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Abstract

Recent work found that LLMs are sensitive to001
a wide range of arbitrary prompt dimensions,002
including the type of delimiters, answer enu-003
merators, instruction wording, and more. This004
throws into question popular single-prompt005
evaluation practices. In this work, we present006
DOVE (Dataset Of Variation Evaluation) a007
large-scale dataset containing prompt pertur-008
bations of various evaluation benchmarks. In009
contrast to previous work, we examine LLM010
sensitivity from an holistic perspective, and011
assess the joint effects of perturbations along012
various dimensions, resulting in thousands of013
perturbations per instance. We evaluate sev-014
eral model families against DOVE, leading to015
several findings, including efficient methods016
for choosing well-performing prompts, observ-017
ing that few-shot examples reduce sensitivity,018
and identifying instances which are inherently019
hard across all perturbations. DOVE consists020
of more than 300M prompt perturbations and021
model outputs, which we make publicly avail-022
able to spur a community-wide effort toward023
meaningful, robust, and efficient evaluation.024

Browse the data - https://huggingface.025
co/datasets/DOVevaluation/Dove1026

1 Introduction027

Recent years have seen an explosion of LLMs ap-028

plied in few- or zero-shot settings, where natural029

language is used for both input and output. Al-030

though this free-text format lends itself to various031

applications, the flexibility in task formulation also032

leads to large variation in performance.033

LLM performance was shown to change dras-034

tically based on slight perturbations in arbitrary035

prompt dimensions, including the number of white036

spaces (Sclar et al., 2023), answer enumerators037

and ordering (Alzahrani et al., 2024; Pezeshkpour038

1Links are fully anonymized for this submission. We will
also make all code available upon publication.
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Figure 1: Building DOVE. To holistically explore LLM
sensitivity, we sample prompts as a walk in the space
of various prompt dimensions (rows, above).

and Hruschka, 2024), few-shot demonstrations (Lu 039

et al., 2022), and more (Leidinger et al., 2023; 040

Voronov et al., 2024). This sensitivity presents a 041

challenge to meaningful evaluation, exacerbated by 042

the rising cost of inference, which bars large-scale 043

evaluation studies, especially for research groups 044

with small to medium budgets (Perlitz et al., 2024). 045
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Such concurrent findings throw into question046

the generalizbility of many of the recent evaluation047

benchmarks, which tend to rely on one arbitrary048

prompt (Mizrahi et al., 2024). We argue that this049

constitutes a crisis in evaluation which should be a050

community-wide concern, standing in the way of a051

better scientific understanding of LLMs, indicating052

where they excel and where they lack, especially as053

they are being increasingly deployed in real-world054

applications (Raiaan et al., 2024).055

Our main contribution in this work is the in-056

troduction of DOVE, a publicly available large-057

scale dataset consisting of 300M model predictions,058

which facilitates and democratizes the systematic059

study of LLM sensitivity and the development of060

meaningful evaluation protocols.061

Starting from popular multiple-choice bench-062

marks, such as MMLU (Hendrycks et al., 2021),063

ARC (Clark et al., 2018), or Race (Lai et al., 2017),064

we go beyond common evaluation protocols and065

collect LLM predictions on a wide range of prompt066

perturbations, resulting in thousands of samples067

per single instance from the original benchmark.068

For each such instance, DOVE records the full069

LLM response along with the model’s log prob-070

abilities and an automatic binary score.071

We analyze the performance of various LLMs072

on DOVE and find that the problems observed at073

smaller scales persist at this large scale. We find074

that along various dimensions (prompt phrasing,075

formatting, and more), performance can vary by076

more than 10% absolute difference, while model077

ranking also varies based on these arbitrary choices.078

These make DOVE a valuable testbed for exploring079

evaluation and sensitivity at scale.080

To demonstrate the kind of analysis permitted081

by DOVE, we use it to make three novel observa-082

tions on prompt sensitivity in LLMs, which benefit083

downstream application and provide a more mean-084

ingful evaluation. First, we observe that prompt-085

tuning the entire prompt is subpar compared to in-086

dependent dimension-wise tuning; second, we find087

that adding few-shot demonstrations consistently088

reduces sensitivity, though it is far from solving089

the problem; and third, DOVE can be used to find090

consistently hard instances, which stump models091

regardless of any prompt selection, thus delineating092

the real limits to their capabilities.093

By making DOVE publicly and openly available,094

we hope to enable and spur research into meaning-095

ful, generalizable, and efficient LLM evaluation,096

which will help to understand their strengths and097

limitations. Toward that goal, we plan to make 098

DOVE a collaborative and growing resource and 099

encourage the contribution of data from more di- 100

verse domains, applications, and languages. 101

2 Definitions: Prompt Sensitivity 102

In this section, we establish terminology, defini- 103

tions, and metrics for formally quantifying the phe- 104

nomenon of prompt sensitivity. In this work, we 105

choose to focus on multiple-choice questions to 106

allow for a relatively easy evaluation of model out- 107

puts compared to text generation tasks, such as 108

summarization or translation, where the space of 109

correct predictions is vast, and may be considered 110

in future work. 111

Intent-preserving prompts. Following Chatter- 112

jee et al. (2024), two prompts p1, p2 are considered 113

intent-preserving if they are designed to convey 114

the same underlying meaning, despite differences 115

in phrasing or structure. For example, the two fol- 116

lowing prompts are considered intent preserving 117

p1 = “Who is the partner of Mario? Choose from: 118

A. Donito B. Lagio C. Luigi”, p2 = “Answer the 119

following question: Who is the partner of Mario? 120

A. Donito B. Lagio C. Luigi”. 121

Prompt dimensions and linearization. We cat- 122

egorize the differences between intent-preserving 123

prompts along different dimensions, where each 124

dimension D is a set of possible values such that 125

any value from d ∈ D preserves the intent of the 126

prompt. For example, the enumerator dimension 127

may contain values such as {roman, numerals}. 128

Like enumerators, prompt dimensions may be dis- 129

crete or continuous, e.g., instruction paraphrase. 130

Furthermore, we define prompt linearization: 131

T (x, d1, . . . , dn) 7→ p (1) 132

Where x is an underlying question, e.g., “who is 133

Mario’s partner?”, d1 ∈ D1, . . . , dn ∈ Dn are 134

choices made along n prompt dimensions, and T 135

is their deterministic linearization to a prompt p, 136

which can be given as input to an LLM. 137

Prompt sensitivity. measures the degree to 138

which the performance of an LLM M deviates 139

between intent-preserving prompts. Ideally, the 140

performance of an LLM M should be invariable to 141

different choices along intent-preserving prompt di- 142

mensions. Formally, to measure prompt sensitivity 143

on multiple-choice questions, we define a model 144
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Figure 2: DOVE requires a diverse set of skills.

M ’s accuracy along different dimension choices145

d1, . . . , dn in the following manner:146

Acc(M,Dom, d1, . . . , dn) =∑
(xi,yi)∈Dom

1(M(T (xi, d1, . . . , dn)) = yi)

|Dom|
(2)147

Where Dom is a dataset consisting of labeled148

tuples (xi, yi) in a certain domain, for example149

(who is Mario’s partner?, Luigi). Intuitively, Acc150

measures the accuracy of M on Dom according151

to a specific set of choices for the different prompt152

dimensions. Consequently, we measure prompt153

sensitivity as the difference in accuracy for differ-154

ent dimensions using various statistical measures.155

3 DOVE: A Large-Scale156

Multi-Dimensional Dataset of157

LLM-Generated Responses Towards158

Meaningful LLM Evaluation159

In this section we introduce DOVE, a large-scale160

corpus of model predictions along multiple dimen-161

sions.162

As shown in Figure 1, the building blocks of163

DOVE are instances from existing popular datasets.164

For each instance, we create a wide range of intent-165

preserving prompts, by varying the instances along166

five dimensions (enumerator, separator, choices167

order, phrasing, and demonstrations).168

Below we discuss the different dimensions,169

which are also summarized in Table 1. We choose170

these dimensions based on a survey of recent stud-171

ies on LLM sensitivity, yet we do not claim that172

this forms an exhaustive list of factors affecting173

LLM performance. Future work can expand this174

with additional dimensions to explore their effect.175

Domains. We cover a wide range of data176

sources, spanning 78 different data sets from177

Dimension Examples # of Values

Enumerator Roman, Numerals 6

Separator ;, | 7

Choices Order original, correct first 6

Phrasing
The following are multiple-
choice questions about {topic }.
{question }{choices }Answer:

13

Demonstrations Zero-shot, Five-shot 2

Table 1: The different intent-preserving prompt dimen-
sions in DOVE, along with example values, and overall
number of values per dimension. The total number of
perturbations per sample is the Cartesian product of all
values, resulting in over 6.5K perturbations per sample.

MMLU (Hendrycks et al., 2021), MMLU Pro, 178

ARC (Clark et al., 2018), HellaSwag (Zellers et al., 179

2019), OpenBookQA (Mihaylov et al., 2018), So- 180

cial IQa (Sap et al., 2019), and RACE (Lai et al., 181

2017). From each of these, we take 100 instances 182

chosen at random, resulting in 7,800 base instances, 183

which we extend with different perturbations in 184

subsequent steps. Figure 2 shows that solving these 185

samples requires a wide range of skills. 186

Answer enumerators, choice separators and or- 187

derings. Recent work has noticed that very sub- 188

tle changes in the prompt can lead to significant 189

changes in both absolute as well as relative model 190

performance. These include answer enumerators, 191

e.g., roman versus numeral options, choice separa- 192

tors, e.g., new line versus commas, and the order 193

in which the options are presented, e.g., the posi- 194

tion of the correct answer (Alzahrani et al., 2024; 195

Pezeshkpour and Hruschka, 2024; Zhou et al., 196

2024; Gupta et al., 2024). All options are sum- 197

marized in Table 3 in the Appendix. 198

Instruction phrasing. Variations in the way in- 199

structions are written can significantly influence 200

model behavior (Mizrahi et al., 2024; Chatterjee 201

et al., 2024). To systematically explore this effect, 202

we wrote and verified 13 distinct instruction tem- 203

plates for each of our datasets, drawing inspiration 204

from the format used in established benchmarks 205

like MMLU (Hendrycks et al., 2021) and HELM 206

(Liang et al., 2023), as well as paraphrases from 207

Zhuo et al. (2024) and Mizrahi et al. (2024). See 208

Appendix A.1 for a complete listing of paraphrased 209

instructions. 210

Demonstrations. We vary the number of few- 211

shot demonstrations, chosen randomly from the 212

training set of each dataset, based on previous work 213
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Figure 3: Performance variations across evaluation datasets. Each datapoint represents the accuracy of one
model calculated across 100 instances. Vertical scatter plots illustrate the variance within each dataset and each
model. Model performance varies substantially, indicating persistent prompt sensitivity prompts at large scales.

Field Description

Hyperparameters Temperature, top-p
Tokens logprobs Model’s log probability of prompt

tokens
Few-shots Example question-answer pairs
Response Model’s full response to the prompt
Tokens logprobs Model’s log probabilities for gener-

ated tokens
Ground truth The correct answer for the given

instance
Evaluation method Name of method used to evaluate

the model’s response
Score Automatic evaluation score

Table 2: Additional metadata. Instance-level details
available in DOVE to allow future research into their
effect, such as the input and output log probabilities
assigned by the model.

which found this to be a factor affecting model214

performance (Zhao et al., 2021; Lu et al., 2022;215

Kumar and Talukdar, 2021; Reif and Schwartz,216

2024).217

Additional metadata. Table 2 shows additional218

instance-level details available in DOVE to allow219

future research into their effect, such as the input220

and output log probabilities assigned by the model.221

4 Evaluation222

In this section, we evaluate various models against223

DOVE, finding that they all exhibit prompt sensi-224

tivity at large scale, also when controlling for most225

of our tested dimensions.226

4.1 Experimental Setup227

We evaluate the following model families against228

DOVE: Llama (1B, 3B, 8B) (Dubey et al., 2024),229

OLMo (7B) (Muennighoff et al., 2024), and Mis-230

tral (7B) (Jiang et al., 2023). We focus on open-231

weight LLMs which we can run locally for two232

main reasons. First and foremost, API-based chat- 233

bots (such as ChatGPT or Claude) alter the prompt 234

in undisclosed ways, for example, to try to ensure 235

that it is safe, or to improve performance (Rao 236

et al., 2024), which may interfere with our findings 237

in a non-trivial manner. 238

Second, running closed models in such a large 239

scale (60M instances per model) incurs infeasible 240

costs, which do not pay back to the community. 241

However, we note that such sensitivity was ob- 242

served in closed models (Mizrahi et al., 2024), and 243

we encourage future work to test them on DOVE. 244

We generate DOVE using vLLM (Kwon et al., 245

2023) on a cluster of NVIDIA A100 80GB GPUs. 246

In total, dataset creation requires approximately 247

5,000 GPU hours. For instance, the Mistral-7B 248

model requires 1,189 GPU hours, while other mod- 249

els range from 754 to 1,341 GPU hours each. Over- 250

all, creating DOVE on cloud services, such as AWS, 251

costs upwards of $25K, highlighting the high costs 252

of such large scale evaluations. 253

We extend and use the Unitxt framework (Ban- 254

del et al., 2024) to generate and evaluate multiple 255

prompt variations in multiple datasets. 256

Evaluation metric. To evaluate model outputs 257

we use semantic similarity matching (Mitkov et al., 258

2009; Obot et al., 2023). For each response, we 259

identify the answer option with highest semantic 260

similarity to the model’s output and consider the 261

prediction correct if it matches the ground truth. 262

4.2 Results: Prompt Sensitivity Persists in 263

Large-Scale Data 264

Figure 3 depicts model performance on several 265

domains as a distribution across intent-preserving 266

prompts, while similar trends were observed across 267

all other domains (see Appendix B.1). For instance, 268

OLMo’s performance on HellaSwag ranges from 269

1% to 99% based on the prompt. These findings 270
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Figure 4: Accuracy marginalization for different dimensions. Variations along each of the dimensions in DOVE
lead to prompt sensitivity, even when controlling for all other dimensions.

suggest that the dimensions we explore in DOVE271

indeed play a role in the performance of all LLMs.272

To better understand these results, we marginal-273

ize each dimension by averaging its performance274

across all other dimensions. Formally, without loss275

of generality for each value d1 ∈ D1 (for exam-276

ple, the choice of roman numerals), we compute a277

marginalized accuracy score Accd1 :278

Accd1(M,Dom) =
∑

d2∈D2

...
dn∈Dn

Acc(M,Dom, d1, . . . , dn)

|D2| · . . . · |Dn|

(3)279

Where D1, . . . , Dn are the different dimensions,280

and Acc(·) is according to Equation 2.281

The results, depicted in Figure 4 show that vari-282

ation along each individual dimension changes re-283

sults substantially. For instance, for Mistral, differ-284

ent paraphrases lead to an 8% difference in accu-285

racy. Beyond absolute performance differences, we286

also observe varying preferences across models to287

different prompt variations. For example, OLMoE288

performs best with greek numerals, achieving the289

highest average accuracy across the dataset with290

this choice. On the other hand, Mistral rank greek291

numerals only as the third best option, performing292

less than both capital and lateen numerals. This293

discrepancy underscores that models demonstrate294

distinct prompt preferences.295

Statistical significance. Following (Mizrahi296

et al., 2024), we quantified performance variance297

by calculating divergence scores, defined as the298

number of standard deviations by which perfor-299

mance using the original prompt deviates from the300

Figure 5: Substantial performance differences across
prompt variations. The number of standard deviations
by which model performance on original instructions
deviates from average across few-shot prompts. Dark
cells show substantial divergence.

mean performance across all prompts. Figure 5 301

shows significant divergence in randomly sampled 302

domains from the MMLU (Hendrycks et al., 2021), 303

where divergence is defined as exceeding one stan- 304

dard deviation (Kazmier et al., 2003). For Instance, 305

Mistral’s performance with original prompts ex- 306

ceeds its mean performance by more than one stan- 307

dard deviation in 35 of 57 domain tasks (complete 308

results can be found in Figure 12 in Appendix B.3) 309

5 Analysis 310

So far, we made use of DOVE to quantify the effect 311

of prompt sensitivity in large scale, finding that 312

each of the individual prompt dimensions further 313

contributes to this sensitivity. In this section, we 314

discuss three observations that stem from this large- 315

scale analysis and have practical implications for 316

downstream applications and for more generaliz- 317

able and meaningful evaluation. 318
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Figure 6: Efficient prompt selection approaches can improve perfromance. Performance gap from the ground
truth prompt (y-axis) versus sample count (x-axis) for LLMs and selection methods. Results demonstrate that
efficient prompt selection methods can improve performance with relatively small sample sizes, outperforming
random selection.

Figure 7: Prompt selection methods outperform ran-
dom and best observed baseline. AUC comparison of
prompt selection methods across different LLMs. The
lower AUC values indicate better overall performance
across sample sizes of selection methods over random
baseline.

5.1 Efficient Prompt Selection319

We use DOVE to answer the following question:320

How should the values for the different dimensions321

be chosen to optimize performance, given a fixed in-322

ference budget? This is a practical question whose323

answer can benefit downstream applications in var-324

ious real-world scenarios.325

Given a set of all possible prompts C and a326

limited sampling budget m, DOVE allows us to327

explore how to efficiently identify prompts that are328

likely to yield good performance. This question329

has actionable practical implications, as evaluating330

all possible prompts is computationally prohibitive.331

We leverage DOVE to simulate different sam-332

pling scenarios, focusing on zero-shot settings. For333

each model, we establish ground truth by finding 334

the prompt c∗ ∈ C that maximizes performance 335

across our complete dataset. We then investigate 336

how different selection methods perform with lim- 337

ited number of samples. 338

In particular, we explore four strategies for 339

choosing a prompt based on a set of observations: 340

(1) independent selection: chooses the best ob- 341

served value for each dimension, marginalizing all 342

other dimensions; (2) linear regression: we train 343

a linear regression on the observed samples which 344

aims to predict accuracy from the set of discrete 345

observed values for each dimension; (3) maximum 346

observed prompt: chooses the values for all dimen- 347

sions according to the best performing prompt in 348

the observed set; and (4) random baseline: chooses 349

the values for all dimensions at random. 350

Figure 6 shows the accuracy of the different 351

approaches along various data sizes, reporting for 352

each the mean accuracy as well as its standard 353

deviation across 10 random seeds, while Figure 7 354

shows the area under the graph for each of the the 355

different approaches (See Appendix B.4 for similar 356

results across all models). 357

It is evident that different prompt selection ap- 358

proaches can lead to vastly different results. In- 359

terestingly, choosing the values for the different 360

dimensions in an independent manner achieves 361

performance on par with linear regression, and 362

performs better than choosing the best observed 363

performance. Choosing the best observed prompt 364

becomes reliable with more data, but only after 365

observing tens of millions of samples. 366
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Figure 8: Few-shot reduces performance variance across evaluation dimensions. Comparing zero-shot and
five-shot on a subset of domains from DOVE reveals a narrower spread of accuracy scores. Each point represents the
accuracy across 100 instances, demonstrating that the five-shot demonstrations lead to more robust performance.

5.2 Few-Shot Demonstrations Consistently367

Reduce Sensitivity368

Figure 8 depicts the performance of prompts with369

few-shot demonstrations versus zero-shot prompts.370

We find that few-shot demonstrations consistently371

lead to more robust performance (see Appendix372

B.2 results across all domains).373

Still, few-shot demonstrations are far from com-374

pletely mitigating all sensitivity. Even with demon-375

strations we see a wide range of scores, e.g., above376

20% for all datasets in Figure 8. Furthermore, their377

effect is sometimes minimal, for example, in Social378

IQa and in the legal domain of MMLU-Pro.379

From a practical perspective, these results sug-380

gest that few-shot examples should be added381

where possible to mitigate the sensitivity of current382

LLMs.383

5.3 Some Examples are Consistently Easy or384

Hard for Models385

We use DOVE to perform an instance-level analy-386

sis. Figure 9 categorizes each sample according to387

its success rate, which we calculate as the percent-388

age of prompt perturbations for which the model389

outputs the correct answer, of all the perturbations390

for that sample. The lower ends of the spectrum,391

marked in red, count instances for which the model392

errs on all prompt perturbations, whereas on the393

higher end of the spectrum are samples for which394

the models succeds on all prompt perturbations.395

These results suggest a novel definition for what396

constitutes inherently hard instances for models,397

namely where they fail on all possible prompt per-398

turbations for the same instance. Moreover, on399

either of these extreme ends, models are in fact400

less sensitive, as they consistently succeeded or err401

on all prompt perturbations.402

6 Related Work 403

Many studies which we have leveraged extensively 404

throughout this work have focused on individual 405

prompt dimensions, examining variations in in- 406

struction wording (Mizrahi et al., 2024; Leidinger 407

et al., 2023; Sclar et al., 2023), answer order- 408

ing (Gupta et al., 2024; Wang et al., 2024), input 409

perplexity (Gonen et al., 2023), few-shot exam- 410

ple selection (Reif and Schwartz, 2024; Lu et al., 411

2022), and answer enumeration styles (Alzahrani 412

et al., 2024). Some works propose metrics for 413

prompt sensitivity, such as POSIX (Chatterjee 414

et al., 2024), which measures log-likelihood shifts, 415

and ProSA (Zhuo et al., 2024), which uses decod- 416

ing confidence. Although these methods quantify 417

sensitivity, they do not examine interactions be- 418

tween multiple perturbations, nor do they collect 419

data and make observations at a large scale. 420

Several recent work have noted that similarly 421

to our findings, few-shot examples help improve 422

performance (Webson and Pavlick, 2022; Perez 423

et al., 2021). In contrast to these works, we show 424

the effect that few-shot examples have on reducing 425

prompt sensitivity. 426

Beyond investigating individual factors, several 427

notable frameworks aim to standardize and im- 428

prove evaluation process. HELM (Liang et al., 429

2023) takes a broad view of LLM performance by 430

creating a taxonomy of a wide range of use cases 431

and evaluation metrics, but was not designed to ex- 432

amine prompt sensitivity. OLMES (Gu et al., 2024) 433

establishes detailed protocols for the reproducibil- 434

ity of the evaluation, carefully specifying aspects 435

such as prompt formatting. OLMES demonstrated 436

that standardizing these procedures could lead to 437

more consistent results but may inadvertently harm 438

models which do not perform well on its specific 439
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Figure 9: Success rate distribution reveals inherent example difficulty patterns. Distribution of success rates
by evaluation dimension and model. The x-axis shows the percentage of successful perturbations per instance,
while the y-axis shows the instance count in DOVE. The distribution reveals examples that are consistently easy or
difficult for LLMs across prompt dimensions.

dimension choices.440

Although these studies have provided valuable441

insights, our work is the first to take a holistic view442

of the problem. This large-scale dataset, encom-443

passing more than 300M model predictions, allows444

us to aggregate across multiple prompt dimensions,445

noticing practical patterns, and opening the door446

for many future research directions.447

7 Future Work448

DOVE provides a foundation for exploring LLM449

evaluation and sensitivity. The dataset’s broad cov-450

erage enables flexible partitioning for granular er-451

ror analysis, targeted evaluations, and investiga-452

tions of specific dimensions. Future research direc-453

tions include understanding model biases, improv-454

ing evaluation methodologies, and refining confi-455

dence estimation.456

Task-level sensitivity: Do some model capabili-457

ties have distinct sensitivity patterns? For example,458

is factual retrieval more fragile than logical reason-459

ing? Do format biases manifest differently across460

tasks from different domains?461

Alternative evaluation measures: Do less com-462

mon approaches, like perplexity-based evaluation463

or sensitivity-aware assessments, better mitigate464

prompt sensitivity in benchmarks (Gonen et al.,465

2023)? Do past prediction data help predict the466

most effective evaluation method for a new bench-467

mark (Polo et al., 2024; Maia Polo et al., 2025)?468

Optimizing evaluation focus: Given resource469

constraints, what dimensions are most critical for470

assessing model performance? Can a predictive471

framework identify the relative importance of dif-472

ferent dimensions?473

Instance characterization: What distinguishes 474

consistently answered examples from those with 475

high variability, e.g., as expemlified by the two 476

ends of the spectrum in Figure 9? Do specific 477

linguistic, semantic, or structural features influence 478

susceptibility to example variation? 479

Uncertainty quantification: How do token- 480

level log probabilities relate to model consistency? 481

Can their distributions help predict or explain 482

model sensitivity better than accuracy scores? To- 483

wards that goal DOVE also records all model log 484

probabilities. 485

Future versions of DOVE: We plan to expand 486

DOVE through both our team’s ongoing efforts and 487

community contributions. To facilitate community 488

contributions to DOVE, we will release tools and 489

documentation to expand coverage across domains, 490

languages, and tasks. We particularly welcome 491

contributions that extend coverage to specialized 492

domains and tasks. 493

8 Conclusions 494

We introduced DOVE, a large-scale dataset of 495

300M model predictions across prompt dimen- 496

sions. Our analysis revealed prompt sensitivity 497

remains a significant challenge, with performance 498

varying over 10% across different prompt varia- 499

tions. Key findings showed dimension-wise tuning 500

outperforms entire-prompt optimization, few-shot 501

demonstrations reduce but do not eliminate sen- 502

sitivity, and certain examples remain challenging 503

across all prompt variations. The public release 504

of DOVE aims to democratize evaluation research 505

and enable development of robust protocols for 506

assessing LLM capabilities. 507
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9 Limitations508

While DOVE provides valuable insights into LLM509

evaluation, several limitations should be acknowl-510

edged. Our focus on multiple-choice questions,511

while enabling controlled study of prompt vari-512

ations, does not capture the full complexity of513

open-ended generation tasks. However, multiple-514

choice questions remain a fundamental benchmark515

in the field, with most models reporting results on516

such tasks. Though we explore various prompt517

dimensions including paraphrasing, enumeration,518

and ordering based on prior work, the exponential519

space of possible variations necessitates a selection520

of dimensions and values. We plan to systemati-521

cally expand these dimensions based on analyses of522

the current version. Additionally, despite its scale,523

DOVE is currently constrained in terms of model524

diversity and language coverage, and we plan to525

expand to additional languages and domains in the526

next version. Large-scale prompt variations com-527

putational costs constrain update frequency. We528

welcome community contributions to expand the529

DOVE scope.530
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Dimension Possible Values

Enumerator

“A, B, C, D..” (Capitals)
“a, b, c, d...” (Lowercase)
“1, 2, 3, 4...” (Numbers)
“I, II, III, IV...” (Roman numerals)
“$! @ # % ^...” (Keyboard symbols)
“α, β, γ, δ” (Greek letters)

Choice Separator

"\s" (Space)
"\n" (Newline)
", "

"; "

" | "

" OR "

" or "

Choices Order

Keep original order
Sort by length (ascending)
Sort by length (descending)
Sort alphabetically (ascending)
Sort alphabetically (descending)
Force correct choice at first index
Force correct choice at last index

Table 3: Prompt Formatting Dimensions. Prompt Formatting Dimensions. We systematically vary these three
axes when creating prompts. Enumerator controls how answer options are labeled, Choice Separator determines
how answer options are delimited, and Choices Order rearranges (or fixes) the position of the correct choice
position.
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A.1 Instruction Phrasing Options 786

We present the collection of instruction phrasings that vary in their structure and formality used in DOVE. 787
788

The following are multiple choice questions (with answers) about {topic}. 789
790

{question} 791
{choices} 792
Answer: 793

The following are multiple choice questions (with answers). 794
795

{question} 796
797

{choices} 798
Answer: 799

The following are multiple choice questions (with answers) about {topic}. 800
801

Question: {question} 802
{choices} 803
Answer: 804

The following are multiple choice questions (with answers). 805
806

Question: {question} 807
808

{choices} 809
Answer: 810

Question: {question} 811
812

Choices: {choices} 813
Answer: 814

Topic: {topic} 815
Question: [question] Choices: [choices] Answer: [answer] 816
Question: {question} Choices: {choices} Answer: 817

Question: [question] Choices: [choices] Answer: [answer] 818
Question: {question} Choices: {choices} Answer: 819

Please answer the following question: 820
{question} 821
{choices} 822
Answer: 823

Please address the following question: 824
{question} 825
{choices} 826
Answer: 827

Could you provide a response to the following question: 828
{question} 829
{choices} 830
Answer: 831

Here are some multiple choice questions along with their answers about { 832
topic}. 833

834
Question: {question} 835
Choices: {choices} 836
Correct Answer: 837

Below are multiple -choice questions related to {topic}, each followed by 838
their respective answers. 839

840
Question: {question} 841
Choices: {choices} 842
Correct Answer: 843

Below are multiple -choice questions related to {topic}. Please provide 844
the correct answer for each question. 845

846
Question: {question} 847
Choices: {choices} 848
Answer: 849
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B Extended Results850

B.1 Performance Analysis Across All851

Domains852

Figure 10 reveals consistent patterns in prompt853

sensitivity across our evaluation domains.854

B.2 Analysis of Few-Shot Impact Across All855

Domains856

The impact of few-shot demonstrations on reduc-857

ing prompt sensitivity becomes evident across do-858

mains, as illustrated in Figure 11.859

B.3 Divergence Across All Domains860

Standard deviation measurements shown in Fig-861

ure 12 highlight the varying model responses to862

different instruction prompts.863

B.4 Selection Methods Across All Models864

Our comparison of prompt selection methods spans865

both AUC analysis and success rate distributions.866

These results are detailed in Figure 13 and Fig-867

ure 14.868

B.5 Examples are Consistently Easy or Hard869

Across All Models870

Task difficulty follows consistent patterns across871

different models, with success rate distributions872

mapped in Figure 15 and Figure 16.873

C Dataset Scheme874

Table 4 details the components and structure of our875

dataset, providing descriptions and example values876

for each field877
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Figure 10: Performance variations across all evaluation domains. Extended analysis showing consistent prompt
sensitivity patterns across the complete set of domains
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Figure 11: Few-shot versus zero-shot performance across all domains. Extended analysis showing consistent
reduction in sensitivity with few-shot demonstrations
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Figure 12: Model performance variations across different instruction prompts (shown in standard deviations).
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Figure 13: Success rate distributions across all models
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Component Field Description Example Values
ID Evaluation ID Unique identifier for the evaluation run f8544...2240

Model Name Model identifier and version Mistral-7B-Instruct-v0.3
Metadata Architecture, Size, Context window, In-

struction tuning
transformer, 7B, 32768,
True

Quantization Bit precision and method settings for model
inference

float16, none

Generation Args Generation control settings temperature:null,
top_p:null, top_k: -1

Instance Task Type Type of evaluation task classification, generation
Raw Input Original input from the dataset (before for-

matting)
"What size of cannula would
you use..."

Tokens Logprobs Log probability of prompt tokens [token_index:153,
logprob:-0.96, rank:1,
decoded_token:"Question",
...]

Sample Identifier Dataset source details, including split and
index

mmlu.clinical_knowledge,
test, 487

Language Language of the input en, fr, ar, zh
Classification Fields Classification details: question, choices, an-

swer
question, choices, gt

Perplexity Complexity score of the input text 20.12

Prompt
(MCQ)

Template Prompt structure with placeholders "Below are multiple-choice
questions..."

Separator Character(s) used to separate multiple-
choice options

"\s", "\n", ", ", " | ", "
OR ", " or "

Enumerator Choice enumeration style "ABCD", "abcd", "1234",
"I,II,III,IV", "!@#$",
"αβγδ"

Choices Order Method for ordering answer choices "original order, by length,
alphabetical, correct
first/last"

Shots Number of examples included in the
prompt

zero, two, five

Few-Shot Examples Example question-answer pairs question, choices, answers

Output Response Model’s full response to the prompt "The size depends on a
number of factors..."

Tokens Logprobs Log probabilities for generated tokens [token_index:1183,
logprob:-2.73, rank:4,
decoded_token:"The", ...]

Cumulative Logprob Log probability of the entire generated se-
quence

-49.28

Evaluation Ground Truth The correct answer for the given instance "IV. 18 gauge."
Evaluation Method Method used to evaluate the model’s re-

sponse
label_only_match,
content_similarity

Score Binary score indicating correctness 1

Table 4: Dataset Schema Components, Descriptions, and Example Values
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Figure 14: AUC comparison of prompt selection meth-
ods across all models
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Figure 15: Success rate distribution reveals inherent example difficulty patterns

Figure 16: Success rate distribution reveals inherent
example difficulty patterns
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