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ABSTRACT

Most knowledge distillation (KD) methodologies predominantly focus on teacher-
student pairs with similar architectures, such as both being convolutional neural
networks (CNNs). However, the potential and flexibility of KD can be greatly
improved by expanding it to novel Cross-Architecture KD (CAKD), where the
knowledge of homogeneous and heterogeneous teachers can be transferred flex-
ibly to a given student. The primary challenge in CAKD lies in the substantial
feature gaps between heterogeneous models, originating from the distinction of
their inherent inductive biases and module functions. To this end, we introduce an
assistant model as a bridge to facilitate smooth feature knowledge transfer between
heterogeneous teachers and students. More importantly, within our proposed de-
sign principle, the assistant model combines the advantages of cross-architecture
inductive biases and module functions by merging convolution and attention mod-
ules derived from both student and teacher module functions. Furthermore, we
observe that heterogeneous features exhibit diverse spatial distributions in CAKD,
hindering the effectiveness of conventional pixel-wise mean squared error (MSE)
loss. Therefore, we leverage a spatial-agnostic InfoNCE loss to align features
after spatial smoothing, thereby improving the feature alignments in CAKD. Our
proposed method is evaluated across some homogeneous model pairs and arbitrary
heterogeneous combinations of CNNs, ViTs, and MLPs, achieving state-of-the-art
performance for distilled models with a maximum gain of 11.47% on CIFAR-100
and 3.67% on ImageNet-1K. Our code and models will be released.

1 INTRODUCTION

Knowledge Distillation (KD) (Hinton et al., 2015; Romero et al., 2015) has been demonstrated as
a powerful method to transfer knowledge from a pre-trained and cumbersome teacher model to a
compact and efficient student model. Compared to the model trained from scratch, the performance
of the student model distilled by appropriate teachers usually improves significantly. Commonly,
knowledge transferred is derived from either the output logits (logits-based KD (Sun et al., 2024))
or the intermediate features (feature-based KD (Romero et al., 2015)) of the teacher model. There-
fore, it is intuitive to understand different teachers have different knowledge (logits or features)
determined by their unique architectures (Liu et al., 2021a).

Most existing KD approaches focus on similar-architecture distillation (Romero et al., 2015; Tian
et al., 2020; Liu et al., 2023) (called SAKD), i.e., optional teachers are restricted to a limited scope
with structures similar to the student model. However, this homogeneous distillation presents two
principal limitations: (1) Limited Potential: Compared to the broader range of arbitrary teachers
(including homogeneous and heterogeneous ones), the restricted scope of teachers in SAKD may
fail to include the optimal knowledge necessary to enhance the performance of certain students.
For instance, as OFA (Hao et al., 2023) demonstrated, distilling knowledge from a heterogeneous
ViT-Base to ResNet50 yields superior student performance compared to using a ResNet152 as the
homogeneous teacher. (2) Limited Flexibility: The emergence of new models (Liu et al., 2022;
Tolstikhin et al., 2021) or the scarcity of perfectly tuned homogeneous teachers in domain-specific
tasks (Ronneberger et al., 2015; Li et al., 2024) poses significant challenges in obtaining suitable
homogeneous teachers, thereby impeding the applicability of SAKD. Thus, this paper expands KD
to cross-architecture KD (CAKD), investigating methods to distill knowledge from both homoge-
neous and heterogeneous teachers to students (Hao et al., 2023). By broadening the pool of optional
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Figure 1: Chanllenges. In heterogeneous distillation, different models have different features in
different stages caused by different inductive biases and module functions.

teachers, CAKD improves the potential and flexibility of single-teacher (Hinton et al., 2015) and
multi-teacher (Liu et al., 2021a; Cao et al., 2023) KD compared to existing SAKD.

In CAKD, the main challenge is that heterogeneous teachers and students have significant repre-
sentation gaps as detailed in feature analyses based on CKA alignment in OFA (Hao et al., 2023).
These gaps stem from inherent differences in (1) inductive biases (Raghu et al., 2021) and (2) mod-
ule functions (Liu et al., 2023). (1) Inductive biases: As depicted in Fig. 3 (a), convolutional-
neural networks-based models (CNNs) (He et al., 2016; Sandler et al., 2018) exhibit hard induc-
tive biases, specifically locality and translation-equivariance. Consequently, CNN-generated fea-
tures are derived from local pixels within local receptive fields in Fig. 1 (a,b). In contrast, as
shown in Fig. 3(b,c), multi-head-self-attention-based models (MSAs) (Dosovitskiy et al., 2021)
and multilayer-perception-based models (MLPs) (Tolstikhin et al., 2021) have soft inductive bi-
ases (Bachmann et al., 2024; Park & Kim, 2021; Raghu et al., 2021), i.e., patchify and long-distance
dependency. Hence, as shown in Fig. 1(c,d) and Appendix C, features of most MSA/MLP models
are generated by exchanging globally the information of all patches (Raghu et al., 2021). (2) Mod-
ule functions: Varied module functions generate different features at different stages. For instance,
features of shallow and deep layers in ViT have higher similarity than hierarchical CNN (Park &
Kim, 2021; Raghu et al., 2021) in Fig. 1(a,c). Therefore, heterogeneous T.-S. pairs in CAKD ex-
hibit significantly different inductive biases and module functions compared to SAKD, leading to
substantial representation gaps that impede effective feature transfer. While OFA (Hao et al., 2023)
attempts to address heterogeneous feature gaps by projecting features into the logit spaces, it is
suboptimal due to substantial damage to feature-specific knowledge. This dilemma leads to a nat-
ural question: Can we get the best use of different inductive biases and module functions, thereby
reducing heterogeneous representation gaps and making feature transfer promising in CAKD?

To alleviate heterogeneous feature gaps in CAKD, we introduce a Teacher-Assistant-Student dis-
tillation paradigm (T.-A.-S.1, called TAS) by incorporating a hybrid assistant model as a bridge to
facilitate smoother knowledge transfer. More importantly, our assistant model adheres to a novel de-
sign principle: “the assistant model should be composed of merging CNN and MSA/MLP modules
derived from teacher and student models”.

Our design is well-motivated by the following popular beliefs: (1) Why use a hybrid model as our
assistant, not a pure CNN/MSA/MLP model? As demonstrated in (Park & Kim, 2021; Li et al.,
2023a;b), CNNs and MSAs/MLPs are complementary. A hybrid model that uses CNNs in the early
stages and MSAs/MLPs in the later stages can benefit from both local and global inductive biases.
Compared to existing KD like Fig. 2 (a-e), our proposed hybrid assistant model in Fig. 2 (f) projects
heterogeneous features to a common space by merging CNN and MSA/MLP modules, thereby re-
ducing distillation gaps attributed to inductive biases. (2) Why is our assistant model composed of
student and teacher modules, not an externally introduced hybrid model (Li et al., 2023b)? As
demonstrated in (Liu et al., 2023; Chen et al., 2021; 2022b), the disparity between heterogeneous
features is also from module functions, i.e., how the models will read, decode, and process the input
features. Unlike an externally introduced model, a hybrid assistant model comprising student and
teacher modules not only optimizes the functional similarity (Liu et al., 2023) between heteroge-
neous T.-S. pairs, but also introduces minimal additional learnable parameters in Appendix G. (3)
How do we align heterogeneous features spatially? Widely used mean square error loss (MSE)
aligns the features pixel-by-pixel, which is suitable for features that have similar spatial distribution,

1In this paper, teacher, assistant, and student model are shortened by T., A. and S..
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KD FitNet CRD FCFD OFA Ours(Hinton et al., 2015) (Romero et al., 2015) (Tian et al., 2020) (Liu et al., 2023) (Hao et al., 2023)
Knowledge to Distill Logits Feature Feature Feature Logits Feature

Generic Yes No Yes No Yes Yes
Scheme T.-S. T.-S. T.-S. T.-S. T.-S. T.-A.-S.

Combining Heterogeneous Inductive Bias No No No No No Yes
Heterogeneous Module Merging No No No Yes No Yes

Training Cost Very Low Middle High High Middle Low
Loss Function LKL LKL + LMSE LInfoNCE LKL + LMSE LOFA LOFA + LInfoNCE

Figure 2: The taxonomy of our method. Our methods are feature-based, generic, and three-level,
combining heterogeneous inductive biases and module functions with an efficient assistant. Target-
wise LOFA and spatial-agnostic LInfoNCE are more suitable for CAKD than LKL and LMSE. To the
best of our knowledge, our TAS is the first feature-based generic distillation for arbitrary T.-S. pairs.

e.g., features of ResNet18 vs. ResNet50 in Fig. 1(a-b). However, it is inadequate for spatially di-
verse features of heterogeneous models, e.g., (a) and (c) in Fig. 1 show distinct completely spatial
distributions at any stages. To address this, we first apply average pooling to smooth the spatial
information of features and utilize a spatial-agnostic contrastive loss (InfoNCE (He et al., 2020;
Chen et al., 2020; Tian et al., 2020)) to align heterogeneous feature embeddings.

In view of the above analysis, the taxonomy of our methods in KD is illustrated in Fig. 2. Our
TAS falls under the category of feature-based methods for generic distilltion with a hybrid-assistant
scheme. In our experiments, the proposed TAS greatly enhances the performance of student models
in both CAKD and SAKD, achieving a maximum gain of 11.47% on the CIFAR100 and 3.67% on
the ImageNet-1K, while maintaining a lower training cost compared to the SOTA (Hao et al., 2023).

2 RELEATED WORK

2.1 TAXONOMY OF OUR METHODS

As shown in Fig. 2, the majority of existing KD methodologies concentrate on homogeneous distil-
lation by using a single projector (e.g., single linear layer) to align the output logits (Hinton et al.,
2015; Huang et al., 2022; Sun et al., 2024), intermediate features (Romero et al., 2015; Chen et al.,
2021; Liu et al., 2023), feature embeddings (Tian et al., 2020), and module functions (Liu et al.,
2023) of T.-S. pairs, thanks to the highly-similar features between homogeneous T.-S. pairs. How-
ever, they fall short in addressing the complexities of heterogeneous distillation, where the distinct
features between heterogeneous T.-S. pairs pose significant challenges. Although OFA Hao et al.
(2023) achieves consistent improvements for arbitrary T.-S. pairs, it does so at the expense of sacri-
ficing feature information to logits. In this paper, our method dives into the nature of heterogeneous
feature gaps (i.e., caused by inductive bias and module functions) and introduces a hybrid assistant
to facilitate smoother feature transfer between heterogeneous T.-S. pairs.

Additionally, several other works are pertinent to our method: (1) We note that some methods at-
tempt to distill the knowledge between CNNs and MSAs (Zhao et al., 2023), but they are tailored
to specific T.-S. pairs rendering them impractical for our arbitrary T.-S. CAKD. (2) Certain methods
apply progressive distillation to transfer the knowledge via a middle model (Mirzadeh et al., 2020;
Cao et al., 2023; Liu et al., 2021a), but they are progressive training strategies that are not train-
ing algorithms designed for transferring knowledge between heterogeneous T.-S. pairs. (3) Lastly,
while some logits-based methods can be easily applied to CAKD (Hinton et al., 2015; Sun et al.,
2024; Hao et al., 2023), they are suboptimal because they overlook the significance of feature-based
knowledge (Romero et al., 2015). Conversly, our method (1) is easily applied arbitrary T.-S. pairs
with two important design principles, (2) employs three-level joint optimization algorithms, and (3)
utilizes a generic feature-based method for both homogeneous and heterogeneous distillation.

In this paper, our method focuses on feature-based CAKD with a three-level distilling paradigm.
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Figure 3: Different inductive biases and module functions. (a) CNN models (He et al., 2016) gen-
erate features with locality and translation-equivariance. (b) The features are generated by pacifying
and global attention schemes in MSA models (Dosovitskiy et al., 2021). (c) Token- and channel-
mixing MLP exchange feature information of global patches in MLP models.

2.2 HYBRID MODEL

As illustrated in Fig. 3, different models exhibit different inductive biases and module functions.
(Raghu et al., 2021) investigates the internal representation structures of ViT and CNN models,
revealing significant differences between their heterogeneous features. (Park & Kim, 2021) further
provides some fundamental explanations for this phenomenon. Specifically, CNNs are data-agnostic
and channel-specific high-pass filters, while MSAs are data-specific and channel-agnostic low-pass
filters. Therefore, researchers (Park & Kim, 2021) think CNNs and MSAs are complementary,
which inspires them to design a hybrid model following the rules of “alternately replacing CNN
blocks with MSA blocks from the end of a baseline CNN model”. The hybrid model outperforms
CNNs in both large and small data regimes (Park & Kim, 2021). Furthermore, the architecture of
MLP models (Tolstikhin et al., 2021) is notably similar to ViTs not CNNs, so ConvMLP (Li et al.,
2023a) also achieves advanced performance in basic visual tasks by the co-design of CNNs and
MLPs. In a nutshell, hybrid CNN-MSA/MLP models improve performance and efficiency through
the combination of different inductive biases and module functions.

Inspired by the design of the hybrid model, we mitigate the heterogeneous feature gaps by introduc-
ing a hybrid assistant model between cross-architecture T.-S. pairs.

3 METHOD

3.1 PRELIMINARIES

Existing KD methods perform well in homogeneous distillation, but they may fail in heteroge-
neous teachers and students. The primary reasons stem from fundamentally distinct feature and
logit spaces, caused by different inductive biases and module functions of heterogeneous models.

Inductive Bias and module functions. Inductive bias refers to the set of assumptions that a model
uses to make predictions on unseen data (Ren et al., 2022). Module functions describe how a model
reads, encodes, decodes, and processes the data (Liu et al., 2023). As shown in Fig. 3, heteroge-
neous models exhibit different inductive biases and module functions. (1) CNN models (He et al.,
2016) slide a set of learnable local kernels across the pixel-level image, focusing on local receptive
fields. The weight-sharing kernels are applied across the entire image, providing the network with
translation-equivariance to recognize an object regardless of location. (2) MSA models (Dosovit-
skiy et al., 2021) split the input image into patches, which are then projected into Query, Key, and
Value. The attention modules calculate the scores between the Query and Key to generate attention
maps, which are then used to weight the corresponding Value. This process, capturing long-distance
dependency, allows the model to consider the global information from all patches. (3) MLP mod-
els (Touvron et al., 2022) also begin by dividing the input image into patches. It then mixes global
information along all patches’ spatial and channel dimensions. In a nutshell, different inductive
biases and module functions determine different distribution of generated features.
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Figure 4: Overall. Our TAS applies CAKD by introducing a hybrid assistant model, which gen-
erates features by merging the first three stages of CNNs, a projector L2G, and the last stage of
MSAs/MLPs, thereby aligning cross-architecture inductive biases and module functions. Due to the
spatial gaps among heterogeneous features, we transfer knowledge of spatial-smoothed features and
logits with T.-A.-S. scheme. All models are split into four stages following OFA (Hao et al., 2023).

3.2 THREE-LEVEL DISTILLATION PARADIGM

As shown in (a-e) of Fig. 2, existing methods usually apply a two-level paradigm in SAKD (Hinton
et al., 2015; Romero et al., 2015; Liu et al., 2023), i.e., T.-S. scheme, to transfer directly the knowl-
edge of teachers to students. Besides, some works apply progressive training strategy (Mirzadeh
et al., 2020; Liu et al., 2021a) to transfer multi-teacher knowledge to a single student model in
SAKD, but they are also a two-level paradigm for each T.-S. distillation. Despite these two-level
paradigms being better suited for SAKD, transferring knowledge directly without any transition
mechanism is challenging for our CAKD due to the spatial diversity of features in Fig. 1.

In the human learning process, the role of teaching assistants greatly reduces the information gaps
between teachers and students. Motivated by this, as illustrated in Fig. 4, this paper introduces
an assistant model as a middle bridge, where the knowledge is transferred by training a teacher-
assistant-student scheme (TAS) as follows:

L = LTAS(Kt,Ks) + LTAS(Kt,Ka) + LTAS(Ka,Ks), (1)

where LTAS is our loss (details in Eq. (3)). Kt, Ka, and Ks denote the knowledge of the teacher,
assistant, and student model respectively.

Assistant Model. Our assistant model connects the CNN modules and MSA/MLP modules derived
from the students and teachers with a local-to-global (L2G) feature projector as shown in Fig. 4.
Formulary, our assistant model can be described as follows:

pa(x) = fcm ◦ S4m ◦ (MSA ◦ PE) ◦ S3c ◦ S2c ◦ S1c(x), (2)

where x is the input image, Sic denotes CNN models, Sim denotes MSAs/MLPs, and fcm denotes the
fully-connected layers of MSAs/MLPs. To connect CNN and MSA/MLP modules, we propose an
L2G module that includes a patch embedding (Dosovitskiy et al., 2021) to convert the features into
the required dimensions of subsequent MSA/MLP modules. Besides, to capture the long-distance
dependency, our L2G also includes an MSA block to project the local features from CNN models to
global receptive fields. For simplicity, the MSA module is a Swin block (Liu et al., 2021b) in this
paper (more discussions in supplementary materials). Note that the L2G is the only extra learnable
module in our assistant model.

The following considerations drive the design of our assistant model: (1) Inductive biases of CNNs
and MSAs/MLPs are complementary and hybrid CNN-MSA/MLP models demonstrate good per-
formance (Raghu et al., 2021; Park & Kim, 2021; Li et al., 2023a). Therefore, we replace the CNN
blocks at the end of a baseline CNN model with MSA/MLP blocks as our assistant model which
can benefit from both the local features in the early stages and the global information exchanges in
the last stages. For example, final feature appearances of the assistant model are converted from the
local CNN features to global receptive fields in Fig. 5. (2) Different models have different mod-
ule functions, which can be aligned implictly by connecting different module functions in a single
pipeline (Liu et al., 2023). Therefore, we form our assistant model by using CNN/MSA/MLP mod-
ules derived from students and teachers. As shown in Fig. 4, our assistant model is mainly composed
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of weight-sharing modules S1→3
c and S4m, which not only unifies different module functions but also

introduces negligible additional learnable parameters. Besides, weight-sharing modules also ensure
the middle performance of our assistant model in Tab. 6. (3) While alternately using CNN and MSA
modules can improve the performance of the hybrid assistant model (Park & Kim, 2021), we only
add one stage of MSA/MLP models following the first three stages of CNN models as illustrated in
Eq. (2) for simplicity (details discussed in Sec. 4.4).

Loss Function. As shown in Fig. 4, we only transfer the final features after average pooling and
the logits for the following reasons. (1) Due to the weight-sharing between our assistant model
and T.-S., it combines actually different inductive biases only in the final features, not early and
middle features. (2) As shown in Fig. 5 and Fig. 1, the final features of different models are also
very different in spatial, so we smooth them by average pooling to mitigate the spatial gaps between
different features. The knowledge in Eq. (1) is formulated by Ki = {fi, pi}, i = t, a, s, where fi
and pi denote the final features embeddings after average pooling and the output logits.

In this paper, we use spatial-agnostic InfoNCE loss LInfoNCE (He et al., 2020; Tian et al., 2020)
and OFA loss LOFA to supervise the transfer of features and logits respectively, motivated by the
following observations. (1) Wildly used MSE loss computes the pixel-wise metrics that are suit-
able for features having similar spatial information, but it will fail when the features are very spa-
tially different (e.g., FitNet with MSE loss gets only 24.06% top-1 accuracy when the teacher is
ConvNeXt-T and the student is Swin-P in CIFAR100 Tab. 1). Consequently, we use a contrastive
loss InfoNCE (He et al., 2020; Tian et al., 2020) to transfer the structural information of feature em-
beddings (Tian et al., 2020), which captures complex interdependencies of features without spatial
information. (2) As demonstrated in (Hao et al., 2023), the different inductive bias leads models to
variant logit spaces. For example, local CNN models are more suitable for small objects, but global
MSA/MLP models are more suitable for large objects. Therefore, LOFA enhances the information
of the target class by adding a modulating parameter γ to the original KD loss, which prevents the
student learning from being disturbed by irrelevant information of the teacher. In a nutshell, our
LTAS is suitable for any representation distillation (e.g., the superior consistently performance in
Tab. 2, Tab. 1, and Tab. 3):

LTAS(Kt,Ks) =


LOFA(pt, ps) = (1 + pĉt)

γ log(
pĉt
pĉs

) +

C∑
i=1,i̸=ĉ

pct log(
pct
pcs

),

LInfoNCE(ft, fs) = −log
exp(fs · f+

t /τ2)∑Ft

i=0 exp(fs · f i
t/τ2)

(3)

For each T.-S. pair, we transfer knowledge by LTAS(Kt,Ks) = LInfoNCE(ft, fs) + LOFA(pt, ps).
Firstly, for LOFA, the ĉ and c denote the target class and predicted class of the input image. C is
the all classes in the dataset. LOFA add a modulating parameter γ to enhance the target information
when the teacher is not confident about the prediction. When γ = 1, LOFA is equal to LKD with
temperate τ = 1. Secondly, for LInfoNCE, fs denotes an encoded student features by average
pooling, and Ft is a set of encoded teacher features in a mini-batch. In Ft, only one positive sample
f+
t matches to fs, i.e., the student’s and teacher’s feature from the same image is a positive pair.

The InfoNCE loss is low when the features of student fs and teacher f+
t are from the same image

and high when they are from different images. This loss has been widely demonstrated for aligning
different feature representations (He et al., 2020; Tian et al., 2020).The temperature parameter τ2 is
learnable (Radford et al., 2021). Lastly, the entire loss is L = LTAS(Kt,Ks) + LTAS(Kt,Ka) +
LTAS(Ka,Ks), where the formulas of LTAS(Kt,Ka) and LTAS(Ka,Ks) is like LTAS(Kt,Ks).

4 EXPERIMENTS

4.1 IMPLEMENTARY DETAILS

Models. For a fair comparison, we evaluate our TAS using the same teacher-student pairs em-
ployed in OFA(Hao et al., 2023), including homogeneous distillation and heterogeneous combina-
tions of CNNs, MSAs, and MLPs. Specifically, CNN models include ResNet (He et al., 2016),
MobileNetv2 (Sandler et al., 2018), and ConvNeXt (Liu et al., 2022). MSA models cover ViT,
DeiT (Dosovitskiy et al., 2021; Touvron et al., 2021), and Swin (Liu et al., 2021b), while MLP
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Table 1: Top-1 accuracy (%) on CIFAR100. All baseline results are from the paper or code of
OFA (Hao et al., 2023). Swin-P is a modified version of Swin-T(Liu et al., 2021b) from OFA (Hao
et al., 2023). Bold denotes the best results and the second-best results are underlined.

Teacher Student From Scratch feature-based logits-based CAKD
Teacher Student FitNet CC RKD CRD KD DKD DIST OFA TAS

CNN-based students
Swin-T ResNet18 89.26 74.01 78.87 74.19 74.11 77.63 78.74 80.26 77.75 80.54 81.61
ViT-S ResNet18 92.04 74.01 77.71 74.26 73.72 76.60 77.26 78.10 76.49 80.15 81.93

Mixer-B/16 ResNet18 87.29 74.01 77.15 74.26 73.75 76.42 77.79 78.67 76.36 79.39 81.90
Swin-T MobileNetV2 89.26 73.68 74.28 71.19 69.00 79.80 74.68 71.07 72.89 80.98 81.28
ViT-S MobileNetV2 92.04 73.68 73.54 70.67 68.46 78.14 72.77 69.80 72.54 78.45 82.10

Mixer-B/16 MobileNetV2 87.29 73.68 73.78 70.73 68.95 78.15 73.33 70.20 73.26 78.78 80.83
MSA-based students
ConvNeXt-T DeiT-T 88.41 68.00 60.78 68.01 69.79 65.94 72.99 74.60 73.55 75.76 79.57
Mixer-B/16 DeiT-T 87.29 68.00 71.05 68.13 69.89 65.35 71.36 73.44 71.67 73.90 74.40

ConvNeXt-T Swin-P 88.41 72.63 24.06 72.63 71.73 67.09 76.44 76.8 76.41 78.32 80.73
Mixer-B/16 Swin-P 87.29 72.63 75.2 73.32 70.82 67.03 75.93 76.39 75.85 76.65 78.44

MLP-based students
ConvNeXt-t ResMLP-S12 88.41 66.56 45.47 67.70 65.82 63.35 72.25 73.22 71.93 75.21 78.03

Swin-T ResMLP-S12 89.26 66.56 63.12 68.37 64.66 61.72 71.89 72.82 11.05 73.58 77.20
Average Improvements −5.21 −0.33 −1.39 −0.02 +3.12 +3.16 −2.31 +6.19 +8.38

models consist of MLP-Mixer (Tolstikhin et al., 2021) and ResMLP (Touvron et al., 2022). We
averagely divide the models into 4 stages following OFA (Hao et al., 2023).

Datasets. We use the CIFAR100 (Krizhevsky et al., 2009) and ImageNet-1K dataset (Deng et al.,
2009) for evaluation. CIFAR100 consists of 50K training samples and 10K testing samples in a
resolution of 32×32, while the ImageNet-1K dataset contains 1.2 million training samples and 50K
validation samples with a resolution of 224×224. Since MSAs and MLPs accept image patches as
input, we upsample the images in CIFAR100 to the resolution of 224×224 (Hao et al., 2023).

Baselines. In line with OFA (Hao et al., 2023), we choose several powerful KD methods as our
baselines for comparison. Specifically, the feature-based methods include FitNet (Romero et al.,
2015), CC (Peng et al., 2019), RKD (Park et al., 2019), and CRD (Tian et al., 2020), while the logits-
based methods comprise KD (Hinton et al., 2015), DKD (Zhao et al., 2022), and DIST (Huang et al.,
2022). Originally, these methods were designed for SAKD, and thus OFA made some modifications
to effectively apply them to CAKD scenarios.

Training Protocols. Following the OFA Hao et al. (2023), we utilize SGD optimizer for CNN-based
students and AdamW optimizer for MSA- and MLP-based students. All models are trained for 300
epochs in the CIFAR100 dataset. As for the ImageNet-1K dataset, CNNs and MSA/MLP models
are trained for 100 epochs and 300 epochs respectively. More details about training schedules and
hyperparameters are in Appendix A.

4.2 MAIN RESULTS

Given extensive cross-architecture teacher-student model pairs, our TAS consistently achieves the
best or most competitive performance on the CIFAR100 (+8.38% on average Top-1 accuracy)
dataset and the ImageNet-1K dataset (+2.31% on average Top-1 accuracy).

Results on CIFAR100. To evaluate the performance in enough cross-architecture situations, as
shown in Tab. 1, we conduct extensive experiments in 12 combinations of heterogeneous T.-S. mod-
els. We have the following important observations in this small-scale dataset.

Firstly, the feature-based methods exhibit inferior performance on most occasions, e.g., they have
negative performance on average improvements, especially when facing the MSA/MLP student
models. The reason is that, as discussed in Sec. 3.1, the features of cross-architecture models are
distinct as the different inductive bias and module functions, in which a naive feature projector
struggles to address this dilemma in the case of small-scale datasets.

Secondly, FitNet (Romero et al., 2015) shows very poor performance when the teacher is ConvNeXt-
T and the student is Swin-P, while the other feature-based and logits-based methods obtain relatively
normal performance. We believe that this limitation of FitNet stems from its use of the MSE loss
to align intermediate features of the student and teacher models in a pixel-wise manner, while other
methods solely transfer knowledge from the final high-level feature embeddings or logits. In other
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Table 2: Top-1 accuracy (%) on ImageNet-1K. All baseline results are from the paper or code of
OFA (Hao et al., 2023). Swin-N is a modified version of Swin-T(Liu et al., 2021b) from OFA (Hao
et al., 2023). Bold denotes the best results, and the second-best results are underlined.

Teacher Student From Scratch feature-based logits-based CAKD
Teacher Student FitNet CC RKD CRD KD DKD DIST OFA TAS

CNN-based models
DeiT-T ResNet18 72.17 69.75 70.44 69.77 69.47 69.25 70.22 69.39 70.64 71.01 71.22
Swin-T ResNet18 81.38 69.75 71.18 70.07 68.89 69.09 71.14 71.10 70.91 71.76 72.21

Mixer-B/16 ResNet18 76.62 69.75 70.78 70.05 69.46 68.4 70.89 69.89 70.66 71.38 71.44
DeiT-T MobileNetV2 72.17 68.87 70.95 70.69 69.72 69.6 70.87 70.14 71.08 71.39 71.78
Swin-T MobileNetV2 81.38 68.87 71.75 70.69 67.52 69.58 72.05 71.71 71.76 72.32 72.54

Mixer-B/16 MobileNetV2 76.62 68.87 71.59 70.79 69.86 68.89 71.92 70.93 71.74 72.12 72.31
MSA-based Models

ResNet50 DeiT-T 80.38 72.17 75.84 72.56 72.06 68.53 75.10 75.6 75.13 75.73 75.64
ConvNeXt-T DeiT-T 82.05 72.17 70.45 73.12 71.47 69.18 74.00 73.95 74.07 74.41 75.26
Mixer-B/16 DeiT-T 76.62 72.17 74.38 72.82 72.24 68.23 74.16 72.82 74.22 74.46 75.00
ResNet50 Swin-N 82.05 75.53 76.83 76.05 75.90 73.90 77.58 76.24 77.29 77.76 77.79

ConvNeXt-T Swin-N 82.05 75.53 74.81 75.79 75.48 74.15 77.15 77.00 77.25 77.5 77.73
Mixer-B/16 Swin-N 76.62 75.53 76.17 75.81 75.52 73.38 76.26 75.03 76.54 76.63 76.87

MLP-based models
ConvNeXt-T ResMLP-S12 82.05 76.65 74.69 75.79 75.28 73.57 76.87 77.23 77.24 77.26 77.33

Swin-T ResMLP-S12 81.38 76.65 76.48 76.15 75.1 73.4 76.67 76.99 77.25 77.31 77.42
Average Improvements +1.00 +0.56 −0.30 −1.65 +1.61 +1.05 +1.65 +2.05 +2.31

Table 3: Results in SAKD on ImageNet-1K. The teacher and student are ResNet34 and ResNet18
in (a) and are ResNet50 and MobileNet in (b). As shown, our TAS method is still competitive in
similar-architecture distillation.

T. S. AT OFD CRD Review DKD DIST FCFD OFA Ours
(a) 73.31 70.66 70.69 70.81 71.17 71.61 71.70 72.07 72.24 72.10 72.29
(b) 76.61 68.58 69.56 71.25 71.37 72.56 72.05 73.24 73.37 73.28 73.45

words, applying pixel-wise MSE loss may not be suitable for spatially diverse feature maps of
student and teacher models, as illustrated in Fig. 1 and Appendix E. Therefore, it is more suitable to
transfer final features after smoothing spatial information, the same as our loss function in Eq. (3).

Lastly, OFA (Hao et al., 2023) yields significant and consistent improvements under all settings.
However, these improvements come at the expense of structural feature information (Tian et al.,
2020). For instance, as shown in Fig. 1(e), original feature dimensions exhibit complex interde-
pendencies that would be damaged after projecting the features to logit spaces where each class is
more independent (Tian et al., 2020). In contrast, our framework bridges the cross-architecture rep-
resentation gaps via a hybrid assistant model and contrastive learning applied to spatial-smoothed
features. Leveraging the two designs, our TAS achieves the best results in all T.-S. pairs in CAKD,
obtaining an average gain of about 2.06% compared to the recent SOTA method OFA (Hao et al.,
2023) on CIFAR100.

Results on ImageNet-1K. We also conduct extensive experiments on 14 combinations of cross-
architecture T.-S. models on the large-scale ImageNet-1K dataset. Here, we observe that feature-
based methods perform well when handling MSA/MLP students, for instance, utilizing Fit-
Net (Romero et al., 2015) when the teacher model is ResNet50 and the student model is DeiT-T.
This is opposite to our observations on CIFAR100. We argue that this discrepancy arises due to
the data-hungry nature of MLP/MSA models and additional linear feature projectors (Park & Kim,
2021), which are better suited for training on large-scale datasets. Even so, traditional feature-based
methods still have negative impacts in some other situations, e.g., FitNet yields 70.45% (-1.72%)
when the teacher is ConvNeXt-T and the student is DeiT-T. In a nutshell, even in training with
large-scale data, simple feature projectors are not sufficient to transfer the features of students into
arbitrary cross-architecture teacher spaces.

In this paper, besides the feature projectors L2G, our assistant model also includes modules derived
from students and frozen teachers. In other words, our assistant model achieves a more important
task, i.e., aligning the knowledge of student functions to match the frozen teacher functions. There-
fore, our TAS leverages more information and constraints than linear feature projectors in existing
feature-based methods, leading to superior and stable performance on extensive combinations of
cross-architecture models in the large-scale dataset. Besides, compared to leveraging four interme-
diate features of SOTA (Hao et al., 2023), our assistant achieves more competitive performance by
only leveraging the final features.
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Table 4: Ablation study. We evaluate the ablation studies by removing some important components
of our assistant model and loss functions.

Methods
CIFAR100 ImageNet

T. S. T. S. T. S. T. S.
Swin-T ResNet18 ConvNeXt-T Swin-P Swin-T ResNet18 ResNet50 DeiT-T

KD (Baseline) 78.74(-2.87) 76.44(-4.29) 71.14(-1.04) 75.10(-0.54)
The architecture of assistant model
(A) w/o MSA and S4m in Eq. (2) 75.95(-5.66) 77.65(-3.18) 70.86(-1.35) 74.67(-0.97)

(B) w/o S4m in Eq. (2) 77.21(-4.40) 77.84(-2.89) 71.78(-0.43) 75.14(-0.50)
Loss functions
(C) w/o LTAS(Kt,Ka) in Eq. (1) 25.57(-56.04) 50.46(-30.27) 71.34(-0.87) 74.56(-1.08)
(D) w/o LTAS(Ka,Ks) in Eq. (1) 79.01(-2.60) 79.82(-0.91) 71.46(-0.75) 74.81(-0.83)
(E) w/o LTAS(Kt,Ks) in Eq. (1) 79.26(-0.66) 80.17(-0.56) 71.45(-0.76) 73.92(-1.72)

(F) w/o LInfoNCE in Eq. (3) 79.28(-2.33) 78.89(-1.84) 71.47(-0.74) 75.21(-0.43)
(G) w/o LOFA in Eq. (3) 77.91(-3.70) 80.32(-0.41) 70.37(-1.84) 72.13(-3.51)

Ours 81.61 80.73 72.21 75.64

Results in SAKD. As shown in Tab. 3, we compare the distilled results of AT (Chen et al., 2022a),
OFD (Heo et al., 2019), CRD (Tian et al., 2020), Review (Chen et al., 2021), DKD (Zhao et al.,
2022), DIST (Huang et al., 2022), FCFD (Liu et al., 2023) and OFA (Hao et al., 2023) on ImageNet-
1k dataset. Compared to the recent works in homogeneous distillation (FCFD (Liu et al., 2023))
and heterogeneous distillation (OFA (Hao et al., 2023)), our TAS has a better performance when
the teacher/student is ResNet34/ResNet18 and ResNet50/MobileNet. Therefore, our TAS is generic
for any T.-S. pairs (including both homogeneous and heterogeneous pairs). Although the distilled
performance of ResNet18 in SAKD is better than CAKD in Tab. 2, we find that CAKD still improves
the distilled student after applying SAKD (multi-teacher progressive distillation (Mirzadeh et al.,
2020), details in our Appendix D). In other words, given a student, heterogeneous teachers have
different knowledge compared to homogeneous teachers, which can further improve students.

4.3 ABLATION STUDY

The architecture of the assistant model. In Tab. 4(A-B), we remove the module S4m in (B) and
the MSA module in (A), the performance of different teacher-student pairs drops significantly. This
demonstrates the power of combining the inductive biases by adding MSA modules following the
CNN modules and combining the module functions by adding S4m. Besides, different MSA blocks
have different functions for different T.-S. pairs (details in Appendix F), so we use the Swin block
as our MSA block in L2G for simplicity.

The components of the three-level paradigm. (1) In Tab. 4 (C), we remove the supervision from
the teacher to our assistant model, i.e., LTAS(Kt,Ka), which makes the assistant model learn no
correct knowledge from the teachers and then transfers the incorrect knowledge to the students.
So the distilled students have poor performance. (2) We remove the supervision from the assistant
model to students in Tab. 4 (D), i.e., LTAS(Ka,Ks), which is the same as the traditional T.-S. scheme.
Due to the gaps between heterogeneous students and teachers are not mitigated by our assistant
model, the final performance of students is poor too. (3) We remove the supervision from the
teacher model to students in Tab. 4 (E), i.e., LTAS(Kt,Ks). In this case, although the performance
of distilled students is good in some situations, it is not optimal compared to our TAS. This is
because the assistant model inevitably damages some knowledge from the teachers, and some easy
knowledge is more suitable to transfer by the T.-S. scheme without a middle bridge. Totally, the
novel paradigm is powerful for heterogeneous knowledge transfer in cross-architecture distillation.

Feature and Logit Loss. We remove the feature loss LInfoNCE in Tab. 4 (F) and the logit loss LOFA

in Tab. 4 (G), and different teacher-student pairs have different performance drops on CIFAR100
and ImageNet-1K. For instance, in CIFAR100, LOFA is more important when the teacher is Swin-T
and the student is ResNet18, while LInfoNCE is more important when the teacher is ConvNeXt-T
and the student is Swin-P. In other words, our LInfoNCE and LOFA are complementary for different
teacher-student pairs, so utilizing them jointly will enhance the effectiveness of various distillations.
Besides, we demonstrate that MSE loss is not suitable for any T.-S. pairs compared to our INFONCE
loss (Tian et al., 2020) in Sec. 4.2 and Appendix E.
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Table 5: Different assistants. The student is ResNet18 in CIFAR100. S1→2
c → S3→fc

m denotes the
assistant is composed of the first two stages of CNN models and the remain parts start from the third
stage of MSA models. The others are similar to this definition.

Teacher Assistant models with the same length The same CNN modules

(A): ViT-S

(B): Swin-T

S1c → S2→fc
m S1→2

c → S3→fc
m S1→4

c → Sfcm S1→3
c → S2→fc

m S1→3
c → S3→fc

m
81.5 / 80.56 82.3 / 79.28 81.15 / 79.27 81.07 / 80.18 82.14 / 78.56

The same MSA modules Ours
S1c → S4→fc

m S1→2
c → S4→fc

m S1→4
c → S4→fc

m S1→3
c → S4→fc

m
80.84 / 80.23 81.7 / 80.93 80.11 / 79.98 81.93 / 81.61

Table 6: The performance of our assistant (A.) is
between that of the teacher (T.) and student (S.).

Teacher Student From Scratch TAS
T. S. T. A. S.

Swin-T ResNet18 81.38 69.75 81.38 76.91 72.21
Mixer-B/16 MobileNetV2 76.62 68.87 76.62 73.85 72.31
Mixer-B/16 DeiT-T 76.62 72.17 76.62 76.30 75.00

ConvNeXt-T ResMLP-S12 82.05 76.65 82.05 81.20 77.33

ResNet18 Assistant Swin-T

Figure 5: The final spatial distribution of the
T., A., and S. is different. So we smooth them
for feature alignments in LInfoNCE.

4.4 DISCUSSION

Different components of the assistant model. We compare the performance when we use different
modules of students and teachers to compose our assistant model in Tab. 5. Specifically, we conduct
nine different connections between the student ResNet18 and the teacher (A) ViT-S / (B) Swin-T
on CIFAR100. As shown in Tab. 5, the best result is 82.3% when the teacher is ViT-S and the
assistant model is S1→2

c → S3→fc
m and is 81.61% when the teacher is Swin-T and the assistant

model is S1→3
c → S4→fc

m . For the hybrid assistant model, CNN modules at the beginning are feature
extractors, and MSA modules at the end are feature aggregators, which are complementary and both
play important roles (Park & Kim, 2021; Dai et al., 2021). Therefore, although different T.-S pairs
have different optimal assistants with different connections, we add an MSA/MLP stage following
three CNN stages for the assistant model for simplicity, i.e., S1→3

c → S4→fc
m , in most situations.

The performance and features of the assistant model. Firstly, as shown in Tab. 6, our assistant
model delivers superior performance compared to student models while falling short of the teacher’s
performance, thereby demonstrating its role as a bridge. Secondly, as shown in Fig. 5, the final fea-
tures of our assistant model are derived from local CNN models and converted into global receptive
fields, i.e., our assistant model combines the knowledge from different inductive biases and module
functions in final feature spaces. Lastly, the features of the student, assistant, and teacher models are
spatially different in Fig. 5, so it is reasonable to smooth them before transfering in Eq. (3).

5 CONCLUSION

Limitations and Future Works. (1) It is noteworthy that for certain specific models, such as
the extensively studied ResNet18, the performance resulting from distillation by a heterogeneous
teacher is inferior to that achieved by a homogeneous teacher. Although our current focus is on the
generalizability of various heterogeneous models, yielding significant performance improvements in
CAKD, a promising avenue for future research could involve additional prior when specific teacher-
student pairs are predefined. (2) Our TAS may disrupt heterogeneous features’ spatial alignments.
This limitation could be mitigated by aligning extra spatial-level distributions (rather than pixel-
level). (3) We have validated our methodology on widely used CV baselines and datasets. While our
approach naturally extends to other domains, such as NLP, validating our method across a broader
range of domains remains a subject for future investigation.

Conclusion. This paper introduces a novel Teacher-Assistant-Student (TAS) scheme designed to
enhance the efficacy of heterogeneous distillation. TAS integrates diverse inductive biases and mod-
ule functions by introducing a hybrid assistant model comprising CNN/MSA/MLP modules derived
from students and teachers, thereby improving the feature transfer among heterogeneous models.
Extensive experiments demonstrate our TAS is more powerful than other homogeneous and hetero-
geneous methods on CIFAR100 and ImageNet-1K.
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A IMPLEMENTATION DETAILS

For training models of various architectures on the ImageNet-1K and CIFAR100 datasets, we use
different optimization settings and hyperparameters for CNN and MSA/MLP students following
the code or paper of OFA (Hao et al., 2023). The detailed settings can be found in Tab. 7. Our
code and models are from Timm library (Wightman, 2019). Given that the training pipeline for
VisionMamba (Zhu et al., 2024) is currently not integrated into the timm library (Wightman, 2019),
we don’t consider it following OFA (Hao et al., 2023).

Besides, we set γ in LOFA as 1.0 on CIFAR100 (Krizhevsky et al., 2009) and 1.5 in ImageNet-
1K (Deng et al., 2009) like OFA (Hao et al., 2023). The τ2 is learnable in LInfoNCE. The weight
of LOFA and LInfoNCE are equal. We averagely divide the model into 4 stages if the model is not
4-stage in this paper.

If the student and teacher are heterogeneous models, the assistant is:

pa(x) = fcm ◦ S4m ◦
L2G︷ ︸︸ ︷

(MSA ◦ PE) ◦S3c ◦ S2c ◦ S1c(x), (4)
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Table 7: Details of optimization settings. The settings are following OFA (Hao et al., 2023).
CIFAR100 ImageNet-1K

CNN MSA/MLP CNN MSA/MLP
Epochs 100 300 300 300

Image resolution 2242 2242 2242 2242

Batch size 512 1024 1024 512
Initial LR 0.1 5e-4 0.1 5e-4

Minimum LR 1e-6 1e-6 1e-3 1e-5
Optimizer SGD AdamW SGD AdamW

Weight decay 1e-4 5e-2 2e-3 5e-2
LR schedule ×0.1 at [30,60,90] Cosine Cosine Cosine

Warmup 3 20 3 20
EMA - 0.99996 - -

RandAugment - 9/0.5 - 9/0.5
Mixup - 0.8 - 0.8
Cutmix - 1.0 - 1.0
RE prob - 0.25 - 0.25

where x is the input image, Sic denotes CNN models, Sim denotes MSA/MLP models, and fcm
denotes the fully-connected layers of MSA/MLP models.

If the student and teacher are both CNN/MSA/MLP models, the assistant is:

pa(x) = fct ◦ S4t ◦
L2G︷ ︸︸ ︷

(MSA ◦ PE) ◦S3s ◦ S2s ◦ S1s (x), (5)

where x is the input image, Sis denotes student models, Sit denotes teacher models, and fct denotes
the fully-connected layers of teacher models.

B COMPARISONS WITH OTHER METHODS

We compare the differences between some similar methods and our TAS in Fig. 2. Firstly, to the best
of our knowledge, our TAS is the first to apply three-level teacher-assistant-student scheme, which
provides more flexible designs for knowledge transfer than existing two-level scheme. Secondly,
our assistant model bridges the representation gaps between cross-architecture students and teachers
by combining different inductive biases and module functions, making our TAS more suitable for
cross-architecture distillation. Thirdly, as demonstrated in (Hao et al., 2023), the LOFA enhances the
target information and hinders the transfer of incorrect information from the teacher by a modulating
parameter γ (Hao et al., 2023), which is more suitable than LKL in cross-architecture distillation.
Lastly, the LMSE aligns the features in a pixel-by-pixel manner, which is not reasonable for spatially
different heterogeneous features, e.g.(A) and (E) in Fig. 6. Thus, as demonstrated in Tab. 10, we
get the better performance by smoothing the features in spatial and apply contrastive learning by
LInfoNCE to align the feature embeddings of cross-architecture models.

There are some works to input the student features to teachers in similar-architecture distillations,
e.g., ReviewKD (Chen et al., 2021), FCFD (Liu et al., 2023), and so on (Chen et al., 2022b; Li
et al., 2020). However, they are all designed for teacher-student pairs with similar architectures,
suggesting different motivations and designs compared to our TAS for cross-architecture distillation.
For example, FCFD (Liu et al., 2023) has the best performance and is the most similar method to
our TAS, but some important designs of our TAS are very different from FCFD.

Firstly, FCFD (Liu et al., 2023) is designed for CNN students and teachers, which needs to be
modified seriously if we apply it to heterogeneous distillations. Besides, as demonstrated in Tab. 8,
FCFD is not suitable for any cross-architecture teacher-student models. But our TAS is generic for
any teacher-student pair.

Secondly, although FCFD (Liu et al., 2023) also combines different module functions, the connec-
tions between students and teachers are random and mutual, which makes it hard to converge
to the optimal spaces and brings huge training costs, especially for cross-architecture distillations.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 8: Results of FCFD in cross-architecture distillations on CIFAR100 dataset. As shown,
FCFD is not suitable for cross-architecture distillations compared to our TAS.

Methods T. S. T. S. T. S.
Swin-T ResNet18 ViT-S ResNet18 ConvNeXt-T Swin-P

FCFD 78.34 53.58 77.29
Our TAS 81.61 81.93 80.34

Conversely, our TAS considers that the CNN models are feature extractors and the MSA/MLP mod-
els are feature aggregators (Park & Kim, 2021), so the assistant is the CNN-MSA/MLP model and
obeys the rule of “alternately replacing Conv blocks with MSA blocks from the end of a baseline
CNN model” in (Park & Kim, 2021). For example, FCFD (Liu et al., 2023) includes the multi-
ply random connections of MSA/MLP-CNN models (the first parts are MSA/MLP modules, and
the latter parts are CNN modules) when we modify it to cross-architecture distillation. However,
MSA/MLP-CNN models are unreasonable for the hybrid models (Park & Kim, 2021), leading to
bad distillation performance.

Thirdly, FCFD (Liu et al., 2023) is a two-level paradigm that only considers the knowledge transfer
between the teacher and student, not introducing the knowledge transfer between the assistant and
student. However, the supervision of the assistant is very important as demonstrated in our ablation
study of the main paper.

Fourthly, FCFD (Liu et al., 2023) is designed for CNN models and does not consider the represen-
tation gaps between different inductive biases between cross-architecture models. Thus, the feature
projectors of FCFD are CNN modules, which perform worse than our L2G modules because L2G
includes the MSA modules to convert the local features to global receptive fields.

Lastly, FCFD (Liu et al., 2023) does not consider the gaps between different representation spaces of
cross-architecture models. Thus, the loss functions of FCFD (Liu et al., 2023), i.e., LKL and LMSE

are not appropriate for cross-architecture teacher-student pairs. For example, as demonstrated in
Tab. 10, LMSE is not suitable for some cross-architecture teacher-student pairs.

Experimentally, as shown in Tab. 3, our TAS has a competitive performance compared with
FCFD (Liu et al., 2023) in similar-architecture distillations. More importantly, our TAS is generic
for cross-architecture distillations, but FCFD is hard to achieve it in Tab. 8.

C HETEROGENEOUS FEATURES

Fig. 6 shows heterogeneous features, demonstrating some important observations in our main paper.

Firstly, heterogeneous models have different inductive biases. For example, CNN models (He et al.,
2016) have the inductive bias of “locality”, thereby making the features local like (A-B) in Fig. 6.
Differently, the features of MSA and MLP models (Liu et al., 2021b; Dosovitskiy et al., 2021; Tol-
stikhin et al., 2021) are global because of their global inductive bias, e.g., (C-F) in Fig. 6. Therefore,
combining different inductive biases helps mitigate the gaps between heterogeneous models like our
assistant.

Secondly, heterogeneous models have different module functions. For example, the architec-
tures/functions of ResNet (He et al., 2016) and Swin models (Liu et al., 2021b) are hierarchical.
They gradually expand the receptive fields and upsample the features, e.g., (A-D) in Fig. 6. Dif-
ferently, MLP models (Tolstikhin et al., 2021) and most MSA models (Dosovitskiy et al., 2021)
are uniform. The features of shadow and deep layers have higher similarity than the hierarchical
CNN, e.g., (E-F) in Fig. 6. Therefore, combining different module functions helps mitigate the gaps
between heterogeneous models like our assistant.

Thirdly, features of heterogeneous models have different spatial distributions in different channels.
For example, the different channels of CNN models have similar spatial localizations (such as the
right figures of Fig. 6 (A-B)). Conversely, the features of MSA and MLP models in different channels
are more diverse, e.g., the right figures of Fig. 6(C-F). Besides, as demonstrated in (Park & Kim,
2021; He et al., 2016; Tolstikhin et al., 2021), spatial smoothing is useful for the predictions of
CNN/MSA/MLP models (e.g., average pooling). Therefore, we smooth the features and replace
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(E) Mixer-B/16

(A) ResNet18

Features in different stages
Stage 1 Stage 2 Stage 3 Stage 4

(B) ResNet34

(C) Swin-Small

(D) Swin-Base

(F) ResMLP-S12

Group 1
Groups in the last stage

Group 2 Group 3

Figure 6: Diverse features in different models. The left figures are features in different stages (all
models are divided into 4 stages). The right figures are the final features in different groups (we
divide the channels of final features into 3 groups). The spatial distribution of features is diverse
according to the channels, stages, and model architectures/functions.

pixel-by-pixel LMSE with LInfoNCE in our main paper. Tab. 10 also demonstrates the strength of
applying LInfoNCE to smoothing features.

D DIFFERENT DISTILLING STRATEGY

Multi-teacher progressive distillation is a training strategy and our TAS is a training algorithm. They
are orthogonal and can be used together. As shown in (D-E) in Tab. 9, we can replace the T.-S. with
our T.-A.-S. paradigm to improve the results in each stage of progressive distillation. Besides, using
multi-teacher distillation, we can improve the performance of a given student by applying our TAS
to both SAKD and CAKD.
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Table 9: Different distillation paradigm. Swin denotes the Swin-Tiny model. Our method is the
one-stage joint-optimization teacher-assistant-student paradigm, which is orthogonal with progres-
sive distillation like (Cao et al., 2023; Mirzadeh et al., 2020).

Methods (all methods only use the LKD) CIFAR100
(A) Swin → ResNet34 + Resnet34 → ResNet18 78.53

(B) Swin-Assistant-ResNet18 (ours w/o LTAS(Kt,Ks)) 79.26
(C) Swin-Assistant-ResNet18(ours w/ LTAS(Kt,Ks) 79.28

(D) Swin → ResNet18 + ResNet34 → ResNet18 80.07
(E) Swin-Assistant-ResNet18 + ResNet34-Assistant-ResNet18 81.24

E LOSS FUNCTIONS FOR CROSS-ARCHITECTURE DISTILLATIONS.

In Tab. 10, we compare the results of FitNet with different settings on the CIFAR100 dataset. Firstly,
the accuracy improves from 24.06 to 65.17 when we apply LMSE only to features of the final stage,
rather than intermediate stages. This demonstrates the intermediate features are not suitable for fea-
ture alignment in some cross-architecture teacher-student pairs. Secondly, the accuracy improves
from 65.17 to 76.79 when we apply average pooling to features of the final stage. This demon-
strates the diverse spatial distributions of features are not suitable for feature alignment in some
cross-architecture teacher-student pairs. Thirdly, the accuracy improves from 76.79 to 78.01 when
we replace LMSE with LInfoNCE. This is because LInfoNCE considers the releationships between
different channels, but LMSE is pixel-by-pixel.

Table 10: FitNet (Romero et al., 2015) with LMSE vs. LInfoNCE loss on CIFAR100. The teacher
is ConvNeXt-T (88.41% Top-1 accuracy) and the student is Swin-P (72.63% Top-1 accuracy) on
CIFAR100. As shown, the smoothing features and LInfoNCE are more suitable for cross-architecture
distillations than the original features and LMSE

Loss Top-1 accuracy
LMSE in all intermediate features 24.06

LMSE in the final features 65.17
LMSE in the final features after average pooling 76.79

LInfoNCE in the final features after average pooling 78.01

F L2G IN OUR ASSISTANT MODEL.

As shown in Tab. 11, when we replace the Swin block (Liu et al., 2021b) with ViT block (Dosovit-
skiy et al., 2021) in our L2G, the performance on different teacher-student pairs has different rises
and falls. Thus, the MSA block in L2G is also important and is worth exploring in future works.

Our L2G includes a patch embedding for dimension alignments of features and an MSA block for
global information exchange.

Why do we use a patch embedding? The feature shape of a CNN model with the size (N, C, H,
W), while that of an MSA/MLP model is denoted as (N, L, D). N indicates the batch size, and C,
H, and W refer to the channel, height, and width of the CNN model’s feature map respectively. L
and D denote the patch number and embedding dimension of the ViT/MLP model’s feature map. In
our assistant model, to connect the features of CNN and MSA/MLP models, we need to transform
the feature map of the CNN model into the MSA/MLP-style (shape) feature through a ”patchify”
operation. Besides, the effectiveness of “divide image to patches” has been demonstrated in CNN
models (Trockman & Kolter, 2022), MSA models (Dosovitskiy et al., 2021; Liu et al., 2021b), and
MLP models (Li et al., 2023a; Touvron et al., 2022; Tolstikhin et al., 2021). Therefore, we use a
patch embedding to process the CNN features. More importantly, patch embedding is a kind of
spatial smoothing that is beneficial to align heterogeneous features.
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Table 11: Our results with different MSA blocks. T. and S. denote the teacher and the student.
ViT block is from ViT (Dosovitskiy et al., 2021) and Swin block is from Swin (Liu et al., 2021b).
As shown, different blocks have different functions in different teacher-student pairs.

MSA Block T. S. T. S. T. S.
Swin-T ResNet18 ViT-S ResNet18 ConvNeXt-T Swin-P

ViT Block 81.05 80.74 80.72
Swin Block 81.61 81.93 80.34

Why do we use an MSA block? The extra MSA block converts the local CNN features to a global
receptive field, which is more suitable to input the later MSA/MLP models. Besides, the later
MSA/MLP models are frozen when the teacher is the MSA/MLP model and the student is the CNN
model. In this case, a learnable MSA block plays an important role in aligning heterogeneous
features.

Table 12: Training cost. The extra parameters of our TAS are about one-tenth of OFA (Hao et al.,
2023). The best results are bold.

Teacher Student Student Params Student FLOPs OFA Branch Our Branch
Params FLOPs Params FLOPs

DeiT-T ResNet18 11.69 M 1.82 G 4.92 M 0.1 G 0.39 M 0.07 G
ResNet50 DeiT-T 5.68 M 1.08 G 5.81 M 0.25 G 0.54 M 0.10 G

ConvNeXt-T ResMLP-S12 15.32 M 3.01 G 21.64 M 0.99 G 1.48 M 0.29 G

G TRAINING COST.

Beyond performance considerations, training cost is critical for the distillation. We compare the
training cost of the recent OFA (Hao et al., 2023) and our TAS framework in Tab. 12. In Fig. 4(f),
OFA uses four extra feature projectors, but our TAS only uses one L2G to project the features at the
third stage of CNN models. Therefore, as shown in Tab. 12, we introduce much fewer additional
parameters and FLOPs on par with OFA (Hao et al., 2023) under different combinations of teacher
and student models. Specifically, the number of extra parameters is about one-tenth that of OFA
when the student and teacher are different architectures. As a result, TAS is more efficient than
OFA (Hao et al., 2023).
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