
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LINEAR SEPARABILITY IN CONTRASTIVE LEARNING
VIA NEURAL TRAINING DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

The SimCLR method for contrastive learning of invariant visual representations
has become extensively used in supervised, semi-supervised, and unsupervised
settings, due to its ability to uncover patterns and structures in image data that are
not directly present in the pixel representations. However, this success is still not
well understood; neither the loss function nor invariance alone explains it. In this
paper, we present a mathematical analysis that clarifies how the geometry of the
learned latent distribution arises from SimCLR. Despite the nonconvex SimCLR
loss and the presence of many undesirable local minimizers, we show that the
training dynamics driven by gradient flow tend toward favorable representations.
In particular, early training induces clustering in feature space. Under a structural
assumption on the neural network, our main theorem proves that the learned
features become linearly separable with respect to the ground-truth labels. To
support our theoretical insights, we present numerical results that align with our
theoretical predictions.

1 INTRODUCTION

Unsupervised learning of effective representations for data is one of the most fundamental problems
in machine learning, especially in the context of image data. The widely successful discriminative
approach to learning representations of data is most similar to fully supervised learning, where
features are extracted by a backbone convolutional neural network, except that the fully supervised
task is replaced by an unsupervised or self-supervised task that can be completed without labeled
training data.

Many successful discriminative representation learning methods are based around the idea of finding
a feature map that is invariant to a set of transformations (i.e., data augmentations) that are expected
to be present in the data. For image data, the transformations may include image scaling, rotation,
cropping, color jitter, Gaussian blurring, and adding noise, though the question of which augmenta-
tions give the best features is not trivial (Tian et al., 2020). Invariant feature learning methods include
VICReg Bardes et al. (2021), Bootstrap Your Own Latent (BYOL) (Grill et al., 2020), Siamese neural
networks Chicco (2021), and contrastive learning techniques such as SimCLR Chen et al. (2020) (see
also (Hadsell et al., 2006; Dosovitskiy et al., 2014; Oord et al., 2018; Bachman et al., 2019)).

In contrastive learning, the primary self-supervised task is to differentiate between positive and
negative pairs of data instances. The goal is to find a feature map for which positive pairs have
maximally similar features, while negative pairs have maximal different features. The positive and
negative examples do not necessarily correspond to classes. In SimCLR, positive pairs are images
that are the same up to a transformation, while all other pairs are negative pairs. Contrastive learning
has also been successfully applied in supervised (Khosla et al., 2020) and semi-supervised contexts
(Li et al., 2021; Yang et al., 2022; Singh, 2021; Zhang et al., 2022b; Lee et al., 2022; Kim et al., 2021;
Ji et al., 2023), and has been used for learning Lie Symmetries of partial differential equations Mialon
et al. (2023) (for a survey see Le-Khac et al. (2020)).

All invariance based feature extraction techniques must address the fundamental problem of dimension
collapse, whereby a method learns the trivial constant map f(x) = c (or a very low rank map), which
is invariant to all transformations, but not informative or descriptive. There are various ways to
prevent dimension collapse. In contrastive learning the role of the negative pairs is to prevent collapse
by creating repulsion terms in the latent space, however, full or partial collapse can still occur (Jing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) MNIST: pixel space (b) CIFAR10: pixel space (c) CIFAR10: SimCLR

Figure 1: t-SNE visualizations of the MNIST and CIFAR10 data sets. In (a) and (b) the images
are represented by the raw pixels, while (c) gives a visualization of the SimCLR embedding. This
illustrates how SimCLR is able to uncover clustering structure in data sets.

et al., 2021; Zhang et al., 2022a; Shen et al., 2022; Li et al., 2022). In BYOL collapse is prevented
by halting backpropagation in certain parts of the loss, and incorporating temporal averaging. In
VICReg, additional terms are added to the loss function to maintain variance in each latent dimension,
as well as to decorrelate variables.

Provided dimensional collapse does not occur, a fundamental unresolved question surrounding many
feature learning methods is: why do they work so well at producing embeddings that uncover key
features and patterns in data sets? As a simple example, consider fig. 1. In fig. 1a and fig. 1b we show
t-SNE (Van der Maaten & Hinton, 2008) visualizations of the MNIST (Deng, 2012) and CIFAR10
(Krizhevsky et al., 2009) data sets, respectively, using their pixel representations. We can see that
visual features are not required on MNIST, which is highly preprocessed, while for CIFAR10 the
pixel representations are largely uninformative, and feature representations are essential. In fig. 1c
we show a t-SNE visualization of the latent embedding of the SimCLR method applied to CIFAR10,
which indicates that SimCLR has uncovered a strong clustering structure in CIFAR10 that was not
present in the pixel representation.

The goal of this paper is to provide a framework that can begin to address this question, and in
particular, to explain fig. 1. To do this, we assume the data follows a corruption model, where the
observed data is derived from some clean data with distribution µ that is highly structured or clustered
in some way (e.g., follows the manifold assumption with a clustered density). The observed data is
then obtained by applying transformations at random from a set of augmentations T to the clean
data points (i.e., taking different views of the data), producing a corrupted distribution µ̃. The main
question that motivated our work is that of understanding what properties of the original clean data
distribution µ can be uncovered by unsupervised contrastive feature learning techniques? That is,
once an invariant feature map f : RD → Rd is learned, is the latent distribution f#µ̃ similar in any
to the clean distribution µ, or can it be used to deduce any geometric or topological properties of µ?

The main contribution of our paper can be summarized as follows.

Contribution: Despite the presence of many undesirable local minimizers of the SimCLR loss,
we show, using a neural-kernel analysis, that the interaction between the data distribution and the
augmentation shapes the gradient dynamics and drives the learned representation. In particular,
cluster structure in µ can persist and sharpen in the learned features.

Our work provides a framework for explaining the success of SimCLR and other invariance-based
feature learning technique (for simplicity, we focus on SimCLR, and indicate in the appendix how
our results extend to other methods). Our work complements research on dimension collapse in
contrastive learning (Jing et al., 2021; Zhang et al., 2022a; Shen et al., 2022; Li et al., 2022), as our
findings hold even without collapse. We also highlight recent work (Meng & Wang, 2024) on the
training dynamics of contrastive learning through a continuum limit PDE. Other related works, such
as (HaoChen et al., 2021; Balestriero & LeCun, 2022), provide guarantees for downstream tasks
like semi-supervised learning by studying the alignment between class-membership clusters and an
"augmentation graph." Our paper complements these by examining when this alignment holds in
contrastive learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Outline: In section 2 we provide an overview of contrastive learning and introduce our data cor-
ruption model. In section 3 we derive and study the optimality conditions for the SimCLR loss and
characterize its stationary points. In section 4 we analyze the neural training dynamics of SimCLR
and present the main result: under mild conditions on the parameters, the learned representations
become linearly separable.

2 CONTRASTIVE LEARNING

We describe here our model for corrupted data in the setting of contrastive learning, and a reformula-
tion of the SimCLR loss that is useful or our analysis. Let µ ∈ P(RD) be a data distribution in RD.
Let T be a set of transformation functions T : RD → RD that is measurable such that, for a given
x ∈ RD, T (x) ∈ RD represents a perturbation of x, such as a data augmentation (e.g., cropping and
image, etc.). Let µ̃ ∈ P(RD) denote the distribution obtained by perturbing µ with the perturbations
defined in T . That is, we choose a probability distribution ν ∈ P(T) over the perturbations, and
samples from µ̃ are generated by sampling x ∼ µ and f ∼ ν, and taking the composition f(x).

We treat µ as the original clean data, which is not observable, while the perturbed distribution µ̃
is how the data is presented. Our goal is to understand whether contrastive learning can recover
information about the original data µ, provided the distribution of augmentations ν is known.

Ostensibly, the objective of contrastive learning is to identify an embedding function f : RD → Rd

that is invariant to the set of transformations T . Provided such an invariant map is identified, f pushes
forwards both µ and µ̃ to the same latent distributions, that is

f#µ̃ = f#µ.

As a result, the desirable map f is not only invariant to perturbations from T but also successfully
retrieves the unperturbed data µ, ensuring that the embedded distribution f#µ serves as a pure feature
representation of the given data. However, it is far from clear how µ and f#µ are related, and whether
any interesting structures in µ (such as clusterability) are also present in f#µ.

For instance, if µ̃ represents image data, contrastive learning aims to discover a feature distribu-
tion f#µ̃ that remains invariant to transformations such as random translation, rotation, cropping,
Gaussian blurring, and others. As a result, this feature distribution effectively captures the essential
characteristics of the data without being influenced by these perturbations. These feature distributions
are often leveraged in downstream tasks such as classification, clustering, object detection, and
retrieval, where they achieve state-of-the-art performance (Le-Khac et al., 2020).

To achieve this, a cost function is designed to bring similar points closer and push dissimilar points
apart through the embedding map, using attraction and repulsion forces. A popular example is the
Normalized Temperature-Scaled Cross-Entropy Loss (NT-Xent loss) introduced by Chen et al. (2020),
which leads to the optimization problem

min
f :RD→Rd

E
x∼µ,T,T ′∼ν

log

1 +

∑
h∈{T,T ′} Ey∼µ

[
1x̸=y exp

(
simf (T (x),h(y))

τ

)]
exp

(
simf (T (x),T ′(x))

τ

)
 , (1)

where ν ∈ P(T) is a probability distribution on T , which is assumed to be a measurable space, τ
is a given parameter, and simf : RD × RD → R is a function measuring the similarity between
two embedded points with f in Rd defined as simf (x, y) =

f(x)·f(y)
∥f(x)∥∥f(y)∥ . The denominator inside

the log function acts as an attraction force between perturbed points from the same sample x, while
minimizing the numerator acts as a repulsion force between points from different samples x and y.
Thus, the minimizer f of the cost is expected to exhibit invariance under the group of perturbation
functions from T .

f(T (x)) = f(x), ∀ x ∈ RD, ∀ T ∈ T . (2)
The repulsion force prevents dimensional collapse, where the map sends every sample to a constant:
f(x) = c for all x ∈ RD.

An important observation is that the NT-Xent loss becomes independent of the data distribution once
the feature map f is invariant, meaning that the latent distribution corresponding to an invariant
minimizer may bear little resemblance to the input data. Interestingly, a similar effect is observed in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

other unsupervised learning models such as VICReg (Bardes et al., 2021) and BYOL (Grill et al.,
2020) (see the appendix for further discussion). Despite the fact that the NT-Xent loss has minimizers
completely independent of the original data distribution µ, in practice the clustering structure of µ
often emerges in the latent space which results in the state-of-the-art performance in machine learning
tasks.

To better understand this behavior, we analyze the NT-Xent loss by examining its minimizer and the
dynamics of gradient descent. In order to overcome challenges caused by the nondifferentiability of
the angular similarity simf and the nonuniqueness of solutions (e.g., any kf is also a minimizer for
k > 0), we reformulate the loss to simplify the analysis. This leads to the generalized formulation of
the NT-Xent loss in eq. (1).
Definition 2.1. The cost function we consider for contrastive learning is

inf
f∈C

{
L(f) := E

x∼µ,T,T ′∼ν
Ψ

(
Ey∼µ ηf (T (x), T

′(y))

ηf (T (x), T ′(x))

)}
, (3)

where Ψ : R → R is a nondecreasing function, C is a constraint set, and ηf is defined as

ηf (x, y) = η(∥f(x)− f(y)∥2/2), (4)
where η : R≥0 → R is a differentaible similarity function that is maximized at 0.

The formulation in eq. (3) generalizes the original formulation in eq. (1) by removing the indicator
function 1x̸=y, as the effect of this function becomes negligible when a large n is considered. Fur-
thermore, the generalized formulation introduces a differentaible similarity function. This simplifies
the analysis of the minimizer in the variational formulation. The generalized formulation can easily
be related to the original cost function in eq. (1) by setting Ψ(t) = log(1 + t), η(t) = e−t/τ and
defining C = {f : RD → Sd−1}. Then, the similarity function ηf retains the same interpretation as
angular similarity simf . This is because, if f lies on the unit sphere in Rd, and so

exp

(
− 1

2τ
∥f(x)− f(y)∥2

)
= exp

(
1

τ
(f(x) · f(y)− 1)

)
= C exp

(
1

τ

f(x) · f(y)
∥f(x)∥∥f(y)∥

)
,

where C = exp(−1/τ). The consideration of the constraint also resolves the issue in eq. (1), where
kf , for any k ∈ R, could be a minimizer of eq. (1). Thus, in the end, the introduced formulation in
eq. (3) remains fundamentally consistent with the original NT-Xent cost structure.

3 OPTIMALITY CONDITION

In this section, we aim to find the optimality condition for eq. (3) and analyze properties of the
minimizers. Using the first optimality condition we can characterize the minimizer of the NT-Xent
loss in eq. (3). The following theorem describes the possible local minimizers of eq. (3), considering
the constraint set defined as C = {f : RD → Sd−1}.
Theorem 3.1. Given a data distribution µ ∈ P(RD), let f ∈ C = {f : RD → Sd−1} be an invariant
map such that the embedded distribution f#µ is a symmetric discrete measure satisfying∫

Sd−1

h(x1, y)df#µ(y) =

∫
Sd−1

h(x2, y)df#µ(y), (5)

for all x1, x2 ∼ f#µ and for all anti-symmetric functions h : Sd−1 × Sd−1 → Sd−1 such that
h(x, y) = −h(y, x). Then, f is a stationary point of eq. (3) in C.
Remark 3.1. Examples of the embedded distribution f#µ in Theorem 3.1 include a discrete measure,
f#µ = 1

n

∑n
i=1 δxi

, with points xi evenly distributed on Sd−1, or all points mapped to a single point,
f#µ = {x}. Figure 2 shows loss plots for different embedded distributions, f#µ = 1

K

∑K
i=1 δxi

,
with points xi evenly distributed on S1, illustrating how each stationary point relates to the loss.

The first plot shows the loss decreasing with the number of clusters, leveling off after a certain point.
The second plot shows the loss decreasing as the minimum squared distance between cluster points
narrows, plateaus once a threshold is reached. Both suggest that increasing the number of clusters
or using a uniform distribution on S1 minimizes the NT-Xent loss. Additionally, increasing the
number of points and decreasing τ further reduces the loss. The third plot reveals a linear relationship
between τ and the threshold for the minimum squared distance, offering insight into the optimal
cluster structure for minimizing the loss at a given τ .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: The figure shows the NT-Xent loss for different embedded distributions f#µ = 1
K

∑K
i=1 δxi

with xi on S1. The first plot shows the loss decreasing with the number of clusters, then plateauing.
The second shows the loss decreasing with the minimum squared distance between cluster points,
stopping at a threshold. Both suggest that increasing clusters and decreasing τ reduce the loss. The
third plot shows a linear relationship between τ and the minimum distance.

Remark 3.2. Theorem 3.1 is related to the result from Wang & Isola (2020), where the authors studied
local minimizers by minimizing the repulsive force under the assumption of an invariant feature map.
They showed that, asymptotically, the uniform distribution on Sd−1 becomes a local minimizer as
the number of negative points increases. Our result extends this by offering a more general, both
asymptotic and non-asymptotic characterization of local minimizers, broadening their findings.

It follows from Theorem 3.1 that gradient descent on the NT-Xent loss can lead to solutions that are
completely independent of the original data distribution µ. For instance, if µ has some underlying
cluster structure, with multiple clusters, there are minimizers of the NT-Xent loss, i.e., an invariant
map f , that map onto an arbitrary distribution in the latent space, completely independent of the
clustering structure of µ. However, in practice, when the map is parameterized using neural networks,
and trained with gradient descent on L(f), it is very often observed that the clustering structure of
the original data distribution µ emerges in the latent space (see fig. 1). In fact, our results in section 4
show that this is true even if we initialize gradient descent very poorly, starting with an invariant f
mapping to the uniform distribution U(Sd−1)!

Although the contrastive loss L(f) has minimizers that ignore the data distribution µ, leading to
poor results, contrastive learning often achieves excellent performance in practice. This suggests
that the neural network’s parameterization and gradient descent optimization are selecting a good
minimizer for L(f), producing well-clustered distributions in the latent space. To understand this, we
will analyze the dynamics of neural network optimization during training in the following sections.

4 OPTIMIZATION OF NEURAL NETWORKS

Here, we study contrastive learning through the lens of the associated neural network training
dynamics, which illustrates how the data distribution enters the latent space through the neural kernel.
In this section, we use the notation JnK = {1, . . . , n}.

4.1 GRADIENT FLOW FROM NEURAL NETWORK PARAMETERS

Let w ∈ Rm be a vector of neural network parameters, {x1, . . . , xn} ⊂ RD be data samples, and
f(w, xi) = (f1(w, xi), . . . , f

d(w, xi))
⊤ ∈ Rd be an embedding function where each function

fk : Rn+D → R is a scalar function for k = 1, . . . , d. Consider a loss function L = L(y, x) :
Rd+D → R with respect to w:

L(w) = 1

n

n∑
i=1

L(f(w, xi), xi). (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Let w(t) be a vector of neural network parameters as a function of time t. The gradient descent flow
can be expressed as

ẇ(t) = −∇L(w).
Due to the highly non-convex nature of L, this gradient flow is difficult to analyze. By shifting the
focus to the evolution of the neural network’s output on the training data over time, rather than the
weights, we can derive an alternative gradient flow with better properties for easier analysis. The
following proposition outlines this gradient flow derived from the loss function L. The proof of the
proposition is provided in the appendix.
Proposition 4.1. Let w(t) be a vector of neural network parameters as a function of time t. Consider
a set of data samples {x1, . . . , xn}. Define zi(t) = f(w(t), xi) for each i ∈ JnK. Then, zi(t) satisfies
the following ordinary differential equation (ODE):

żi(t) = − 1

n

n∑
j=1

Kij(t)∇zL(zj(t), xj), (7)

where the kernel matrix Kij ∈ Rd×d is given by

(Kij(t))
kl = Kkl

ij (t) = (∇wf
k(w(t), xi))

⊤(∇wf
l(w(t), xj)). (8)

Remark 4.1. We remark that the viewpoint in proposition 4.1, of lifting the training dynamics from
the neural network weights to the function space setting, is the same that is taken by the Neural
Tangent Kernel (NTK) Jacot et al. (2018). The difference here is that we do not consider an infinite
width neural network, and we evaluate the kernel function on the training data, so the results are
stated with kernel matrices that are data dependent (which is important in what follows). In fact, it is
important to note that proposition 4.1 is very general and holds for any parameterization of f , e.g.,
we have so far not used that f is a neural network.
Remark 4.2. The training dynamics in the absence of a neural network can be expressed as

żi(t) = −∇zL(zi(t), xi) (9)

where Kij is set to be identity matrices. In contrast to eq. (7), the above expression shows that the
training dynamics on the i-th point zi are influenced solely by the gradient of the loss function at xi,
and there is no mixing of the data via the neural kernel K (since here it is the identity matrix).

Using Proposition 4.1, we can analyze the invariance-preserving properties (and possible failures) of
gradient descent, both without and with the neural network kernel. The following theorem compares
the vanilla gradient flow with the gradient flow induced by the neural network kernel matrix.
Theorem 4.2. Consider the gradient descent iteration from a gradient flow without a neural network
in eq. (9), where z

(b)
i = f(w(b), xi) for all i ∈ JnK, and

z
(b+1)
i = z

(b)
i − σ∇zL(z

(b)
i , xi), (10)

with σ as the step size. If f(w(0), ·) is invariant to perturbations from ν, as defined in eq. (2), then
f(w(b), ·) remains invariant for all gradient descent iterations.

On the other hand, in the case of a gradient descent iteration from eq. (7),

z
(b+1)
i = z

(b)
i − σ

n

n∑
j=1

K
(b)
ij ∇zL(z

(b)
j , xj), (11)

the invariance of f at the (b + 1)-th iteration holds only if f is invariant at the b-th iteration and
additionally satisfies the condition ∇wf(w

(b), T (x)) = ∇wf(w
(b), x) for all x ∈ RD and T ∈ T .

Theorem 4.2 contrasts optimization with and without neural networks. In standard gradient descent
(eq. (10)), the map f remains invariant if it is initially invariant. In contrast, with the neural kernel in
eq. (11), even if f starts invariant, an additional condition on ∇wf is needed to maintain invariance.
Since this condition is not guaranteed to be satisfied throughout the iterations, the optimization can
cause f to lose invariance, resulting in different dynamics compared to standard gradient descent.

Many other works have shown that the neural kernel imparts significant changes on the dynamics of
gradient descent. For example, Xu et al. (2019a;b) established the frequency principle, showing that
the training dynamics of neural networks are significantly biased towards low frequency information,
compared to vanilla gradient descent.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 EMERGENCE OF LINEAR SEPARABILITY FROM NEURAL NETWORK GRADIENT FLOWS

We explore how the neural network kernel Kij in eq. (8) influences the gradient flow induced by the
contrastive learning loss. For simplicity, we assume that the embedding map f takes values in R,
which allows us to express the gradient flow in eq. (7) as

ż(t) = − 1

n
K∇L,

where z(t) = (z1(t), . . . , zn(t))
⊤ ∈ Rn denotes the feature representations at time t, ∇L =

(∇zL(z1(t), x1), . . . ,∇zL(zn(t), xn))
⊤, and K is the kernel matrix defined in eq. (8).

Our main theorem highlights how SimCLR can discover class structure from embeddings. With a
mild, data-driven condition on the neural kernel matrix, namely a weak block structure in which, on
average, intra-cluster interactions dominate inter-cluster ones along a contrast direction, and under
explicit, verifiable bounds on the parameters and the initialization, gradient flow of the SimCLR loss
yields linear separation in finite time. This identifies a concrete mechanism, quantifies the thresholds
that trigger separation, and links training dynamics to the geometry of the learned representation.

For clarity, we state the result in a streamlined setting with two clusters and a one-dimensional em-
bedding; the argument extends with minor modifications to multiple clusters and higher-dimensional
embeddings. The full proof is given in the appendix.
Theorem 4.3. Let f : Rp × RD → R be such that, for each x, the map w 7→ f(w, x) is C2. Let
X = {xi}ni=1 ⊂ RD be partitioned into clusters X1, X2. Assume:

(a) Initial closeness: |f(w(0), x)− f(w(0), y)| ≤ ε for all x, y ∈ X .

(b) Augmentation consistency:
∣∣∣ET∼ν [f(w, T (xi))]− 1

|Xq|
∑

j∈Xq
f(w, xj)

∣∣∣ < γ, ∀xi ∈ Xq .

(c) Gradient structure: with gi = ∇wf(w(0), xi), define µq = 2
n

∑
i∈Xq

gi, ξi = gi − µq.
Assume Θ = ∥µ1 − µ2∥2 > 0, and 1

n

∑
i ∥ξi∥2 ≤ σ2.

(d) Kernel stability: for Kij(t) defined in eq. (8), ∥K(t)−K(0)∥op ≤ δ for t ∈ [0, T].

(e) Parameter regime: Θ
√
n ε ≫ ε3

τ + γ + σ2 + δ.

Then under the gradient flow of the simplified SimCLR loss

L(z, x) = ET∼ν

[
log

1
n

∑
y∈X exp(−∥z − f(w, T (y))∥2/2τ)
exp(−∥z − f(w, T (x))∥2/2τ)

]
, (12)

there exists t > 0 such that {zi(t)}ni=1 are linearly separable into clusters matching X1, X2.
Remark 4.3. The loss formulation in eq. (12) is considered simplified because the data augmentation
T ∼ ν is applied only to one of the samples in each pairwise comparison, both in the numerator
(repulsion) and the denominator (attraction). In contrast, the full SimCLR loss applies independent
augmentations to both samples. This simplification preserves the essential structure of the contrastive
objective while making the analysis more tractable.
Remark 4.4. The theorem is not restricted to neural networks. It applies to any family of parameter-
ized functions for which the function is twice differentiable with respect to the parameters near the
initialization. The result therefore covers generalized linear models, spline or radial basis parametriza-
tions, and deep networks alike. The model enters only through its parameter gradients and the
resulting kernel, which are the quantities constrained by the assumptions.

4.2.1 VERIFICATION OF THE PARAMETER CONDITION FOR LINEAR SEPARABILITY.

In Theorem 4.3, we obtain a concrete parameter condition for the emergence of linear separation.
The decisive quantity is the ratio between ε, the initial intra-cluster feature distance, and τ , the
temperature parameter. When ε3/τ is small, separation appears early in training. When this ratio is
large, separation is delayed or may fail to occur.

To illustrate the role of the parameter condition in Theorem 4.3, Figure 3 compares training dynamics
produced by the same neural network with one hidden layer of 100 neurons. The input dataset is

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Input data

Small ratio ε3/τ Large ratio ε3/τ Larger ratio ε3/τ

Figure 3: This experiment verifies the parameter condition in Theorem 4.3. The training outcome is
governed by the ratio between the initial intra-feature distance ε and the temperature τ in the SimCLR
loss. When ε3/τ is small, the dynamics quickly produce linearly separable features after a short time.
When ε3/τ is large, separation is delayed and may not occur even after 10,000 iterations.

Donuts (data) MNIST (data) CIFAR10 (data)

1D embedding (Donuts) 1D embedding (MNIST) 1D embedding (CIFAR10)

Figure 4: Top row: visualizations of nonlinear input datasets that are not linearly separable. Bottom
row: corresponding one-dimensional embedding trajectories over iterations under SimCLR gradient
flow, showing increasing cluster structure and eventual linear separability.

clustered, as shown in the left panel. In this setting, condition (c) of Theorem 4.3 holds at initialization:
if f is C2 in w, then ∇wf(w(0), x) is locally Lipschitz in x. Thus, for points x, x′ within the same
cluster of diameter at most r, ∥∇wf(w(0), x) − ∇wf(w(0), x

′)∥ ≤ Lr, and the within-cluster
deviations ξi = gi − µq(i) satisfy 2

n

∑
i∈Xq

∥ξi∥2 ≲ L2r2, while distinct clusters give µ1 ̸= µ2.
The second plot, corresponding to a small ratio ε3/τ (ε = 0.02, τ = 0.1), shows early linear
separation. The third plot with (ε = 1, τ = 10−2) demonstrates delayed but eventual separation.
The fourth plot, corresponding to a larger ratio (ε = 1, τ = 10−3), shows almost no change even
after many iterations. These comparisons highlight the sensitivity of the training outcome to the
interplay between the initial feature scale ε and the temperature parameter τ .

4.2.2 EMERGENCE OF LINEAR SEPARABILITY FROM COMPLEX DATASETS.

Figure 4 shows three experiments where features become linearly separable under gradient flow of
the SimCLR loss, starting from datasets that are nonlinear and more complex than the well-clustered
case in Figure 3. The networks are: a one-hidden-layer MLP with 100 neurons, a three-hidden-layer
MLP with 100 neurons per layer, and a small CNN with two convolutional layers followed by one
fully connected layer. The datasets are an artificial donut, MNIST (three classes), and CIFAR10 (two
classes). Augmentations are as follows: for the donut, a random rotation in which T (x) is sampled
uniformly on the circle centered at the origin with radius ∥x∥; for MNIST, Gaussian blur, random
rotation, and resizing; for CIFAR10, Gaussian blur, random rotation, resizing, and color jittering. In
all runs, features are initialized uniformly in an ε-ball and then evolved by gradient flow. Each curve
traces one particle and is colored by its cluster label. Across all settings, the learned features become

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

increasingly linearly separable, indicating that the separation mechanism extends beyond the theory’s
simplifying assumptions. In particular, condition (c) in Theorem 4.3 may not hold at initialization for
these complex datasets.

To connect these observations with the theorem, we examine the kernel K in eq. (8). Condition (c)
requires K to be approximately block structured. Empirically, we observe that if this structure is
absent at initialization, training first reshapes K toward it, which typically adds iterations.

We visualize this transition in Figure 5 using two clusters so that the target pattern is a 2× 2 block.
Panels (a) and (b) show the linearly separable case from Figure 3 with two clusters. A clear block
structure is already visible at iteration 0 because the data are well clustered (see Section 4.2.1), and
it refines only modestly by iteration 5000. Panels (c) and (d) show the donut dataset, which is not
well clustered: the initial kernel shows little separation, but by iteration 5000 a sharp block structure
emerges. These visuals link the empirical separation in Figure 4 to the hypothesis in Theorem 4.3:
once training sculpts K into the required block form, linear separability follows.

A natural extension of Theorem 4.3 is a warm-start formulation. After some time tb > 0, once the
kernel K(tb) exhibits the approximate block structure encoded in condition (c), replace w(0) by
w(tb) and redefine gi = ∇wf

(
w(tb), xi

)
, µq, and ξi. Under the same parameter regime, the proof

of Theorem 4.3 then applies verbatim and yields linear separability for {zi(t)}ni=1 at some t > tb.

A complete dynamical theory that predicts when gradient flow sculpts K(t) into the required block
form is an independent and technically substantial problem. It complements the present contribution,
which isolates a structural condition on K and provides rigorous guarantees once that condition is
met. A principled analysis of this kernel evolution, including how the choice of augmentation and
neural network training influences it, is a promising direction for future work.

(a)
Linear data
Iteration 0 (b)

Linear data
Iteration 5000 (c)

Nonlinear data
Iteration 0 (d)

Nonlinear data
Iteration 5000

Figure 5: Evolution of the kernel matrix K in eq. (8) for two-cluster datasets. Linear data: clear 2× 2
block structure at t = 0 (a) and mild refinement by 5000 iterations (b). Nonlinear donut: no block
structure at t = 0 (c) but pronounced blocks after 5000 iterations (d).

5 CONCLUSION AND FUTURE WORK

We study SimCLR through a variational analysis and through the gradient flow dynamics of a neural
network that represents the embedding map. Our analysis shows that contrastive learning can induce
linear separability under suitable conditions, as formalized in Theorem 4.3. Although we assume that
the kernel is approximately block structured, the theorem provides explicit, verifiable conditions on
the parameters and the initialization that ensure separation in finite time and offer practical guidance
for their choice.

Future work includes developing a mean–field limit for the dynamics (Mei et al., 2018), analyzing the
infinite–width regime in the NTK setting to obtain convergence guarantees and rates, and studying
when training and data augmentations drive the kernel toward the required structure as observed in
Figure 5, with the goal of relaxing the block assumption to weaker spectral conditions.

Additionally, in many contrastive learning studies, the neural network is trained end-to-end, but the
last layer is discarded when extracting features. Prior works Bordes et al. (2023); Gui et al. (2023);
Wen & Li (2022) have shown that this can improve feature quality. While we do not consider this
effect in our current analysis, understanding its impact on training dynamics is another compelling
direction for future investigation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. Advances in neural information processing systems, 32, 2019.

Randall Balestriero and Yann LeCun. Contrastive and non-contrastive self-supervised learning
recover global and local spectral embedding methods. Advances in Neural Information Processing
Systems, 35:26671–26685, 2022.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

Florian Bordes, Randall Balestriero, Quentin Garrido, Adrien Bardes, and Pascal Vincent. Guillotine
regularization: Why removing layers is needed to improve generalization in self-supervised
learning. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ZgXfXSz51n.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Davide Chicco. Siamese neural networks: An overview. Artificial neural networks, pp. 73–94, 2021.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with convolutional neural networks. Advances in neural information
processing systems, 27, 2014.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Yu Gui, Cong Ma, and Yiqiao Zhong. Unraveling projection heads in contrastive learning: Insights
from expansion and shrinkage. arXiv preprint arXiv:2306.03335, 2023.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE computer society conference on computer vision and pattern recognition
(CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. Advances in Neural Information Processing Systems,
34:5000–5011, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Wenlong Ji, Zhun Deng, Ryumei Nakada, James Zou, and Linjun Zhang. The power of contrast for
feature learning: A theoretical analysis. Journal of Machine Learning Research, 24(330):1–78,
2023.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Byoungjip Kim, Jinho Choo, Yeong-Dae Kwon, Seongho Joe, Seungjai Min, and Youngjune Gwon.
Selfmatch: Combining contrastive self-supervision and consistency for semi-supervised learning.
arXiv preprint arXiv:2101.06480, 2021.

10

https://openreview.net/forum?id=ZgXfXSz51n
https://openreview.net/forum?id=ZgXfXSz51n

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learning: A
framework and review. Ieee Access, 8:193907–193934, 2020.

Doyup Lee, Sungwoong Kim, Ildoo Kim, Yeongjae Cheon, Minsu Cho, and Wook-Shin Han. Con-
trastive regularization for semi-supervised learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 3911–3920, 2022.

Alexander C Li, Alexei A Efros, and Deepak Pathak. Understanding collapse in non-contrastive
siamese representation learning. In European Conference on Computer Vision, pp. 490–505.
Springer, 2022.

Junnan Li, Caiming Xiong, and Steven CH Hoi. Comatch: Semi-supervised learning with contrastive
graph regularization. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 9475–9484, 2021.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Linghuan Meng and Chuang Wang. Training dynamics of nonlinear contrastive learning model in the
high dimensional limit. IEEE Signal Processing Letters, 2024.

Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun, and Bobak
Kiani. Self-supervised learning with lie symmetries for partial differential equations. Advances in
Neural Information Processing Systems, 36:28973–29004, 2023.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Kendrick Shen, Robbie M Jones, Ananya Kumar, Sang Michael Xie, Jeff Z HaoChen, Tengyu Ma,
and Percy Liang. Connect, not collapse: Explaining contrastive learning for unsupervised domain
adaptation. In International conference on machine learning, pp. 19847–19878. PMLR, 2022.

Ankit Singh. Clda: Contrastive learning for semi-supervised domain adaptation. Advances in Neural
Information Processing Systems, 34:5089–5101, 2021.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? Advances in neural information processing systems,
33:6827–6839, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International conference on machine learning, pp.
9929–9939. PMLR, 2020.

Zixin Wen and Yuanzhi Li. The mechanism of prediction head in non-contrastive self-supervised
learning. Advances in Neural Information Processing Systems, 35:24794–24809, 2022.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019a.

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in
frequency domain. In Neural Information Processing: 26th International Conference, ICONIP
2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part I 26, pp. 264–274.
Springer, 2019b.

Fan Yang, Kai Wu, Shuyi Zhang, Guannan Jiang, Yong Liu, Feng Zheng, Wei Zhang, Chengjie
Wang, and Long Zeng. Class-aware contrastive semi-supervised learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14421–14430, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chaoning Zhang, Kang Zhang, Chenshuang Zhang, Trung X Pham, Chang D Yoo, and In So
Kweon. How does simsiam avoid collapse without negative samples? a unified understanding with
self-supervised contrastive learning. arXiv preprint arXiv:2203.16262, 2022a.

Yuhang Zhang, Xiaopeng Zhang, Jie Li, Robert C Qiu, Haohang Xu, and Qi Tian. Semi-supervised
contrastive learning with similarity co-calibration. IEEE Transactions on Multimedia, 25:1749–
1759, 2022b.

A APPENDIX

B APPENDIX

In the appendix, we present the proofs of that are missing in the main manuscript.

B.1 INTERPRETATION OF VICREG AND BYOL

In this section, we further explore our observation that the NT-Xent loss becomes independent
of the data distribution once the feature map f is invariant. Consequently, the latent distribution
corresponding to an invariant minimizer can be entirely unrelated to the input data. The following
proposition demonstrates this.

Proposition B.1. Suppose that µ ∈ P(Rd) is absolutely continuous and that the embedding map
f : RD → Rd is invariant under the distribution ν (satisfying eq. (2)). By applying a change of
variables, we obtain the following reformulation of eq. (1):

min
f :RD→Rd

Ex∼f#µ log
(
1 + 2Ey∼f#µ

[
1x ̸=y exp

(
simf (x, y)/τ

)])
= min

ρ∈P(Rd)
Ex∼ρ log

(
1 + 2Ey∼ρ

[
1x ̸=y exp

(
sim(x, y)/τ

)])
,

where sim(x, y) = simId(x, y) =
x·y

∥x∥∥y∥ .

The result in Proposition B.1 shows that minimizing the NT-Xent cost with respect to an embedding
map, once the map is invariant, is equivalent to minimizing over the probability distribution in the
latent space. This minimization is completely independent of the input data distribution µ.

We further show that two other popular methods for learning dataset invariance with deep learning
models exhibit a similar phenomenon as in Proposition B.1, namely, that the loss function itself
becomes independent of the original data structure if the embedding map becomes invariant.

First, consider the VICReg Bardes et al. (2021) loss. Given a data distribution µ ∈ P(RD) and a
distribution for the perturbation functions ν, VICReg minimizes

min
f :RD→Rd

Ef,g∼νEx1,··· ,xn∼µ
λ1

n

n∑
i=1

∥f(f(xi))− f(g(xi))∥2

+ λ2

(
v(f(f(x1)), · · · , f(f(xn))) + v(f(g(x1)), · · · , f(g(xn)))

)
+ λ3

(
c(f(f(x1)), · · · , f(f(xn))) + c(f(g(x1)), · · · , f(g(xn)))

)
where λ1, λ2, and λ3 are hyperparameters. The first term ensures the invariance of f with respect
to perturbation functions from ν, v maintains the variance of each embedding dimension, and c
regularizes the covariance between pairs of embedded points towards zero. Suppose f is an invariant
embedding map such that f(T (x)) = f(x) for all T ∼ ν. Then, the above minimization problem

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

becomes

min
f :RD→Rd

Ef,g∼νEx1,··· ,xn∼µλ2

(
v(f(x1), · · · , f(xn)) + v(f(x1), · · · , f(xn))

)
+ λ3

(
c(f(x1), · · · , f(xn)) + c(f(x1), · · · , f(xn))

)
= min

f :RD→Rd
Ey1,··· ,yn∼f#µλ2

(
v(y1, · · · , yn) + v(y1, · · · , yn)

)
+ λ3

(
c(y1, · · · , yn) + c(y1, · · · , yn)

)
Similar to the result in Proposition B.1, the invariance term vanishes. This minimization can now be
expressed as a minimization over the embedded distribution:

min
ρ∈P(Rd)

Ey1,··· ,yn∼ρλ2

(
v(y1, · · · , yn) + v(y1, · · · , yn)

)
+ λ3

(
c(y1, · · · , yn) + c(y1, · · · , yn)

)
This shows that given an invariant map f , the minimization problem becomes completely independent
of the input data µ, thus demonstrating the same ill-posedness as the NT-Xent loss in Proposition B.1.

Now, consider the loss function from BYOL Grill et al. (2020). Given a data distribution µ ∈ P(RD)
and a distribution for the perturbation functions ν, the loss takes the form

min
f,q

Ef,g∼νEx∼µ∥q(f(T (x)))− f(T ′(x))∥2

where q : Rd → Rd is an auxiliary function designed to prevent f from collapsing all points x to a
constant in Rd. Similar to the previous case, if we assume an invariant map f , the above problem
becomes

min
f,q

Ex∼µ∥q(f(x))− f(x)∥2 = min
f,q

Ey∼f#µ∥q(y)− y∥2

where the second equality follows from a change of variables. Again, this minimization problem can
be written with respect to the embedded distribution as:

min
ρ∈P(Rd),q

Ey∼ρ∥q(y)− y∥2

This again shows that once the invariant map is considered, the minimization problem becomes
completely independent of the input data µ, highlighting the ill-posedness of the cost function.

B.2 FURTHER ANALYSIS OF THE STATIONARY POINTS OF NT-XENT LOSS

Our first result provides the first order optimality conditions of the NT-Xent loss eq. (3).

Proposition B.2. The first optimality condition of the problem eq. (3) takes the form∫
T

∫
RD

〈∫
T

∫
RD

(
Ψ′(GT,T ′(f, x))

ηf (T (x), T ′(x))
+

Ψ′(GT,T ′(f, y))

ηf (T (y), T ′(y))

)
η′f (T (x), T

′(y))
(
f(T (x))−f(T ′(y))

)
−
(
Ψ′(GT,T ′(f, x))ηf (T (x), T

′(y)) + Ψ′(GT ′,T (f, x))ηf (T
′(x), T (y))

)
η′f (T (x), T

′(x))

η2f (T (x), T
′(x))

(
f(T (x))− f(T ′(x))

)
dµ(y)dν(T ′), h(T (x))

〉
dµ(x)dν(T) = 0 (13)

for all h such that f + h ∈ C where η′f (x, y) = η′(∥f(x) − f(y)∥2/2), Ψ(t) = log(1 + t) and

GT,T ′(f, x) =
Ez∼µηf (T (x),T ′(z))

ηf (T (x),T ′(x)) .

If f is invariant to the perturbation in ν, then the gradient of L takes the form

∇L(f)(x) =

∫
RD

(Ψ′(GId,Id(f, x)) + Ψ′(GId,Id(f, y))) η
′
f (x, y)(f(x)− f(y))dµ(y). (14)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Using the first optimality condition described in Proposition B.2, we can characterize the minimizer
of the NT-Xent loss in eq. (3). The following theorem describes the possible local minimizers of
eq. (3), considering the constraint set defined as C = {f : RD → Sd−1}.

From the modified formulation eq. (3), we can define a minimizer that minimizes the function L(f)
on a constraint set C = {f : RD → Rd}. The following proposition provides insight into the
minimizer of eq. (3). The proof is provided in the appendix.
Proposition B.3. This proposition describes three different possible local minimizers of eq. (3) that
satisfy the Euler-Lagrange equation in eq. (13).

1. Any map f : RD → Rd that maps to a constant, such that

f(x) = c ∈ Rd, ∀x ∈ M.

2. In addition to the condition in eq. (4), suppose the attraction and repulsion similarity
functions a : R≥0 → R and r : R≥0 → R satisfy the following properties:

(a) Each function is maximized at 0, where its value is 1.
(b) Each function satisfies limt→∞ a(t) = 0 and limt→∞ ta′(t) = 0.

Let f be a map invariant to T . Consider a sequence of maps {fk} such that

fk(x) = kf(x), ∀x ∈ M,∀k ∈ N.

The limit f∗ = limk→∞ fk satisfies the Euler-Lagrange equation eq. (13).

Proof of Proposition B.3. If f is a constant function, it is trivial that it satisfies eq. (13).

Let us prove the second part of the proposition. From the Euler-Lagrange equation in eq. (13),
by plugging in fk and using the fact that f is invariant to T , the Euler-Lagrange equation can be
simplified to∫

RD

(Ψ′(G(fk, Id, x)) + Ψ′(G(fk, Id, y))) r
′
fk
(x, y)⟨fk(x)− fk(y), h(x)⟩ dµ(y)

for any h : RD → Rd. Using the invariance of fk, we have

=

∫
RD

(
Ψ′(G(fk, Id, x)) + Ψ′(G(fk, Id, y))

)(
kr′fk(x, y)

)
⟨f(x)− f(y), h(x)⟩ dµ(y). (15)

Furthermore, by the assumptions on the function r,

kr′fk(x, y) = kr′
(
k2∥f(x)− f(y)∥2

2

)
→ 0, as k → ∞

Ψ′(G(fk, Id, x)) = Ψ′
(
Ez∼µr

(
k2∥f(x)− f(z)∥2

2

))
→ Ψ′(0), as k → ∞.

Thus, eq. (15) converges to 0 as k → ∞. This proves the theorem.

B.3 PROOF OF THEOREM 3.1

First, we prove Theorem 3.1, which characterizes the stationary points of the loss function. After
the proof, we demonstrate that by considering an additional condition on the direction of the second
variation at the stationary points, it is the second variation is strictly positive, thereby showing that
the stationary point is a local minimizer under this condition.

Proof of Theorem 3.1. We consider the following problem:

min
f :RD→Sd−1

L(f), (16)

where L is a loss function defined in eq. (3). The problem in eq. (16) can be reformulated as a
constrained minimization problem:

min
f :RD→Rd

∥f∥=1

L(f).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

By relaxing the the constraint for ∥f∥ = 1, we can derive the lower bound such that

min
f :RD→Rd

∥f∥=1

L(f) ≥ min
f :RD→Rd∫
RD ∥f∥dµ=1

L(f).

Note that since the constraint sets satisfy {∥f∥ = 1} ⊂ {
∫
RD ∥f∥dµ = 1}, the stationary point from

from the latter constraint set is also the stationary point of the prior set.

By introducing the Lagrange multiplier λ for the constraint, we can convert the minimization problem
into a minimax problem:

min
f :RD→Rd

max
λ∈R

[L(f) + λEx∼µ(1− ∥f(x)∥)] . (17)

Using the Euler-Lagrange formulation in eq. (13), we can derive the Euler-Lagrange equation for the
above problem, incorporating the Lagrange multiplier. To show that f is a minimizer of the problem
in eq. (17), we need to demonstrate that there exists λ ∈ R such that the following equation holds:∫

RD

[Ψ′(G(f, x)) + Ψ′(G(f, y))] η′f (x, y)(f(x)− f(y)) dµ(y)− λ
f(x)

∥f(x)∥
= 0,

for all x ∈ M. Note that since f is an invariant map, f disappears and ηf (x, f(x)) = 1. Furthermore,
since f maps onto Sd−1, we have ∥f(x)∥ = 1 for all x ∈ RD. Additionally, using the change of
variables, we obtain

λ = C

∫
Sd−1

r′(|x− y|2/2)(x− y) df#µ(y), (18)

where C is defined as C = Ψ′(Ez∼f#µ

[
r(|x0 − z|2/2)

]
) for x0 ∼ f#µ. Given that the function

h(x, y) = r′(|x− y|2/2)(x− y)

is an anti-symmetric function, by the assumption on f#µ in eq. (5), the integral on the right-hand
side of eq. (18) is constant for all x ∼ f#µ. Therefore, by defining λ as in eq. (18), this proves the
lemma.

Now that we have identified the characteristics required for embedding maps to be stationary points,
the next lemma shows that the second variation at this stationary point, in a specific direction h, is
positive. This demonstrates that the stationary point is indeed a local minimizer along this particular
direction.

Lemma B.4. Fix τ > 0 and define ηf (x, y) = e−∥f(x)−f(y)∥2/2τ . Let f : RD → Sd−1 be an
embedding map such that the embedded distribution f#µ =

∑n
i=1 δxi

is a discrete measure on Sd−1,
satisfying that the number of points n = Km, where K is the number of cluster centers {ξi}Ki=1 and
m is some positive integer. Moreover, the points satisfy the condition:

xi = ξ⌊i/K⌋+1 for i ∈ JnK. (19)

Furthermore, let σ > 0 be a positive constant satisfying σ > 3K2τ . Then,

δ2L(f)(h, h) > 0

for any h : RD → Rd satisfying f + h ∈ Sd−1 and(
⟨f(ξi)− f(ξj), h(ξi)− h(ξj)⟩

)2
≥ σ∥h(ξi)− h(ξj)∥2. (20)

Proof. Let f : RD → Rd be an invariant embedding map. From Proposition B.2, the first variation
takes the form∫

RD

Ψ′(G(f, x))

∫
RD

η′f (x, y)⟨f(x)− f(y), h(x)− h(y)⟩dµ(y)dµ(x).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The second variation takes the form∫
RD

Ψ′′(G(f, x))

(∫
RD

η′f (x, y)⟨f(x)− f(y), h(x)− h(y)⟩dµ(y)
)2

dµ(x)

+

∫
RD

Ψ′(G(f, x))

∫
RD

r′′f (x, y)
(
⟨f(x)− f(y), h(x)− h(y)⟩

)2
dµ(y)dµ(x)

+

∫
RD

Ψ′(G(f, x))

∫
RD

η′f (x, y)∥h(x)− h(y)∥2dµ(y)dµ(x).

For simplicity, let us choose explicit forms for Ψ and r. The proof will be general enough to apply
to any Ψ and r that satisfy the conditions mentioned in the paper. Let Ψ(t) = log(1 + t/2) and
r(t) = e−t/(2τ). With these choice of functions and by the change of variables,

=− 1

τ2

∫
Sd−1

(
1

1 +G(x)2/2

)2(∫
Sd−1

e−∥x−y∥2/(2τ)⟨x− y, T ′(x)− T ′(y)⟩df#µ(y)
)2

df#µ(x)

+
1

τ2

∫
Sd−1

1

1 +G(x)2/2

∫
Sd−1

e−∥x−y∥2/(2τ)
(
⟨x− y, T ′(x)− T ′(y)⟩

)2
df#µ(y)df#µ(x)

− 1

τ

∫
Sd−1

1

1 +G(x)2/2

∫
Sd−1

e−∥x−y∥2/(2τ)∥T ′(x)− T ′(y)∥2df#µ(y)df#µ(x).

(21)

where G(x) = Ey∼f#µe
−∥x−y∥2/(2τ) and T ′(x) = h(f−1(x)). By Jensen’s inequality, we have(∫
Sd−1

e−∥x−y∥2/(2τ)⟨x− y, T ′(x)− T ′(y)⟩df#µ(y)
)2

≤
∫
Sd−1

e−∥x−y∥2/(2τ)
(
⟨x− y, T ′(x)− T ′(y)⟩

)2
df#µ(y).

Therefore, eq. (21) can be bounded below by

≥ 1

τ2

∫
Sd−1

G(x)2/2

(1 +G(x)2/2)2

∫
Sd−1

e−∥x−y∥2/(2τ)
(
⟨x− y, T ′(x)− T ′(y)⟩

)2
df#µ(y)df#µ(x)

− 1

τ

∫
Sd−1

1

1 +G(x)2/2

∫
Sd−1

e−∥x−y∥2/(2τ)∥T ′(x)− T ′(y)∥2df#µ(y)df#µ(x)

=
1

τ2

∫
Sd−1

1

1 +G(x)2/2

∫
Sd−1

e−∥x−y∥2/(2τ)(
G(x)2

2(1 +G(x)2/2)

(
⟨x− y, T ′(x)− T ′(y)⟩

)2
− τ∥T ′(x)− T ′(y)∥2

)
df#µ(y)df#µ(x).

By the assumption on f#µ in eq. (19), the above can be written as

=
1

n2τ2

n∑
i=1

1

1 + G̃(xi)2/2

n∑
j=1
j ̸=i

e−∥xi−xj∥2/(2τ)

(
G̃(xi)

2

2(1 +G(x)2/2)

(
⟨xi − xj , g(xi)− g(xj)⟩

)2
− τ∥g(xi)− g(xj)∥2

)

=
m2

n2τ2

K∑
i=1

1

1 + G̃(ξi)2/2

K∑
j=1
j ̸=i

e−∥ξi−ξj∥2/(2τ)

(
G̃(ξi)

2

2(1 + G̃(ξi)2/2)

(
⟨ξi − ξj , g(ξi)− g(ξj)⟩

)2
− τ∥g(ξi)− g(ξj)∥2

)
(22)

If K = 1, the second variation becomes 0, and is therefore nonnegative. Now, suppose K > 1. We
can bound G̃ from below by

G̃(ξi) =
1

K

K∑
k=1

e−∥ξi−ξk∥2/(2τ) ≥ 1

K
. (23)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Furthermore, from the condition in eq. (20), we have(
⟨ξi − ξj , g(ξi)− g(ξj)⟩

)2
≥ σ∥g(ξi)− g(ξj)∥2 (24)

for some positive constant σ > 0. Combining eq. (23) and eq. (24), we can bound eq. (22) from
below by

≥ 1

K2τ2

K∑
i=1

1

1 + G̃(ξi)2/2

K∑
j=1
j ̸=i

e−∥ξi−ξj∥2/(2τ)
(σ

3K2
− τ
)
∥g(ξi)− g(ξj)∥2.

By the condition on σ, the above quantity is strictly greater than zero. This concludes the proof of the
lemma.

B.4 PROOF OF PROPOSITION 4.1

Proof. The gradient of L is given by

∇L(w) = 1

n

n∑
i=1

d∑
k=1

∇zkL(f(w, xi), xi)∇wf
k(w, xi) (25)

where ∇zkL(f(w, xi)) is a gradient of L with respect to k-th coordinate.

For simplicity of notation, let us denote by

fk
i = fk(w, xi), Li = L(f(w, xi), xi).

Thus, eq. (25) can be rewritten as

∇L(w) = 1

n

n∑
i=1

d∑
k=1

∇zkLi∇wf
k
i (26)

By the definition of the loss function in eq. (6), w(t) satisfies the gradient flow such that

ẇ(t) = −∇L(w). (27)

Thus, the solution of the above ODE converges to the local minimizer of L as t grows.

For each i ∈ JnK and k ∈ JdK, denote by

zki (t) = fk
i (t).

Let us compute the time derivative of zki . Using a chain rule, eq. (26) and eq. (27),

żki (t) = ∇wf
k
i · ẇ(t) = −∇wf

k
i · ∇L(w) = − 1

n

m∑
j=1

d∑
l=1

∇wf
k
i · ∇wf

l
j ∇ylLj . (28)

Using eq. (8), eq. (28), żi(t) can be written as

żi(t) = − 1

n

n∑
j=1

Kij∇Lj(t).

This completes the proof.

B.5 PROOF OF THEOREM 4.2

Proof. Consider the gradient descent iterations in eq. (10). Suppose f is invariant to the perturbation
from ν at b-th iteration, that is we have f(w(b), f(x)) = f(w(b), x) for all x ∼ µ and T ∼ ν. We

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

want to show that, given an invariant embedding map f(w(b), ·), it remains invariant after iteration b.
From the gradient formulation of the loss function in Proposition B.2, we have

∇L(f(w(b), x), x) = −
∫
RD

Ψ′(x, y)(f(w(b), x)− f(w(b), y)) dµ(y),

where Ψ′(x, y) =
(
Ψ′(G(f(w(b), ·), x)) + Ψ′(G(f(w(b), ·), y))

)
η′
f(w(b),·)(x, y).

From the gradient descent formulation in eq. (10), we have

f(w(b+1), f(xi)) = f(w(b), f(xi))− σ∇L(f(w(b), f(xi))),

which gives

f(w(b+1), f(xi)) = f(w(b), f(xi)) + σ

∫
RD

Ψ′(x, y)(f(w(b), f(xi))− f(w(b), y)) dµ(y),

and since f(w(b), f(xi)) = f(w(b), xi) by invariance, this simplifies to

f(w(b+1), xi)− σ∇L(f(w(b), xi), xi) = f(w(b+1), xi),

which shows that f(w(b+1), xi) is invariant for all i ∈ JnK. Therefore, the embedding map remains
invariant throughout the optimization process.

Now, consider the gradient descent iteration with a neural network in eq. (11). Suppose f is invariant
to perturbations from ν and satisfies

∇wf(w
(b), f(x)) = ∇wf(w

(b), x), ∀x ∼ µ, f ∼ ν. (29)

Denote the kernel matrix function Kij given a perturbation function T ∼ ν as

(Kij(w
(b), f))kl = (∇wf

k(w(b), f(xi)))
⊤(∇wf

l(w(b), f(xj))).

Then, we have

f(w(b+1), f(xi)) = f(w(b), f(xi))−
σ

n

n∑
j=1

Kij(w
(b), f)∇L(f(w(b), f(xi)), xi)

= f(w(b), xi)−
σ

n

n∑
j=1

Kij(w
(b), Id)∇L(f(w(b), xi), xi)

= f(w(b+1), xi).

Thus, if f is invariant at the b-th iteration, it remains invariant. However, note that this result no
longer holds if the condition in eq. (29) fails, meaning that f is not invariant for b+ 1-th iteration.
This completes the proof.

B.6 EXPLICIT FORMULA FOR THE NEURAL NETWORK KERNEL MATRIX

In this section, we derive an explicit formula for the kernel matrix to better understand how the neural
network kernel influences the gradient descent dynamics of f(w(t), x) for data points x ∈ X . This
formula provides insight into how the kernel governs the evolution of features during training.

While the main paper focuses on a simplified case where the embedding map outputs real-valued
features (i.e., f : RMD+D → R), here we consider a more general setting where the embedding map
outputs vector-valued features in Rd. This generalization allows us to derive a broader formula for
the kernel matrix. Specifically, we consider a one-hidden-layer fully connected neural network of the
form f : RMDd+D → Rd.

f(w(t), x) = A⊤σ(w(t)x), (30)
where x ∈ RD is a data sample and A ∈ RMd×d is a constant matrix defined as

A =
1√
MD


1M×1 0M×1 · · · 0M×1

0M×1 1M×1 · · · 0M×1

...
...

. . .
...

0M×1 0M×1 · · · 1M×1

 ∈ RMd×d, (31)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where 1M×1 and 0M×1 represent the M -dimensional vectors of ones and zeros, respectively. Ad-
ditionally, w(t) = (bkp(t))k∈JDK,p∈JMdK ∈ RMd×D is the weight matrix, and σ is a differentiable
activation function applied element-wise.

Note that A acts as an averaging matrix that, when multiplied by the (Md)-dimensional vector
σ(w(t)x), produces a d-dimensional vector. Furthermore, we assume that the parameters of w(t) are
uniformly bounded, such that there exists a constant C with |bkp(t)| < C for all t ≥ 0, k, and p.

Proposition B.5. Given the description of the embedding map in eq. (30), the kernel matrix Kkl
ij

defined in eq. (8) can be explicitly written as

Kkl
ij =

1k=l

MD
x⊤
i xj

kM∑
p=(k−1)M+1

σ′(bpxi)σ
′(bpxj). (32)

where 1k=l is an indicator function that equals 1 if k = l and 0 otherwise.

Proof. We describe the matrices A ∈ RMd×d and B ∈ RMd×D as follows:

A =

 | | · · · |
a1 a2 · · · ad

| | · · · |

 =

− a1 −
...

− aMd −

 =

 a11 · · · ad1
... · · ·

...
a1Md · · · adMd

 ,

B(t) =

 | | · · · |
b1(t) b2(t) · · · bD(t)
| | · · · |

 =

− b1(t) −
...

− bMd(t) −

 =

 b11(t) · · · bD1 (t)
... · · ·

...
b1Md(t) · · · bDMd(t)

 .

In this notation, ak and bk are Md-dimensional column vectors, ap and bp are d- and D-dimensional
row vectors, and akp and bkp are scalars.

We can write fk with respect to aki and bki .

fk(B, x) = (ak)⊤σ(Bx) =

Md∑
i=1

aki σ
(
bix
)
=

1√
MD

kM∑
i=(k−1)M+1

σ
(
bix
)

where the last equality uses the definition of a matrix A in eq. (31). By differentiating with respect to
bli, we can derive explicit forms for the gradient of fk with respect to a weight matrix B.

∇wf
k(B, x) =

(
ak ⊙ σ′(Bx)

)
x⊤

=

 ak1σ
′(b1x)x

1 · · · ak1σ
′(b1x)x

D

...
. . .

...
akMσ′(bMx)x1 · · · akMσ′(bMx)xD



=
1√
MD



0 · · · 0
...

. . .
...

0 · · · 0
σ′(b1x)x

1 · · · σ′(b1x)x
D

...
. . .

...
σ′(bMx)x1 · · · σ′(bMx)xD

0 · · · 0
...

. . .
...

0 · · · 0


∈ RMd×D

where the row index of nonzero entries ranges from (k − 1)M + 1 to kM .

Define an inner product such that for h ∈ RMd×D

⟨∇wf
k(B, x), h⟩, k ∈ JDK.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Now we are ready to show the explicit formula of the inner product ⟨∇wf
k,∇wf

l⟩.

⟨∇wf
k(B, xi),∇wf

l(B, xj)⟩ =
1k=l

MD
(x⊤

i xj)

kM∑
p=(k−1)M+1

σ′(bpxi)σ
′(bpxj)

where 1k=l is an indicator function that equals 1 if k = l and 0 otherwise. Therefore, the kernel
matrix takes the form

(Kkl)ij =
1k=l

MD
(x⊤

i xj)

kM∑
p=(k−1)M+1

σ′(bpxi)σ
′(bpxj).

From Proposition B.5, as done in NTK paper (Jacot et al., 2018), one can consider how the kernel
converges as the width of the neural network approaches infinity, i.e., as M → ∞ in eq. (30).
The following proposition shows the formulation of the limiting kernel in the infinite-width neural
network.

Proposition B.6. Suppose the weight matrix B satisfies that each row vector bi, for i ∈ {1, . . . ,Md},
consists of independent and identically distributed random variables in RD with a Gaussian distri-
bution. Also, suppose the activation function is σ(x) = x+ = max{x, 0}. Then, as M → ∞, the
kernel matrix converges to K∞ ∈ Rd×d, where

K∞
ij =

x⊤
i xj

D

[
1

2
− 1

2π
arccos

(
x⊤
i xj

∥xi∥∥xj∥

)]
IIId×d, IIId×d is an identity matrix.

C PROOF OF THEOREM 4.3

Proof of Theorem 4.3. Step 1. Using (a) and (b), expand the gradient of equation 12 with respect to
zi and use exp(s) = 1 +O(s) for small s:

∇L(zi, xi) = − 1

nτ
ET

n∑
j=1

e−
∥zi−f(w,T (xj))∥

2

2τ

(
zi − f(w, T (xj))

)
+

2

nτ

∑
j∈XΓ(i)

(zi − zj) +O
(
ε3

τ2
+

γ

τ

)

≈ − 1

nτ
ET

n∑
j=1

(
zi − f(w, T (xj))

)
+

2

nτ

∑
j∈XΓ(i)

(zi − zj) +O
(
ε3

τ2
+

γ

τ

)

=
1

nτ

 n∑
j=1

zj − 2
∑

j∈XΓ(i)

zj

+O
(
ε3

τ2
+

γ

τ

)
.

Stacking over i gives

∇L =
1

τ
(J1 − 2J2)z +O

(
ε3

τ2
+

γ

τ

)
,

where J1 ∈ Rn×n has all entries 1/n, and J2 is block diagonal with equal 1/n entries within each
cluster block.

Step 2. Let K(0) denote the NTK Gram matrix at t = 0, with entries ⟨gi, gj⟩. Writing gi = µq + ξi
for i ∈ Xq and using

∑
i∈Xq

ξi = 0 together with 2
n

∑
i∈Xq

∥ξi∥2 ≤ σ2, we obtain

K(0) =

[
a1n/2×n/2 b1n/2×n/2

b1n/2×n/2 c1n/2×n/2

]
+O(σ2), a := ∥µ1∥2, c := ∥µ2∥2, b := ⟨µ1, µ2⟩,

so that a+ c− 2b = ∥µ1 − µ2∥2 = Θ > 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Step 3. The gradient flow is

ż(t) = − 1

n
K(t)∇L = − 1

n
K(0)∇L+RK(t), ∥RK(t)∥ ≤ δ

n
∥∇L∥.

Using Step 1,

ż(t) = − 1

nτ
K(0)(J1 − 2J2)z +R(t),

and, since (J1 − 2J2)z is block-constant with ∥(J1 − 2J2)z∥2 = O(
√
n) on [0, T],

∥R(t)∥ ≲
σ2

√
n τ

+
δ√
n τ

+
ε3

nτ2
+

γ

nτ
.

Abbreviate

K̃ :=
1

nτ
K(0)(J1 − 2J2), σ̃rem :=

σ2

√
n τ

+
δ√
n τ

+
ε3

nτ2
+

γ

nτ
,

so that R(t) = O(σ̃rem) and
ż(t) = −K̃z +R(t). (33)

With

u =
1√
nξ

[
(a− b)1n/2

(b− c)1n/2

]
, ξ := 1

2

(
(a− b)2 + (b− c)2

)
,

we have

K̃ u = −a+ c− 2b

4τ
u+O

(σ2

nτ

)
= − Θ

4τ
u+O

(σ2

nτ

)
,

so, by Weyl’s theorem and assumption (e), the eigenvalue is

λ = − Θ

4τ
+O

(σ2

nτ

)
< 0. (34)

Step 4. Decompose

z(t) = α(t)u+ z⊥(t), α(t) := ⟨z(t), u⟩, ⟨z⊥(t), u⟩ = 0.

From equation 33 and |⟨R(t), u⟩| ≤ ∥R(t)∥,

α̇(t) = −λα(t) + r∥(t), |r∥(t)| ≤ C σ̃rem.

Solving the linear ODE gives

α(t) = α(0) e−λt +O
(σ̃rem

−λ

(
e−λt − 1

))
. (35)

For the orthogonal component,

∥z⊥(t)∥ ≤ ∥z⊥(0)∥+ C t σ̃rem. (36)

The initial coefficient satisfies

α(0) = ⟨z(0), u⟩ =
√
n

2
√
ξ

(
(a− b) z̄(1) + (b− c) z̄(2)

)
, (37)

and after recentering the global mean, (a) yields

|α(0)| = O(
√
n ε), ∥z⊥(0)∥ = O(

√
n ε).

Step 5. For i ∈ X1 and j ∈ X2,

ui − uj =
(a− b)− (b− c)√

nξ
=

Θ√
nξ

,

so
zi(t)− zj(t) =

Θ√
nξ

α(t) +
(
z⊥,i(t)− z⊥,j(t)

)
. (38)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Using equation 36,∣∣z⊥,i(t)− z⊥,j(t)
∣∣ ≤ 2∥z⊥(t)∥ ≤ 2∥z⊥(0)∥+ C t σ̃rem = O(

√
n ε) + C t σ̃rem.

Insert equation 35 into equation 38 and choose the sign of u so that α(0) ≥ 0:

zi(t)− zj(t) ≥ Θ√
nξ

(
α(0) e−λt − C

σ̃rem

−λ

(
e−λt − 1

))
−O(

√
n ε)− C t σ̃rem.

With eq. (34) and |α(0)| = O(
√
n ε),

zi(t)− zj(t) ≥ CΘ√
ξ
ε e−λt − C

(τ√
nξ

σ̃rem e−λt +
√
n ε+ t σ̃rem

)
.

zi(t)− zj(t) ≥ C

(
Θε√
ξ
− τ σ̃rem√

nξ

)
e−λt − C

(√
n ε+ t σ̃rem

)
. (39)

Hence there exists t0 ∈ (0, T] with zi(t0) > zj(t0) provided the leading signal dominates. As-
sumption (e) is a clean sufficient condition; it is slightly stronger than necessary because the terms
multiplied by σ̃rem carry extra 1/

√
n or 1/n factors. The domination holds uniformly over cross-

cluster pairs, so linear separability follows at t0.

Define
F (t) :=

(
Θ√
ξ
ε− τ√

nξ
σ̃rem

)
e−λt − C

√
n ε − Ct σ̃rem.

From equation 39, we have zi(t)− zj(t) ≥ F (t). Since λ < 0, under the condition from assumption
(e),

Θ
√
n ε ≫ ε3

τ
+ γ + σ2 + δ ,

we get Θ
√
n ε ≫ τ σ̃rem, hence

A := Θ√
ξ
ε > B := τ√

nξ
σ̃rem.

Furthermore, F has strictly positive initial slope:

F ′(0) = −λ(A−B)− Cσ̃rem ≳
Θ

τ
· Θ√

ξ
ε− C ′σ̃rem > 0,

and, since e−λt grows while the error part is at most linear in t, the exponential term eventually
dominates the constant and linear terms. By continuity, there exists t0 ∈ (0, T] with F (t0) > 0,
hence

zi(t0)− zj(t0) ≥ F (t0) > 0

for every i ∈ X1, j ∈ X2. This proves linear separability at some time t0 within the window.

D EXTRA NUMERICAL RESULTS

In this section, we extend the experiment to higher-dimensional settings, where the feature distribution
lies in R2 and R3 instead of R, and present additional results to support Theorem 4.3. Furthermore,
we constrain the embedding maps to lie in the set C = {f : RD → Sd−1}, where we consider
d = 2, 3, making the setup closer to the original NT-Xent loss in eq. (1). All experiments in the paper
are conducted using one NVIDIA GeForce RTX 2080.

These experiments further illustrate how neural network optimization influences training dynamics.
We also compare the behavior of vanilla gradient descent (assuming that f is fixed at time t = 0
as in eq. (2)) with that of gradient descent through a neural network. Despite the change in output
dimension, the same phenomenon persists: neural network training guides the dynamics toward
stationary points that reflect the underlying clustering structure of the data. In contrast, vanilla
gradient descent, which lacks the representational capacity of the neural network, remains insensitive
to the data structure and fails to produce meaningful separation.

In Figure 6, we use a simple artificial dataset in R2 consisting of four clusters aligned along the
x-axis, with each cluster generated from a Gaussian distribution centered at (−1, 0), (0, 0), (1, 0),
and (2, 0), respectively. Points are colored according to their cluster labels, and arrows indicate the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Input data

(a) It: 0 (b) It: 30 (c) It: 200 (d) It: 400 (e) It: 2,000

(f) It: 0 (g) It: 40 (h) It: 80 (i) It: 300 (j) It: 2,000

Figure 6: Comparison of the optimization process with and without neural network training using the
simplified loss in eq. (12). In each figure, points are colored according to their cluster assignments
based on the input data, and arrows denote the negative gradient. Row 1 shows optimization using
vanilla gradient descent, where the distribution eventually becomes uniformly dispersed, disregarding
the clustering structure of the input data. Row 2 shows optimization with neural network training,
where the clustering structure becomes linearly separable in the early iterations. This outcome is
consistent with Theorem 4.3.

direction of the negative gradient computed at each point. The key parameters are set as follows:
τ = 0.2, δ = 0.3, and n = 2,000. We use stochastic gradient descent with a learning rate of 0.001
to optimize the model. The training dynamics are examined using the simplified contrastive loss
in eq. (12), comparing two optimization strategies: vanilla gradient descent and gradient descent
through a neural network.

For vanilla gradient descent (Row 1 in Figure 6), the training dynamics show that the data points
gradually spread until they form a uniformly dispersed distribution on a sphere, effectively erasing
the initial clustering structure. This behavior aligns with Theorem 4.2, which asserts that the gradient
of the loss function is independent of the input structure.

In contrast, neural network optimization produces linearly separable feature representations early in
training, with clusters becoming distinctly separated by hyperplanes, thereby confirming Theorem 4.3.
Despite random initialization, the contrastive loss gradient effectively guides the features so that the
error terms of order δ remain negligible over short intervals.

Figure 7 compares the optimization processes with and without neural network training in both
2D and 3D, using different neural network architectures from that used in the main text and earlier
figures. While the main text and preceding experiments use a simple one-hidden-layer neural network,
Figure 7 employs a deeper 4-layer fully connected neural network. This demonstrates that the
same phenomenon, emergence of clustering under neural network training, persists regardless of the
network architecture.

The initial data distributions are shown in panels (a) and (l). The color of each point corresponds to
its respective cluster. Rows 2 and 5 show the optimization with neural network training, starting from
a random initial embedding and progressively revealing the clustering structure over time. In contrast,
rows 3 and 6 display the optimization with vanilla gradient descent, where the feature distribution
gradually converges to a uniform arrangement, disregarding the clustering structure present in the
input data.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Input data in 2D

(b) It: 0 (c) It:70 (d) It: 80 (e) It: 100 (f) It: 500

(g) It: 0 (h) It:50 (i) It: 200 (j) It: 400 (k) It: 800

(l) Input data in 3D

(m) It: 0 (n) It:700 (o) It: 1,000 (p) It: 1,500 (q) It: 2,000

(r) It: 0 (s) It:50 (t) It: 400 (u) It: 1,000 (v) It: 2,000

Figure 7: This experiment compares the optimization processes with and without neural network
training in 2D and 3D, with the data distribution depicted in (a) and (l). A 4-layer fully connected
neural network demonstrates consistent outcome as in Figure 6. Each point’s color indicates its
cluster. Rows 2 and 5 show optimization with neural network training, starting from a random
embedding and gradually revealing the clustering structure. In contrast, Rows 3 and 6 illustrate
the optimization process using vanilla gradient descent, which converges to a uniformly dispersed
arrangement, disregarding the input data’s clustering structure.

24

	Introduction
	Contrastive learning
	Optimality condition
	Optimization of Neural Networks
	Gradient flow from neural network parameters
	Emergence of Linear Separability from Neural Network Gradient Flows
	Verification of the parameter condition for linear separability.
	Emergence of linear separability from complex datasets.

	Conclusion and Future Work
	Appendix
	Appendix
	Interpretation of VICReg and BYOL
	Further analysis of the stationary points of NT-Xent loss
	Proof of thm:xent-min
	Proof of prop:w-gf
	Proof of prop:nn-toy-map
	Explicit Formula for the Neural Network Kernel Matrix

	Proof of thm:lin-sep-result
	Extra numerical results

