
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

C2RUST-BENCH: A MINIMIZED, REPRESENTATIVE
BENCHMARK FOR C-TO-RUST TRANSPILATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite significant effort in vulnerability detection over the last two decades, mem-
ory safety vulnerabilities continue to be a systemic problem that affects most
mainstream software. Recent reports have concluded that the key to solving this
issue once and for all is to migrate legacy C code to memory-safe languages. To
this end, C-to-Rust “transpilation” has become a popular research topic. Recent
work has proposed various approaches; however, what the community lacks is a
comprehensive evaluation dataset. Currently, researchers rely on completeness
through sheer sample volume, but this bloats the time required to run experiments
and makes verification, which is currently done manually, laborious. In this work,
we propose a method for selecting functions from a large set to construct a mini-
mized yet representative dataset to evaluate C-to-Rust transpilation systems. We
propose C2RUST-BENCH, a dataset of only 2,905 functions that are nevertheless
an objectively representative benchmark for C-to-Rust transpilation. This dataset
was distilled from 15,503 real-world functions encompassing previous work.

1 INTRODUCTION

The recent advancements in Artificial Intelligence (AI) have spurred discussions of code migration
(aka. “transpilation”) from one programming language to another. Certainly, transpilation of C
programs into Rust is one of the most popular because Rust provides memory-safety by design while
maintaining comparable runtime performance. It is reported that 70% of the Common Vulnerabilities
and Exposures (CVEs) assigned by Microsoft relate to memory safety (CISA, 2025). Instead of
relying on detection and mitigation, the US White House Office of National Cyber Directory (ONCD)
have concluded that migration to memory-safe languages is the most promising solution (WhiteHouse,
2025), leading to the announcement of funding for C-to-Rust transpilation research (DARPA, 2025).

Initial attempts have been made to propose automated tools to translate C programs into Rust using
Large Language Models (LLMs) (Emre et al., 2021; Zhang et al., 2023; Yang et al., 2024; Hong &
Ryu, 2024; Shiraishi & Shinagawa, 2024). However, there is a non-trivial question: What dataset
should be used to evaluate the proposed tools? As observed in existing program analysis work,
such as vulnerability detection, an evaluation dataset should be, most importantly, concise and
representative. By being concise, a dataset reduces the time spent evaluating a proposed system, and
by being representative, the dataset reinforces the validity of the findings. Failing to satisfy these
properties results in costly and laborious evaluations that hinder research progress.

To our knowledge, no prior work provides an objectively concise and representative benchmark
for evaluating C-to-Rust transpilation. Concurrently, another work (Khatry et al., 2025) proposes a
repository-scale benchmark, derived from previous studies, with manually crafted Rust interfaces
and test suites for end-to-end evaluation; however, it does not offer a representative, minimized
set for initial assessment. While other security topics, such as vulnerability detection, have such
benchmarks (Dolan-Gavitt et al., 2016; Hazimeh et al., 2020), they do not aim for conciseness for
domain-specific reasons. In contrast, approaches of existing work in machine learning (ML) (Bachem
et al., 2017; Sener & Savarese, 2017; Novikov et al., 2021; Lee et al., 2024; Song et al., 2025),
reducing training dataset size, are tailored to generic text and images, which makes them poorly
suited for use on software source code.

Reducing a large dataset of real-world C programs without losing distinctive features poses several
challenges. Programming constructs in a language can be thought of as small in number; however,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the combinations of those constructs produce unique programs with varying complexity levels. This
poses the first challenge, which is that we have a nearly infinite number of programs to select
from. Moreover, even with a finite set of programs, it would still be difficult to select representative
programs because how they relate to the task of transpilation is unclear. We require an answer to the
questions: What is a representative C program set for transpilation and how can we describe it?

Even though combinations of programming constructs can create an infinite number of programs, we
observe that LLM and rule-based transpilation systems break down larger programs into discrete finite
units for processing. In short, there is an upper bound beyond which increasing the size of a program
no longer increases the complexity of transpilation, and, by extension, representativeness. Moreover,
representativeness can be defined as having a subset of programs that contains all the challenging
code patterns contained in the larger original set. Based on this definition and our observations, we
aim to obtain a set of metrics that express the complexity of a given program, which overcomes the
challenge of lack of quantitative metrics for source code.

Based on our insights, we propose a method that takes a large dataset from real-world programs from
various domains and down-selects based on complexity metrics. In the literature, there are various
software metrics that represent different features of a given code. We find that the Maintainability
Index (MI) suits our purpose well (Coleman et al., 1994) since it is the summary of three other
metrics, including (1) cyclomatic complexity (McCabe, 1976), representing control flow complexity,
(2) Halstead’s volume (Halstead, 1977), representing the amount of information contained within a
code, and (3) source lines of code, representing the size of the code. Since our target task is C-to-Rust
transpilation and the two languages differ in several aspects, such as memory operations and data
types, taking only C code into account for measuring complexity would be limiting for capturing
representativeness. Thus, in addition to MI of C code, we cover the MI of Rust code as a separate
complexity metric. Moreover, we observed that it is challenging to transpile C code containing
pointer arithmetic, memory operations, and advanced data structures. Based on those observations,
we identify two other sources that represent the complexity of Rust code for the transpilation task,
namely, the usage of unsafe code and the usage of varying data types.

In the selection process, we utilize partitioning by cutting each metric into pieces whose combinations
form bins in multidimensional space. Then, we calculate the principal component analysis (PCA)
complexity score, which is the summary of four metrics, and order each bin by the PCA complexity
score. Lastly, we perform selection using systematic sampling from each bin to obtain representative
samples from distinctive data points.

To form an initial large dataset to select from, we obtain the programs used in previous evaluations
in C-to-Rust transpilation (Emre et al., 2021; Zhang et al., 2023; Yang et al., 2024; Hong & Ryu,
2024), which yields 65 programs containing 15,503 functions. Applying our selection process, we
obtain 2,905 functions for our benchmark, C2RUST-BENCH, which is an 81.3% reduction in samples.
We release C2RUST-BENCH to be used in the evaluation of the C-to-Rust transpilation works.1 In
addition, we publish the code artifacts of our implementation on GitHub.2

2 OVERVIEW

In this section, we first present dataset usage and potential challenges related to dataset in program
analysis and machine learning fields. Then, we provide a brief background on the transpilation from
C to Rust. Next, we explain our motivation behind the dataset reduction for transpilation.

2.1 BACKGROUND

Dataset in program analysis. Program analysis research typically involves developing tools for tasks
such as vulnerability detection, malware detection, or transpilation. These tools must be evaluated on
a set of programs datasets such as those containing known CVEs, malware samples, or code with
diverse characteristics. Two primary approaches are commonly used to construct such datasets: (1)
selecting real-world programs from varying domains (Emre et al., 2021) or (2) retrieving the dataset
from previous work if it is available (Zhang et al., 2023). Some studies also combine collected set

1https://huggingface.co/datasets/anonymous4review/C2Rust-Bench
2https://github.com/anonymous8428/C2Rust-Bench

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

with prior datasets (Hong & Ryu, 2024). However, these approaches face challenges: (1) small
datasets may fail to comprehensively evaluate the tool, (2) large datasets increase analysis time, or (3)
using different datasets hinders tool comparison. This presents an optimization problem of identifying
a minimized representative set with distinct samples.

Dataset in Machine Learning. ML models are built from data through training and testing processes.
Thus, dataset collection and selection play a critical role, dealing with the trade-off between accuracy
and training/testing time. Increasing the amount of data may improve accuracy but often adds
duplicates, raising cost without benefit. As a result, several works in the ML literature focus on
reducing dataset size by selecting a subset of distinct or representative data points from a large
dataset (Bachem et al., 2017; Sener & Savarese, 2017; Novikov et al., 2021; Lee et al., 2024; Song
et al., 2025). This reduction helps to reduce training and testing time while maintaining accuracy.

Transpilation. C-to-Rust transpilation has gained traction as a long-term solution to memory-safety
vulnerabilities (WhiteHouse, 2025; DARPA, 2025). Initial works propose rule-based C-to-Rust
transpilation tools such as c2rust (Immunant, 2025a). c2rust produces compilable and semantically
correct Rust code; however, the output is not idiomatic and is wrapped in unsafe blocks by default.
Subsequent efforts aim to improve c2rust’s output by reducing unsafe usage (Emre et al., 2021; Zhang
et al., 2023) and adjusting function returns with proper Rust types (Hong & Ryu, 2024). However,
due to the inherent limitations of rule-based approaches, recent efforts explore AI-driven approaches,
including the LLM-based transpiler VERT (Yang et al., 2024) and methods addressing the limits of
the LLM context-window (Shiraishi & Shinagawa, 2024).

2.2 MOTIVATION

Despite advances in vulnerability detection (Song et al., 2019), memory safety vulnerabilities remain
a critical threat (CISA, 2025; WhiteHouse, 2025). Rather than securing memory-unsafe programs,
migrating them to memory-safe languages, called transpilation, is considered the best alternative
solution (WhiteHouse, 2025; DARPA, 2025). While C language lacks memory safety by design, Rust
provides a safer alternative, allowing unsafe operations only via the unsafe keyword. This makes
the C-to-Rust transpilation crucial to mitigate memory risks (WhiteHouse, 2025; DARPA, 2025).

Several works have been done on the C-to-Rust transpilation, focusing on rule-based approach (Emre
et al., 2021; Zhang et al., 2023; Hong & Ryu, 2024) and LLM-based approach (Yang et al., 2024;
Shiraishi & Shinagawa, 2024), marking the inception of a new research area. However, as seen in
other program analysis fields, determining an appropriate dataset to evaluate the proposed tools is
challenging due to: (1) having a small dataset that leads to not evaluating the tool comprehensively,
(2) having a large dataset that leads to a long analysis time, automated and manual analysis, or (3)
having a different dataset from previous work that makes them incomparable.

To address these challenges in this emerging field, we form a benchmark set C2RUST-BENCH,
containing 2,905 distinct and representative functions selected from 15,503 functions in the large set,
reducing it by 81.3%. C2RUST-BENCH avoids the three potential problems previously mentioned by
providing (1) a small but representative dataset that allows comprehensive evaluation, (2) a minimized
dataset that reduces the analysis time by approximately 80%, and (3) a standardized dataset that
offers a common ground for the comparison of incremental works.

3 METHODOLOGY

In this section, we first present an overview of our methodology. Then, we explain the source code
complexity metrics. Lastly, we present the function selection method.

3.1 OVERVIEW

Selecting representative functions from a large dataset for evaluating C-to-Rust transpilation requires
(1) identifying features that represent the functions with respect to the target task and (2) a method to
select functions based on the features. We identify and define a set of source code complexity metrics
for C and Rust. To obtain the Rust counterpart of a C function, we build a transpilation framework
using a local LLM, enabling feature extraction from both sides of the C-to-Rust transpilation. We
discuss the implications of using an LLM to construct an evaluation dataset for transpilation in §B.2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Selecting functions based on code complexity metrics requires a method to identify distinctive data
points in a multidimensional space. We use a partitioning method that divides each dimension
into segments based on a specified partitioning parameter. Combinations of these segments in the
multidimensional space form bins. Within each bin, we rank samples using Principal Component
Analysis (PCA) scores derived from their code metrics and apply systematic sampling to select
representative and diverse functions. The following subsections present this methodology in detail.

3.2 REPRESENTATIVE SOURCE CODE COMPLEXITY METRICS

In this subsection, we describe the source code complexity metrics we collect or define to represent
function complexity for the selection process.

Maintainability Index. One popular metric to measure the complexity of a source code is the
Maintainability Index (MI) (Oman & Hagemeister, 1992). The MI metric is built on top of three other
metrics, cyclomatic complexity (McCabe, 1976), Halstead’s volume (Halstead, 1977), and source line
of code. MI metric combines these three metrics to assess multiple dimensions of code maintainability,
particularly how easily developers can understand, modify, and extend a code. Because transpilation
requires carefully analyzing the original code and rewriting it in another language while preserving
its behavior, MI provides a meaningful measure of the code’s complexity in this context. Therefore,
the MI metric serves as an excellent candidate for use in our selection process.

Unsafe Code Complexity. Memory operations such as pointer arithmetic and dereferencing pose
significant challenges in C-to-Rust transpilation due to fundamental differences in how memory
safety is handled in these languages. In C, these operations are unrestricted and rely entirely on
the programmer for correctness. However, Rust enforces strict memory safety guarantees, allowing
operations such as pointer manipulation only in explicitly marked unsafe contexts. As a result,
transpilation must take into account these restrictions to generate a correct and safe Rust code.

Considering the previous points and our observations using LLM for transpilation, the use of unsafe
code in Rust indicates a higher complexity of a code for transpilation. Since the MI index does not
take memory operations into account in measuring maintainability, we define a metric to represent
the complexity of a Rust code with respect to its unsafe operations. We obtain unsafe blocks and
count the number of unsafe statements. Then, we find the average unsafe statement for a given Rust
function. The details of the implementation of this metric are presented in §A.2.

Data Type Complexity. Data types pose a significant challenge in the C-to-Rust transpilation due to
fundamental differences in type systems, memory layouts, and handling of basic and complex data
types. In C, the type system is relatively permissive, allowing implicit type conversions, type casts,
and low-level memory manipulations. For instance, C allows casting between incompatible types
and perform arithmetic on raw pointers, which can result in memory misalignments or violations of
type safety. In contrast, Rust enforces a stricter type system that prioritizes safety and explicitness.
Rust disallows implicit type coercion and enforces explicit casting, requiring careful handling
during transpilation. Additionally, concepts such as ownership, borrowing, and lifetimes—absent in
C—complicate transpilation due to their impact on memory allocation and ownership.

Translating data types from C to Rust requires not only mapping flexible memory handling of C
language to Rust’s more restrictive model but also ensuring that the resulting code respects Rust’s
memory safety, ownership, and lifetime rules. This process requires accurately mapping both basic
and complex types with appropriate conversions and safety checks. Given the complexity of this task,
we introduce a metric that captures the type-related complexity of a Rust function based on the data
types used. The details of the implementation of this metric are shared in §A.2.

3.3 FUNCTION SELECTION METHOD

We use 4 metrics to quantify the complexity of C and corresponding Rust functions: the MI metrics
of C and Rust codes, and the unsafe code and data type complexity metrics of Rust code. To
facilitate function selection, we need a method to collectively analyze these four metrics and identify
representative data points capturing the characteristics of the entire set. While k-means clustering is a
natural candidate for grouping multi-feature data, the continuous and gapless nature of our metric
values makes such clustering approaches unsuitable.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For data with continuous values, a common practice is to divide the population into subgroups based
on characteristics, as in stratified sampling. Since we do not have such categorical characteristics, we
use an alternative but similar approach, partitioning, to create subgroups. We partition the value range
of each metric into equal segments. In a multi-dimensional space, a combination of these segments
across dimensions form bins, similar to the naturally formed subgroups in stratified sampling. Each
of these bins represents a distinctive data point in the multidimensional space.

To obtain a representative set with distinct samples, we use systematic sampling combined with
Principal Component Analysis (PCA) for selection from each bin. First, we calculate PCA for the
samples in each bin, which condenses the four metrics into a single complexity metric. Next, we order
the samples in each bin according to the PCA scores. Then, we perform systematic sampling within
each bin, using the interval values derived from the sampling size of each bin. The implementation
details of our function selection process are provided in §A.3.

4 IMPLEMENTATION

In this section, we share a part of the implementation that is crucial to understanding our selection
process and experiments. Due to space constraints, we include the implementation details of
complexity metrics (§3.2) and function selection method (§3.3) in §A.2 and §A.3, respectively.

4.1 PREPARATION OF C CODE FOR TRANSPILATION

Preprocessing C Files. We perform preprocessing on C files to resolve macros and dependencies
within a codebase. Reducing the input from multiple dependent C files to independent C files is
necessary to handle challenges of input/output token limits in LLM-based transpilation. To this end,
we modify the build configurations of each codebase to generate preprocessed C files, specifically
updating the build files with the -S option of GCC, which outputs preprocessed C code instead of
compiled binaries. We work on those preprocessed C files in the segmentation process.

Segmentation of C Files. We split C files into individual functions due to two main challenges:
(1) input/output token limits of LLMs, and (2) while generating compilable and correct output is
already difficult for single functions using LLMs, it becomes nearly impossible for multiple functions.
Although LLM-based transpilation is relatively new, one study demonstrates the effectiveness of
segmentation in C-to-Rust transpilation (Shiraishi & Shinagawa, 2024). However, the proposed
approach is not publicly available.

We build an LLVM tool to split a preprocessed C file into individual functions. The tool first identifies
the start and end lines of each function in a given C file, and then extracts them into separate C files.
The source code of the tool is available in our artifacts.

4.2 TRANSPILATION OF C FUNCTIONS INTO RUST

We require a method for transpiling C code into Rust to (1) extract the complexity metrics from the
generated Rust code, and (2) obtain feedback from the transpilation process to evaluate the selected
functions. To this end, we build a simple transpilation tool with a compilation-error fixing loop that
can operate with any local LLM. Our choice of LLM for the experiments is discussed in §5.2.

The tool takes a C file containing an individual function as input and combines it with the instructions
shown in Figure 2 of §A.1 before sending a request to the LLM. The LLM performs the transpilation
and returns the resulting Rust code in the specified format. The tool then attempts to compile the
Rust code. If compilation is successful, the transpiled code is retained, and the process ends with
success. If compilation fails, the tool passes the errors from the Rust compiler to the fixing module
along with the corresponding Rust code.

The fixing module sends a request to the LLM with the combination of Rust code, compilation errors,
and fixing instructions shown in Figure 3 of §A.1. It then attempts to compile the modified Rust code
after the LLM fixes the errors. The fixing module continues to attempt to fix the transpiled code until
the compilation error fixing attempt limit is reached. If the Rust code remains non-compilable at
the limit, the transpilation process ends with failure. Despite this, we retain these samples in our
candidate set, as they are evidently challenging for transpilation and still yield complexity metrics.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Transpilation performance of 9 LLMs on the microbenchmark set.

LLM Name Average Transpilation
Time (sec)

Average Compilation
Attempt (#)

Transpilation
Success (%)

codegeex4:9b 92.8 10.7 51.2
codestral:22b 94.8 4.5 92.7
gemma2:9b 104.9 12.4 47.0
llama3.2:3b 79.9 12.5 59.9
llama3.1:8b 99.5 8.9 80.5
mistral:7b 92.5 12.4 55.0
qwen2.5-coder:7b 79.7 10.0 60.1
qwen2.5-coder:14b 61.0 3.3 96.2
qwen2.5-coder:32b 103.6 2.6 97.6

5 EXPERIMENTS AND RESULTS

In this section, we first explain the experiment setup in §5.1. Then, we present a preliminary
experiment in §5.2 to select an LLM for C-to-Rust transpilation. Next, in §5.3, we present another
preliminary experiment to specify the hyperparameters for the selection process. Finally, we present
C2RUST-BENCH, a minimized, representative set for evaluating C-to-Rust transpilation in §5.4.

5.1 EXPERIMENT SETUP

Dataset. We assembled a large dataset by collecting datasets from previous works (Emre et al.,
2021; Zhang et al., 2023; Yang et al., 2024; Hong & Ryu, 2024). These works focus on C-to-Rust
transpilation or on improving transpiled Rust code. Note that our large dataset also contains c2rust
examples (Immunant, 2025b), which are included in the four datasets. There are 64 real-world
programs and 1 synthetic program set in our large dataset, all of which come from those 4 previous
works. After preprocessing and segmentation steps, we obtained 15,503 functions in total. We give a
detailed look at the programs of the large dataset in Table 3 of §B.

Microbenchmark Set. We have to specify an LLM to transpile C code into Rust as part of the
selection process. However, transpiling the entire large dataset with all candidate LLMs is infeasible
due to time and resource constraints. To address this, we sample 10% of the functions in the large
dataset and obtain 1,573 functions that form the microbenchmark set for LLM selection.

Resource and Environment. We run our experiments on a server with an Intel Xeon Silver 4310
CPU and an NVIDIA A30 GPU. The server runs on a Ubuntu 22.04.4 LTS OS. We implement the
Rust parsers using the Rust parsing library Syn. We implement the rest of our method in Python.

5.2 EVALUATION OF LLMS ON MICROBENCHMARK SET

Our selection approach benefits from both the C and the corresponding transpiled Rust code. Thus,
we need to perform transpilation as part of our selection process. Since transpilation of the large set
with 15,503 functions is costly, we specify an LLM to use in transpilation. However, we assess how
well the selections obtained using the chosen LLM generalize to other LLMs in §B.2.

Methodology. We use the transpilation process described in §4.2 to evaluate LLMs on the mi-
crobenchmark set. Candidate LLMs were selected based on three criteria: (1) runnable on a local
machine, (2) model size under 24 GB, and (3) reported strong performance on code tasks. After ex-
cluding smaller, older or nonconforming models (e.g., those returning natural language or fragmented
code despite our instructions), we retained 9 candidates. Each LLM transpiles the microbenchmark
set, and we collect metrics to guide LLM selection, including the result of the transpilation, initial
transpilation time, number of compilation-fixing attempts, and the total fixing time.

Results. In Table 1, we present the results of transpilation performed with 9 LLMs. The total time per
sample includes the initial transpilation time, compilation error fixing times, and compilation times.
Average time indicates the mean transpilation time across the 1,573 samples in the microbenchmark
set. Compilation attempt ranges from 0 to 20, recalling that a value of 0 means the code compiled

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

successfully after the initial transpilation, and a value of 20 indicates transpilation process ends with
compilation failure. The average compilation attempt shows the number of fixing attempts performed
on average for the samples in the microbenchmark set. Lastly, transpilation success is the percentage
of samples producing a compilable Rust code within 20 fixing attempts.

Among 9 LLMs, qwen2.5-coder:14b is fastest, averaging 61 seconds per transpilation fol-
lowed by qwen2.5-coder:7b (79.7) and llama3.2:3b (79.9). qwen2.5-coder:32b
requires the fewest compilation-fix attempts (2.6), ahead of qwen2.5-coder:14b (3.3) and
codestral:22b (4.5). Lastly, qwen2.5-coder:32b achieves the highest transpilation suc-
cess rate (97.6%), surpassing qwen2.5-coder:14b (96.2%) and codestral:22b (92.7%).
We select qwen2.5-coder:32b for subsequent experiments due to its top success rate, prioritizing
compilation reliability for future benchmark use.

5.3 TUNING THE HYPERPARAMETERS

The selection process has two hyperparameters, the number of partitions per dimension and the ratio
of sampling per bin. In this section, we present the experiments to identify their optimal values.

Methodology. To identify the optimal hyperparameters, we test various combinations of the two
hyperparameters in the function selection process described in §A.2 and §A.3. Evaluating the set
of selections requires feedback from the target task, transpilation. While we could use transpilation
results as binary feedback, it would be limited in assessment of selections. Instead, we leverage
compilation-error fixing attempts from transpilation as feedback to assess the representativeness of
the selections. Since the selected set is a subset of the large set, the distributions of compilation-error
fixing attempts would differ between the two sets. To address this, we normalize the fixing attempt
distribution of the large set by the ratio of sample sizes in both sets to obtain the expected distribution.

relative_difference =
1

21
·

20∑
i=0

|expected_valuei − observed_valuei|
expected_valuei

. (1)

We calculate a difference score to justify the representativeness of the function sets selected with
different hyperparameters. We use relative difference instead of absolute difference for a fair
comparison, since the number of selected functions varies for each hyperparameter combination. We
calculate the sum of differences from each compilation error fixing attempt and get the average. The
calculation used for each combination of hyperparameters is shown in Equation 1.

For the number of partition hyperparameter, we test 20 values, ranging from 1 to 20. For the ratio
of sampling hyperparameter, we test 100 values, ranging from 0.002 to 0.2 by a step size of 0.002.
Since these hyperparameters interact, we tune them jointly by combining and testing their candidate
values to find a global optimum. These combinations yield 2,000 total selections.

0 250 500 750 1000 1250 1500 1750 2000
Combinations (Index)

20

40

60

80

Re
la

tiv
e

Di
ffe

re
nc

e
(%

)

Figure 1: The change of relative difference over
combinations of values of two hyperparameters.

Results. In Figure 1, we present the relative dif-
ferences calculated for 2,000 different selections
from the combinations of two hyperparameters.
The combinations of the two hyperparameters
are on the x-axis in the format of (number of
partition, ratio of sampling). Each point on the
x-axis corresponds to a unique combination of
the two hyperparameters, ordered first by the
first hyperparameter, and then by the second. At
index 0 of the x-axis (the leftmost in Figure 1),
we have the combination (1, 0.002) and at the
rightmost, the combination (20, 0.2).

To select the best hyperparameters, we aim to
minimize the relative difference score. The com-
bination (9, 0.166), located at the index of 883
and marked by the red dashed line in Figure 1,
has the lowest relative difference score of 11.2%. Thus, we select 9 and 0.166 as the number of
partition and ratio of sampling parameters, respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Summary of key C constructs and their occurrence in C2RUST-BENCH.

C Construct
Total

Occurrence
(#)

Functions
with

Occurrence
(#)

C Construct
Total

Occurrence
(#)

Functions
with

Occurrence
(#)

Pointer Type 1,553 803 If Statement 6,123 1,562
Array Type 1,134 620 For Loop 900 526
Struct Type 764 505 While Loop 691 377
Enum/Union Type 34 22 Switch Statement 160 125
Function Pointer 48 30 Goto Statement 131 33
Type Casting 4,419 1,636 Return Statement 4,156 2,148
Memory Management 349 194 Break/Continue Statement 1,443 314
Memory Operation 165 119

5.4 C2RUST-BENCH: A MINIMIZED REPRESENTATIVE SET

In this subsection, we provide details from C2RUST-BENCH. After selecting the LLM and hyper-
parameters, we applied our selection process to the large dataset of 15,503 functions. It identified
2,905 functions as the representative set of the large dataset, forming C2RUST-BENCH. Our selec-
tion process reduced the number of functions by 81.3%, from 15,503 to 2,905. In practical terms,
transpiling the large dataset took 246 hours, whereas C2RUST-BENCH required only 52 hours, a
reduction of 78.9%. In addition, the total source lines of code (SLoC) is reduced from 195,926 to
50,150 by 74.4% decrease. We share per-program details from C2RUST-BENCH in Table 4 of §B.

To provide a detailed view of C2RUST-BENCH, we identify the challenging C constructs for C-to-
Rust transpilation based on the challenges addressed by prior studies and our own observations. In
Table 2, we report the frequency of these constructs in C2RUST-BENCH. The "Total Occurrence"
column shows how many times each construct appears across all functions, while the "Functions with
Occurrence" column indicates how many of the 2,905 functions contain at least one instance of the
construct. With this data, we aim to provide insight for future work leveraging C2RUST-BENCH.

Translating pointers from C to Rust is a major challenge studied in previous works (Emre et al., 2021;
Zhang et al., 2023). C2RUST-BENCH contains 1,553 pointer variables across 803 functions, providing
a valuable resource for evaluating C-to-Rust transpilers. Arrays and structs also pose challenges due
to differences in memory layout, ownership, and mutability semantics. C2RUST-BENCH contains
1,134 array variables across 620 functions and 764 struct variables across 505 functions, offering a
comprehensive basis for testing C-to-Rust transpilers.

Several C constructs in C2RUST-BENCH present unique translation challenges due to limited or non-
direct equivalents. C2RUST-BENCH contains 34 union and enum types, requiring careful handling
due to C’s overlapping memory layouts and Rust’s strict type safety, often requiring redesigns with
enum variants or unsafe code. Function pointers, appearing 48 times, complicate transpilation due to
differences in calling conventions and the need to express dynamic behavior safely in Rust. Finally,
type casting, appearing 4,419 times across 1,636 functions, is crucial in C-to-Rust transpilation, as
Rust’s stricter type system requires many C casts to be rewritten or wrapped in unsafe blocks.

Control flow constructs are fundamental to program semantics, and preserving their behavior during
translation is essential. C2RUST-BENCH contains 6,123 if statements, 900 for loops, and 691
while loops, covering a wide range of structured branching and iteration patterns. These constructs
test whether transpilers can correctly map C control flow to Rust. Furthermore, 160 switch
statements and 131 goto statements pose challenges, as switch maps to Rust’s match, requiring
restructuring, and goto, unsupported in Rust, requires extensive rewriting. C2RUST-BENCH also
includes 4,156 return statements across 2,148 functions and 1,443 break/continue statements
across 314 functions. Prior work (Hong & Ryu, 2024) emphasizes return statements in C-to-Rust
transpilation, showing how C output parameters can be replaced with Rust algebraic data types to
ensure correct function translation. Together, these features make C2RUST-BENCH an excellent
resource for evaluating how well transpilers handle control flow in C-to-Rust translation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Memory management is a key concern in C-to-Rust transpilation, as C allows manual allocation
(malloc) and deallocation (free), while Rust enforces strict memory safety through its ownership
system. C2RUST-BENCH contains 349 memory operations across 194 functions, providing cases
to evaluate whether transpilers correctly use ownership, borrowing, and lifetimes to replace manual
memory handling. Additionally, it includes 165 memory operations (e.g., memcpy, memset) across
119 functions, which require translation into safe, idiomatic Rust alternatives such as slice copying or
initialization routines. These constructs challenge transpilers to preserve semantics while ensuring
memory safety, making them essential for assessing the robustness of C-to-Rust translation tools.

6 RELATED WORK

Transpilation. C2rust is the most popular rule-based transpilation tool, which produces compilable
Rust code from given C code while preserving semantics (Immunant, 2025a). However, Rust code
produced by c2rust is covered in unsafe blocks and is not idiomatic. Prior work seeks to improve
c2rust output by reducing unsafe usage via compiler feedback (Emre et al., 2021) and applying
ownership analysis to convert pointers (Zhang et al., 2023). Another work aims to improve c2rust
output by replacing the output parameters with Rust’s algebraic data types (Hong & Ryu, 2024).

Despite prior efforts, rule-based transpilation is fundamentally limited in C-to-Rust transpilation.
Leveraging recent advances in LLMs for code tasks, the new line of work aims to solve C-to-Rust
transpilation using LLMs. VERT combines WebAssembly and LLMs to generate correct and readable
Rust code transpiling from various languages, including C (Yang et al., 2024). Moreover, another
work aims to overcome the limited context windows of LLMs by segmenting input C code and
transpiling smaller units into Rust code (Shiraishi & Shinagawa, 2024).

Concurrent with our work, CRUST-Bench (Khatry et al., 2025) provides a repository-scale benchmark
with safe Rust interfaces and test suites for end-to-end evaluation. Unlike our approach, it does
not use a systematic selection process or aim to minimize dataset size. C2Rust-Bench instead
offers a compact, function-level benchmark built through principled selection, enabling efficient and
repeatable evaluation across both rule-based and LLM-based systems. The two benchmarks target
different phases of C-to-Rust transpilation evaluation and are therefore complementary.

Dataset Reduction in ML. A well-established line of research in ML focuses on instance and
coreset selection to reduce the training set. Instance selection studies focus on choosing a subset
of representative instances from the original dataset that maintains the overall structure of the
data (Olvera-López et al., 2010). They aim to preserve important patterns, such as class distributions
and feature relationships, while removing redundancy. Coreset selection seeks a smaller, weighted
subset that approximates the distribution of the entire dataset with minimal accuracy loss (Har-Peled
& Kushal, 2005; Tsang et al., 2005; Bachem et al., 2017; Novikov et al., 2021).

Recent work has shifted focus to coreset selection for neural networks (Sener & Savarese, 2017;
Lee et al., 2024; Song et al., 2025). A previous study redefines active learning for convolutional
neural networks as coreset selection, showing that selecting data based on geometric properties
outperforms traditional active learning heuristics (Sener & Savarese, 2017). Another work introduces
coreset selection for Object Detection (CSOD) and outperforms random selection in object detection
tasks (Lee et al., 2024). Lastly, a recent work introduces the SubPIE algorithm that optimizes coreset
coverage using entropy-based methods and discrete coordinate descent (Song et al., 2025).

7 CONCLUSION

Dealing with memory safety vulnerabilities for more than two decades showed that it is a never
ending problem. Thus, migrating from the memory-unsafe C to memory-safe Rust, is seen as the
promising solution that can mitigate such vulnerabilities. However, given the scale of C codebases,
manual migration is impractical, requiring an automated C-to-Rust transpilation framework. As with
other program analysis tasks, a representative dataset is required to evaluate proposed automated
transpilers. Such a dataset must be minimized to reduce resource consumption while covering
representative samples. In this work, we apply our selection method to reduce the large dataset from
previous works, from 15,503 functions to 2,905 functions, which form C2RUST-BENCH. We propose
C2RUST-BENCH as a valuable resource for future evaluations of C-to-Rust transpilation tools.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Luca Ardito, Luca Barbato, Marco Castelluccio, Riccardo Coppola, Calixte Denizet, Sylvestre Ledru,
and Michele Valsesia. rust-code-analysis: A rust library to analyze and extract maintainability
information from source codes. SoftwareX, 12:100635, 2020.

Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for machine
learning. arXiv preprint arXiv:1703.06476, 2017.

CISA. The urgent need for memory safety in software prod-
ucts, 2025. URL https://www.cisa.gov/news-events/news/
urgent-need-memory-safety-software-products.

Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to evaluate software system
maintainability. Computer, 27(8):44–49, 1994.

DARPA. Tractor: Translating all c to rust, 2025. URL https://www.darpa.mil/research/
programs/translating-all-c-to-rust.

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil Robertson,
Frederick Ulrich, and Ryan Whelan. Lava: Large-scale automated vulnerability addition. In 2016
IEEE symposium on security and privacy (SP), pp. 110–121. IEEE, 2016.

Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. Translating c to safer rust.
Proceedings of the ACM on Programming Languages, 5(OOPSLA):1–29, 2021.

Maurice H Halstead. Elements of Software Science (Operating and programming systems series).
Elsevier Science Inc., 1977.

Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering. In
Proceedings of the twenty-first annual symposium on Computational geometry, pp. 126–134, 2005.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A ground-truth fuzzing benchmark.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(3):1–29, 2020.

Jaemin Hong and Sukyoung Ryu. Don’t write, but return: Replacing output parameters with algebraic
data types in c-to-rust translation. Proceedings of the ACM on Programming Languages, 8(PLDI):
716–740, 2024.

Immunant. c2rust, 2025a. URL https://github.com/immunant/c2rust.

Immunant. c2rust, 2025b. URL https://github.com/immunant/c2rust/tree/
master/examples.

Jarod42. ccccc, 2025. URL https://github.com/Jarod42/ccccc.

Anirudh Khatry, Robert Zhang, Jia Pan, Ziteng Wang, Qiaochu Chen, Greg Durrett, and Isil Dil-
lig. Crust-bench: A comprehensive benchmark for c-to-safe-rust transpilation. arXiv preprint
arXiv:2504.15254, 2025.

Hojun Lee, Suyoung Kim, Junhoo Lee, Jaeyoung Yoo, and Nojun Kwak. Coreset selection for
object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7682–7691, 2024.

Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering, (4):308–320,
1976.

Georgii Novikov, Maxim Panov, and Ivan Oseledets. Dataset reduction via bias-variance minimization.
In 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA), pp.
143–146. IEEE, 2021.

J Arturo Olvera-López, J Ariel Carrasco-Ochoa, J Francisco Martínez-Trinidad, and Josef Kittler. A
review of instance selection methods. Artificial Intelligence Review, 34:133–143, 2010.

10

https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products
https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products
https://www.darpa.mil/research/programs/translating-all-c-to-rust
https://www.darpa.mil/research/programs/translating-all-c-to-rust
https://github.com/immunant/c2rust
https://github.com/immunant/c2rust/tree/master/examples
https://github.com/immunant/c2rust/tree/master/examples
https://github.com/Jarod42/ccccc

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Paul Oman and Jack Hagemeister. Metrics for assessing a software system’s maintainability. In
Proceedings Conference on Software Maintenance 1992, pp. 337–338. IEEE Computer Society,
1992.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Momoko Shiraishi and Takahiro Shinagawa. Context-aware code segmentation for c-to-rust transla-
tion using large language models. arXiv preprint arXiv:2409.10506, 2024.

Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per Larsen, and
Michael Franz. Sok: Sanitizing for security. In 2019 IEEE Symposium on Security and Privacy
(SP), pp. 1275–1295. IEEE, 2019.

Haohao Song, Qiao Xiang, and Jiwu Shu. Leave no stone unturned: Optimizing subpattern infor-
mation entropy for coreset selection. In ICASSP 2025-2025 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2025.

Ivor W Tsang, James T Kwok, Nello Cristianini, et al. Core vector machines: Fast svm training on
very large data sets. Journal of machine Learning research, 6(4), 2005.

WhiteHouse. Fact sheet: ONCD report calls for adoption of memory safe program-
ming languages and addressing the hard research problem of software measurability, 2025.
URL https://bidenwhitehouse.archives.gov/oncd/briefing-room/2024/
02/26/memory-safety-fact-sheet/.

Aidan ZH Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening. Vert:
Verified equivalent rust transpilation with large language models as few-shot learners. arXiv
preprint arXiv:2404.18852, 2024.

Hanliang Zhang, Cristina David, Yijun Yu, and Meng Wang. Ownership guided c to rust translation.
In International Conference on Computer Aided Verification, pp. 459–482. Springer, 2023.

A IMPLEMENTATION DETAILS

A.1 TRANSPILATION OF C FUNCTIONS INTO RUST

In Figure 2, we present the instructions sent to LLM along with the input C function for the initial
transpilation from the C to Rust.

Behave like you are an expert of C and Rust. Behave like you are a translator from C language
to Rust language. Can you translate C code given above into Rust code?
Do not explain the code to me! Only return Rust code correspoding to the given C code.

Follow these intructions strictly in translation:
(1) Do not add any extra error handling,
(2) Do not merge functions,
(3) Do not change variable names,
(4) Use no_mangle for each function,
(5) Make each function public,
(6) Translate the standard C library function calls by placing a decoy function call (leave the
decoy function body empty if possible) with the same name, and
(7) Only return a Rust code and nothing else!

Figure 2: The instructions given to LLM for initial transpilation.

In Figure 3, we present the instructions sent to LLM along with the compilation errors to fix the
compilation errors previously obtained from the compilation attempt of transpiled Rust code.

11

https://bidenwhitehouse.archives.gov/oncd/briefing-room/2024/02/26/memory-safety-fact-sheet/
https://bidenwhitehouse.archives.gov/oncd/briefing-room/2024/02/26/memory-safety-fact-sheet/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

When attempted to compile the recently generated rust code, I obtained the compilation errors
given above. Fix those errors and only return the modified Rust code. Do not explain the
code or changes to me!

Figure 3: The instructions given to LLM for fixing compilation errors.

A.2 DATA COLLECTION OF CODE METRICS

In this subsection, we present how we implement the data collection of the code complexity metrics.
The details of how we utilize existing tools and build parsers to get complexity metrics can be found
in the GitHub repository 3.

Maintainability Index There are tools to measure Maintainability Index (MI) of a code from C
and Rust languages. We use the open-source tool published on github to obtain MI metric for a C
function Jarod42 (2025). We employ the rust code analysis tool published in a previous work to
obtain MI metric for the corresponding Rust code Ardito et al. (2020).

Unsafe Operation Complexity We implement unsafe operation complexity metric by building a
parser in Rust, specifically designed to identify and extract unsafe blocks from a given Rust function.
One important detail is that we choose to count unsafe blocks, as well as statements inside the blocks,
because counting only blocks would be limited to express the complexity of unsafe operations, as
unsafe blocks may contain a variable number of statements, ranging from a single operation to a large
number of operations.

As a result, the parser produces two key outputs: the total number of unsafe blocks and the set of
number of statements contained in each block. To represent unsafe operations as a unified metric, we
calculate the average number of unsafe statements per unsafe block. Using this metric, we capture
not only the frequency of unsafe code usage but also its density. The lower boundary of this metric is
zero, indicating the absence of unsafe code, while the upper boundary is unbounded, reflecting the
potential for increasingly complex unsafe operations.

Data Type Complexity In Rust, variables can be explicitly typed, or the type may be inferred by the
compiler based on the value assigned. To quantify the complexity introduced by data types, we build
a parser to collect and analyze the types of variables within a given Rust code. The parser extracts the
type of a variable when it is explicitly specified in the declaration. For example, when a variable is
defined as let x:i32=5, the parser identifies the type as i32 for the variable x.

However, unlike languages such as C, Rust allows variables to be defined without explicitly stating
their type. In these cases, the parser examines the right-hand side of the declaration, if available, and
infers the variable’s type based on the right-hand side expression. For example, in a declaration such
as let y=10, the parser infers that the type of variable y is i32, since the value of 10 is an integer
literal.

After extracting all the variable types, we get the set of unique types and obtain the total number of
types in the set. We use the number of unique types as a metric to represent the complexity of the
data types for a given Rust function.

A.3 FUNCTION SELECTION USING PARTITIONING

As a first step in obtaining bins, we divide each of the dimensions, corresponding to the complexity
metrics, into partitions based on the value of the width specified by the following formula:

width =
max_value − min_value

number_of_partition
(2)

The number_of_partition used in Equation 2 is a hyperparameter common for all dimensions,
specifying the number of pieces to cut. We present a preliminary experiment identifying the optimal

3https://github.com/anonymous8428/C2Rust-Bench

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 3: The detailed information of the programs in the large dataset.

Name Function (#) SloC (#) Name Function (#) SloC (#)
transcoder-set 4,012 17,684 hello-2.12.1 77 979
libxml2 1,964 26,729 ed-1.19 69 691
gprolog-1.5.0 758 8,119 brotli-1.0.9 62 1,084
nettle-3.9.1 646 8,103 lodepng 59 542
json.h 644 18,415 pexec-1.0rc8 54 598
tmux 607 7,625 diffutils-3.10 45 1,593
tulipindicators-0.9.1 516 5,448 lil 40 312
libosip2-5.3.1 515 5,005 buffer-0.4.0 39 332
tar-1.34 446 6,528 grep-3.11 38 1,263
less-633 343 4,947 libzahl-1.0 35 653
nano-7.2 324 4,368 indent-2.2.13 32 694
optipng-0.7.8 311 5,548 gzip-1.12 28 780
gawk-5.2.2 307 7,135 bzip2 22 625
mcsim-6.2.0 260 4,208 genann 22 317
heman 257 3,179 snudown 20 293
screen-4.9.0 229 5,680 libcsv 20 180
wget-1.21.4 226 3,338 quadtree-0.1.0 20 160
tinycc 207 2,666 which-2.21 18 458
patch-2.7.6 182 2,360 sed-4.9 18 184
cflow-1.7 181 2,604 urlparser 18 178
mtools-4.0.43 172 2,118 robotfindskitten 12 158
make-4.4.1 168 3,597 avl 8 62
json-c 154 2,201 rgba 7 69
rcs-5.10.1 154 1,955 bst 5 59
bc-1.07.1 153 2,581 xzoom 4 419
uucp-1.07 152 4,863 ht 4 38
findutils-4.9.0 151 2,985 qsort 3 27
pth-2.0.7 137 2,016 libtool-2.4.7 2 37
dap-3.10 129 3,942 grabc 1 48
cpio-2.14 118 1,536 libtree-3.1.1 1 11
binn-3.0 116 961 glpk-5.0 1 8
units-2.22 104 2,307 time-1.9 1 16
enscript-1.6.6 78 2,273

value of number_of_partition in §5.3. The width value in Equation 2 is calculated for each
dimension, since the metrics have different minimum and maximum values. Based on the width
values, each dimension is partitioned into equal pieces. Then, the combination of the partitions in
multidimensional space forms the bins. If number_of_partition is set to n, the number of bins
created is equal to n4. However, some of those bins remain empty as anticipated, and we proceed
with the non-empty bins.

We select samples from each bin, using Principal Component Analysis (PCA) and systematic
sampling. We first calculate a summarized complexity metric from 4 metrics for each sample using
PCA. Then, we order samples in each bin using the unified PCA complexity metric. Next, we perform
selection from each bin based on the systematic sampling approach, which means that we select from
ordered samples that are placed away from each other by an interval. In the following formula, we
obtain the interval value to use in systematic sampling:

interval =
bin_population

bin_population × ratio_of_sampling
(3)

The ratio_of_sampling used in Equation 3 is another hyperparameter common for all bins, which
specifies the percentage of sample to take from each bin. The optimal value of ratio_of_sampling
parameter is specified by a preliminary experiment in §5.3. In the denominator of this formula,
we have the sampling size calculated by multiplying subset_population by ratio_of_sampling,
which is different for each bin. We obtain the interval value for each bin by dividing the population
size by the sampling size of the bin. Lastly, we select samples from each bin that are placed at

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

positions separated by the interval value. Consequently, we obtain diverse samples from distinct data
points depicted by the bins in multidimensional space and the different positions in each bin.

B EVALUATION DETAILS

B.1 DATASET.

In Table 3, we share the details of our large set including functions from 64 real world and 1
synthesized programs. Under the function column, we share the total number of individual functions
obtained for each program after preprocessing and segmentation. Under the SLoC column, we share
the total number of source line of code for the corresponding functions of each program.

B.2 CROSS-LLM EVALUATION OF SELECTED FUNCTIONS ON MICROBENCHMARK SET

In this subsection, we perform function selection using the LLM and the hyperparameters previously
chosen. Then, we evaluate the selected function set on all 9 LLMs to demonstrate that the selections
are generalized to other LLMs.

Methodology. We perform function selection from microbenchmark set by setting the LLM, the
number of partition per dimension, and the ratio of sampling per bin as qwen2.5-coder:32b,
9, and 0.166 respectively. To evaluate the selected functions, we use the compilation error fixing
attempt from the transpilation process as in subsection 5.3. First, we obtain the distribution of
compilation error fixing attempts for both the selected set and the microbencmark set. We normalize
the distributions of the microbenchmark set by the ratio of the two sets. Then, we calculate a relative
difference score using the formula shown in subsection 5.3.

As presented in §5.2, the microbencmark set is transpiled using 9 different LLMs. Thus, each
of the LLMs has their own compilation error fixing attempt feedback. We calculate the relative
difference score for 9 LLMs using their own distributions for selected function set and microbench-
mark set. Using their individual feedback allows us to justify that the functions selected using
qwen2.5-coder:32b are also representative for the other LLMs.

cod
eg

ee
x4

:9b

cod
est

ral
:22

b

ge
mma2

:9b

llam
a3

.2:
3b

llam
a3

.1:
8b

mistr
al:

7b

qw
en

2.5
-co

de
r:7

b

qw
en

2.5
-co

de
r:1

4b

qw
en

2.5
-co

de
r:3

2b

Large Language Models

15

20

25

30

35

Re
la

tiv
e

Di
ffe

re
nc

e
(%

)

Figure 4: The relative difference for 9 LLMs.

Results. In Figure 4, we present the relative difference scores for 9 LLMs. For more details, we share
the expected and observed distributions for each LLM in Figure 5. Furthermore, the difference score
for qwen2.5-coder:32b is different from that presented in subsection 5.3, since this experiment
is performed on the microbenchmark set. However, the difference scores of the LLMs are comparable
to each other, since we use the same set of hyperparameters for all of them.

The three models of qwen2.5-coder, llama3.1:8b, and codestral:22b achieve reason-
ably close difference scores. The difference scores of codegeex4:9b and gemma2:9b are slightly

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Compilation Error Fixing Attempts

0

50

100

150

200

250

Fr
eq

ue
nc

y
(#

)

Fuctions in Microbenchmark Set
Selected Functions

(a) codegeex4:9b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Compilation Error Fixing Attempts

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y
(#

)

Fuctions in Microbenchmark Set
Selected Functions

(b) codestral:22b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Compilation Error Fixing Attempts

0

50

100

150

200

250

Fr
eq

ue
nc

y
(#

)

Fuctions in Microbenchmark Set
Selected Functions

(c) gemma2:9b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Compilation Error Fixing Attempts

0

20

40

60

80

100

Fr
eq

ue
nc

y
(#

)

Fuctions in Microbenchmark Set
Selected Functions

(d) llama3.1:8b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Compilation Error Fixing Attempts

0

50

100

150

200

Fr
eq

ue
nc

y
(#

)

Fuctions in Microbenchmark Set
Selected Functions

(e) llama3.2:3b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Compilation Error Fixing Attempts

0

50

100

150

200

Fr
eq

ue
nc

y
(#

)

Fuctions in Microbenchmark Set
Selected Functions

(f) mistral:7b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Compilation Error Fixing Attempts

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y
(#

)

Fuctions in Microbenchmark Set
Selected Functions

(g) qwen2.5-coder:7b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Compilation Error Fixing Attempts

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y
(#

)

Fuctions in Microbenchmark Set
Selected Functions

(h) qwen2.5-coder:14b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Compilation Error Fixing Attempts

0

25

50

75

100

125

150

175

Fr
eq

ue
nc

y
(#

)

Fuctions in Microbenchmark Set
Selected Functions

(i) qwen2.5-coder:32b

Figure 5: Compilation error fixing attempt distribution of selected and microbenchmark sets for 9
LLMs.

higher than the previously mentioned 5 LLMs while llama3.2:3b and mistral:7b are lower
than them. Note that the poor performance of llama3.2:3b and mistral:7b in transpilation
leads to uneven distributions with some accumulations as presented in Figure 5, which is the main
reason for lower difference scores than qwen2.5-coder:32b. Consequently, even though func-
tion selection is performed using the transpilation output of qwen2.5-coder:32b, the relative
difference scores of other LLMs show that the selected functions are representative for all LLMs.
Thus, employing a specific LLM as part of the selection process for the C-to-Rust transpilation
evaluation dataset does not pose a threat to the validity of our study.

B.3 SELECTED FUNCTION SET.

In Table 4, we share a detailed look at C2RUST-BENCH. Under the function column, we share the
total number of individual functions from each program existing in C2RUST-BENCH. Under the
SLoC column, we share the total number of source lines of code for the corresponding functions of
each program.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: The detailed information of the programs in C2RUST-BENCH.

Name Function (#) SloC (#) Name Function (#) SloC (#)
transcoder-set 714 3,457 pth-2.0.7 23 374
libxml2 392 5,952 cpio-2.14 22 293
json.h 135 4,641 json-c 22 227
gprolog-1.5.0 125 1,358 brotli-1.0.9 14 516
nettle-3.9.1 112 1,612 grep-3.11 12 871
libosip2-5.3.1 105 1,466 ed-1.19 12 126
tmux 97 1,116 indent-2.2.13 11 382
tulipindicators-0.9.1 93 1,071 hello-2.12.1 11 125
tar-1.34 85 1,489 enscript-1.6.6 10 1,155
optipng-0.7.8 68 1,535 lodepng 10 211
less-633 67 988 diffutils-3.10 10 186
nano-7.2 59 868 pexec-1.0rc8 9 90
gawk-5.2.2 56 3,182 gzip-1.12 7 221
mcsim-6.2.0 46 759 lil 7 58
wget-1.21.4 46 719 buffer-0.4.0 7 56
uucp-1.07 43 2,406 bzip2 5 272
heman 43 599 libzahl-1.0 5 110
screen-4.9.0 42 2,066 libcsv 5 29
tinycc 42 656 snudown 4 45
mtools-4.0.43 42 463 genann 3 84
dap-3.10 38 1,568 quadtree-0.1.0 3 24
cflow-1.7 33 383 xzoom 2 380
bc-1.07.1 32 981 which-2.21 2 222
patch-2.7.6 31 410 sed-4.9 2 38
make-4.4.1 29 1,537 urlparser 2 27
rcs-5.10.1 29 422 avl 2 16
findutils-4.9.0 27 1,141 robotfindskitten 2 7
binn-3.0 26 275 ht 1 14
units-2.22 23 786

16

	Introduction
	Overview
	Background
	Motivation

	Methodology
	Overview
	Representative Source Code Complexity Metrics
	Function Selection Method

	Implementation
	Preparation of C Code for Transpilation
	Transpilation of C Functions into Rust

	Experiments and Results
	Experiment Setup
	Evaluation of LLMs on Microbenchmark Set
	Tuning the Hyperparameters
	C2Rust-Bench: A Minimized Representative Set

	Related Work
	Conclusion
	Implementation Details
	Transpilation of C Functions into Rust
	Data Collection of Code Metrics
	Function Selection using Partitioning

	Evaluation Details
	Dataset.
	Cross-LLM Evaluation of Selected Functions on Microbenchmark Set
	Selected Function Set.

