, 2021) CLEAM (Ours)

Estimate Error Estimate Error Estimate Error
µBase(p̂0) eµ(p

∗
0)(↓) µDiv(p̂0) eµ(p

∗
0)(↓) µCLEAM(p̂0) eµ(p

∗
0)(↓)

Gender with GT class probability p∗
0=0.642

ResNet-18 {0.947, 0.983} 0.610 4.98% — — 0.638 0.62%
ResNet-34 {0.932, 0.976]} 0.596 7.17% — — 0.634 1.25%

MobileNetv2 {0.938, 0.975} 0.607 5.45% — — 0.637 0.78%
VGG-16 {0.801, 0.919} 0.532 17.13% 0.550 14.3% 0.636 0.93%

Avg Error 8.68% Avg Error 14.30% Avg Error 0.90%

BlackHair with GT class probability p∗
0=0.643

ResNet-18 {0.869, 0.885} 0.599 6.84% — — 0.641 0.31%
ResNet-34 {0.834, 0.916} 0.566 11.98% — — 0.644 0.16%

MobileNetv2 {0.839, 0.881} 0.579 9.95% — — 0.639 0.62%
VGG-16 {0.851, 0.836} 0.603 6.22% 0.582 9.49% 0.640 0.47%

Avg Error 8.75% Avg Error 9.49% Avg Error 0.39%

(B) StyleSwin
Gender with GT class probability p∗

0=0.656
ResNet-18 {0.947, 0.983} 0.620 5.49% — — 0.648 1.22%
ResNet-34 {0.932, 0.976} 0.610 7.01% — — 0.649 1.07%

MobileNetv2 {0.938, 0.975} 0.623 5.03% — — 0.655 0.15%
VGG-16 {0.801, 0.919} 0.555 15.39% 0.562 14.33% 0.668 1.83%

Avg Error 8.23% Avg Error 14.33% Avg Error 1.07%

BlackHair with GT class probability p∗
0=0.668

ResNet-18 {0.869, 0.885} 0.612 8.38% — — 0.659 1.35%
ResNet-34 {0.834, 0.916} 0.581 13.02% — — 0.662 0.90%

MobileNetv2 {0.839, 0.881} 0.596 10.78% — — 0.659 1.35%
VGG-16 {0.851, 0.836} 0.625 6.44% 0.608 8.98% 0.677 1.35%

Avg Error 9.66% Avg Error 8.98% Avg Error 1.24%

derstand the relation between inaccuracy in classifier and error in estimation. Subsequently, in Sec.
4, we will also apply this statistical model when proposing CLEAM for better fairness measurement.

3.1 MEASUREMENT ERROR IN EXISTING FRAMEWORK

A critical problem with the existing measurement framework, called baseline, is that there could
be considerable discrepancies between measured p̂ and p∗ (Fig. 1) even when the accuracy of the
classifier is considerably high. We refer to this discrepancy as estimation error or measurement error,
interchangeably. Here, we design an experiment to demonstrate these errors when evaluating bias
in SOTA GANs. Following previous work (Choi et al., 2020), our main focus is on binary attributes
which take values in {0, 1}. Note that, we assume that the accuracy of the attribute classifier Cu

is known and is characterized by the vector α = {α0, α1}, where αi, i ∈ {0, 1} is the probability
of correctly classifying a sample with true attribute label i. In practice, α can be measured during
the validation stage of Cu. Also, note that p∗ can be assumed to be a constant vector, given that
the samples generated by Gθ can be considered to come from an infinite population, as theoretically
there is no limit on the number of samples generated by a generative model e.g. GAN.

EXPERIMENTAL SETUP. To evaluate the existing fairness measurement framework, we utilize
StyleGAN2 (Karras et al., 2019) and StyleSwin (Zhang et al., 2021) pretrained on CelebA-HQ
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Figure 2: Comparing the empirical results
against our proposed statistical model. We
randomly sample s=400 batch of n = 400
samples from our labeled StyleGAN2 dataset
and input them into a ResNet-18 (Top) and
VGG-16 model (Bottom), with known α, per
Tab. 1, to evaluate p̂ on Gender. Then with
the p∗ and α, we evaluate the statistical dis-
tribution with Eqn. 5 and 6. Notice that the
statistical model is a very good approximation
of the empirical results.
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Table 2: Re-evaluating the point estimates of
previously proposed bias mitigation method,
importance-weighting (imp-weighting) (Choi
et al., 2020) with CLEAM. We first evaluate
the bias of a BIGGAN Brock et al. (2019) with
and without implementing imp-weighting i.e.
unweighted and weighted, with the Baseline.
Then, we apply CLEAM to obtain a more ac-
curate measurements, and compare it against
the Baseline. We do this for both Gender and
BlackHair attributes.

Test Baseline Diversity CLEAM (Ours)
µBase(p̂0) µDiv(p̂0) µCLEAM(p̂0)

α=[0.976,0.979], Gender

Unweighted 0.727 0.711 0.738
Weighted 0.680 0.671 0.690

α=[0.881,0.887], BlackHair

Unweighted 0.729 0.716 0.803
Weighted 0.716 0.706 0.785

(Lee et al., 2020) for sample generation. Note that the major limitation of evaluating the existing
fairness measurement framework is that p∗ is not available. Therefore, to pave the way for an
accurate evaluation, we create a new dataset by manually labeling the GAN-generated samples.
Specifically, we utilize Amazon Mechanical Turks to hand-label the samples w.r.t. Gender and
BlackHair, resulting in ∼9K samples for each GAN, see Supp. F for details. These labeled samples
provide the p∗ for each GAN, which are then compared with the estimated baseline (p̂).

To calculate each p̂ value, a batch of n = 400 samples are randomly drawn from the created dataset
and passed into Cu for attribute classification. We repeat this for s = 30 batches. We report the
mean results denoted by µBase and the 95% confidence interval denoted by ρBase. For comprehen-
sive analysis, we repeat the experiment with four different attribute classifiers, namely Resnet-18,
ResNet-34 (He et al., 2016), MobileNetv2 (Sandler et al., 2018), and VGG-16 (Simonyan & Zis-
serman, 2014). See Supp. D for training details. As seen in Tab. 1, all the classifiers demonstrate
reasonably high accuracy with average accuracy ∈ [84%, 96%]. Note that as we focus on binary
attributes (e.g. Gender:{Male, Female}), both p∗ and p̂ have two components i.e. p∗ = {p∗0, p∗1},
and p̂ = {p̂0, p̂1}. After computing the µBase and ρBase, we calculate normalized L1 point error eµ,
and interval max error eρ w.r.t. the p∗0 (as GT value) to evaluate the measurement accuracy of the
baseline method:

eµBase
= |p∗0 − µBase(p̂0)|/p∗0 (1)

eρBase
= max(|min(ρBase(p̂0))− p∗0|, |max(ρBase(p̂0))− p∗0|)/p∗0 (2)

A smaller value of eµBase
, and eρBase

indicates a better estimate of p∗. Tab. 1 tabulates the predicted
value of µBase by baseline, and the point error w.r.t. the GT value of p∗0 for attributes Gender, and
BalckHair. Note that as p∗1 = 1− p∗0, similar behaviour is observed for p∗1.

From our results in Tab. 1, the GT value of p∗0 (obtained via manual labeling of generated samples)
shows that there is a considerable amount of bias in both StyleGAN2 and StyleSwin w.r.t. Gender,
and BalckHair. Note that for a fair GAN we have p∗0 = p∗1 = 0.5. Then, even though the utilized
attribute classifiers are reasonably accurate, we observe significantly large estimation errors in the
current fairness measurement framework, i.e. eµBase

in the range of 4.98% to 17.13%. In particular,
looking at the highest accuracy classifier (ResNet-18 on Gender attribute) with average accuracy
∼ 97%, we observe significant discrepancies between GT p∗ and µBase, with eµBase

= 4.98%.
These errors generally worsen as accuracy marginally degrades e.g. using ResNet-34 with accuracy
≈ 95% results in eµBase

= 7.17%, suggesting that there is a direct relationship between estimation
error and classifier inaccuracy. See Supp. Tab. 9 for ρBase results. These considerably large errors
contradict prior assumptions – that for a reasonably accurate classifier, we can assume eµBase

to be
fairly negligible. This finding is particularly concerning, as in some cases improvements by some
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bias mitigation techniques e.g. imp-reweighting Choi et al. (2020), can be as small as ≈ 2%, thereby
potentially making the comparison between bias mitigation techniques inaccurate. After observing
a large measurement error for the current framework, in what follows, we propose a statistical model
for the classifier output to get a better understanding of the relationship between measurement error
and classifier inaccuracy. We will also use this statistical model later when developing CLEAM for
improving fairness measurement.

3.2 PROPOSED STATISTICAL MODEL FOR CLASSIFIER OUTPUT

As shown in Fig. 1(a), to measure the fairness of Gθ, we feed n samples generated by Gθ to the
attribute classifier Cu. The output of the attribute classifier (p̂) is in fact a random variable that aims
to approximate the p∗ (GT value of class probabilities w.r.t. attributes). Here, we propose a statistical
model to derive the distribution of p̂.

As Fig. 1(b) demonstrates, in our running example of a binary attribute, each generated sample is
from Class 0 with probability p∗0, or from Class 1 with probability p∗1. Then generated sample from
Class i, i ∈ {0, 1}, will be classified correctly with the probability of αi, and wrongly with the
probability of α′

i = 1− αi. So, for each sample, there are four mutually exclusive possible outputs
c with the corresponding probability vector p:

cT =
[
c0|0 c1|0 c1|1 c0|1

]
, pT = [p∗0α0 p∗0α

′
0 p∗1α1 p∗1α

′
1] (3)

where ci|j denotes the event of assigning label i to a sample with GT label j. This process is
performed independently for each of the n generated samples. Denoting the probability of counts
for each of these possible outputs after n trials as Nc, we can model it as a multinomial distribution,
Nc ∼ Multi(n,p) (Rao, 1957; Kesten & Morse, 1959). Since p is not near the boundary of the
parameter space, for a large n, the Multi(n,p) can be approximated by a multivariate Gaussian
distribution, Nc ∼ N (µ,Σ), with µ = np and Σ = nM (Geyer, 2010), where M is defined as:

M = diag(p)− ppT (4)

and diag(p) denotes a square diagonal matrix corresponding to vector p (see Supp. A.1 for ex-
panded form). The marginal distribution of this multivariate Gaussian distribution gives us the dis-
tribution for the count of each output in Eqn. 3. For example, the distribution of the count for event
c0|0, denoted by Nc0|0 , can be modeled as Nc0|0 ∼ N (µ1,Σ11). After calculating the distribution of
Nci|j , we can find the total rate of data points labeled as class i in the n trials using normalized sum
of the related random variables p̂i = 1

n

∑
j Nci|j . For our binary example, the distribution of p̂i can

be calculated by summing two dependent random variables with Gaussian distribution. Therefore,
p̂0 ∼ N (µ̃p̂0

, σ̃2
p̂0
), where:

µ̃p̂0 =µ1 + µ4 = p∗0α0 + p∗1α
′
1 (5)

σ̃2
p̂0

=Σ11 +Σ44 + 2Σ14

= 1
n [(p

∗
0α0 − (p∗0α0)

2) + (p∗1α
′
1 − (p∗1α

′
1)

2)] + 2
np

∗
0p

∗
1α0α

′
1

(6)

Similarly p̂1 ∼ N (µ̃p̂1 , σ̃
2
p̂1
) with µ̃p̂1 = µ2 + µ3, and σ̃2

p̂1
= Σ22 +Σ33 + 2Σ23 which is aligned

with the fact that p̂1 = 1− p̂0.

To validate our statistical model, we use Eqn. 5 and 6 to computed statistical distribution and com-
pare it against the empirical results. Our results in Fig. 2 show that the statistical model correlates
well with the empirical results on both ResNet-18 and VGG-16, on the Gender attribute. Please see
Supp. B.2 for more details and comprehensive results on validating the statistical model. Note that
based on this model, for a perfect classifier (αi = 1, i.e. accuracy = 100%), the µ̃p̂0

(and therefore
µBase) converges to GT value of p∗0, resulting in eµBase

→ 0. This suggests that the major reason for
fairness measurement error is classifier inaccuracy.

In summary, in this section, we showed that there is a significant error in the current framework
for fairness measurement. This error stems from attribute classifier inaccuracy and exists along
different attribute classifiers (even highly accurate ones with accuracy ≈ 97%) measuring various
attributes of generative models, and it can prevent proper evaluation and comparison of generative
models. Since training a perfect attribute classifier is not practical due to several reasons such as
lack of an appropriate dataset and task hardness, in the next section, we propose a simple method
that compensates for classifier inaccuracy and mitigates the fairness measurement error.
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Algorithm 1: Computing point and interval estimates using CLEAM.
Require: accuracy of attribute classifier α.

1 Compute classifier output p̂ : {p̂1, . . . , p̂s} for s batches of generated data.
2 Compute sample mean µ̈p̂ and sample variance σ̈2

p̂ using (7) and (8).
3 Use (9) to compute point estimate µCLEAM.
4 Use (11) to compute interval estimate ρCLEAM.

4 CLEAM FOR ACCURATE FAIRNESS MEASUREMENT

In this section, we propose a new estimation method in fairness measurement that considers the
inaccuracy of the attribute classifier. For this, we use the statistical model, introduced in Sec 3.2, to
compute a more accurate estimation of p∗ using attribute classifier output, p̂. Specifically, we first
propose a Point Estimate (PE) by approximating the maximum likelihood value of p∗. Then, using
the confidence interval for the mean value of observed data, we propose an Interval Estimate (IE)
for p∗.

POINT ESTIMATE FOR p∗. Suppose that we have access to s samples of p̂ denoted by {p̂1, . . . , p̂s},
i.e. attribute classification results on s batches of generated data. We can then use the proposed
statistical model to approximate the p∗. In the previous section, we showed that we can model
p̂ij using a Gaussian distribution. Considering this, first, we use the available samples to calculate
sample-based statistics including the mean and variance of the p̂ samples, as follows:

µ̈p̂j
=
1

s

s∑
i=1

p̂ij (7)

σ̈2
p̂j

=
1

s

s∑
i=1

(p̂ij − µ̈p̂j
)2 (8)

In a Gaussian distribution, the Maximum Likelihood Estimate (MLE) of the population mean is its
sample mean µ̈p̂j

. Given that s is large enough (e.g. s = 30), we can assume that µ̈p̂j
is a good

approximation of the population mean, and equate it to the statistical population mean µ̃p̂j
in Eqn.

5. With that, we get the maximum likelihood approximation of p∗, which we call the CLEAM’s
point estimate µCLEAM (more details in Supp. A.2):

µCLEAM(p
∗
0) =

µ̈p̂0 − α′
1

α0 − α′
1

, µCLEAM(p
∗
1) = 1− µCLEAM(p

∗
0) (9)

INTERVAL ESTIMATE FOR p∗. In the previous part, we proposed a PE for p∗ using the statistical
model, and sample-based mean µ̈p̂0

. Since we use only s samples of p̂, the µ̈p̂0
may not capture

the exact value of the population mean, which we approximate as µ̃p̂0
. This adds some degree of

inaccuracy into µCLEAM. In fact, in our framework, µ̈p̂0
equals µ̃p̂0

when s → ∞. One solution for
a more accurate estimation of µ̃p̂0

is to use a large s (see Supp. B.1). However, this increases the
computational complexity, as each p̂ requires n data samples, generated by Gθ. As discussed earlier,
p̂0 follows a Gaussian distribution, hence as an alternative solution, to have a better estimation for
p∗, we find an approximated 95% confidence interval (CI) for µ̃p̂0 :

µ̈p̂0 − 1.96
σ̈p̂0√

s
≤ µ̃p̂0 ≤ µ̈p̂0 + 1.96

σ̈p̂0√
s

(10)

Applying Eqn. 5 to Eqn. 10 gives the lower and upper bounds of approximated 95% CI for p∗0:

L(p∗0),U(p∗0) = (µ̈p̂0
∓ 1.96(σ̈p̂0

/
√
s)− α′

1)/(α0 − α′
1) (11)

This gives us the CLEAM’s interval estimate, ρCLEAM(p
∗
0) = [L(p∗0),U(p∗0)], a range of values that

we can be approximately 95% confident to contain the true p∗0. The range of possible values for p∗1
can be simply derived considering p∗1 = 1 − p∗0. The overall procedure of CLEAM for calculating
the point and interval estimates is summarized in Alg. 1.
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5 EXPERIMENTS

In this section, we evaluate the performance of CLEAM in fairness measurement. First, in Sec.
5.1, we evaluate CLEAM on measuring the fairness of the SOTA GANs. The results show that
CLEAM is able to more accurately approximate p∗ compared to previously proposed methods.
Then, in Sec. 5.2, we apply CLEAM to re-evaluate the performance of previously proposed bias
mitigation algorithms, where the results suggest that the bias reported previously may have been
underestimated. Finally, in Sec. 5.3, we use a pseudo-generator to vary the degree of bias i.e. p∗

and demonstrate CLEAM’s performance in an extended range of bias.

To the best of our knowledge, there is no similar work in the literature for improving fairness mea-
surements in generative models. Therefore, we compare CLEAM with the two most related works:
a) the Baseline used in previous works (Choi et al., 2020; Tan et al., 2020; Frankel & Vendrow,
2020) b) Diversity (Keswani & Celis, 2021) which computes disparity within a dataset. Unless
specified otherwise, we repeat the experiments with s = 30 batches of images from the generators,
and we use n = 400 samples in each batch. For a fair comparison, all three algorithms use the exact
same inputs. However, while Baseline and Diversity ignore inaccuracy in the attribute classifier,
CLEAM makes good use of it to rectify the error made by the classifier. We repeat each experiment
5 times and report the mean value for each test point. Additional results and analysis are in the Supp.

5.1 CLEAM FOR FAIRNESS MEASUREMENT OF GENERATORS

In this setup, we estimate the bias of SOTA GAN with CLEAM and compare with GT obtained
via manual labeling. To fairly compare the different methods, we first compute s samples of p̂, one
for each batch of n images. For Baseline, we use the mean p̂ value as the PE (denoted by µBase),
and the 95% confidence interval as IE (ρBase). With the same s samples of p̂, we apply Alg. 1 to
obtain µCLEAM and ρCLEAM. Next, for Diversity, following the original source code, a controlled
dataset with uniform sensitive attribute representation is randomly selected from a held-out dataset of
CelebA-HQ (Lee et al., 2020). Then, as per Keswani & Celis (2021), we use a VGG-16 (Simonyan
& Zisserman, 2014) as a feature extractor and compute Diversity δ. With δ we find p̂0 = (δ + 1)/2
and subsequently µDiv and ρDiv from the mean and 95% CI (see Supp C.2 for more details). Then,
we compute eµCLEAM

(p∗0) and eµDiv
(p∗0) with Eqn 1, and eρCLEAM

(p∗0) and eρDiv
(p∗0) with Eqn 2, by

replacing the Baseline estimates with CLEAM and Diversity respectively.

As discussed earlier, our results in Tab. 1, show that the baseline experiences significantly large
errors i.e. 4.98% ≤ eµBase

≤ 17.13%, due to a lack of consideration for the classifier inaccuracies.
We note that this problem is prevalent throughout classifier architectures, even at higher capacity
classifiers e.g. ResNet-34. Diversity, a method similarly unaware of the inaccuracies of the classifier,
presents a similar issue with 9.49% ≤ eµDiversity

≤ 14.33%. On the other hand, CLEAM dramatically
reduces the error for all classifier architectures. Specifically, when compared against the Baseline,
the average error rate is reduced from more than 8.23% (with the Baseline) to less than 1.24%, in
both StyleGAN2 and StyleSwin. The interval estimate presents similar results, where in most cases
ρCLEAM is able to bound the GT value of p∗, see Supp. Tab. 9 for the results.

5.2 RE-EVALUATING BIAS MITIGATION USING CLEAM

Importance-weighting (Choi et al., 2020) is a simple and very effective method for bias mitigation in
generative models. However, its performance on fairness improvement is measured by the Baseline
which could be erroneous. In this section, we re-evaluate the performance of importance-weighting
with CLEAM, which has demonstrated to provide more accurate estimate in the previous section.

Following Choi et al. (2020), we utilize the original source code to train two BIGGANs (Brock
et al., 2019) on the CelebA dataset(Liu et al., 2015): for the first GAN, without applying any bias
mitigation (Unweighted), while the second we apply importance re-weighting (Weighted). We do
this for the originally proposed attribute Gender, and extend the experiment to BlackHair. For
fair comparison, we follow Choi et al. (2020) and similarly use a ResNet-18 with reasonably high
average accuracy of 88% and 97% for attribute BlackHair and Gender. See Supp. D for more
details on training. Our results in Tab. 2 show that the baseline measures a µBase(p

∗
0) of 0.727 and

0.680 for Unweighted and Weighted, with Gender attribute (similar to reported results in Choi et al.
(2020)). Note that µBase(p

∗
0) = 0.5 is considered as a fair generator. Meanwhile, CLEAM’s results

8
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Table 3: Comparing the point estimates of Baseline Choi et al. (2020), Diversity Keswani & Celis
(2021) and proposed CLEAM measurement frameworks in estimating different p∗ of a pseudo-
generator, based on the CelebA dataset. The p̂ is computed with a ResNet-18 classifier and the mean
error is reported using Eqn. 1. We repeat this on both Gender and BlackHair attributes.

GT BaselineChoi et al. (2020) DiversityKeswani & Celis (2021) CLEAM (Ours)
µBase(p̂0) eµ(p

∗
0)(↓) µDiv(p̂0) eµ(p

∗
0)(↓) µCLEAM(p̂0) eµ(p

∗
0)(↓)

α=[0.976,0.979], Gender

p∗0=0.9 0.880 2.22% 0.950 5.55% 0.899 0.11%
p∗0=0.8 0.783 2.10% 0.785 1.88% 0.798 0.25%
p∗0=0.7 0.691 1.29% 0.709 1.29% 0.701 0.14%
p∗0=0.6 0.592 1.33% 0.591 1.50% 0.597 0.50%
p∗0=0.5 0.501 0.20% 0.481 3.80% 0.502 0.40%

Avg Error 1.43% Avg Error 2.80% Avg Error 0.27%

α=[0.881,0.887], BlackHair

p∗0=0.9 0.803 10.77% 0.803 10.77% 0.899 0.11%
p∗0=0.8 0.723 9.63% 0.699 12.63% 0.796 0.50%
p∗0=0.7 0.654 6.57% 0.661 5.57% 0.705 0.71%
p∗0=0.6 0.575 4.17% 0.609 1.50% 0.602 0.33%
p∗0=0.5 0.500 0.0% 0.521 4.20% 0.504 0.8%

Avg Error 6.23% Avg Error 6.93% Avg Error 0.49%

show that µCLEAM(p
∗
0) > µBase(p

∗
0), implying that previous work could have underestimated the

bias of the GANs, which could lead to an erroneous evaluation of a bias mitigation technique, or
even comparing between different bias mitigation techniques. See Supp. 11 for IE results.

5.3 CLEAM FOR MEASURING THE VARYING DEGREES OF BIAS

In previous experiments, we show the performance of different methods in measuring the fairness
of generators and evaluating the bias mitigation techniques. Another interesting analysis would be
to see how these methods act in different degrees of bias, i.e. different values of p∗. A challenge of
this analysis is that we cannot control the training dynamics of the GANs to obtain an exact value of
p∗. Therefore, we introduce a new setup and instead, make use of a pseudo-generator.

In this setup, we utilize the CelebA dataset (Liu et al., 2015) to construct different modified datasets
that follow different values of p∗ w.r.t. the sensitive attribute. Then, the pseudo-generator works by
random sampling from these modified datasets. Note that the samples in the modified dataset are
unseen to the classifier. For example, for BlackHair attribute, when p∗ = {0.9, 0.1}, the modified
dataset contains 4880 BlackHair and 542 Non-BlackHair samples. For our experiment, we use
different GT values, p∗ = {p∗0, p∗1}, where p∗0 ∈ {0.9, 0.8, 0.7, 0.6, 0.5}, and p∗1 = 1− p∗0. Then, to
calculate each value of p̂ for a particular GT value of p∗, a batch of n samples is randomly drawn
from the corresponding dataset and fed into the Cu for classification. We utilize the same ResNet-18
classifiers as per Sec. 5.2, to evaluate our pseudo-generator. Results in Tab.3 for p∗0 demonstrate that
CLEAM is effective for different degrees of bias, reducing the average error of the Baseline from
1.43% to 0.27% and 6.23% to 0.49% for Gender and BlackHair attributes respectively. Note how
measurement error in Baseline and Diversity increases by increasing the bias in the data. See Supp.
C.3 and C.4 for analysis with different attributes and classifiers.

6 CONCLUSION

In this work, first, we show that existing fairness measurement framework suffers from considerable
measurement errors. To reveal this problem, as generated samples are typically unlabeled, we create
two new datasets by manually labeling the sensitive attributes of ∼9K generated images each, from
two SOTA GANs. We discover that this problem arises from ignoring classification inaccuracy.
Thus, to mitigate this problem, we propose CLEAM, a more accurate fairness measurement method
that considers classification inaccuracies using a statistical model for classifier output. The proposed
CLEAM consistently achieves improvement in fairness measurement over extensive experiments,
including real generators and controlled setups. Related work, details on the new datasets, hyperpa-
rameters, additional analysis with different sensitive attributes and classifiers, and anonymous links
to the code and dataset for both pseudo and SOTA generator experiments are in the supplementary.
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Please find the respective code and Dataset in the following anonymous Google-drive.

• Code: https://drive.google.com/drive/folders/1g0ChBXQla0wfn5MAGc2EfJq5Ek8gOCqH?
usp=sharing.

• Dataset: https://drive.google.com/drive/folders/1ENslNLyK6EEG2qj5YLZ3Qu3rFijJWEqB?
usp=sharing

A DETAILS ON MODELLING

A.1 DETAILS OF THEORETICAL MODELLING

As discussed, we model our CLEAM framework, in terms of a multinomial distribution, NC ∼
Multinormial(n,p).

C =

C0|0
C1|0
C1|1
C0|1

p =

p
∗
0α0

p∗0α
′
0

p∗1α1

p∗1α
′
1


Assumptions:

1. Classifiers are reasonably accurate. We state that, given the advancement in classifiers
architecture, and the assumption that the classifier is trained with proper training proce-
dures, it is a reasonable assumption that it achieves reasonable accuracy and hence, α0 ̸= 0
and α1 ̸= 0. Similarly, we assume that it is highly unlikely to have a perfect classifier and
as such α′

0 ̸= 0 and α′
1 ̸= 0.

2. Generators are not completely biased. Given that a generator is trained on a reliable
dataset with the availability of all classes of a given sensitive attribute, coupled with the
advancement in generator’s architecture, it is a fair assumption that the generator would
learn some representation of each class in the sensitive attribute and not be completely
biased, as such p∗0 ̸= 0 and p∗1 ̸= 0.

Given that p∗i , αi, α
′
i ̸= 0, ∀i ∈ {0, 1}, then 0 < p < 1 and is not near the boundaries of the

parameter space. Hence, we can approximate the multinormial distribution as a Gaussian, NC ∼
N (np, nM), where

M =

p
∗
0α0 0 0 0
0 p∗0α

′
0 0 0

0 0 p∗1α1 0
0 0 0 p∗1α

′
1

−


(p∗0α0)

2 (p∗0)
2
α0α

′
0 p∗0p

∗
1α0α1 p∗0p

∗
1α0α

′
1

(p∗0)
2α0α

′
0 (p∗0α

′
0)

2 p∗0p
∗
1α

′
0α1 p∗0p

∗
1α

′
0α

′
1

p∗0p
∗
1α0α1 p∗0p

∗
1α

′
0α1 (p∗1α1)

2 (p∗1)
2α1α

′
1

p∗0p
∗
1α0α

′
1 p∗0p

∗
1α

′
0α

′
1 (p∗1)

2α1α
′
1 (p∗1α

′
1)

2


With that, we solve for the marginal distribution of NC0

and NC1

NC0
= NC0|0 +NC0|1 ∼ N (µ̃C0

, σ̃2
C0

)

µ̃C0
= n(p∗0α0 + p∗1α

′
1)

σ̃2
C0

= n(p∗0α0 − (p∗0α0)
2) + n(p∗1α

′
1 − (p∗1α

′
1)

2) + 2np∗0p
∗
1α0α

′
1

NC1
= NC1|0 +NC1|1 ∼ N (µ̃C1

, σ̃2
C1

)

µ̃C1 = n(p∗0α
′
0 + p∗1α1)

σ̃2
C1

= n(p∗0α
′
0 − (p∗0α

′
0)

2) + n(p∗1α1 − (p∗1α1)
2) + 2np∗0p

∗
1α

′
0α1

We then normalise NCi
, to get p̂i = 1

nNCi
, i ∈ {0, 1}

p̂0 ∼ N (µ̃p̂0
, σ̃2

p̂0
)

µ̃p̂0
= p∗0α0 + p∗1α

′
1

σ̃2
p̂0

=
1

n
(p∗0α0 − (p∗0α0)

2) +
1

n
(p∗1α

′
1 − (p∗1α

′
1)

2) +
2

n
p∗0p

∗
1α0α

′
1
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p̂1 ∼ N (µp̂1
, σ2

p̂1
)

µ̃p̂1
= (p∗0α

′
0 + p∗1α1)

σ̃2
p̂1

=
1

n
(p∗0α

′
0 − (p∗0α

′
0)

2) +
1

n
(p∗1α1 − (p∗1α1)

2) +
2

n
p∗0p

∗
1α

′
0α1

A.2 ADDITIONAL DETAILS ON CLEAM ALGORITHM

In the following, we show that the maximum likelihood estimate (MLE) of the population mean for
a Gaussian distribution, is it’s sample mean:

∂

∂µ̃p̂0

s∏
i=1

ln(
1

σ̃p̂0

√
2π

e

−(p̂i0−µ̃p̂0
)2

2σ̃2
p̂0 ) = 0

1

σ̃2
p̂0

s∑
i=0

(p̂i0 − µ̃p̂0) = 0

µ̃p̂0
=

1

s

s∑
i

p̂i0 = µ̈p̂0

This proof shows that, given a Gaussian distribution with population mean µ̃p̂0 and standard devi-
ation σ̃p̂0

, we can first find the joint probability distribution from the product of each probabilistic
outcome (we introduce the natural log as a monotonic function, for ease of calculation). Then, to
find the MLE of µ̃p̂0

, we take the partial derivative of this joint distribution w.r.t. µ̃p̂0
, and solve for

its the maximum value. We find this maximum value to be equal to the sample mean, µ̈p̂0
.

From this, given that s is large, we assume that the sample mean is a good approximation for the
population mean and w equate them:

µ̈p̂0 = µ̃p̂0 = p∗0α0 + (1− p∗0)α
′
1

We then solve for the maximum likelihood point estimate of p∗, which we denoted with
µCLEAM(p

∗).

µCLEAM(p
∗
0) =

µ̈p̂0
− α′

1

α0 − α′
1

=
µ̈p̂0

− 1 + α1

α0 − 1 + α1

µCLEAM(p
∗
1) = 1− µCLEAM(p

∗
0)

However, we acknowledge that there exist other statistically probable solutions for p∗ that could
output the s p̂ samples, other than the Maximum likelihood point estimate of p∗. We thus propose
the following approximation for the 95% confidence interval of p∗. Since p̂ distribution is assumed
Gaussian, we can propose the following equation. Recall that the notations µ̈p̂0

and σ̈p̂0
are the

sample mean and standard deviation respectively.

Pr(−z δ
2
≤ µ̈p̂0 − µ̃p̂0

σ̈p̂0√
s

≤ z δ
2
) = 1− δ

, where µ̈p̂0 =
1

s

s∑
i

p̂i0 and σ̈p̂0 =

√∑s
i=1(p̂

i
0 − µ̈p̂0

)

s

Solving for µ̃p̂, we get

Pr(−z δ
2
≤ µ̈p̂0 − µ̃p̂0

σ̈p̂0√
s

≤ z δ
2
) = 1− δ

Pr(µ̈p̂0
+ z δ

2
(
σ̈p̂0√
s
) ≥ µ̃p̂0

≥ µ̈p̂0
− zα

2

σ̈p̂0√
s
) = 1− δ

Then, given that µ̃p̂ = p∗0α0 + p∗1α
′
1 = p∗0(α0 − α′

1) + α′
1 we formulate the following:

Pr(
µ̈p̂0

+ z δ
2
(
σ̈p̂0√

s
)− α′

1

α0 − α′
1

≥ p∗0 ≥
µ̈p̂0

− zα
2

σ̈p̂0√
s
− α′

1

α0 − α′
1

) = 1− δ (12)

As such when δ = 0.05, we can determine that the 95% approximated confidence interval of p∗0 is :

ρCLEAM(p
∗
0) = [L(p∗0),U(p∗0)] = [

µ̈p̂0 − 1.96(
σ̈p̂0√

s
)− α′

1

α0 − α′
1

,
µ̈p̂0 + 1.96

σ̈p̂0√
s
− α′

1

α0 − α′
1

]

13
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A.3 DETAILS ON FAIRNESS METRIC

Fairness in generative models is defined as Equal Representation meaning that the generator is sup-
posed to generate an equal number of samples for each element of an attribute, e.g., an equal number
of generated Male and Female samples when the sensitive attribute is Gender. Therefore, the ex-
pected distribution for a fair generator is usually a uniform distribution denoted by p̄. Considering
this, the fairness discrepancy (FD) metric (Choi et al., 2020) measures the L2 norm between p̄ and
the estimated class probability of the generator by the sensitive attribute classifier Cu, as follows:

f = |p̄− Ez∼pz(z)[Cu(G(z))]|2 (13)

where Cu(G(z)) is the one-hot vector for the classified label of the generated sample, G(z). z
is sampled from a Gaussian noise distribution pz(z). Note that for a fair generator the fairness
discrepancy f would be zero, which also indicates zero bias.

14
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B VALIDATING STATISTICAL MODEL FOR CLASSIFIER OUTPUT

B.1 VALIDATION OF SAMPLE-BASED ESTIMATE VS MODEL-BASED ESTIMATE

As described in the main paper, we utilise the sample-based estimate, µ̈p̂0
, σ̈2

p̂0
as an approximate

for the model-based estimate µ̃p̂0 , σ̃2
p̂0

. As discussed in Sec. A.2, µ̈p̂0 allows us to find the maximum
likelihood approximate of p∗ and σ̈2

p̂0
allows us to ease computation.

To validate this approximation, we use a batch-size s = 30 and sample size n = 400 in each
batch to generate s different p̂ values from the pseudo-generators (Sec. 5.3 of the main paper) , with
different GT p∗. Then we calculate the sample-based estimates as given in Eqn. 7, 8 of the main
paper. As the GT p∗ is known, we also calculate the model-based estimates as given in Eqn. 5, 6
and compare it against the sample-based estimates.

Our results in Tab. 4 shows that both the sample and theoretical means and standard deviations are
close approximate to one another. Thus, we can utilise the sample statistics as a close approximation
in our proposed method, CLEAM.

Additional results for different values of batch-sizes (s) and sample-sizes (n) are tabulated in Tab.
5, 6 and 7. Notice that a reduction in s and n values contributed to increased errors between the
sample-based and model-based estimates. While making s very large (s = 200), results in the
sample based estimate almost a perfectly approximating the model based estimates.

Table 4: Comparing sample-based estimates (µ̈p̂0
, σ̈p̂0

) against model-based estimates (µ̃p̂0
,

σ̃p̂0
). The results show that sample-based estimates are close to model-based estimates. Further-

more, note the discrepancy between p∗0 and µ̈p̂0
, and that between p∗0 and µ̃p̂0

, highlighting the issue
of using p̂0 directly to estimate p∗0 and the need to compensate for classifier error as we discussed.

GT Sampled-based estimates Model-based estimates

µ̈p̂0

√
σ̈2
p̂0

µ̃p̂0

√
σ̃2
p̂0

Gender, α=[0.976,0.979]

p∗0 = 0.9 0.881 0.0101 0.881 0.0106
p∗0 = 0.8 0.781 0.0133 0.785 0.0135
p∗0 = 0.7 0.692 0.0149 0.690 0.0152
p∗0 = 0.6 0.590 0.0165 0.594 0.0162
p∗0 = 0.5 0.503 0.0164 0.499 0.0164

α=[0.881,0.887], Black-Hair

p∗0 = 0.9 0.802 0.0130 0.804 0.0139
p∗0 = 0.8 0.723 0.0151 0.727 0.0162
p∗0 = 0.7 0.653 0.0169 0.650 0.0177
p∗0 = 0.6 0.580 0.0180 0.574 0.0186
p∗0 = 0.5 0.502 0.0180 0.497 0.0189

Table 5: We repeat the same experiment as Tab.4 with s = 20 and n = 400 samples.

GT Sampled-based estimates Model-based estimates

µ̈p̂0

√
σ̈2
p̂0

µ̃p̂0

√
σ̃2
p̂0

Gender, α=[0.976,0.979]

p∗0 = 0.9 0.855 0.0201 0.881 0.0106
p∗0 = 0.8 0.774 0.0211 0.785 0.0135
p∗0 = 0.7 0.672 0.0219 0.690 0.0152
p∗0 = 0.6 0.580 0.0181 0.594 0.0162
p∗0 = 0.5 0.510 0.0230 0.499 0.0164

α=[0.881,0.887], Black-Hair

p∗0 = 0.9 0.768 0.180 0.804 0.0139
p∗0 = 0.8 0.712 0.210 0.727 0.0162
p∗0 = 0.7 0.658 0.190 0.650 0.0177
p∗0 = 0.6 0.554 0.230 0.574 0.0186
p∗0 = 0.5 0.508 0.242 0.497 0.0189
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Table 6: We repeat the same experiment as per Tab.4 with s = 30 and n = 200 samples.

GT Sampled-based estimates Model-based estimates

µ̈p̂0

√
σ̈2
p̂0

µ̃p̂0

√
σ̃2
p̂0

Gender, α=[0.976,0.979]

p∗0 = 0.9 0.860 0.0232 0.881 0.0149
p∗0 = 0.8 0.780 0.0286 0.785 0.0191
p∗0 = 0.7 0.710 0.0294 0.690 0.0215
p∗0 = 0.6 0.578 0.0380 0.594 0.0228
p∗0 = 0.5 0.520 0.0321 0.499 0.0233

α=[0.881,0.887], Black-Hair

p∗0 = 0.9 0.742 0.0312 0.804 0.0197
p∗0 = 0.8 0.740 0.0332 0.727 0.0229
p∗0 = 0.7 0.610 0.0291 0.650 0.0250
p∗0 = 0.6 0.582 0.350 0.574 0.0262
p∗0 = 0.5 0.542 0.388 0.497 0.0267

Table 7: We repeat the same experiment as per Tab.4 with s = 200 and n = 400 samples.

GT Sampled-based estimates Model-based estimates

µ̈p̂0

√
σ̈2
p̂0

µ̃p̂0

√
σ̃2
p̂0

Gender, α=[0.976,0.979]

p∗0 = 0.9 0.881 0.0104 0.881 0.0106
p∗0 = 0.8 0.784 0.0133 0.785 0.0135
p∗0 = 0.7 0.690 0.0153 0.690 0.0152
p∗0 = 0.6 0.594 0.0160 0.594 0.0162
p∗0 = 0.5 0.500 0.0164 0.499 0.0164

α=[0.881,0.887], Black-Hair

p∗0 = 0.9 0.804 0.0137 0.804 0.0139
p∗0 = 0.8 0.726 0.0160 0.727 0.0162
p∗0 = 0.7 0.650 0.0179 0.650 0.0177
p∗0 = 0.6 0.573 0.0185 0.574 0.0186
p∗0 = 0.5 0.498 0.0191 0.497 0.0189

B.2 GOODNESS-OF-FIT TEST: p̂ FROM THE REAL GANS WITH OUR THEORETICAL MODEL

Table 8: Validating theoretical model on GAN: KS-test on s = 30 and δ = 0.05 with Dcrit =
0.24. As seen from the table, since η < Dcrit, all of the generated samples by GANs are statistically
similar to the respective Gaussian at a 95% confidence of the K-S test.

Model Type Sensitive Attribute η

StyleGAN2 Gender 0.1048
StyleSwin Gender 0.1509

StyleGAN2 Blackhair 0.1065
StyleSwin Blackhair 0.1079

In order to make sure that our proposed theoretical model in Eqn. 5 and Eqn. 6 of the main paper, is
also a good representation of the p̂ distribution when using a real GAN as generator, here we perform
a goodness of fit test between proposed model for distribution of p̂, and sample data generated by
a GAN. To do this, we first obtain s = 30 values of p̂ from framework shown in Fig. 1 of the
main paper, and use StyleGANv2 and StyleSwin as the generative model. Then using the known
classifier’s α and GAN’s GT p∗, as discussed in Sec. 3.1 of the main paper, we form the theoretical
models Gaussian distribution, N (µ̃p̂0 , σ̃

2
p̂0
).

Now with both our model distribution and the GAN samples, we utilise the Kolmogorov-Smirnov
goodness of fit test (K-S test) to determine if the samples distribution is statistically similar to the
proposed Gaussian model. We thus propose the following hypothesis test for the samples p̂ij , i ∈
{1, · · · , s}:
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H0 : the samples p̂ij belong to the modelled distribution.

H1 : at least one of the samples p̂ij does not match the modelled distribution.

The K-S test then measures a D-statistic (η) and compares it against a Dcrit for a given s. As we use
s = 30, and a significance level δ = 0.05 in our setup, we have Dcrit = 0.24. As seen from Tab.
8, all of the measured η values are below Dcrit, thus we cannot reject the null hypothesis at a 95%
confidence with the K-S test. Therefore, we conclude that the distribution of the obtained samples
from the framework (by GANs as generator) are statistically similar to the proposed Gaussian dis-
tribution. As a result, we can utilise CLEAM to approximate the p∗ range in the presence of a real
GAN as the generator.

We further perform a Quantile-Quantile(QQ) analysis to provide a more visual representation. In
particular, we plot the Quantile-Quantile(QQ) plot between the p̂ samples (produced for the data
generated by the GAN) and proposed model. As seen in Fig. 3, the p̂ samples from GAN correlate
tightly with the standardised line (in red), a line indicating a perfect correlation between theoretical
and sample quantiles. This analysis supports our claim that the p̂ samples from a real generator
(GAN) follow the distribution estimated by the proposed model.

(a) StyleGAN2, Gender. (b) StyleSwin2, Gender

(c) StyleGAN2, Blackhair (d) StyleSwin, BlackHair

Figure 3: Quartile-Quartile(QQ) plot between s = 30 p̂ samples calculated for StyleGAN2 (Karras
et al., 2019) and StyleSwin (Zhang et al., 2021) generators and proposed theoretical model for p̂
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 FAIRNESS MEASUREMENT RESULTS WITH INTERVAL ESTIMATE OF CLEAM

This section contains the interval estimates (IE) results for the experimental in Sec. 5. As discussed
in the main manuscript, the point estimate can still contain some approximation error, as a result
we suggest that in addition to the PE, the IE should be reported. Our results show that in our
experiments where the GT p∗ is known CLEAM’s IE, in most cases, demonstrates being able to to
bound the p∗. Additionally, when analyzing bias mitigation techniques (as per Tab. 11), since the
IE of unweighted and weighted GANs do not overlap, we are provided some statistical grantees that
the bias mitigation techniques is indeed effective.

Table 9: Comparing interval values of Baseline (Choi et al., 2020), Diversity (Keswani & Celis,
2021) and our proposed CLEAM measurement framework in evaluating the p∗ of datasets sampled
from (A) StyleGAN2 (Karras et al., 2019) and (B) StyleSwim (Zhang et al., 2021). We utilize four
different classifier Resnet-18/34 (He et al., 2016), MobileNetv2 (Sandler et al., 2018) and VGG-
16 (Simonyan & Zisserman, 2014) to classify the SA, Gender and Blackhair, and measure their
distribution. We then compared the measured values against the GT p∗ of the datasets and reported
the mean errors with Eqn. 2.

(A) StyleGAN2
Classifier GT Baseline(Choi et al., 2020) Diversity(Keswani & Celis, 2021) (Ours) CLEAM

ρBase(p
∗
0) eρ(p

∗
0)(↓) ρDiv(p

∗
0) eρ(p

∗
0)(↓) ρCLEAM(p

∗
0) eρ(p

∗
0)(↓)

Gender

ResNet-18
p∗0 = 0.642

[0.602, 0.618] 6.1% −.− −.−% [0.629, 0.646] 1.9%
ResNet-34 [0.589, 0.599] 8.1% −.− −.−% [0.628, 0.638] 2.2%

MobileNetv2 [0.602, 0.612] 6.2% −.− −.−% [0.632, 0.643] 1.6%
VGG-16 [0.526, 0.538] 18.0% [0.536 , 0.564] 16.5% [0.628, 0.644] 2.2%

Avg Error 9.6% Avg Error 16.5% Avg Error 2.0%

Blackhair

ResNet-18
p∗0 = 0.643

[0.591, 0.607] 8.0% −.− −.−% [0.631, 0.652] 2.1%
ResNet-34 [0.561, 0.572] 12.7% −.− −.−% [0.637, 0.651] 1.4%

MobileNetv2 [0.574, 0.584] 10.7% −.− −.−% [0.632, 0.647] 1.7%
VGG-16 [0.597, 0.608] 5.9% [0.568, 0.596] 11.7% [0.632, 0.648] 1.9%

Avg Error 9.3% Avg Error 11.7% Avg Error 1.8%

(B) StyleSwin
Gender

ResNet-18
p∗0 = 0.656

[0.612, 0.629] 6.9% −.− −.−% [0.639, 0.658] 2.7%
ResNet-34 [0.605, 0.615] 8.0% −.− −.−% [0.643, 0.654] 2.0%

MobileNetv2 [0.618, 0.629] 5.9% −.− −.−% [0.649, 0.661] 1.3%
VGG-16 [0.549, 0.560] 16.3% [0.548, 0.576] 16.4% [0.660, 0.675] 2.7%

Avg Error 9.3% Avg Error 16.4% Avg Error 2.2%

Blackhair

ResNet-18
p∗0 = 0.668

[0.605, 0.620] 9.5% −.− −.−% [0.649, 0.670] 2.9%
ResNet-34 [0.576, 0.586] 11.8% −.− −.−% [0.656, 0.669] 1.9%

MobileNetv2 [0.591, 0.600] 12.7% −.− −.−% [0.652, 0.666] 2.4%
VGG-16 [0.620, 630] 7.7% [0.590, 0.626] 11.7% [0.670, 0.684] 2.4%

Avg Error 10.4% Avg Error 11.7% Avg Error 2.4%

18



Under review as a conference paper at ICLR 2023

Table 10: Comparing the interval estimates of Baseline Choi et al. (2020), Diversity Keswani &
Celis (2021) and proposed CLEAM measurement frameworks in measuring different p∗ of a pseudo-
generator, based on the CelebA dataset. The p̂ is assess with a ResNet-18 classifier and the mean
error is reported using Eqn. 1. We repeat this on both Gender and BlackHair attributes.

(A) Pseudo-Generator
GT Baseline(Choi et al., 2020) Diversity(Keswani & Celis, 2021) (Ours) CLEAM

ρBase(p
∗
0) eρ(p

∗
0)(↓) ρDiv(p

∗
0) eρ(p

∗
0)(↓) ρCLEAM(p

∗
0) eρ(p

∗
0)(↓)

α=[0.976,0.979], Gender

p∗0 = 0.9 [0.876, 0.884] 2.7% [0.913, 0.986] 9.6% [0.895, 0.904] 0.5%
p∗0 = 0.8 [0.778, 0.788] 2.8% [0.762, 0.809] 4.8% [0.794, 0.803] 0.8%
p∗0 = 0.7 [0.687, 0.695] 1.9% [0.696, 0.722] 3.1% [0.697, 0.707] 0.1%
p∗0 = 0.6 [0.586, 0.598] 2.3% [0.581, 0.612] 3.3% [0.591,0.603] 1.5%
p∗0 = 0.5 [0.495, 0.507] 1.0% [0.473, 0.490] 5.5% [0.497, 0.508] 1.6%

Avg Error 2.1% Avg Error 5.26% Avg Error 0.90%

α=[0.881,0.887], BlackHair

p∗0 = 0.9 [0.800, 0.806] 11.0% [0.791, 0.815] 12.1% [0.893, 0.905] 0.8%
p∗0 = 0.8 [0.719, 0.727] 10.1% [0.686, 0.713] 14.2% [0.790, 0.803] 1.3%
p∗0 = 0.7 [0.648, 0.660] 7.4% [0.643, 0.68] 8.2% [0.698, 0.712] 1.6%
p∗0 = 0.6 [0.564, 0.586] 5.8% [0.604, 0.614] 2.3% [0.599, 0.606] 1.0%
p∗0 = 0.5 [0.495, 0.505] 1.0% [0.506, 0.536] 7.2% [0.497, 0.511] 1.9%

Avg Error 7.06% Avg Error 8.8% Avg Error 1.32%

Table 11: Re-evaluating the interval estimates of previously proposed bias mitigation method,
importance-weighting (imp-weighting) (Choi et al., 2020) with CLEAM. To do this, we first eval-
uate the bias of a BIGGAN (Brock et al., 2019) with and without implementing imp-weighting i.e.
unweighted and weighted, with the Baseline. Then, we apply CLEAM to obtain a more accurate
measurements, which we use to compare against the Baseline. We do this for both Gender and
BlackHair attributes.

(A) Pseudo-Generator
GT Baseline(Choi et al., 2020) Diversity(Keswani & Celis, 2021) (Ours) CLEAM

ρBase(p
∗
0) eρ(p

∗
0)(↓) ρDiv(p

∗
0) eρ(p

∗
0)(↓) ρCLEAM(p

∗
0) eρ(p

∗
0)(↓)

(B) Importance Re-weighting (Choi et al., 2020) GAN
α=[0.976,0.979], Gender

Unweighted [0.721, 0.732] - [0.697, 0.722] - [0.733, 0.744] -
Weighted [0.674, 0.685] - [0.658, 0.684] - [0.686, 0.693] -

α=[0.881,0.887], BlackHair

Unweighted [0.725, 0.733] - [0.704, 0.729] - [0.798, 0.809] -
Weighted [0.710, 0.722] - [0.696, 0.716] - [0.778, 0.792] -
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C.2 EXPERIMENTAL SETUP FOR DIVERSITY(KESWANI & CELIS, 2021)

In this section, we describe our experimental setup for Diversity (Keswani & Celis, 2021), as utilised
in the main paper. Recall that in Keswani & Celis (2021) a VGG-16 (Simonyan & Zisserman, 2014)
model pre-trained on ImageNet (Deng et al., 2009) is utilised as a feature extractor. Then, this feature
extractor is applied on both the unknown (generator’s data) and the controlled dataset. Finally, the
unknown sample’s features are compared against the controlled one’s via a similarity algorithm to
compute diversity, δ.

From our initial results, on the pseudo-generator’s setup in Fig. 4a , we recognise that the original
implementation with VGG-16 trained on ImageNet works well on the Gender attribute. To demon-
strate this, we compare our measured proxy diversity score against the GT diversity score shown in
Eqn. 14, as per Keswani & Celis (2021).

GT Diversity = p∗0 − p∗1 (14)

However, when evaluating the harder BlackHair attribute, we observed significant error between
the GT Diversity scores and the proxy Diversity scores. This error was especially prevalent in the
larger biases e.g. p∗0 = 0.9. We theorised that, this was due to the differences between the domains of
the feature extractor and the generated/controlled images i.e. ImageNet versus CelebA/CelebA-HQ.

To verify this, we retrained the VGG-16 model on the CelebA dataset with the respective sensitive
attribute. Then we removed the last fully connected layer of the classifier model, and utilise the
4096 feature vector for the diversity measurement, as per Keswani & Celis (2021). From our results
in Fig. 4b, we see significant improvement in our implementation on both Gender and BlackHair.

However, we recognise certain limitations still exist in the Diversity measure when used on more
ambiguous and harder attributes e.g. Young and Attractive, even though the re-trained classifier
measured an accuracy of 78.44% and 84.41% for Young and Attractive, respectively. Regardless,
given the improvement seen on the BlackHair attribute, we utilized our improved VGG-16 feature
extractor in the main paper, in place of the erroneous pre-trained VGG-16 (ImageNet) .
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(a) VGG-16 trained on ImageNet
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(b) VGG-16 trained on CelebA

Figure 4: Improvement in Diversity by fine-tuning the VGG-16, as a feature extractor: (a)
Diversity implementation by Keswani & Celis (2021) with VGG-16 pre-trained on ImageNet as the
feature extractor testing on the pseudo-generator’s with p∗ = {0.9, 0.8, 0.7, 0.6, 0.5} for sensitive
attribute Gender(Left) and BlackHair(Right). (b) We re-implemented VGG-16 and retrained with
CelebA as the feature extractor. We observed significant improvement in predicting the GT p∗
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(a) VGG-16(CelebA) on Attractive
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(b) VGG-16(CelebA) on Young

Figure 5: Limitations Of Diversity algorithm. Our implementation of VGG-16 trained on CelebA
on sensitive attribute Attractive and Young. VGG-16 Classifier achieved an accuracy of 78.44%
and 84.1% for sensitive attribute Attractive and Young. However, the same VGG-16 performs
poorly on the diversity metric, demonstrating the limitations of the diversity framework.
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C.3 MEASURING VARYING DEGREES OF BIAS WITH ADDITIONAL SENSITIVE ATTRIBUTES

In Sec. 5.3 of the main paper, we demonstrate CLEAM’s ability to improve accuracy in approximat-
ing p∗ for the sensitive attribute, Gender and BlackHair. In this section, we extend the experiment
on harder (lower α) sensitive attributes i.e. Young, and Attractive. We further demonstrate that
the Baseline is also sensitive to skewα = (α1 − α0).

In this setup, we repeat the same experiment with the pseudo-generator, but instead on the Young
and Attractive attributes from the CelebA dataset. Given that both sensitive attribute classifiers
trained on either Young or Attractive have similar average accuracy, αAvg = α0+α1

2 of 0.801 and
0.794 but different skewα of 0.103 and 0.027, we are able to investigate the effects of skewα on
both CLEAM and Baseline. We did not include Diversity in this study, due to its poor performance
on harder sensitive attribute, as discussed in C.2.

From our results in Tab.5, we observe that as the skewα increases from sensitive attribute
Attractive to Young, the error becomes much more significant in the baseline method. The aver-
age Baseline eµ increases from 12.3% to 17.6%. On the other hand, CLEAM’s eµ remains below
1%, further emphasising CLEAM’s effectiveness. Similar observation can be made for the interval
estimates in Tab.13.

Furthermore, we observe that skewα has influence on the errors observed in the lower biases e.g.
p∗ = [0.5, 0.5]. Unlike Gender and Blackhair, who have relatively negligible skew, Young and
Attractive observes a significantly larger error on p∗ = [0.5, 0.5]. We attribute this difference
in performance at p∗0 = 0.5 due to Gender and Blackhair setups having a specific combination
of (i) Generator producing almost perfectly unbias data with p∗ = [0.5, 0.5] (ii) sensitive attribute
classifier with almost perfectly uniform inaccuracies α′ = 1−α i.e. skewα ≈ 0, thereby leading to
uniform misclassification and giving rise to the false impression of better accuracy by the baseline
method, at p∗ = [0.5, 0.5].

Table 12: Comparing point estimate values of Baseline (Choi et al., 2020), and proposed CLEAM
measurement framework on (A) pseudo-generator with sensitive attribute {Young,Attractive}.

Pseudo-Generator
Test Baseline(Choi et al., 2020) (Ours) CLEAM

µBase(p
∗
0) eµ(p

∗
0) µCLEAM(p

∗
0) eµ(p

∗
0)

α=[0.749,0.852], Young

p∗0 = 0.9 0.690 23.3% 0.905 0.5%
p∗0 = 0.8 0.630 21.2% 0.804 0.5%
p∗0 = 0.7 0.570 18.6% 0.698 0.2%
p∗0 = 0.6 0.510 15.0% 0.595 0.8%
p∗0 = 0.5 0.450 10.0% 0.506 1.2%

Avg Error 17.6% Avg Error 0.64%

α=[0.780,0.807], Attractive

p∗0 = 0.9 0.730 18.8% 0.908 0.9%
p∗0 = 0.8 0.670 16.3% 0.804 0.5%
p∗0 = 0.7 0.60 14.3% 0.696 0.6%
p∗0 = 0.6 0.54 10.0% 0.592 1.3%
p∗0 = 0.5 0.480 4.0% 0.493 1.4%

Avg Error 12.3% Avg Error 0.94%
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Table 13: Comparing interval estimate values of Baseline (Choi et al., 2020) and proposed CLEAM
measurement framework on (A) pseudo-generator with sensitive attribute {Young,Attractive}.

Pseudo-Generator
Test Baseline(Choi et al., 2020) (Ours) CLEAM

ρBase(p
∗
0) eρ(p

∗
0) ρCLEAM(p

∗
0) eρ(p

∗
0)

α=[0.749,0.852], Young

p∗0 = 0.9 [0.684, 0.695] 24.0% [0.890, 0.920] 2.2%
p∗0 = 0.8 [0.625, 0.635] 21.9% [0.790, 0.810] 1.3%
p∗0 = 0.7 [0.565, 0.575] 19.2% [0.690, 0.710] 1.4%
p∗0 = 0.6 [0.505, 0.515] 15.8% [0.590, 0.600] 1.6%
p∗0 = 0.5 [0.445, 0.455] 11.0% [0.490, 0.500] 2.0%

Avg Error 18.38% Avg Error 1.7%

α=[0.780,0.807], Attractive

p∗0 = 0.9 [0.724, 0.736] 19.5% [0.900, 0.920] 2.2%
p∗0 = 0.8 [0.665, 0.675] 16.9% [0.790, 0.810] 1.3%
p∗0 = 0.7 [0.594, 0.606] 15.1% [0.690, 0.710] 1.4%
p∗0 = 0.6 [0.534, 0.546] 11.0% [0.580, 0.600] 3.3%
p∗0 = 0.5 [0.475, 0.485] 5.0% [0.490, 0.540] 2.0%

Avg Error 13.5% Avg Error 2.0%

C.4 MEASURING VARYING DEGREES OF BIAS WITH ADDITIONAL ATTRIBUTE CLASSIFIER

In this section, we validate CLEAM’s versatility with different classifier architecture. In our setup,
we utilise MobileNetV2 (Sandler et al., 2018) as in Frankel & Vendrow (2020). Then similar to
Sec. 5.3 of the main paper, we utilize a pseudo-Generator with known GT p∗ for the Gender and
BlackHair attribute, to evaluate CLEAMs effectiveness at determining bias.

As seen in our results in Tab. 14,15, MobileNetV2 demonstrates similar results, on the Baseline
and CLEAM, to ResNet-18 model in the main paper. In these results, we observed a significantly
large eµ for the baseline of 1.4% and 9.4% for the Gender and BlackHair attributes, respectively.
Whereas, CLEAM reported an eµ of 0.8% and 0.3%. The same can be observed in eρ. We thus
demonstrates CLEAM’s versatility and ability to be deployed as a post-processing method (without
retraining), on models of varying architecture.

Table 14: Comparing point estimate values of Baseline (Choi et al., 2020), Diversity (Keswani &
Celis, 2021) and proposed CLEAM measurement framework on (A) pseudo-generator with sensitive
attribute {Gender,BlackHair} and MobileNetV2(Sandler et al., 2018).

(A) Pseudo-Generator
Test Baseline(Choi et al., 2020) Diversity(Keswani & Celis, 2021) (Ours) CLEAM

µBase(p
∗
0) eµ(p

∗
0) µDiv(p

∗
0) eµ(p

∗
0) µCLEAM(p

∗
0) eµ(p

∗
0)

α=[0.980,0.986], Gender

p∗0 = 0.9 0.882 2.0 0.950 5.6% 0.899 0.1%
p∗0 = 0.8 0.786 1.7% 0.785 1.9% 0.800 0.0%
p∗0 = 0.7 0.689 1.6% 0.709 1.2% 0.699 0.1%
p∗0 = 0.6 0.593 1.2% 0.591 1.5% 0.600 0.0%
p∗0 = 0.5 0.497 0.4% 0.481 3.8% 0.502 0.3%

Avg Error 1.4% Avg Error 2.8% Avg Error 0.8%

α=[0.861,0.916], BlackHair

p∗0 = 0.9 0.782 13.0% 0.803 10.7% 0.899 0.1%
p∗0 = 0.8 0.705 11.8% 0.699 12.6% 0.800 0.0%
p∗0 = 0.7 0.623 10.3% 0.661 5.5% 0.700 0.0%
p∗0 = 0.6 0.550 8.3% 0.609 1.5% 0.600 0.0%
p∗0 = 0.5 0.478 3.8% 0.521 4.2% 0.506 1.2%

Avg Error 9.4% Avg Error 6.9% Avg Error 0.3%
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Table 15: Comparing Interval estimate values of Baseline (Choi et al., 2020), Diversity (Keswani &
Celis, 2021) and proposed CLEAM measurement framework on (A) pseudo-generator with sensitive
attribute {Gender,BlackHair} and MobileNetV2(Sandler et al., 2018)

(A) Pseudo-Generator
Test Baseline(Choi et al., 2020) Diversity(Keswani & Celis, 2021) (Ours) CLEAM

ρBase(p
∗
0) eρ(p

∗
0) ρDiv(p

∗
0) eρ(p

∗
0) ρCLEAM(p

∗
0) eρ(p

∗
0)

α=[0.980,0.986], Gender

p∗0 = 0.9 [0.879, 0.885] 2.3% [0.913, 0.986] 9.6% [0.995, 0.902] 0.5%
p∗0 = 0.8 [0.782, 0.790] 2.3% [0.762, 0.809] 4.8% [0.794, 0.804] 0.6%
p∗0 = 0.7 [0.685, 0.693] 2.1% [0.696, 0.722] 3.1% [0.694, 0.704] 0.8%
p∗0 = 0.6 [0.585, 0.597] 2.5% [0.581, 0.612] 3.3% [594, 0.605] 1.0%
p∗0 = 0.5 [0.491, 0.502] 1.8% [0.473, 0.490] 5.5% [495, 0.507] 1.1%

Avg Error 2.2% Avg Error 5.3% Avg Error 0.8%

α=[0.861,0.916], BlackHair

p∗0 = 0.9 [0.777, 0.787] 13.6% [0.791, 0.815] 12.1% [0.893, 0.900] 0.7%
p∗0 = 0.8 [0.699, 0.710] 12.6% [0.686, 0.713] 14.2% [0.793, 0.807] 0.9%
p∗0 = 0.7 [0.618, 0.628] 11.7% [0.643, 0.68] 8.2% [0.694, 0.706] 0.9%
p∗0 = 0.6 [0.544, 0.556] 9.3% [0.604, 0.614] 2.3% [0.593, 0.608] 1.3%
p∗0 = 0.5 [0.472, 0.484] 5.6% [0.506, 0.536] 7.2% [0.498, 0.514] 2.4%

Avg Error 10.6% Avg Error 8.8% Avg Error 1.2%
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D DETAILS OF HYPER-PARAMETER SETTINGS

Attribute Classifier Cu. In our experiments, we utilized a Resnet-18/34 (He et al., 2016), Mo-
bileNetv2 (Sandler et al., 2018) and VGG-16. The respective datasets i.e. CelebA dataset (Liu
et al., 2015) and CelebA-HQ dataset (Lee et al., 2020) are then segment into {Train,Test,Validate}
with respect to the ratio {80%,10%,10%}, where each segmentation of the dataset contains uniform
distribution w.r.t. the queried sensitive attribute. The classifiers are then trained with the training
datasets and the α are evaluated with the validation dataset. Each classifier is trained with an Adam
optimiser(Kingma & Ba, 2017) with a learning rate=1e−3, Batch size=64 and input dim=64x64
from the CelebA dataset (Liu et al., 2015) and dim=128x128 from the CelebA-HQ dataset (Lee
et al., 2020).

Generator Gϕ. As mentioned in the main paper, we utilised Choi et al. (2020) setup1 for the
training of our imp-weighted and unweighted GANs. With this, we replicate their hyperparameter
selection of 64 x 64 celebA (Liu et al., 2015) images with a learning rate=2e−4, β1 = 0, β2 = 0.99
and four discriminator steps per generator step. We utilise a single RTX3090 for the training of our
models.

Batch Size s. In our experiments, where we generated n = 400 samples with our pseudo-
generator setup for s batches, followed by applying CLEAM to approximate p∗, we found that
the batch size s = 30 to be suitable to approximate the known GT p∗. Increasing s did not lead
to noticeable improvement in the error. However, from our results in Tab. 17 and 18, decreasing
s or n did result in some degradation in both the Baseline and CLEAM. In particular, we attribute
this increase in error to two reasons. Firstly, the deviation between the statistical estimate and the
model estimate, as discussed in Sec. B.1. Secondly, the poorer estimate of µbase, which then in turn
influences µCLEAM.

Computational Time. In our main paper, we note that CLEAM is a lightweight correction to the
existing baseline method, that requires no additional parameter to be computed during evaluation.
To support this, we evaluated the computational time for the Baseline, Diversity and our proposed
CLEAM. Our results in Tab. 16 shows that there is only a small difference in computational time
(3-4s) between the Baseline and our proposed CLEAM. This difference is solely to facilitate the
computation of Algo. 1.

Table 16: Computation time for estimating p∗ with hyper-parameters s=30 and n=400 for the Base-
line Choi et al. (2020), Diversity Keswani & Celis (2021) and our proposed CLEAM. For hardware,
we utilize a single RTX3090 and reported the average computational time, in seconds, of 5 consec-
utive runs.

Baseline Choi et al. (2020) Diversity Keswani & Celis (2021) CLEAM (Ours)

Computational Time on CelebA, 64x64 , s 97 600 100
Computational Time on CelebA-HQ, 128x128, s 132 820 136

1https://github.com/ermongroup/fairgen
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Table 17: As per Tab. 1 of tha main paper, we compare the point estimates of Baseline (Choi et al.,
2020), Diversity (Keswani & Celis, 2021) and our proposed CLEAM measurement framework in
evaluating the p∗ of datasets sampled from (A) StyleGAN2 (Karras et al., 2019) and (B) StyleSwin
(Zhang et al., 2021). In this setup, each p̂ instead utilizes n = 400 samples and is evaluated for a
batch-size of s = 20. We repeat this for 5 experimental runs and report the mean error rate, per Eqn.
1.

(A) StyleGAN2
Classifier GT Baseline(Choi et al., 2020) Diversity(Keswani & Celis, 2021) CLEAM (Ours)

µBase(p̂0) eµ(p
∗
0)(↓) µDiv(p̂0) eµ(p

∗
0)(↓) µCLEAM(p̂0) eµ(p

∗
0)(↓)

Gender

ResNet-18
p∗0=0.642

0.605 5.7% — — 0.633 1.4%
ResNet-34 0.589 8.2% — — 0.628 2.2%

MobileNetv2 0.601 6.4% — — 0.631 1.7%
VGG-16 0.528 17.8% 0.547 14.8% 0.632 1.6%

Avg Error 9.5% Avg Error 14.8% Avg Error 1.7%

BlackHair

ResNet-18
p∗0=0.643

0.595 7.5% — — 0.637 0.9%
ResNet-34 0.562 12.6% — — 0.640 0.5%

MobileNetv2 0.577 10.3% — — 0.637 0.9%
VGG-16 0.600 6.7% 0.581 9.6% 0.637 0.9%

Avg Error 9.3% Avg Error 9.6% Avg Error 0.8%

(B) StyleSwin
Gender

ResNet-18
p∗0=0.656

0.617 5.9% — — 0.645 1.7%
ResNet-34 0.606 7.6% — — 0.645 1.7%

MobileNetv2 0.620 5.5% — — 0.652 0.6%
VGG-16 0.552 15.9% 0.560 14.6% 0.665 1.4%

Avg Error 8.7% Avg Error 14.6% Avg Error 1.4%

BlackHair

ResNet-18
p∗0=0.668

0.610 8.7% — — 0.657 1.6%
ResNet-34 0.577 13.6% — — 0.658 1.5%

MobileNetv2 0.594 11.1% — — 0.657 1.6%
VGG-16 0.621 7.0% 0.606 9.3% 0.672 0.6%

Avg Error 10.1% Avg Error 9.3% Avg Error 1.3%
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Table 18: As per Tab. 1 of tha main paper, we compare the point estimates of Baseline (Choi et al.,
2020), Diversity (Keswani & Celis, 2021) and our proposed CLEAM measurement framework in
evaluating the p∗ of datasets sampled from (A) StyleGAN2 (Karras et al., 2019) and (B) StyleSwin
(Zhang et al., 2021). In this setup, each p̂ instead utilizes n = 200 samples and is evaluated for a
batch-size of s = 30. We repeat this for 5 experimental runs and report the mean error rate, per Eqn.
1.

(A) StyleGAN2
Classifier GT Baseline(Choi et al., 2020) Diversity(Keswani & Celis, 2021) CLEAM (Ours)

µBase(p̂0) eµ(p
∗
0)(↓) µDiv(p̂0) eµ(p

∗
0)(↓) µCLEAM(p̂0) eµ(p

∗
0)(↓)

Gender

ResNet-18
p∗0=0.642

0.601 6.4% — — 0.629 2.0%
ResNet-34 0.590 8.1% — — 0.629 2.0%

MobileNetv2 0.601 6.4% — — 0.631 1.7%
VGG-16 0.527 18.0% 0.551 14.2% 0.631 1.7%

Avg Error 9.7% Avg Error 14.2% Avg Error 1.9%

BlackHair

ResNet-18
p∗0=0.643

0.598 7.0% — — 0.640 0.5%
ResNet-34 0.560 12.9% — — 0.640 0.5%

MobileNetv2 0.572 11.0% — — 0.632 1.7%
VGG-16 0.605 6.0% 0.580 9.8% 0.642 1.6%

Avg Error 9.2% Avg Error 9.8% Avg Error 0.8%

(B) StyleSwin
Gender

ResNet-18
p∗0=0.656

0.615 6.3% — — 0.643 2.0%
ResNet-34 0.612 6.7% — — 0.651 0.7%

MobileNetv2 0.624 4.9% — — 0.656 0.0%
VGG-16 0.551 16.0% 0.572 12.8% 0.665 1.4%

Avg Error 8.5% Avg Error 12.8% Avg Error 1.0%

BlackHair

ResNet-18
p∗0=0.668

0.608 9.0% — — 0.655 1.9%
ResNet-34 0.578 13.5% — — 0.659 1.3%

MobileNetv2 0.592 11.4% — — 0.655 1.9%
VGG-16 0.621 7.0% 0.608 9.0% 0.673 0.7%

Avg Error 10.2% Avg Error 9.0% Avg Error 1.5%
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E RELATED WORK

FAIRNESS IN GENERATIVE MODELS. Fairness in machine learning is mostly studied for dis-
criminative learning, where usually the objective is to handle a classification task independent of
a sensitive attribute in the input data, e.g. making a hiring decision independent of the applicant
Gender. However, the definition of fairness is quite different for generative learning, where it is
considered as equal representation/generation probability w.r.t. a sensitive attribute. Because of this
difference, the conventional fairness metrics used for classification, like Equalised Odds, Equalised
Opportunity (Hardt et al., 2016) and Demographic Parity (Feldman et al., 2015), cannot be applied
to generative models. Instead, the similarity between the probability distribution of the generated
sample w.r.t. a sensitive attribute (p∗) and a target distribution p̄ (a uniform distribution) (Choi et al.,
2020) is utilized as fairness metric. See Supp. A.3 for details.

EXISTING WORKS ON FAIR GENERATIVE MODELS. Existing works focus on bias mitigation
in generative models. The importance reweighting algorithm is proposed in (Choi et al., 2020)
where a re-weighting algorithm favours a reference fair dataset w.r.t. the sensitive attribute in-place
of a larger biased dataset. Frankel & Vendrow (2020) introduces the concept of prior modification,
where an additional smaller network is added to modify the prior of a GAN to achieve a fairer
output. Tan et al. (2020) learns the latent input space w.r.t. the sensitive attribute, which they can
later sample accordingly to achieve a fair output. MaGNET (Humayun et al., 2022) demonstrates
that enforcing uniformity in the latent feature space of a GAN, through a sampling process, improves
fairness. In all of these works, the focus is on improving fairness of the generative model (where the
performance of the model is measured with a framework, in which the inaccuracies in the attribute
classifier has been ignored). However, our proposed CLEAM method focuses on improving fairness
measurement, by compensating for the inaccuracies in the attribute classifier through a statistical
model. Therefore, it can be used to evaluate the bias mitigation algorithms more accurately.

EQUAL REPRESENTATION. Some literature also use a similar notion of equal representation (used
in generative models) to address fairness. In Chierichetti et al. (2017), fair clustering is proposed
by enforcing the clusters to represent each attribute equally. Celis et al. (2018) proposes fair data
summarization to mitigate the bias in creating a representative subset for a given dataset, while
handling the trade-offs between fairness and diversity during sampling. However, unlike our setup,
these works assume to have access to the attribute labels. Meanwhile, in data mining, a similar
problem was recently studied. Given a large dataset of unlabelled mined data, the objective is to
evaluate the disparity of the dataset w.r.t. an attribute. To do this, an evaluation framework called
diversity (Keswani & Celis, 2021) was introduced. To measure this, a pre-trained classifier is used
as a feature extractor. The unlabelled dataset is then compared against a controlled reference dataset
(with known labels) via a similarity algorithm.

CLASSIFIER CALIBRATION. The proposed CLEAM can be seen from a classifier calibration point
of view as it refines the output of the classifier. However, CLEAM should not be mistaken with
conventional calibration algorithms, e.g. temperature scaling (Guo et al., 2017), Platt Scaling (Platt
et al., 1999) and Isotonic regression (Nyberg & Klami, 2021). Unlike these algorithms that concern
themselves with the confidence of prediction, CLEAM focuses on sensitive attribute distribution,
thereby making these algorithms ineffective.

More specifically, conventional classifier calibration methods usually work on soft labels (probabili-
ties). Note that in our framework, the argMax is applied to the output probabilities to determine the
hard label. Therefore, in our application that deals with hard labels, regular classification techniques
are less effective. To investigate this, we conduct a few calibration experiment by applying some
popular classifier calibration techniques; temperature scaling(T-scaling) (Guo et al., 2017), Isotonic
Regression(Nyberg & Klami, 2021) and Platt Scaling(Platt et al., 1999) on a pre-trained ResNet-
18(He et al., 2016) senstive attribute classifier. In Fig. 6, we see that T-scaling is the most effective
in correcting the calibration curve to the ideal Ref line. Note that, this Ref line indicates that the
classifier is perfectly calibrated w.r.t. the soft labels.

Next, using the pseudo-generator from Sec. 5 of the main paper, we utilised the calibrated classifiers
earlier and compare them against CLEAM (which was applied on an uncalibrated model). In our
results, seen in Fig. 7, we observe that these traditional calibration methods are less effective in
correcting the sensitive attribute distribution error. In fact, methods like Platt scaling worsen the
error, and T scaling —which is shown in (Guo et al., 2017) and our experiment to be one of the
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Figure 6: Calibration Curve on ResNet-18 for Attractive attribute. We observe that the T-scaling
is the most effective technique in improving soft label calibration and Isotonic regression the worst.
However, this same trend does not follow in the hard label errors of Fig 7.
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Figure 7: Comparing Calibration Techniques: Using the pseudo-generator, we compare CLEAM
against well known calibration techniques, overall we observe that previous techniques are signifi-
cantly less effective, achieving an average error of; T-Scaling: 12.4%, Isotonic Regression: 10.1%,
Platt Calibration: 14.5% and uncalibrated (baseline): 12.4% against CLEAM: 2.0%

most effective traditional calibration methods— does not change class predictions (hard labels), but
merely perturb the soft labels. This demonstrates that traditional calibration technique are not direct
correlation to hard label calibration, which CLEAM aims to address.
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F DETAILS OF THE NEW DATASET: LABELED GAN IMAGES

In this section, we provide more information on our new dataset, containing labeled samples from
StyleGAN22 (Karras et al., 2019) and StyleSwin 3 (Zhang et al., 2021) trained on CelebA-HQ (Lee
et al., 2020). More specifically, our dataset contains ≈9k randomly generated samples based on
the original saved weights and codes of the respective GANs. These samples are then hand labeled
w.r.t. the sensitive attribute Gender and Blackhair, which is perceived to be consistent with human
perception. Then with these labeled datasets, we can approximate the ground truth sensitive attribute
distribution, p∗, of the respective GANs.

DATASET LABELING PROTOCOL. To ensure high-quality samples and labels in our dataset, we
passed out the dataset through Amazon Mechanical Turk, where labelers were given detailed guide-
lines and examples in identifying the individual sensitive attributes. In addition to the sensitive
attribute option e.g. Gender(Male) or Gender(Female), labelers were also given an “unidentifi-
able” option which they were instructed to select for low quality samples, as per Fig, 8. We repeated
this process for 3 runs s.t. each sample had the opinions of three independent labelers. Finally,
each sample was assigned the label that the majority had selected, this for example includes male,
female, or unidentifiable, for the attribute Gender. We discard the samples that had been labeled
unidentifiable and were left with a high-quality dataset as per Fig. 9 and 10.

(a) StyleGAN2 (b) StyleSwin

Figure 8: Examples of rejected samples during hand-labeling

2https://github.com/NVlabs/stylegan2-ada-pytorch
3https://github.com/microsoft/StyleSwin
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(a) Gender (Female) Samples (b) Gender (Male) Samples

Figure 9: Examples of samples w.r.t. Gender attribute

(a) no-BlackHair Samples (b) BlackHair Samples

Figure 10: Examples of samples w.r.t. BlackHair attribute
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