
Under review as a conference paper at ICLR 2024

TENSOR METHODS TO LEARN THE GREEN’S FUNCTION
TO SOLVE HIGH-DIMENSIONAL PDE

Anonymous authors
Paper under double-blind review

ABSTRACT

The method of Green’s function plays an important role in solving PDEs. Recently
deep learning models have been used to explicitly learn the Green’s function to
parameterize solutions of PDEs. DecGreenNet uses low-rank decomposition of
the Green’s function to obtain computational efficiency by separated learning from
training data and Monte-Carlo samples. However, learning from a large number
of Monte-Carlo samples for a high-dimensional PDE can lead to slow training
and large memory requirements. As a solution we investigate on learning the
Green’s function by using tensor product grids generated by random partitions of
dimensions. We propose DecGreenNet-TT by applying tensor-train structured low-
rank decomposition to the Green’s function and replace its components with neural
networks that learn from partitions of each dimensions instead of all grid elements.
We further propose DecGreenNet-TT-C to learn with a reduced number of neural
networks by combining dimensions to generate combined tensor product grids. We
further show that for the special case of separable source functions the Green’s
function can be constructed without multiplication of all tensor-train component
neural networks leading to memory and computational efficiency. Using several
Poisson equations we show that the proposed methods can learn with a collection
of smaller neural networks compared to DecGreenNet to efficiently parameterize
solutions with faster training times and low errors.

1 INTRODUCTION

In recent years, research on deep learning models for solving scientific problems are gaining rapid
popularity. In particular, learning to parameterize partial-differential equations (PDE) using deep
learning models such as Physics-Inspired-Neural-Networks (PINNs)(Dissanayake & Phan-Thien,
1994; Raissi et al., 2017) have gained a lot of attention due to their applications in many scientific
domains such as fluid dynamics (Raissi et al., 2017) and molecular dynamics (Razakh et al., 2021).
Compared to solving PDE problems with traditional numerical methods, use of deep learning models
have open many possibilities such as parameterization of classes of PDEs (Anandkumar et al., 2019)
and domain shift for PDE problems (Goswami et al., 2022). Despite many deep learning methods
showing successful parameterization of solutions of two-dimensional PDE problems, effective
parameterization for high-dimensional PDE problems remains to be explored further.

The method of Green’s function is a well-known approach to solve and analyze PDEs (Evans, 2010;
Courant & Hilbert, 1989). The use of deep learning models to learn Green’s function is gaining
popularity due its ability as a operator networks to parameterize both a specific instance of a PDE
and a class of PDE (Anandkumar et al., 2019; Luo et al., 2022). DeepGreen (Gin et al., 2021) uses
an auto-encoder model to learn Green’s functions associated with boundary value problems. Boullé
& Townsend (2022) and Boullé & Townsend (2023) used low-rank representations and sampling
methods of learn Green’s functions for elliptic and parabolic PDEs. These methods tends to solve
a specific instances of a PDE. A more versatile approach to parameterize solution of a PDE is by
using neural operators (Anandkumar et al., 2019), which parameterize Green’s functions in various
multi-layers architectures. Neural operators does not learn the underlying Green’s function of a PDE
and their scalability for high-dimensional PDEs are not well-known. Simultaneous learning of the
Green’s function and the parameterization solution of a PDE have been explored in recently proposed
MOD-net (Luo et al., 2022) and GF-net (Teng et al., 2022). Both MOD-net (Luo et al., 2022) and
GF-net (Teng et al., 2022) parameterize the Green’s function with a neural network and minimize

1

Under review as a conference paper at ICLR 2024

residual and boundary losses similar to a PINNs. Hence, these models are more easier to interpret as
well as to extend to parameterize different types of PDE problems.

Both MOD-net (Luo et al., 2022) and GF-net (Teng et al., 2022) apply Monte-Carlo integration
to the parameterize the Green’s function. A limitation with the Monte-Carlo integration is that it
may require a large number of Monte-Carlo samples to solve high-dimensional PDEs. This could
lead to computationally expensive training due to repetitive Green’s function approximations and
large memory requirements to store Monte-Carlo samples. Wimalawarne et al. (2023) proposed
DecGreenNet to apply low-rank decomposition (Bebendorf & Hackbusch, 2003) to the Green’s
function by using two neural networks, where one network learns on the training samples and
the other learns on the Monte-Carlo samples. DecGreenNet learns more efficiently compared to
MOD-net since its neural networks can learn batch-wise from training samples and Monte-Carlo
samples prior to feature multiplication to construct the Green’s function. In spite of the success with
two-dimensional problems, DecGreenNet may still face limitations with high-dimensional PDEs
since learning from large number of Monte-Carlo samples would require large neural networks and
large memory requirements.

In this paper, we explore computational and memory efficient methods to parameterize the Green’s
function for high-dimensional PDEs. We propose to learn the Green’s function from a grid generated
by tensor products of partitions from each dimensions. By applying tensor-train decomposition to the
Green’s function we construct models that learn from partitions of dimensions instead of learning
from the whole collection of grid elements. We demonstrate that the resulting models learn from a
collection of small neural networks to simulate the a grid leading to memory efficiency and faster
training times. Through evaluations with several Poisson problems we show that our methods achieve
high-accuracy, faster learning, and scalability for high-dimension PDEs.

Notation Tensors are multi-dimensional arrays and we represent a K-mode tensor as A ∈
Rn1×···×nK . By notation A[i1, . . . , iK] we present the element of A at indexes i1 ∈ [n1], . . . , iK ∈
[nK]. The notation : on a dimension indicates all elements of that dimension. The reshape
function reshapes a tensor A ∈ Rn1×···×nK to a tensor with dimensions B ∈ Rm1×···×mK′ as
B = reshape(A, (m1, . . . ,mK′)). We also use a roll function to rearrange tensors by shifting their
dimensions, e.g. given A ∈ Rn1×n2×n3 a single shift in dimensions is roll(A, 1) ∈ Rn3×n1×n2 . For
a collection of vectors {y1, y2, . . . , yL} ∈ Rm, the stack function sequentially stack each vector to
generate a matrix as stack(y1, y2, . . . , yL) ∈ RL×m.

2 LEARNING WITH THE GREEN’S FUNCTION

In this section, we briefly review the Green’s function and neural network models that learn the
Green’s function to parameterize PDE problems. Let us consider a domain Ω ⊂ RN , a differential
operator L, a source function g(·) and a boundary condition ϕ(·), and present a general PDE problem
as

L[u](x) = g(x), x ∈ Ω (1)
u(x) = ϕ(x), x ∈ ∂Ω.

For simplicity, let us restrict to a linear PDE with Dirichlet boundary condition ϕ(·) = 0. Then, there
is a Green’s function G : RN × RN → R for a fixed x′ ∈ Ω as follows:

L[G](x) = δ(x− x′), x ∈ Ω

G(x, x′) = 0, x ∈ ∂Ω,

which leads to a solution function u(·) as

u(x; g) =

∫
Ω

G(x, x′)g(x′)dx′. (2)

Given a set SΩ consisting of random samples from Ω, the Monte-Carlo approximation of the Green’s
function integral 2 is

u(x; g) ≈ |Ω|
|SΩ|

∑
x′∈SΩ

G(x, x′)g(x′). (3)

2

Under review as a conference paper at ICLR 2024

2.1 MOD-NET

Luo et al. (2022) proposed MOD-Net to parameterize the Green’s function G(x, x′) in 3 using a
neural network Gθ1(·, ·) with parameters represented by θ1 to formulate the following solution

uθ1(x; g) =
|Ω|
|SΩ|

∑
x′∈SΩ

Gθ1(x, x
′)g(x′). (4)

Luo et al. (2022) demonstrated that MOD-Net can be parameterize solutions of a class of PDE for
varying g(·), hence, behaves similar to a neural operator. They considered K different g(k)(·), k =
1, · · · ,K to represent a class of PDE. Let SΩ,k and S∂Ω,k are domain elements from the interior
and boundary, respectively, for k = 1, . . . ,K. Then, the objective function of MOD-Net for the
parameterized solution in 4 is given as

RS =
1

K

∑
k∈[K]

(
λ1

1

|SΩ,k|
∑

x∈SΩ,k

∥L[uθ1(x; g
(k))](x)− g(k)(x)∥22

+ λ2
1

|S∂Ω,k|
∑

x∈S∂Ω,k

∥uθ1(x; g
(k))∥22

)
, (5)

where λ1 and λ2 are regularization parameters.

A limitation of learning with the Monte-Carlo approximation 4 is that the number of Monte-Carlo
samples needed to approximate the Green’s function would increase as the dimensions of the PDE
increases. This will lead to computationally expensive large number of repetitive summations in 4 for
each input x.

2.2 DECGREENNET

It has been well-established that a low-rank decomposition of a Green’s function for elliptic (Beben-
dorf & Hackbusch, 2003) and parabolic PDEs (Boullé et al., 2022) can be established with two
functions F : RN → Rr and G : RN → Rr such that G(x, y) ≈ F (x)⊤G(y) for some rank R.
Wimalawarne et al. (2023) proposed DecGreenNet by using two neural networks Fγ1 : RN → Rr

and Gγ2
: RN → Rr to learn the low-rank decomposed Green’s function in 4 as

uγ1,γ2
(x; g) = Fγ1

(x)⊤
∑

x′∈SΩ

Hγ2
(x′)g(x′). (6)

A nonlinear extension DecGreenNet-NL was also proposed with an additional neural network
Oγ3

: RP → R applied to the concatenation of the summed values in 6 as

uγ1,γ2,γ3
(x; g) = Oγ3

(
Fγ1

(x)⊤concat
[
Hγ2

(y1)g(y1), . . . ,Hγ2
(yP)g(yP)

])
, (7)

where yi ∈ SΩ and P = |SΩ|.
The main advantage of 6 and 7 is the separated batch-wise learning from training input elements and
Monte-Carlo samples. Considerable gains in training times with DecGreenNet compared to MOD-
Net have been reported for two-dimensions PDE problems(Wimalawarne et al., 2023). However, the
scalability of DecGreenNet for high-dimension PDEs is not known.

3 PROPOSED METHODS

We propose to extend DecGreenNet for high-dimension PDE problems using tensor methods. Our
proposal consists of two components (a) tensor product grid construction (b) tensor-train structured
parameterization of the Green’s function by neural networks. Lastly, for source functions that can be
separated with respect to each dimension, we demonstrate a memory and computationally efficient
restructuring of summations of tensor-train multiplications.

3

Under review as a conference paper at ICLR 2024

3.1 TENSOR PRODUCT GRIDS

A common approach to create a grid is to use tensor products over segmentation of each dimension of
the domain as used with sparse grids (Bungartz & Griebel, 2004) and integration methods (Vysotsky
et al., 2021). We provide a general definition of the tensor product grid generation below.

Definition 3.1 (Tensor Product Grid). Let x(a) =
{
x
(a)
1 , . . . , x

(a)
p

}
be p (random) partitions of the

dimension a. Then we define the tensor product grid by

x(1) × x(2) × · · · × x(N) =

{(
x
(1)
j1

, x
(2)
j2

, . . . x
(N)
jN

) ∣∣∣∣ x(1)
j1

∈ x(1), . . . , x
(N)
jN

∈ x(N)

}
.

The above tensor product method may not scale well for high-dimensional PDEs since we need tensor
products with respect to all dimensions. As an alternative, we propose to combine dimensions and
apply tensor product on each combination, which we refer to as the Combined Tensor Product Grid
and it’s definition is given below.

Definition 3.2 (Combined Tensor Product Grid). Let us consider N ′ disjoint sets from the N -
dimensions x(a), a ∈ [N] as A1, . . . , AN ′ with Ai ∩ Aj = ∅. We consider pi (random) partitions

of each set of dimensions by XAi =
{(

x
(a1)
j , . . . x

(a|Ai|)

j

) ∣∣∀ak ∈ Ai, j = 1, . . . , pi

}
. Then, a grid

construction can be constructed as

XA1 ×XA2 × · · · ×XAN′ =

{(
y
(1)
j1

, y
(2)
j2

, . . . y
(N ′)
jN′

) ∣∣∣∣ y(1)j1
∈ XA1 , . . . , y

(N ′)
jN′ ∈ XAN′

}
.

To demonstrate the above construction, let X = {(0.2 , 0.6), (0.5, 0.3)} and Y = {0.4, 0.7} then
X × Y = {(0.2 , 0.6 , 0.4), (0.2 , 0.6 , 0.7), (0.5 , 0.3 , 0.4), (0.5 , 0.3 , 0.7)}.

We want to emphasize that combining of dimensions and random partitioning for the combined tensor
product grid need careful consideration since grid points may not be uniformly distributed. The benefit
of this approach is that we can use fewer neural networks compared to the general tensor product grid
for very high-dimensional PDEs. For now, we do not have any theoretically guarantees for combining
dimensions and propose to consider the selection of the number of dimension combinations and their
partitions by hyperparameter tuning for each PDE.

3.2 DECGREENNET-TT

Let us consider a domain Ω ⊂ RN where N ≥ 2 with tensor product grids generated with each
dimension a having pa partitions of x(a)

ai ∈ R, ai = 1, . . . , pa. Let us consider a tensor product grid
x(1) × · · · × x(N) := Q where |Q| = p1p2 · · · pN . Now, all elements in Q is needed to learn the
DecGreenNet 6 as

uγ1,γ2
(x; g) (8)

= Fγ1(x)
⊤

p1∑
i1=1

· · ·
pN∑

iN=1

Hγ2

(
x
(1)
i1

, . . . , x
(N)
iN

)
g
(
x
(1)
i1

, . . . , x
(N)
iN

)
= Fγ1

(x)⊤
(p1∑

i1=1

· · ·
pN∑

iN=1

Roll(Reshape (Hγ2
(stack(Q)), (p1, . . . , pN , r)) , 1)[:, i1, . . . , iN]

g(x
(1)
i1

, . . . , x
(N)
iN

)

)
, (9)

where the last line uses batch learning by Hγ2
(·) using all the tensor product grid elements with

the input matrix stack(Q) ∈ Rp1...pN×N . The resulting p1p2 · · · pN × r dimensional output of
Hγ2

(stack(Q)) ∈ Rp1...pN×r is reshaped and mode shifted to a tensor of dimensions r × p1 ×
p2 × · · · × pN . This naive extension of DecGreenNet has a memory requirement of O(NpN) given
that p1 = . . . = pN = p indicating that for high-dimensional domains learning from 9 is not
computationally or memory efficient.

4

Under review as a conference paper at ICLR 2024

Now, we apply a decomposition method similar to tensor-train decomposition (Oseledets, 2009;
Oseledets & Tyrtyshnikov, 2009) to Roll(Reshape (Hγ2

(stack(Q)), (r, p1, . . . , pN)) , 1), which
gives the following decomposition
p1∑

i1=1

· · ·
pN∑

iN=1

Roll(Reshape (Hγ2
(stack(Q)), (r, p1, . . . , pN)), 1) [:, i1, . . . , iN]g(x

(1)
i1

, . . . , x
(N)
iN

)

≈
p1∑

i1=1

· · ·
pN∑

iN=1

[
r1∑

α1=1

· · ·
rN−1∑

αN−1=1

G1[:, i1, α1]G2[α1, i2, α2] · · ·GN [αN−1, iN , 1]

]
g(x

(1)
i1

, . . . , x
(N)
iN

)

(10)

where Gk ∈ Rrk×pk×rk+1 , k = 0, . . . , N are component tensors with ranks rk−1 and rk, i0 ∈
[r], i1 ∈ [p1], . . . iN ∈ [pN], r0 = r and rN = 1.

The construction in 10 indicates that we can use separate neural networks to learn each Gi i =
1, . . . , N by using partitions x(i), i = 1, . . . , N from each dimension. Hence, we propose to use N
neural networks

T
(ri−1,ri)
θi

: Rpi×1 → Rri−1×pi×ri , i = 1, . . . , N, (11)

which learn with respect to the partitions of size pi of the i-th dimensions. Using the 10 and 11, we
propose the DecGreenNet-TT to replace 9 as

uγ1,θ0,...,θN (x; g) =

Fγ1
(x)⊤

p1∑
i1=1

· · ·
pN∑

iN=1

[
r1∑

α1=1

· · ·
rN−1∑

αN−1=1

T
(r0,r1)
θ1

(x(1))[:, i1, α1]T
(r1,r2)
θ2

(x(2))[α1, i2, α2] · · ·

T
(rN−1,1)
θN

(x(N))[αN−1, iN , 1]

]
g
(
x
(1)
i1

, . . . , x
(N)
iN

)
. (12)

The above model still has a memory requirement of O(NpN) given that p1 = . . . = pN = p since it
computes all summations on the left side similar to 12. However, DecGreenNet-TT could learn with
a collection small neural networks since it learn only partitions of each dimension. On the other hand,
the Hγ2(·) network of DecGreenNet may require a large network to learn from all grid elements.

3.3 LEARNING FROM COMBINED TENSOR PRODUCT GRID

Learning N neural networks to learn from partitions of each dimension in the previous formulation
12 can be redundant and computationally inefficient. Alternatively, we can combine dimensions
to construct N ′ < N and use Definition 3.2 to construct disjoint sets A1, . . . , AN ′ and generate
XA1 , . . . , XAN′ with partitions XAi =

{(
x
(a1)
j , . . . x

(a|Ai|)

j

) ∣∣∀ak ∈ Ai, j = 1, . . . pi

}
.

Now, we can construct N ′ neural networks as

T
(ri−1,ri)
θi

: Rpi×|Ai| → Rri−1×pi×ri , i = 1, . . . , N ′, (13)

where r0 = r, rN = 1, and θi indicates parameterized neural network. Combining 13 with the 12
lead to propose the DecGreenNet-TT-C as

uγ1,θ0,...,θN′ (x; g) =

Fγ1
(x)⊤

p1∑
i1=1

· · ·
pN′∑

iN′=1

[
r1∑

α1=1

· · ·
rN′−1∑

αN′−1=1

T
(r0,r1)
θ1

(X(A1))[:, i1, α1]T
(r1,r2)
θ2

(X(A2))[α1, i2, α2] · · ·

T
(rN′−1,1)

θN′ (X(XN′))[αN ′−1, iN ′ , 1]

]
g
(
x
(1)
i1

, . . . , x
(|A1|)
i1

, . . . , x
(1)
iN′ , . . . , x

(|AN′ |)
iN′

)
. (14)

The above model still has a memory requirement of O(N ′pN
′
) given that p1 = . . . = pN ′ = p which

can be smaller comapred to DecGreenNet-TT.

5

Under review as a conference paper at ICLR 2024

3.4 MEMORY EFFICIENT COMPUTATION

In spite of the advantages of using multiple small networks and learning only by partitions of
dimensions, 12 or 14 still have limitations of the storing a r × p1 · · · pN or r × p1 · · · pN ′ in memory
and require a large number summation operations. We demonstrate that we can further improve
memory efficiency for specific functions as we describe next.
Definition 3.3 (Polynomial separable source functions). A source function g(x1, . . . , xN) is called a
polynomial separable source functions if it can be expressed as an element-wise multiplication of
functions as g(x1, . . . , xN) =

∑K
k=1 g

(k)
1 (x1)g

(k)
2 (x2) · · · g(k)N (xN), where some g

(k)
i (·) = 1.

Definition 3.4 (Fully separable source functions). A source function g(x1, . . . , xN) is called a fully
separable source functions if it can be expressed as an element-wise multiplication of functions as
g(x1, . . . , xN) = g1(x1)g2(x2) · · · gN (xN).

An example of a polynomial separable source function is the source function used in the Pois-
son problem in (Luo et al., 2022) with g(x1, x2) = x1(x1 − 1) + x2(x2 − 1). The Pois-
son problems used in (Teng et al., 2022) with solutions u(x1, x2) = sin(2πx1) sin(2πx2) and
u(x1, x2) = cos(2πx1) cos(2πx2) lead to fully separable functions. We want to mention that
not all functions can be constructed as separable function, i.e. f(x1, x2) = log(x1 + x2),
f(x1, x2) =

√
(x2

1 + x2
2), in such instance only 12 can be used.

It can be shown that separable source functions can improve memory and computational efficiency of
DecGreenNet-TT and DecGreenNet-TT-C. We provide the following theorem to obtain a rearrange-
ment of 10 for polynomial separable source function.

Theorem 1. Let us consider a polynomial separable source function g(x
(1)
i1

, . . . , x
(N)
iN

) =∑K
k=1 g

(k)
1 (x

(1)
i1

)g
(k)
2 (x

(2)
i2

) · · · g(k)N (x
(N)
iN

). Then, the 10 can be simplified as

p1∑
i1=1

· · ·
pN∑

iN=1

[
r1∑

α1=1

· · ·
rN−1∑

αN−1=1

G1[:, i1, α1]G2[α1, i2, α2] · · ·GN [αN−1, iN , 1]

]
g(x

(1)
i1

, . . . , x
(N)
iN

)

=

K∑
k=1

p1∑
i1=1

r1∑
α1=1

g
(k)
1 (x

(1)
i1

)G1(:, i1, α1)

p2∑
i2=1

r2∑
α2=1

g
(k)
2 (x

(2)
i2

)G2(α1, i2, α2) · · ·

pN∑
iN=1

g
(k)
N (x

(N)
iN

)GN (αN−1, iN , 1). (15)

Theorem 1 indicates sequential summations from the last tensor-train components towards the first
component without computing with all tensor-train components. This will completely remove the
need to construct the full Hγ2(stack(Q)) and store in memory prior to multiplication with the source
function g(·). Furthermore, each

∑pi

ii=1

∑ri
αi=1 g

(k)
i (x

(i)
ii
)Gi(αi−1, ii, αi) reduces to a vector of

dimension ri−1. Hence, memory requirement with is O(pr2) where p = max{p1, . . . , pN} and
r = max{r0, . . . , rN−1}, which is considerable small compared to learning fully tensor structured
models 10 or 14. By replacing Gi(αi−1, ii, αi) with T

(ri−1,ri)
θi

(x(i))[αi−1, i1, αi], we can obtain the
memory efficient DecGreenNet-TT 12 and also easily extended to DecGreenNet-TT-C 14.

4 EXPERIMENTS

In this section, we parameterize standard PDE problems to evaluate accuracy and memory efficient
learning of our proposed methods.

4.1 EXPERIMENTAL SETUP

We experiments with DecGreenNet-TT and DecGreenNet-TT-C for both 2D problems and high-
dimensional Poisson equations. We used PINNs (Raissi et al., 2017), DecGreenNet and DecGreenNet-
NL (Wimalawarne et al., 2023) as a baseline method for all PDEs. All models use ReLU3() as the
activation function with last layer without any activation.

6

Under review as a conference paper at ICLR 2024

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

u(
x)

0.0

0.1

0.2

0.3

0.4

(a) Exact solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

u(
x)

0.0

0.1

0.2

0.3

0.4

(b) Predicted solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

u(
x)

−0.004

−0.002

0.000

0.002

0.004

0.006

(c) Error

Figure 1: Comparison between exact solution and DecGreenNet-TT for Poisson 2D equation for the
interpolated solution at a = 15 with (a) exact solution, (b) solution by DecGreenNet-TT and (c) error.

All methods require several hyperparameters that need to be evaluated to select the optimal model.
We represent network structures for all methods with notation [in, h, . . . , h, out], where in, out,
and h represent dimensions of input, output, and hidden layers, respectively. The hidden layers
dimension h is a hyperparameter selected from 2h h = 5, . . . , 10. All models require multi-layer
networks where the layers are selected from 2, . . . , 5. For low-rank models, ranks of the Green’s
function is another hyperparameter selected, however, due to large number of possibilities we selected
experimentally specified ranks depending on the problem. We selected the number of partitions
in each dimension for DecGreenNet-TT and DecGreenNet-TT-C from the set {10, 100, 200}. The
number of Monte-Carlo samples for DecGreenNet, and DecGreenNet-NL were selected to match
number of grid samples used with the proposed methods or the maximum number of Monte-Carlo
samples we can evaluate by experiments. Regularization parameters in 5 are λ1 = 1 and λ2 is
selected from 1, 10, 100. We used the Pytorch environment with Adam optimization method with
learning rate of 0.001 and weight decay set to zero. We used a NVIDIA A100 GPUs with CUDA
11.6 on a Linux 5.4.0 environment to perform all our experiments. We provide code on experiments
in this section at https://github.com/tophatjap/DecGreenNet-TT.

4.2 POISSON 2D PROBLEM

Our first experiment is Poisson 2D problem proposed in (Luo et al., 2022) given as

−∆u(x, y) = g(k)(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω.

where g(k)(x, y) = −ak(x
2 − x+ y2 − y) which has an analytical solution of u(x, y) = ak

2 x(x−
1)y(y − 1). We experimented with both single PDE instance learning with k = 1 and operator
learning to learn a class of PDEs a varying set of k as in (Luo et al., 2022), (Wimalawarne et al.,
2023).

We experimented with operator learning capability of the DecGreenNet-TT and DecGreenNet-TT-C
by considering setting in (Wimalawarne et al., 2023) where multiple Poisson 2D equations with
ak = 10k for k = 1, . . . , 10 are solved simultaneously. Once a model learns the paramterization
for the whole class of PDE, then the interpolated solution to unseen a = 15 is obtained. Figure 1
shows the interpolated solution and the error with respect to the analytical solution DecGreenNet-TT
model with networks structures Fγ1 = [2, 512, 512, 512, 512, 3], T (r0,r1)

1 = [1, 64, 64, 64, 6], and
and T

(r1,1)
2 = [1, 64, 64, 2] with r0 = 3 and r1 = 2. The low-error in the learned solution indicates

strong learning capability of the proposed method to parameterize solution to multiple PDEs and its
functionality of operator learning. Experiments to parameterize a single instance of a above Poisson
equation with a = 15 were also conducted. As shown in Table 1 DecGreenNet-TT has obtained a
competitive accuracy with respect DecGreenNet with a faster training time.

4.3 HOMOGENEOUS POISSON EQUATION

We constructed high-dimensional Poisson equations by extending the homogeneous Poisson equation
studied in (Teng et al., 2022). The solution of the homogeneous 2D Poisson equation (Teng et al.,

7

https://github.com/tophatjap/DecGreenNet-TT

Under review as a conference paper at ICLR 2024

Method Network structure MC samples λb Error Time
(Segments) (sec)

PINNs [2, 64, 64, 1] - 10 1.07× 10−3 51.59
DecGreenNet Fγ1

= [2,128, 128, 128, 5] 100 10 7.79× 10−4 185.49
Hγ2

= [2, 16, 16, 16, 5]
DecGreenNet-NL Fγ1 = [2, 256, 256, 5] 100 1 8.13× 10−3 138.49

Hγ2 = [2, 32, 32, 32,5]
Oγ3 = [100,8,1]

DecGreenNet-TT Fγ1
= [2,512,512,6] 100 (102) 10 4.90× 10−4 55.05

TT
(6,3)
θ1

= [1, 64, 64, 64, 18]
TT

(3,1)
θ2

= [1, 64, 64,3]

Table 1: Results for learning Poisson 2D equation for a = 15.

−1.00−0.75−0.50−0.250.000.250.500.751.00 −1.00
−0.75
−0.50
−0.25

0.00
0.25
0.50
0.75
1.00

−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

(a) Exact solution

−1.00−0.75−0.50−0.250.000.250.500.751.00 −1.00
−0.75
−0.50
−0.25

0.00
0.25
0.50
0.75
1.00
−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Predicted solution

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0
x

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

y

−0.025

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

(c) Error

Figure 2: Comparison between exact solution and DecGreenNet-TT for homogenous Poisson 2D
equation with (a) exact solution, (b) solution solution and (c) error.

2022) in the domain of Ω = [−1, 1]2 is given by

u(x, y) = sin(2πx) sin(2πy), (16)

which we extend for N -dimensions by u(x1, . . . , xN) =
∏N

i=1 sin(2πxi). We also extended the
above equation 16 to a general N -dimension PDE for a domain Ω ⊂ [−1, 1]N by the following
formulation

N∑
i=1

∂2u(x1, . . . , xN)

∂x2
i

= g(x1, . . . , xN), (x1, . . . , xN) ∈ Ω,

u(x1, . . . , xN) = 0, (x1, . . . , xN) ∈ ∂Ω,

where g(x1, . . . , xN) = −4Nπ2 sin(2πx1) · · · sin(2πxN). Notice that g(x1, . . . , xN) is a fully
separable function, which allows us to use memory efficient computations in section 3.4 in all our
experiments. For dimension N = 2, 3 and 4 we generated training sets of sizes 10000, 30000, and
80000, respectively from the interior of the domain. For the same dimensions, validation sets and
test set sizes are 3000, 9000, and 24000. For each boundary, we generated 500 training samples, 300
validation samples, and 300 test samples.

Figure 2 shows comparison of the solution by DecGreenNet-TT to the exact solution of the homoge-
neous Poisson 2D equation. The network structure used consists of Fγ1 = [2, 256, 256, 256, 256, 6],
T

(r0,r1)
1 = [1, 64, 64, 18], and and T

(r1,1)
2 = [1, 64, 64, 3] with r0 = 6 and r1 = 3. The low error

indicates that the proposed methods is capable of obtaining highly accurate solution.

We experimented with varying dimensions of N = 2, 3, 4 with DecGreenNet, DecGreenNet-TT,
and DecGreenNet-TT-C and their results are given in Tables 3 and 2. For N = 2, 3, we used
DecGreenNet-TT that learn from random partitions of 10 from each dimension to simulate 100 and
1000 grid elements, respectively. For N = 4, we used a DecGreenNet-TT-C by combining each
two dimensions with random partitions of 200 from each combination to simulate a grid with 40000

8

Under review as a conference paper at ICLR 2024

N Network Structure Segments λb Error Time (sec)
(Samples)

2 Fγ1 = [2, 256, 256, 256, 3] 10 10 0.02259 58.92
T

(3,2)
θ1

= [1, 64, 64, 6] (102 = 100)
T

(2,1)
θ2

= [1, 64, 64, 2]

3
Fγ1

= [3, 512, 512, 512, 512, 12] 10 1 0.34718 195.76
T

(12,6)
θ1

= [1, 128, 128, 72] (103 = 1000)
T

(6,6)
θ1

= [1, 64, 64, 64, 36]
T

(6,1)
θ2

= [1, 64, 64, 6]

4
Fγ1 = [4, 512, 512, 512, 32] 200 1 0.2923 672.62
T

(32,6)
θ1

= [2, 256, 256, 132] (2002 = 40000)

T
(6,1)
θ2

= [2, 128, 128, 128, 6]

Table 2: Results on learning homogeneous Poisson equations varying dimensions (N) using
DecGreenNet-TT and DecGreenNet-TT-C

N Network structure MC samples λb Error Time (sec)
2 Fγ1 = [2, 128, 128, 128, 128, 128, 5] 100 10 0.0147 90.25

Hγ2
= [2, 64, 64, 64, 64, 5]

3 Fγ1
= [3 512, 512, 512, 512, 512, 10] 1000 1 0.7859 372.44

Hγ2 = [3, 256, 256, 256, 10]
4 Fγ1

= [4, 512, 512, 512, 512, 5] 2000 1 0.5682 1787.68
Hγ2

= [4, 128,128,128,128, 5]

Table 3: Results on learning homogeneous Poisson equations varying dimensions (N) using Dec-
GreenNet

elements. Table 2 shows that proposed models can learn with large grids compared to DecGreenNet
as the dimensions increases. We found that finding neural networks for DecGreenNet for a larger grid
beyond 2000 elements by hyperparameter tuning practically difficult. It is important to notice in Table
3 that large grids require large networks for Hγ2 of DecGreenNet. However, since DecGreenNet-TT
and DecGreenNet-TT-C learn only on partitions of dimensions to simulate grids, network structures
of T (r∗−1,r∗)

∗
are smaller compared to Hγ2

. The ability to learn with a collection of small neural
networks has allowed both memory efficiency as well as faster learning with proposed methods.
Furthermore, our proposed methods has obtained a smaller error compared to DecGreenNet for
high-dimensions.

We want to emphasize from Tables 2 and 1 that first network of tensor-train components T (r1,r2)
θ1

is
large compared to other tensor-train component neural networks. Further, we found that in general the
shared rank r1 between Fγ1 and T

(r1,r2)
θ1

needs to be large compared to other ranks of the tensor-train
structure. We believe that these observations are due to feature sharing among the Fγ1 and the tensor
train component networks T (r∗−1,r∗)

∗
. Furthermore, we observed that the network of Fγ1

becomes
bigger as the dimensions of the PDE increases, perhaps, to learn from the increased number of input
training samples.

5 CONCLUSIONS AND FUTURE WORKS

We present DecGreenNet-TT and DecGreenNet-TT-C by applying tensor train based decomposition
to parameterize the Green’s function to learn from partitions of dimensions to simulate tensor product
grids. We further show that for separable source functions the proposed methods can obtain memory
efficiency by rearrangement of summation of tensor train components and avoiding construction of
full Green’s function. Through experiments we verified our claims that the proposed methods obtain
faster training times and accuracy compared to DecGreenNet for high-dimension PDEs. We believe
that extension of existing theory (Bebendorf & Hackbusch, 2003) of low-rank decomposition of the
Green’s function to tensor-train decomposition is an important future research.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki, Zongyi Li,
Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network for partial differential
equations. In ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations, 2019.

Mario Bebendorf and Wolfgang Hackbusch. Existence of H-matrix approximants to the inverse
fe-matrix of elliptic operators with L∞-coefficients. Numer. Math., 2003.

Nicolas Boullé and Alex Townsend. Learning elliptic partial differential equations with randomized
linear algebra. FoCM, 23(2):709–739, jan 2022.

Nicolas Boullé and Alex Townsend. Learning elliptic partial differential equations with randomized
linear algebra. Found. Comput. Math., 23(2):709–739, 2023. URL https://doi.org/10.
1007/s10208-022-09556-w.

Nicolas Boullé, Seick Kim, Tianyi Shi, and Alex Townsend. Learning green’s functions associated
with time-dependent partial differential equations. 2022.

Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

Richard Courant and David Hilbert. Methods of Mathematical Physics, volume 1. Wiley, 1989.

M. W. M. G. Dissanayake and N. Phan-Thien. Neural-network-based approximations for solving
partial differential equations. Commun. numer. methods eng., 10(3):195–201, 1994.

Lawrence C. Evans. Partial differential equations. American Mathematical Society, 2010. ISBN
9780821849743 0821849743.

Craig R. Gin, Daniel E. Shea, Steven L. Brunton, and J. Nathan Kutz. Deepgreen: deep learning of
green’s functions for nonlinear boundary value problems. Sci Rep., 11:1–16, Nov 3 2021.

Somdatta Goswami, Katiana Kontolati, Michael D. Shields, and George Em Karniadakis. Deep
transfer operator learning for partial differential equations under conditional shift. Nat Mach Intell,
4:1155–1164, 2022.

Zhang Lulu Luo, Tao Zhang Yaoyu, E Weinan, John Xu, Zhi-Qin, and Ma Zheng. Mod-net: A
machine learning approach via model-operator-data network for solving pdes. CiCP, 2022.

I. V. Oseledets. A new tensor decomposition. Doklady Mathematics, 80:495–496, 2009.

I. V. Oseledets and E. E. Tyrtyshnikov. Breaking the curse of dimensionality, or how to use svd in
many dimensions. SIAM Journal on Scientific Computing, 31(5):3744–3759, 2009.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations, 2017.

Taufeq Mohammed Razakh, Beibei Wang, Shane Jackson, Rajiv K. Kalia, Aiichiro Nakano, Ken
ichi Nomura, and Priya Vashishta. Pnd: Physics-informed neural-network software for molecular
dynamics applications. SoftwareX, 15:100789, 2021.

Yuankai Teng, Xiaoping Zhang, Zhu Wang, and Lili Ju. Learning green’s functions of linear
reaction-diffusion equations with application to fast numerical solver. In MSML, 2022.

Lev I. Vysotsky, Alexander V. Smirnov, and Eugene E. Tyrtyshnikov. Tensor-Train Numerical
Integration of Multivariate Functions with Singularities. Lobachevskii J Math, 42:1608–1621,
2021.

Kishan Wimalawarne, Taiji Suzuki, and Sophie Langer. Learning green’s function efficiently using
low-rank approximations. In SynS ML @ ICML2023, 2023.

10

https://doi.org/10.1007/s10208-022-09556-w
https://doi.org/10.1007/s10208-022-09556-w

	Introduction
	Learning with the Green's function
	MOD-Net
	DecGreenNet

	Proposed Methods
	Tensor Product Grids
	DecGreenNet-TT
	Learning from combined tensor product grid
	Memory Efficient Computation

	Experiments
	Experimental Setup
	Poisson 2D Problem
	Homogeneous Poisson Equation

	Conclusions and Future Works

