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ABSTRACT

3D Gaussian Splatting (3DGS) has shown promising results for Novel View Syn-
thesis. However, while it is quite effective when based on high-quality images,
its performance declines as image quality degrades, due to lack of resolution, mo-
tion blur, noise, compression artifacts, or other factors common in real-world data
collection. While some solutions have been proposed for specific types of degra-
dation, general techniques are still missing. To address the problem, we propose
a robust HQGS that significantly enhances the 3DGS under various degradation
scenarios. We first analyze that 3DGS lacks sufficient attention in some detailed
regions in low-quality scenes, leading to the absence of Gaussian primitives in
those areas and resulting in loss of detail in the rendered images. To address
this issue, we focus on leveraging edge structural information to provide addi-
tional guidance for 3DGS, enhancing its robustness. First, we introduce an edge-
semantic fusion guidance module that combines rich texture information from
high-frequency edge-aware maps with semantic information from images. The
fused features serve as prior guidance to capture detailed distribution across dif-
ferent regions, bringing more attention to areas with detailed edge information
and allowing for a higher concentration of Gaussian primitives to be assigned to
such areas. Additionally, we present a structural cosine similarity loss to comple-
ment pixel-level constraints, further improving the quality of the rendered images.
Extensive experiments demonstrate that our method offers better robustness and
achieves the best results across various degraded scenes. The source code and
trained models will be made available to the public.

1 INTRODUCTION

Novel view synthesis has significantly advanced in recent years, with the introduction of Neural
Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), benefiting applications such as aug-
mented reality (AR) and virtual reality (VR) (Bian et al., 2016; Dawood, 2009; Farshid et al., 2018;
Fassi et al., 2016). Nevertheless, existing methods are mainly designed for high-quality images
captured with precise camera parameters. When faced with images of low resolution, with motion
blur, compression artifacts, noise, or other degradation common in real-world imaging, they often
struggle. Some NeRF (Bahat et al., 2022; Ma et al., 2022; Zhou et al., 2023b; Pearl et al., 2022) and
3DGS (Feng et al., 2024) models attempt to address the problem by incorporating various strategies
or constraints, such as degradation kernels or super-sampling networks. However, these methods are
tailored for specific types of degradation. For example, as shown in Figure 1, NeRFlix and SRGS,
designed to address blur and low-resolution scenes, respectively, fail to handle each other’s scenarios
effectively. Hence, there is a need for methods that can achieve high-quality novel view synthesis
across various types of degradation.

We consider the problem in the context of 3D Gaussian Splatting and start by showing that image
degradation can severely compromise the two key stages, reconstruction and rendering, of NVS.
For reconstruction, our preliminary experiments (Figure 2(b)) show that, under all these degraded
conditions, the distribution of recovered Gaussian primitives becomes too sparse to allow the cap-
ture of fine scene details, especially for small objects. For rendering, these experiments confirm
the findings of (Dong et al., 2023; Lin et al., 2023b), showing that the low-frequency information
derived from the global scene structure is essential for image quality enhancement. This motivates
us to propose a robust HQGS framework that leverages structural information resilient to low-level
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Figure 1: Results of exiting methods (Mildenhall et al., 2021; Kerbl et al., 2023; Zhou et al., 2023b; Feng
et al., 2024) and our HQGS on five degradation scenes. HQGS performs well against others in these different
degradation types.

degradation types, allowing for better focus on high-frequency edge areas while aiding in the recov-
ery of low-frequency information during the reconstruction and rendering stages, respectively. First,
we introduce an Edge-Semantic Fusion Guidance (ESFG) module that utilizes combined semantic-
aware and edge-aware features as a reliable indicator for robust Gaussian Splatting. This ESFG
module has two branches: the upper one uses a cross-attention mechanism between high-frequency
edge maps and low-quality images to learn the semantic feature with edge information, and the
lower one understands high-frequency edge information further. Additionally, we design an effi-
cient global Structural Cosine Similarity Loss (LSCS) to constrain global low-frequency structure
information between rendered images and their corresponding target images. It provides the model
with additional constraints, encouraging it to improve the quality on these areas. Extensive experi-
mental results in various degradation scenarios (low resolution, JPEG compression, noise, blur, and
mixed degradation) have demonstrated the superiority of our method, which has significant advan-
tages over other 3DGS-based methods when trained within the same time. Notably, HQGS performs
robustly on more highly degraded images.

The main contributions of our work are:

• We propose a general framework HQGS, designed to render high-quality novel view im-
ages under various degradation conditions, such as low resolution, noise, blur, JPEG com-
pression, and mixed degradation.

• We introduce an edge-semantic fusion guidance (ESFG) module, which utilizes combined
edge contour prior information and semantic information to guide the model’s sensitiv-
ity to positional information and improve the generation of fine details. Furthermore, the
structural cosine similarity loss (LSCS) is presented to constrain the consistency of global
low-frequency structures, thereby enhancing the quality of rendered images.

• Comprehensive experiments demonstrate that the proposed method exhibits better robust-
ness and achieves favorable performance against state-of-the-art approaches.

2 RELATED WORKS

Novel View Synthesis. Mildenhall et al. (Mildenhall et al., 2021) introduce the neural radiance field
(NeRF) to implicitly represent static 3D scenes and synthesize novel views from multiple images
with known poses. Building on this foundation, numerous NeRF-based models (Xu et al., 2022;
Deng et al., 2022; Chen et al., 2022; Fridovich-Keil et al., 2022; Garbin et al., 2021; Reiser et al.,
2021; Chen et al., 2023) have been developed. Point-NeRF (Xu et al., 2022) and DS-NeRF (Deng
et al., 2022) integrate sparse 3D point cloud and depth information to resolve the geometric ambigui-
ties inherent in NeRFs, leading to more accurate 3D point sampling and improved rendering quality.
On the other hand, Plenoxels (Fridovich-Keil et al., 2022), TensoRF (Chen et al., 2022), FastNeRF
(Garbin et al., 2021), KiloNeRF (Reiser et al., 2021), and MobileNeRF (Chen et al., 2023) focus on
employing various advanced techniques to accelerate the training and inference processes.
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(a) Example of low-quality and high-quality scenes and their initialized corresponding point cloud by COLMAP.

(b) Comparison of Gaussian primitives and rendered images of 3DGS with proposed edge-semantic fusion guidance (ESFG) module under
various degraded scenes.

Figure 2: (a) Comparison of low-quality and high-quality images and corresponded point clouds obtained
from COLMAP, which is used for Gaussian primitives initializing. (b) The visualization of the distribution of
Gaussian primitives in a trained 3DGS under multiple degradation scenes, along with the rendered 2D images.
Due to our edge-semantic fusion guidance module providing priors for detailed regions, it is able to distribute
more Gaussian primitives in some detailed areas. As a result, the rendered novel view images contain richer
details, particularly in elements like power lines and colorful flags.

Most recently, 3D-GS (Kerbl et al., 2023), based on point cloud rendering, facilitates real-time novel
view synthesis. While these methods have made notable progress in rendering high-quality scenes,
they can still produce artifacts with low-quality images and imprecise camera poses.

Novel View Synthesis in Degraded Scenes. Several NeRF- and 3DGS-based approaches (Huang
et al., 2022; Bahat et al., 2022; Feng et al., 2024; Pearl et al., 2022; Zhou et al., 2023b) synthesizing
high-quality novel views from degraded scenes using paired clean and degraded images. NeRF-SR
(Wang et al., 2022) enhances output resolution through sub-pixel sampling, though this approach
demands more computational resources and extends training times. On the other hand, NVSR (Ba-
hat et al., 2022) trains a NeRF super-resolution (SR) network with multi-view data, leveraging the
triplane structure to perform SR on low-resolution planes, thereby improving the overall NeRF res-
olution. In (Huang et al., 2022), RefSR-NeRF introduces a specialized SR module that incorporates
high-resolution reference images, which can lead to longer training and inference times. To achieve
high-quality rendering results in the noisy scene, NaN (Pearl et al., 2022) adapts the feed-forward
IBRNet view synthesis method to achieve competitive burst denoising results. Instead of focusing
on 3D learning, NeRFLiX (Zhou et al., 2023b) and NeRFLiX++ (Zhou et al., 2023a) learn a general
2D viewpoint mixer via simulated image degradation. However, if the distribution of the rendering
artifacts shifts from the simulated data, the performance degrades. Drantal-NeRF (Yang et al., 2024)
employs a diffusion-based image quality enhancement model to create higher-quality image pairs
for training a NeRF model. Recently, SRGS (Feng et al., 2024) has emerged as a 3DGS-based model
capable of achieving super-resolution rendering using paired low- and high-quality images.

Image Quality Enhancement and Restoration. Image restoration aims to enhance the quality of
degraded images affected by various types and levels of degradation. This challenging task encom-
passes denoising (Lin et al., 2023b; Ren et al., 2021; 2022), deblurring (Fang et al., 2023; Sun et al.,
2023; Pan et al., 2023), and general restoration (Zamir et al., 2021; 2022a; Lin et al., 2023a; 2024).
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Figure 3: HQGS framewok. The high-frequency edge-aware maps and low-quality images are jointly fed into
the learnable ESFG module for feature modulation and fusion. The fused features guide the training process of
HQGS, providing reliable detail priors. During training, we employ pixel-level L1 loss and a global structural
cosine similarity loss LSCS to optimize the model.

Restormer (Zamir et al., 2022a) incorporates transformers for low-level restoration to balance the
performance and computational costs, and MIRNetv2 (Zamir et al., 2022b) restores images through
a novel feature extraction network. On the other hand, Kong et al. (Kong et al., 2023) present a
Transformer-based method for high-quality image deblurring, by utilizing frequency-domain prop-
erties to simplify scaled dot product attention and alleviate the need for complex matrix multipli-
cation. Recently, MRLPFNet (Dong et al., 2023) proposes a simple yet efficient low-pass filtering
network, and demonstrate the importance of repairing low-frequency regions to improve image qual-
ity. SCPGabNet (Lin et al., 2023b) and SCP2GAN (Lin et al., 2024) are non-paired unsupervised
restoration methods that exploit the importance of low-frequency constraints and introduce back-
ground consistency loss (BGM) specifically for low-frequency areas.

3 PROPOSED METHOD

Figure 3 shows the overall pipeline of the proposed HQGS that receives multi-view low-quality
images I ∈ RN×H×W×3 as the input. The N , H and W are the number, height and width of
images. Using these images, we first generate the initial point cloud and corresponding camera
views through the classical COLMAP method. Meanwhile, we detect the boundaries of each image
to construct the high-frequency edge-aware maps. Next, we train a structure-assisted 3DGS model
to leverage structural information in both the reconstruction and rendering stages. On the one hand,
we propose an edge-semantic fusion guidance (ESFG) module that utilizes high-frequency edge-
aware maps as a condition signal for reconstructing 3DGS. On the other hand, we utilize structural
cosine similarity loss (LSCS) to constrain the global structure when rendering Gaussian primitives
into an image within a view.

In the following subsections, we first introduce the various degradation types designed in our
method. Then, we will elaborate on the ESFG module and LSCS , for robust HQGS.

3.1 DEGRADATION TYPES

To simulate various adverse real-world conditions, we introduce five types of degradation:

• Low Resolution: 4× downsampling is applied to create low-resolution images.
• JPEG Compression: Images are compressed using JPEG with setting the quality level 10.
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Figure 4: The ESFG module separately learns semantic-aware feature and edge-aware feature, and then jointly
guides the training of HQGS.

• Blur: Blurred images are generated using a Gaussian blur kernel with a radius ranging from 10 to
20, and the blur angle is randomly selected within the range [0, 2π].

• Noise: Gaussian noise with a standard deviation 10 is added to the images.
• Mixed Degradation: A combination of the degradations above, applied in the following order:

low resolution, JPEG compression, blurring, and noise.

Following 3DGS (Kerbl et al., 2023), we input a set of low-quality scene images with the corre-
sponding cameras calibrated by COLMAP, producing a sparse point cloud as a side effect. Fig-
ure 2(a) compares low-quality and high-quality scenes with their corresponding point clouds. The
low-quality images provide less visual information, creating a sparser point cloud than the high-
quality scene.

3.2 EDGE-SEMANTIC FUSION GUIDANCE MODULE

Motivation. Since degradation affects the edge details of some objects in the scene, making them
difficult to capture. Figure 2(b) shows Gaussian primitives distributed in these areas, such as power
lines and colorful flags, become sparse. This causes these objects to be omitted in the rendered 2D
images, reducing the quality of the rendered novel views. To address this problem, we leverage
specific edge contour priors as a ‘reminder’ to inform the model that particular objects in these
regions must be generated. This encourages it to cover these areas with more Gaussian primitives
during reconstruction.

Solution. We propose the Edge-Semantic Fusion Guidance (ESFG) module to enhance semantics
from low-quality images by the high-frequency edge-aware maps. To extract global high-frequency
edge-aware maps (E), we use the Sobel operator to calculate the gradient maps ∇I ∈ RN×H×W×3

of the low-quality images I that contain critical edge information. We then normalize ∇I to the
gradient masks ∇I ′ along with height and width dimensions:

∇I ′ =
∇I −Min(∇I)

Max(∇I)−Min(∇I)
, (1)

where Max(·) and Min(·) is the maximum and minimum value in ∇I . Lastly, we obtain the high-
frequency edge-aware map E by

E = ∇I ′ ⊙ I. (2)
where ⊙ represents matrix multiplication. The E ∈ RN×H×W×3 highlights rich high-frequency
image textures and details crucial for image quality enhancement and novel view synthesis. The
difference between ∇I ′ and E is presented in the appendix.

In the ESFG module, we down-sample them to I ′ and E′ by 2× as the input for computational effi-
ciency where I ′ and E′ ∈ RN×H

2 ×W
2 ×3. Then, we concatenate the images of I ′ and E′ according

to the camera order, respectively. To match the position parameters µ ∈ RM×3 of the Gaussian
primitives, we perform a scale transformation to obtain I ′M and E′

M ∈ RM
2 ×3 using MLPs, where

M represents the number of Gaussian primitives.

The ESFG module contains two branches in Figure 4. In the upper branch, we employ a cross-
attention mechanism where E′

M acts as the query, and the I ′M serves as the key and value. This

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

cross-attention between the low-quality images and the high-frequency edge-aware maps connects
local high-frequency details with global semantics, producing more comprehensive guided features,
i.e., semantic-aware features. In the lower branch, a learnable MLP layer is used to better interpret
edge information, resulting in the edge-aware feature. The output features from both branches are
then concatenated to form the final fused feature F ′

M , followed by a sigmoid non-linear operation.
Finally, F ′

M is used to modulate the original position parameters µ ∈ R3 of the Gaussian primitives
to obtain new position parameters µnew, and then HQGS models it as G(x):

µnew = Sigmoid(F ′
M )⊙ µ+ µ, (3)

G(x) = e(−
1
2 (x−µnew)TΣ−1(x−µnew)). (4)

where ⊙ represents matrix multiplication, and Σ ∈ R3×3 is an anisotropic covariance matrix, which
is factorized into a scaling matrix S and a rotation matrix R as Σ = RSS⊤R⊤.

3.3 STRUCTURAL COSINE SIMILARITY LOSS

While high-frequency information is essential for enhancing image quality, low-frequency informa-
tion should not be overlooked, as it corresponds to smooth areas and colors closely related to global
structural information (Dong et al., 2023; Lin et al., 2023b).

We propose a Structural Cosine Similarity Loss (LSCS) to enhance the global structure of low-
frequency regions and improve overall rendering quality. This loss emphasizes directional consis-
tency in the low-frequency feature space, allowing it to better capture the image’s global structure
and thereby achieve a closer match to its overall characteristics.

In the optimization stage, besides the original L1 between the rendered image (R) and its corre-
sponding target image (T ). We add our LSCS as a low-frequency-aware loss. Specifically, we first
obtain the low-frequency structure-aware map (S) of the R and T :

RS = (1−∇I ′)⊙R, TS = (1−∇I ′)⊙ T. (5)

We then compute structural cosine similarity loss LSCS :

LSCS = 1−
∑N

i=1 R
i
S · T i

S

∥RS∥2 · ∥TS∥2
, (6)

where N is the total number of pixels, and i represents the i-th pixel. The overall loss function is:

L = λ1L1 + λ2LSCS , (7)

where λ1 and λ2 denote weight parameters.

4 EXPERIMENTS

We first describe the utilized datasets and present the implementation details. Next, we provide
a comprehensive analysis of the experimental results, qualitatively and quantitatively. Finally, we
conduct ablation studies to validate the effectiveness of the proposed modules and the robustness of
our HQGS compared to other approaches.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the proposed HQGS pipeline on two datasets: (1) The LLFF dataset (Milden-
hall et al., 2019), which contains real-world images from eight distinct scenes, with each scene com-
prising 20 to 62 images. Of these, 1/4 are reserved for testing, while the remaining are used for
training. (2) A synthetic dataset derived from the Blender scenes used in DeblurNeRF (Ma et al.,
2022), where 1/8 of the data is used for testing and the other 7/8 for training.

Implementation Details. Our implementation is based on the 3DGS (Kerbl et al., 2023) framework.
The total number of training iterations is 50,000. The learning rate for the learnable parameters of 3D
Gaussians follows the official settings, while the learning rate for the ESFG module is set to 1e-6. We
evaluate our method using various metrics, including PSNR, SSIM, and LPIPS, following previous
work (Zhou et al., 2023c; Kerbl et al., 2023; Feng et al., 2024). All experiments are conducted on a
single Nvidia GeForce RTX 3090 GPU. The λ1 and λ2 in equation 7 are set to 1 and 5, respectively.
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Methods
Low resolution Compression Motion Blurry Gaussian Noisy Mixed

Ren time (s)
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

NeRF
NeRF 29.12 0.121 26.83 0.129 28.00 0.054 28.66 0.112 29.16 0.090 ∼4.7

based
Nan 25.63 0.171 20.43 0.353 23.70 0.215 20.33 0.535 20.32 0.688 ∼10.7

NVSR 30.00 0.075 27.25 0.088 28.48 0.041 29.00 0.073 29.69 0.067 ∼4.3
NeRFLiX 30.63 0.064 28.40 0.069 28.52 0.039 29.84 0.083 30.17 0.059 ∼7.5

3DGS
3DGS 29.25 0.092 27.95 0.076 28.28 0.039 29.49 0.052 28.99 0.109 ∼0.2

based
SRGS 31.12 0.048 28.22 0.087 28.14 0.041 29.69 0.047 30.33 0.056 ∼0.2
HQGS 31.70 0.036 28.92 0.044 29.03 0.029 30.41 0.029 30.92 0.037 ∼0.2

Table 1: Results of both NeRF-based and 3DGS-based methods on LLFF dataset (Ma et al., 2022). Ren time
denotes the rendering time for each frame. The red color indicates the best results, and the blue color indicates
the second-best results.

Figure 5: Visualization of the low-resolution, compression, blurry, noisy and mixed degradation scenes on
LLFF (Mildenhall et al., 2019).

Evaluated Methods. We evaluate methods that provide code and pre-trained models for fair and
comprehensive comparisons. For NeRF-based methods, we choose NeRF (Mildenhall et al., 2021),
Nan (Pearl et al., 2022), NVSR (Bahat et al., 2022), and NeRFLiX (Zhou et al., 2023b). In terms
of 3DGS-based approaches, 3DGS (Kerbl et al., 2023) and SRGS (Feng et al., 2024) are used for
comparison. We retrain all methods using low-high-quality pairs. The pre-trained IVM is used in
NeRFLiX. To comprehensively compare the efficiency and performance of the networks, all 3DGS-
based models are trained for 50,000 iterations. Meanwhile, we also provide a comparison of the
training time in the following section.
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4.2 RESULTS AND COMPARISONS.

(a) 3DGS (b) NeRFLix (c) SRGS (d) HQGS

Figure 6: Comparison of the difference map between the rendered im-
age and clean version contains high- and low-frequency information.

Novel View Reconstruction
on LLFF (Mildenhall et al.,
2019). Table 1 compares
HQGS to all NeRF (Milden-
hall et al., 2021; Pearl et al.,
2022; Bahat et al., 2022; Zhou
et al., 2023b) and 3DGS (Kerbl
et al., 2023; Feng et al., 2024)
baselines on the LLFF dataset,
showing that HQGS achieves the best results across all degradation conditions. In the low-resolution
setting, it achieves gains of 2.49 dB/0.083, 0.98 dB/0.026, 2.36 dB/0.054, and 0.49 dB/0.01 in
PSNR/LPIPS over NeRF, NeRFLiX, 3DGS, and SRGS, respectively. For JPEG compression
conditions, it has gained 0.42 dB/0.025 and 0.7 dB/0.043 over NeRFLiX and SRGS. It can also be
seen that NeRF-based methods, such as NeRFLiX, require 7.5 seconds for rendering vs. only 200
milliseconds for HQGS. Figure 5 compares images synthesized by the different methods under low
resolution, compression, blurry, noisy, and mixed degradation conditions. The images generated
by HQGS contain richer high-frequency details and more precise visual effects. More results are
presented in the appendix. We also compare the difference map between the rendered image from
existing methods and its corresponding clean one in Figure 6. A lot of high-frequency details and
low-frequency areas involve some structures that are bright, which means these areas are not learned
well. In contrast, HQGS achieves better performance in both low-frequency and high-frequency
regions.

Methods PSNR↑ SSIM ↑ LPIPS↓
NeRF 25.25 0.874 0.079
Nan 20.13 0.735 0.093

NVSR 25.67 0.885 0.073
NeRFLiX 25.93 0.888 0.057

3DGS 25.50 0.882 0.070
SRGS 26.03 0.887 0.065

HQGS (Ours) 27.10 0.902 0.043

Table 2: Results on DeblurNeRF dataset (Ma et al., 2022).

Novel View Reconstruction on De-
blurNeRF (Ma et al., 2022). Ta-
ble 2 presents the average PSNR and
LPIPS of different methods under
five degradation conditions. HQGS
achieves the best performance under
all metrics. Compared to the NeR-
FLix (Zhou et al., 2023b), it has
a gain of 1.17 dB/0.014/0.014 on
PSNR/SSIM/LPIPS. HQGS also de-
livers substantial improvements across all metrics over SRGS (Feng et al., 2024), which is designed
for resolution enhancement.

4.3 ABLATION STUDIES ON THE PROPOSED MODULES.

In this section, we conduct ablation studies on the proposed ESFG module and LSCS . Additional
analyses can be found in the appendix.

Effectiveness of the ESFG Module. In Table 3, we validate the effectiveness of the proposed
ESFG module. V1 represents the original 3DGS. V2 extends V1 by incorporating a semantic-aware
feature (SAF) from low-quality images, while V3 uses edge-aware features (EAF) extracted from
high-frequency edge-aware maps to guide 3DGS. V4 enhances the framework by applying cross-
attention (CA) between SAF and EAF. V5 fuses SAF and EAF by concatenating, and V6 represents
our complete framework with all four components. The specific structures of these variants are
shown in detail in the appendix.

Figure 7: Visual comparison of different variants in Table 3.

Using SAF slightly improves PSNR
from 26.84 dB to 27.19 dB. Replac-
ing SAF with EAF (V3) improves
PSNR by 0.69 dB compared to V2.
However, V4 with the cross-attention
mechanism (CA) further leads to a
0.51 dB improvement over V2. Com-
bining both SAF and EAF results in
a 0.16 dB/0.005/0.003 and 0.85 dB/0.013/0.015 gain in PSNR/SSIM/LPIPS over using SAF or
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Methods SAF EAF Concat CA PSNR (dB)↑ SSIM↑ LPIPS↓
V1 26.84 0.902 0.064
V2 ✓ 27.19↑0.35 0.904↑0.002 0.062↓0.002

V3 ✓ 27.88↑1.04 0.912↑0.010 0.050↓0.014

V4 ✓ ✓ 27.70↑0.86 0.910↑0.008 0.054↓0.010

V5 ✓ ✓ ✓ 28.04↑1.20 0.917↑0.015 0.047↓0.017

V6 ✓ ✓ ✓ ✓ 28.22↑1.38 0.919↑0.017 0.045↓0.019

Table 3: Effectiveness of the proposed ESFG module. The experiments are conducted on the ‘Wine’ scene with
blurry degradation from the DeblurNeRF dataset.

Methods L1 LBGM LSP LSCS PSNR (dB)↑ SSIM↑ LPIPS↓
V1 ✓ 28.22 0.919 0.045
V2 ✓ ✓ 28.31↑0.09 0.921↑0.002 0.040↓0.005

V3 ✓ ✓ 28.33↑0.11 0.923↑0.004 0.041↓0.004

V4 ✓ ✓ 29.09↑0.78 0.930↑0.011 0.031↓0.014

Table 4: Ablation studies on the proposed LSCS . The experiments are conducted on the ‘Wine’ scene with
blurry degradation from the DeblurNeRF dataset.

Method 3DGS 3DGS 3DGS 3DGS+ESFG 3DGS+ESFG 3DGS+ESFG

Sobel ✓ ✓
Gaussian ✓ ✓
Laplace ✓ ✓

PSNR(dB)↑ 27.88 27.48 27.62 28.22 27.89 27.92
SSIM↑ 0.912 0.908 0.910 0.919 0.913 0.914
LPIPS↓ 0.050 0.056 0.053 0.045 0.052 0.051

Table 5: Ablation studies on different guidance. The experiments are conducted on ‘Wine’ scenes with blurry
degradation from the DeblurNeRF dataset.

EAF individually. Finally, incorporating all components (V6) achieves the best results, with a 1.38
dB/0.017/0.019 improvement in PSNR/SSIM/LPIPS over V1. Figure 7 shows visual results in blurry
scenes, where V1 loses some details. While additional information helps, the improvements remain
limited. V2 renders only three power lines, with the flag still blurry. V3 and V4 correctly capture
four antennas and slightly improve flag clarity, but colors remain uniform. V6 accurately captures
the power lines and introduces noticeable color variations in the flag.

Effectiveness of LSCS. We assess the effectiveness of the LSCS in Table 4. V1 denotes the 3DGS
with the ESFG module trained using only L1. V2 builds upon V1 by incorporating a structure-
aware pixel-level loss (LSP ), which calculates the L1 between structural elements in the rendered
and target images. V3 introduces the LBGM (Lin et al., 2023b), and V4 replaces the LSP with our
structural cosine similarity loss (LSCS). We observe that adding the LBGM to the L1 provides a
slight improvement (approximately 0.1 dB in PSNR). Similarly, LSP results in a marginal improve-
ment. However, substituting local structural constraints with the global LSCS yields a significant
0.87 dB improvement over the original L1 loss, indicating that global low-frequency structural in-
formation is more effective at capturing overall image consistency than pixel-level constraints.

Comparison of Other Methods for Obtaining High-Frequency Maps. We compare the results
of different operators in both the 3DGS framework (V3 in Table 3) and the 3DGS with our ESFG
module (V6 in Table 3). The visualization of these maps is shown in the appendix. Table 5 shows that
high-frequency information from the Gaussian filter and Laplace operator can improve performance.
However, it is still lower than our high-frequency edge-aware feature in both V3 and V6 frameworks.
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Table 6: Robustness validation on two progressive degradation test sets on (Ma et al., 2022). The red color
indicates the best results, and the blue color indicates the second-best results.

Methods

Gaussian noise Low resolution

0 10 25 50 1 × 2 × 4 × 8 ×

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

NeRF 30.42 0.072 29.11 0.079 26.78 0.091 23.04 0.143 29.83 0.113 29.71 0.128 28.83 0.138 28.16 0.148
3DGS 30.21 0.043 29.19 0.052 27.46 0.077 22.78 0.109 30.25 0.091 30.18 0.094 29.25 0.092 28.63 0.111

NeRFLix 30.86 0.054 29.47 0.063 27.04 0.071 23.32 0.112 31.42 0.069 30.87 0.069 30.12 0.076 29.66 0.096
SRGS 30.71 0.036 29.17 0.045 27.63 0.061 23.21 0.126 31.36 0.078 30.93 0.065 30.54 0.061 30.11 0.087
HQGS 31.32 0.018 30.41 0.029 28.63 0.043 26.31 0.067 32.08 0.031 31.85 0.033 31.61 0.038 31.37 0.051

Figure 8: Training time vs quality for blurry scenes. HQGS performs well against 3GDS and SRGS under
both the PSNR and LPIPS metrics.

4.4 ANALYSIS ON ROBUSTNESS OF OUR HQGS.

So far, we have considered mild image degradations. In this section, we investigate the robustness
of HQGS across degradation levels. We construct two types of progressive degradation test sets:
(1) Noise: Gaussian noise with variances of 0 (clean), 10, 25, and 50, and (2) Low resolution:
images downsampled to 1× (clean), 2×, 4×, and 8× scales. Table 6 shows that the gains of HQGS
over existing methods increases with the degradation strength and are quite large for the strongest
degradations for both types of degradation. Especially as noise becomes severe (variance increasing
from 25 to 50), all methods exhibit a sharp drop, for example, SRGS from 27.63 dB to 23.21 dB
and NeRFLix from 27.04 dB to 23.32 dB, making high-quality rendering challenging. In contrast,
HQGS has a much smaller decline and maintains a robust performance of 26.31 dB, which achieves
a 3.10 dB and 2.99 dB improvement compared to SRGS and NeRFLix. A similar trend is observed
in low-resolution scenarios, where our method consistently demonstrates more robust performance
than others. For instance, under the 8 × setting, our method achieves a 1.26 dB/0.036 and 1.71
dB/0.045 increase over SRGS and NeRFLix on PSNR and LPIPS.

4.5 TRAINING TIME VS QUALITY.

In general, there is a trade-off between rendering quality and time, as higher quality rendering can
be achieved by considering more views of the scene. Figure 8 compares the performance of different
3DGS-based approaches as a function of training time. It is clear that HQGS achieves a better trade-
off than 3DGS and SRGS. For instance, a 5-minute reconstruction by HQGS has a 1.22 dB (0.018)
gain in PSNR (LPIPS) over the 3DGS results for 9 minutes.

5 CONCLUSION

In this paper, we propose a robust Gaussian variant HQGS, which performs favorably under various
degradation conditions and exhibits strong robustness as the degradation level increases. Building
upon the limitations of the existing 3DGS in rendering scene details due to degradation, we propose
an edge-semantic fusion guidance module to guide the positional parameters of 3DGS. Furthermore,
during optimization, we introduce a global structural cosine similarity loss (LSCS) to complement
the pixel-level L1 loss. Extensive experimental results demonstrate the effectiveness and robustness
of the proposed HQGS.
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A SPECIFIC STRUCTURE OF VARIANTS IN SECTION 4.3 OF THE MAIN PAPER

Five comparative variants are tested to verify the influence of the proposed Edge Fusion Guidance
(ESFG) module. Since the experimental results have been reported in sub-section 4.3, we mainly
describe their specific structures in this section. As the V1 in Table 3 of the main paper is the 3DGS
without learnable modules, we only provide details for the remaining variants. As shown in Figures.
9, 10, 11 and 12.

Figure 9: The structure of V2 in Table 3 of the main paper.

Figure 10: The structure of V3 in Table 3 of the main paper.

B WHOLE RESULTS ON LLFF

In Table 7, we present all PSNR, SSIM, and LPIPS metrics on the comparison results of the LLFF
dataset. HQGS achieve the best results across both NeRF-based and 3DGS-based methods.

Methods
Low resolution Compression Motion Blurry Gaussian Noisy Mixed

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF 29.12 0.917 0.121 26.83 0.831 0.129 28.00 0.923 0.054 28.66 0.868 0.112 29.16 0.916 0.090

Nan 25.63 0.869 0.171 20.43 0.742 0.353 23.70 0.721 0.215 20.33 0.716 0.535 20.32 0.747 0.688

NVSR 30.00 0.924 0.075 27.25 0.876 0.088 28.48 0.931 0.041 29.00 0.879 0.073 29.69 0.921 0.067

NeRFLiX 30.63 0.932 0.064 28.50 0.899 0.069 28.52 0.931 0.039 29.84 0.890 0.083 30.17 0.932 0.059

3DGS 29.25 0.919 0.092 27.95 0.888 0.076 28.28 0.930 0.039 29.49 0.888 0.052 28.99 0.904 0.109

SRGS 31.12 0.941 0.048 28.22 0.891 0.087 28.14 0.926 0.041 29.79 0.891 0.047 30.33 0.931 0.056

HQGS 31.61 0.947 0.038 28.92 0.912 0.044 29.03 0.938 0.029 30.42 0.898 0.029 30.92 0.940 0.037

Table 7: Results of all NeRF-based and 3DGS-based methods on LLFF dataset. The red color indicates the
best results, and the blue color indicates the second-best results.

C ABLATION STUDY ON THE λ2 IN EQUATION (9) OF THE MAIN PAPER.

In this section, we conduct an ablation study on the λ2 in equation (9) of the main paper: keeping
the L1 loss parameter λ1 in equation (9) of the main paper fixed at 1, we select values of 0, 0.5, 1,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 11: The structure of V4 in Table 3 of the main paper.

Figure 12: The structure of V5 in Table 3 of the main paper.

2, 3, 4, 5, and 6 for evaluation. Using the low-resolution scenes from the LLFF dataset as input,
we test the performance of the generated novel views. As shown in Table 8, the λ2 = 5 has the best
performance, so we choose this one.

D VISUALIZATION RESULTS OF OTHER METHODS FOR OBTAINING
HIGH-FREQUENCY MAPS.

Our goal is to capture contour regions representing the image’s high-frequency content. We first
show the ∇I ′ and E in Section 3.2 in the main paper in Figure 13. After that, as shown in Figure 14,
we explore other methods for extracting high-frequency content, such as using a Gaussian high-pass
filter and Laplace operator to obtain high-frequency responses.

Method 0 0.5 1 2 3 4 5 6

PSNR(dB)↑ 29.25 29.70 30.62 31.15 31.37 31.53 31.61 31.56
SSIM↑ 0.919 0.919 0.932 0.941 0.944 0.945 0.947 0.947
LPIPS↓ 0.121 0.071 0.051 0.047 0.046 0.042 0.038 0.039

Table 8: Ablation studies on the λ2 in equation (9) of the main paper.
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Figure 13: Visualization the ∇I ′ and E.

Figure 14: Visualization the map from different operators.

E ROBUSTNESS VALIDATION ON EDGE MAPS.

We leverage the well-known fact (T., 2009) that edges have sufficient frequency information and can
be obtained by an edge detection operator even from degraded images. We provide visualizations
of edge detection results obtained using the Sobel operator under progressively challenging condi-
tions, as shown in Figure 15 in the submitted Supplementary Material. Additionally, we quantified
the results by calculating the PSNR metrics of the images and edge maps under various condi-
tions compared to the clean ones. Then, we presented the PSNR variance of the images and edge
maps: 10.18/0.285. This further demonstrates that the edge maps are more robust under progres-
sively degraded conditions. Thus, edge detection performs well in extracting edge information to a
considerable extent, even under relatively challenging conditions.

F ABLATION STUDIES ON THE DOWNSAMPLING PARAMETERS IN THE
ESFG MODULE.

We introduce downsampling in the ESFG module to reduce dimensionality and save computational
resources. To further investigate its impact, we supplement additional experiments under two con-
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Figure 15: Visualization of edge maps on progressive degradation scenes.

Methods 1 × 2 × 4 ×
PSNR(dB)↑ 31.79 31.70 31.42
Time(Min)↓ 16.4 13.3 11.2

Table 9: Ablation Studies on the Downsampling Parameters in the ESFG Module.

figurations: Without Downsampling and 4 × Downsampling in Table 9. Therefore, we choose the 2
× to balance the training time and the performance.

G ADDITIONAL QUALITATIVE RESULTS.

This section presents additional results to underscore the advanced capabilities of our HQGS over
other leading NeRF-based and 3DGS-based techniques. Illustrated in Figures. 16, 17, 18, our
methods consistently deliver superior quality of rendered image.
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Figure 16: Visualization of the noisy scenes on the LLFF dataset.

Figure 17: Visualization of the low-resolution scenes on the LLFF dataset.

Figure 18: Visualization of the blurry scenes on the LLFF dataset.
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