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Abstract

In many real-world applications, deep neural networks (DNNs) often perform poorly on
datasets with long-tailed distributions. To address this issue, a promising approach is to
propose an optimization objective to transform real majority samples into synthetic minority
samples. However, this objective is designed only from the classification perspective. To this
end, we propose a novel framework that synthesizes minority samples from the majority by
considering both classification and distribution matching. Specifically, our method adjusts
the distribution of synthetic minority samples to closely align with that of the true minority
class, while enforcing the synthetic samples to learn more generalizable and discrimina-
tive features of the minority class. Experimental results on several standard benchmark
datasets demonstrate the effectiveness of our method in both long-tailed classification and
synthesizing high-quality synthetic minority samples.

1 Introduction

The success of deep learning for supervised learning relies on high-quality large-scale datasets, which are often
assumed to have nearly balanced numbers of samples for each class (Russakovsky et al., 2015). However,
real-world datasets usually suffer from a long-tailed problem, where a few majority classes occupy most

∗Corresponding Author. Code is available on https://github.com/BIRlz/TMLR_Syn-LT.
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data while many minority classes have very few samples (Zhou et al., 2017; Liu et al., 2015). Deep neural
networks (DNNs) trained on long-tailed datasets have poor generalization performance, especially in minority
classes (Zhou et al., 2020; Liu et al., 2019). Therefore, it is of practical importance to develop methods for
mitigating the long-tailed problem.

To alleviate the imbalance issue, several kinds of methods have been proposed in the past decade, in which
the data-level approach has received significant attention due to the simplicity and effectiveness (Yang et al.,
2022). This approach usually aims to achieve a balanced training data distribution via re-sampling (i.e.,
under-sampling (He & Garcia, 2009), over-sampling (Van Hulse et al., 2007; Gao et al., 2023)) or data
augmentation (Chu et al., 2020; Hong et al., 2022; Li et al., 2021; Ahn et al., 2023; Gao et al., 2024b). In
the context of re-sampling, one representative method is the Synthetic Minority Over-sampling Technique
(SMOTE) (Chawla et al., 2002), which synthesizes minority samples by interpolating between existing minor-
ity samples and their nearest neighbor samples. Recently, Kim et al. (2020) have revisited the over-sampling
framework and proposed a new way of to synthesize minority samples, called Major-to-minor (M2m). A
unique advantage of M2m over SMOTE-based methods is that M2m utilizes the majority samples to generate
minority samples via an optimization process, thus can “cook with much more raw materials”. In this way,
M2m is able to “transform” majority samples into minority samples to achieve a balanced dataset.

Despite its initial success, M2m only focuses on optimizing the synthetic minority samples from the classifi-
cation perspective, whose similarity with the real samples in the concerned minority class is overlooked. In
other words, a synthetic sample x̂ initialized from a majority class k0 is viewed as a sample of the minority
class k if a pre-trained classifier g identifies it as class k confidently, and a target classifier f has low confi-
dence about it on k0, ignoring whether the synthetic sample upholds the genuine characteristics (i.e., feature
distribution) of the class k.

In this work, we propose a novel framework for synthesizing minority samples via distribution matching.
Our insight is that a desired synthetic minority sample should not only satisfy the classification constraints
about g(x̂) and f(x̂), but also be distributionally close to real samples in the target minority class. To satisfy
these, we introduce a principled approach that optimizes the synthetic minority samples by enforcing them to
satisfy the classification constraints and be close to the distribution of real samples, by minimizing the optimal
transport (OT) distance (Peyré et al., 2019). Moreover, to mitigate the harmfulness of unreliable synthetic
samples, we define a sample rejection criterion based on the distance between synthetic minority samples and
real minority samples. Concurrently, the classifier f is jointly trained leveraging these progressively refined
synthetic samples, creating a synergistic learning process.

In order to enhance the generality and practical applicability of our method, we introduce an additional
regularization term concerning the “confusing class” within the minority class, which accounts for instances
where minority samples are frequently misclassified into a specific class rather than other classes. In this
way, we relax the label requirement of majority samples and as a result, our proposed method can translate
not only In-Distribution (ID) majority samples but also Out-of-Distribution (OOD) samples (Wei et al.,
2022) into synthetic minority samples, making ours more applicable in practice. Additionally, our method
can also be used as a plug-in approach to enhance the performance of other methods, e.g., reweighting
loss. Moreover, we conduct extensive experiments on standard benchmark datasets and our method achieves
improved long-tailed classification performance. In conclusion, our contributions are summarized as follows:

• To address the long-tailed classification problem, we propose a general framework for synthesizing mi-
nority samples via distribution matching, where we formulate real samples and synthetic ones as two
distributions.

• We optimize synthetic minority samples by enforcing them to satisfy the classification constraints and
keep close to the real representation distribution by minimizing the OT distance.

• We significantly enhance the framework’s robustness and versatility by introducing two novel components:
a an innovative regularization term focused on “confusing classes”, which crucially enables effective syn-
thesis from (ID) and (OOD) seed samples; and (b) an effective feature-distance-based sample rejection
criterion to ensure the quality of generated instances.

2



Published in Transactions on Machine Learning Research (06/2025)

• Extensive experiments on standard benchmarks demonstrate the effectiveness of our method, showing
that is a promising over-sampling framework for the long-tailed classification problem.

2 Preliminaries

Optimal transport. OT is a widely used measurement for comparing distributions (Peyré et al., 2019),
where we only focus on the discrete situation that is more related to our framework. Assuming we have
two sets of points (features), we can formulate the discrete distributions as P =

∑N
n=1 unδxn and Q =∑M

m=1 vmδym
, where δ is Dirac function, intuitively a unit of mass which is infinitely concentrated at location

xi. Dirac function helps convert a collection of raw data into a discrete probability distribution, by modeling
each point as an individual “mass”. u ∈ ∆N and v ∈ ∆M are the discrete probability vectors that sum to 1.
The discrete OT distance between distribution P and Q can be formulated as:

min
T∈Π(P,Q)

⟨T,C⟩ =
N∑
n

M∑
m

TnmCnm, (1)

where C∈Rn×m
>0 is the cost matrix whose each point denotes the distance between xn and ym and transport

probability matrix T ∈ Rn×m
>0 satisfies Π(P,Q) :=

{
T|

∑N
n=1 Tnm = vm,

∑M
m=1 Tnm = un

}
. As directly

optimizing 1 is always time-expensive, Sinkhorn algorithm (Cuturi, 2013) introduces an entropic constraint,
i.e.,H(T)=−

∑
nm Tnm lnTnm for fast optimization.

Long-tailed classification. Assume a training dataset Dtrain = {(xi, yi)}N
i=1, where xi ∈ Rd denotes the

i-th input and yi means its corresponding label over K classes. Let N denote the number of the entire
training data and Nk is that of class k, where we assume N1 ≥ N2 ≥ ... ≥ NK without loss of generality.
Following Cao et al. (2019), we define the imbalance factor (IF) as N1

NK
which directly quantifies the ratio

between the largest and smallest class sizes, providing a clear measure of dataset skewness. For example,
when IF is larger, the training set is more imbalanced, i.e., more challenging. Denote f : Rd → RK as the
target classifier, which can be learned by empirical risk minimization (ERM) over the imbalanced training
set with an appropriate loss function L(f):

min
f

E(x,y)∼Dtrain [L(f ;x, y)]. (2)

However, when Dtrain exhibits a long-tailed distribution, the standard ERM objective in Eq. 2 inherently
struggles to ensure fairness across classes. Because the expectation E(x,y)∼Dtrain is dominated by the high-
frequency majority classes, the learned model f becomes heavily biased towards these head categories.
This direct consequence of the ERM formulation on imbalanced data usually results in poor generalization
performance on underrepresented tail classes (Fang et al., 2021; Han et al., 2023).

3 Method

3.1 Motivation

To motivate our method, we first review the most related work in the line of over-sampling, called Major-
to-minor (M2m) (Kim et al., 2020). M2m aims to construct a new balanced dataset Dbal from the original
dataset Dtrain by generating N1 − Nk synthetic samples for each class k, where the concerned classifier f
trained on Dbal is expected to perform better than that trained on Dtrain. Note that N1 ≥ N2 ≥ ... ≥ NK .
Therefore, generating N1−Nk synthetic samples for each class k enables a balanced dataset. Here, synthetic
samples in minority classes are generated by translating from other samples in majority classes. In addition
to the to-be-learned classifier f trained on Dbal, M2m assumes a baseline classifier g pre-trained on the
imbalanced dataset Dtrain with standard ERM training, where f and g have the same structure. Although g
may not achieve the optimal performance, it is expected to achieve reasonable performance on the imbalanced
training dataset. M2m designs to obtain a synthetic sample x̂ for a minority class k, which is translated
from a real training sample x0 from a major class k0 in Dtrain, through several optimized steps.
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Although M2m can achieve promising results, it translates x̂ from x0 purely in the view of classification and
ignores the similarity between x̂ and the corresponding real samples in the concerned minority class k. In
this scenario, the synthetic sample might mislead the model and cause inaccurate predictions.

3.2 Learning Synthetic Minority Samples with Distribution Matching

To address the above issue, we aim to learn high-quality synthetic samples that not only satisfy the classifi-
cation constraints about g(x̂) and f(x̂) but also follow the distribution of real samples in the target minority
class k. We achieve the first goal by solving the optimization problem within T steps, as shown below:

x̂(t) = arg min
x̂

L(g(x̂), k) + λfk0(x̂), (3)

where x̂ is initialized with x0+ϵ and ϵ is standard Gaussian noise, i.e., x̂(0) ← x0+ϵ. x̂(t) denotes the synthetic
sample at t-th optimization step within T iterations. Next, we focus on the second goal. Taking the k-th class
in Dtrain as an example, we denote Dk = {(xn, yn)}Nk

n=1 as the set of real samples, and D̂k = {(x̂m, ŷm)}Mk

m=1
as the to-be-learned synthetic set, where Mk = N1−Nk is the number of synthetic samples of class k. Then
the empirical distributions of Dk and D̂k can be formulated as:

Pk =
Nk∑

n=1

1
Nk

δxn
, Qk =

Mk∑
m=1

1
Mk

δx̂m
. (4)

Note that label is omitted since ŷm = yn = k. Moving beyond Eq. 3, which only utilizes the classification
loss to learn minority synthetic samples, we further introduce a distribution matching loss to enforce the
to-be-learned distribution Qk to stay close to the real distribution Pk of class k. Let Dist(Pk, Qk) denote
the distance between the distributions Pk and Qk. Here we adopt the principled approach of OT to define
Dist(Pk, Qk), although other approaches are also available, such as Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012) and Energy Distance (ED) (Rizzo & Székely, 2016). We defer the implementation of
Dist(Pk, Qk) with other measures such as Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) and
Energy Distance (ED) (Rizzo & Székely, 2016) to Appendix A.

Since the training images are high dimensional, minimizing the distribution distance in the image space is
expensive and inaccurate. Therefore, we assume an embedding function ψθ : Rd → Rd′ parameterized with
θ and compute the distribution distance Distθ(Pk, Qk) in the feature space. Specifically, we define it using
the entropic OT:

Distθ(Pk, Qk) = min
T∈Π(Pk,Qk)

⟨T,C⟩ − γH(T), (5)

where γ > 0 is a hyper-parameter for the entropy constraint H(T). The transport plan satisfies:

Π(Pk, Qk) :=
{

T|
Nk∑

n=1
Tnm = 1/Mk,

Mk∑
m=1

Tnm = 1/Nk

}
, (6)

and the cost function Cnm measures the distance between the real sample xn and synthetic sample x̂m. Cnm

can be viewed as a distance metric in the embedding space. Although theoretically it is possible to use any
reasonable distance metric, we use the cosine similarity, i.e., Cnm = 1 − cos(ψθ(xn), ψθ(x̂m)), which gives
the best performance in this work.

3.3 Embedding Function ψθ and Optimization Problem

In order to achieve efficient computation of distribution distance, the parameterization of an embedding
function ψθ is necessary and important. Commonly, we can employ the feature extractor in g or f as the
embedding function. However, g is a biased model that carries class-specific biases relevant to the long-
tailed distribution and f is learned during each training iteration, whose parameters may not be optimal
for computing the Distθ(Pk, Qk). In order to create diverse and unbiased projections in a computationally
efficient manner, motivated by Zhao & Bilen (2023) that computes feature distance based on a family
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of models, we also match Pk and Qk in many sampled embedding spaces. Specifically, when computing
Distθ(Pk, Qk) each time, we employ a neural network that keeps the same architecture with the encoder of
our target classifier f to serve as our embedding function ψθ, which thus can be initialized by commonly used
Kaiming Initialization (He et al., 2015). Moreover, we experimentally validate that the family of randomly
initialized embedding spaces can produce better results than using one embedding space.

To summarize, we can minimize Eθ∼Pθ
[Distθ(Pk, Qk)] such that the synthetic samples are optimized to

match the original data distribution in various embedding spaces. The overall optimization objective is
formulated as:

x̂(t)
m = arg min

{x̂m}Mk
m=1

Mk∑
m=1

[L(g(x̂m), k) + λ1fk0(x̂m)] + λ2Eθ∼Pθ
[Distθ(Pk, Qk)] , (7)

where each x̂m is initialized by a randomly sampled image xm from a major class and ϵm is the randomly
sampled Gaussian noise, i.e., x̂(0)

m ← xm + ϵm. Similarly, we optimize x̂m through T iterations and use x̂(t)
m

to denote x̂m at t-th optimization step.

3.4 Leveraging Out-of-Distribution Data

Beyond translating majority samples in the ID setting (e.g., samples in Dtrain) to achieve efficient over-
sampling and data augmentation for minority classes, it is more practical and valuable by leveraging OOD
data to achieve the balance of a long-tailed dataset. Let Dood = {xi}No

i=1 denote the OOD dataset, where
xi ∈ Rd denotes i-th sample. We assume that the OOD dataset is unlabeled or the label information is
not useful due to the large distribution shift from the ID dataset Dtrain. Now we can initialize the minority
sample as x̂m := xood,m + ϵm, where xood,m is a randomly sampled image from Dood for x̂m.

Recall that M2m restricts the target classifier f to have lower confidence on the original class k0 of x0 by
adding a regularization term in Eq. 3. However, the introduction of the OOD dataset brings a challenge as
there is no corresponding k0 for each xood,m in Dood. Therefore, we replace the constraint of the synthetic
samples about k0 by introducing a confusing class kc. Specifically, we obtain the confusion matrix A ∈ RK×K

using a randomly sampled balanced subset from Dtrain and the pre-trained classifier g, whose element Aij

denotes the probability that a sample belongs to class i but is predicted as class j. Then, for the target
minority class k, kc is its most confusing class if Ak,kc ≥ Ak,i, where i ∈ [1,K] and i ̸= k. Finally, we design
the constraint on the confusing class for an optimized sample x̂m as fkc

(x̂m) and rewrite Eq. 7 as:

x̂(t)
m = arg min

{x̂m:=xood,m}Mk
m=1

Mk∑
m=1

[L(g(x̂m), k) + λ1fkc
(x̂m)] + λ2Eθ∼Pθ

[Distθ(Pk, Qk)] , (8)

where x̂m is initialized by an OOD sample xood with noise ϵ, and fkc(x̂m) restricts f to have lower confidence
on the confusing class kc. That is to say, we should avoid the synthetic samples to contain significant
information of the confusing class in the viewpoint of target classifier f . In addition to addressing the issue
of exploiting Dood, this regularization term can not only address the issue of exploiting OOD but also be
added to the training loss in the ID scenario.

3.5 Implementation Details

Mini-batch learning. We adopt the stochastic gradient descent (SGD) (Ruder, 2016) to learn the target
classifier f and optimize the synthetic samples based on a batch-wise re-sampling. More specifically, we
use a standard over-sampling (Huang et al., 2016) to obtain a class-balanced mini-batch {(xi, yi)B

i=1}. To
stimulate the generation of N1−Nk samples for any k, for each sample xi in the mini-batch, we use probability
N1−Nyi

N1
to decide whether learning a synthetic sample x̂i to replace xi. Following this, a joint learning step

occurs within the mini-batch: we re-sample a randomly initialized ψθ to serve as an embedding function,
then optimize the synthetic samples guided by our method, which are immediately used to update the target
classifier f . We give a whole training paradigm in Alg. 3 in Appendix. B.
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Algorithm 1: Oversampling Minority Samples via Our Method (In-Distribution).
Input : Dtrain, classifier f , pre-trained classifier g and hyper-parameters.

1 Initialize Dbal ← Dtrain;
2 for k = 2, ..., K do
3 Compute Mk ← N1 −Nk;
4 Initialize D̂k ← ∅;
5 for m = 1, ..., Mk do // Step 1. Sample selection
6 Sample a majority class k0 with p = 1− β(Nk0 −Nk)+;
7 Sample a xm from k0 ;
8 Initialize x̂

(0)
m ← xm + ϵm with a Gaussian noise ϵm.;

9 Update D̂k ← D̂k ∪ {(x̂(0)
m , ŷm = k)};

10 end
11 Build Qk =

∑Mk

m=1
1

Mk
δx̂m and Pk =

∑Nk

n=1
1

Nk
δxn according to Eq. 4;

12 for t = 1, ..., T do // Step 2. Optimize x̂

13 x̂
(t)
m = arg min

x̂m

∑Mk

m=1 [L(g(x̂m), k) + λ1fk0 (x̂m)] + λ2Eθ∼Pθ [Distθ(Pk, Qk)] according to Eq. 7;

14 end
15 Update D̂k with optimized synthetic samples.;
16 for x̂m in D̂k do // Step 3. Sample rejection for x̂
17 if L(g(x̂m), k) ≥ τ or Reject = 1 then
18 x̂m ← with a random sample from class k in Dtrain;
19 end
20 Update Dbal ← Dbal ∪ {(x̂m, k)};
21 end
22 end

Sample selection criteria for x0. We choose a seed sample x0 to learn x̂i for xi with class k. In an
OOD setting, we just randomly sample an image from Dood as x0. In ID setting, we first choose k0 with
the probability k0 ∼ 1 − β(N0−Nk)+ in the current mini-batch, where (·)+ := max(·, 0), and β ∈ [0, 1) is a
hyper-parameter. After that, x0 is sampled uniformly among samples in class k0. Once we choose the seed
sample x0 for the minority class k, we start to learn x̂. Rather than using all Nk samples within class k,
we randomly sample a subset of the real samples from class k to construct Pk in each iteration to reduce
computation. Besides, we use the to-be-optimized samples for class k in the current mini-batch to build Qk.
Finally, we optimize x̂ using Eq. 7 or Eq. 8 by performing T iterations with a step size of η, depending on
ID or OOD, respectively.

Sample rejection criteria for x̂. To reduce the harmfulness of unreliable synthetic samples, it is neces-
sary to design sample rejection criteria to discard unsatisfactory synthetic samples. Here, we consider two
conditions that can determine a reliable synthetic sample. Following M2m, the first one is setting a threshold
τ > 0 and rejecting the resultant synthetic sample for k-th class if L (g; x̂, k) > τ for stability. For the second
factor, M2m designs the rejection probability as P (Reject x̂ | k0, k) ∝ β(Nk0 −Nk)+

. Different from M2m that
utilizes the class frequency of k0 and target class k to decide the reliability of x̂, we introduce a more general
sample-level criteria to reject x̂ (i.e.,Reject x̂=1) if it satisfies:

1
Nk

Nk∑
n=1

d(ψθ(x̂), ψθ(xn)) > 1
Nk

2

Nk∑
n=1

Nk∑
m=1

d(ψθ(xn), ψθ(xm)), (9)

where d(ψθ(x̂), ψθ(xn)) indicates the distance between x̂ and xn and can be defined by cosine similarity,
i.e., 1 − cos(ψθ(x̂), ψθ(xn)). This rejection criterion can avoid the requirement for Nk0 , which can also be
applied to the OOD scenario. The underlying intuition is that the synthetic samples are expected to have
a smaller distance from real samples in class k than the intra-class distance. We replace xi in the current
mini-batch by x̂ if it satisfies the above two factors. If x̂ dose not satisfy the condition 9 (i.e., Reject = 1) or
the pre-trained biased classifier g still produces a high classification confidence (i.e., L (g; x̂, k) > τ), we will
replace x̂ with a real minority sample from Dtrain. We summarize the synthetic process for the ID setting in
Algorithm 1.
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Table 1: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 / CIFAR-LT-100 under different imbalance
factors on the ID setting, where †, ‡ and * denote the results from the original paper, our reproduction and
MetaSAug (Li et al., 2021), respectively. Results of SMOTE are from Kim et al. (2020). The methods are
trained with CE loss unless otherwise stated.

Method CIFAR-LT-10 CIFAR-LT-100
Imbalance Factor 200 100 50 10 200 100 50 10
CE Loss* 34.13 29.86 25.06 13.82 65.30 61.54 55.98 44.27
Focal Loss* 34.71 29.62 23.29 13.34 64.38 61.59 55.68 44.22
CB,CE Loss* 31.23 27.32 21.87 13.10 64.44 61.23 55.21 42.43
LDAM-DRW* 25.26 21.88 18.73 11.63 61.55 57.11 52.03 41.22
MetaSAug† 23.11 19.46 15.97 10.56 60.06 53.13 48.10 38.27
RSG‡ - 20.04 17.2 - - 55.4 51.5 -
MBJ‡ - 19.0 13.4 11.2 - 54.2 47.4 39.3
CB-SAFA† 27.18 23.68 19.79 12.07 60.34 54.13 52.04 39.77
CUDA† - - - - - 57.3±0.4 52.8±0.4 40.4±0.6
CMO‡ 25.43 19.59 16.47 11.50 63.47 56.13 51.71 40.49
OTMix‡ - 21.7 16.6 9.8 - 53.6 49.3 38.4
M2m† 25.34±0.46‡ 21.7±0.16 18.81±0.76‡ 12.5±0.15‡ 63.77±0.33‡ 57.1±0.16 50.48±0.43‡ 44.8±0.05‡
OURS 22.85±0.12 18.20±0.21 12.96±0.11 9.34±0.11 61.28±0.21 52.95±0.18 47.02±0.26 37.57±0.32

4 Experiments

In this section, we present experimental results to show the effectiveness of the proposed method. The
detailed experiment settings and hyper-parameters are provided in Appendix C.1.

Datasets. We evaluate our method on CIFAR-LT-10 / CIFAR-LT-100, ImageNet-LT and Places-LT. We
build CIFAR-LT-10 / CIFAR-LT-100 from the standard CIFAR-10/CIFAR-100 datasets (Krizhevsky et al.,
2009) with IF ∈ {50, 100, 200} (Kim et al., 2020; Kang et al., 2019; Li et al., 2021). ImageNet-LT is a subset
of the ImageNet-2012 dataset (Deng et al., 2009) with 1000 classes and IF = 1280/5 (Kim et al., 2020; Ren
et al., 2020). Places-LT is a subset from the Places-365 dataset (Zhou et al., 2017) with 365 classes and
IF = 4980/5 (Cao et al., 2019; Ren et al., 2020).

Baselines. We compare with five types of baselines: (1) Cross-entropy (CE). (2) Re-weighting loss,
including Focal loss (Lin et al., 2017), Class-Balanced (CB) loss (Cui et al., 2019), Balanced-Softmax (BS)
loss (Ren et al., 2020) and LDAM-DRW loss (Cao et al., 2019). (3) Feature based augmentation methods,
including MetaSAug (Li et al., 2021), SAFA (Hong et al., 2022), CUDA (Ahn et al., 2023), RSG (Wang et al.,
2021) and MBJ (Liu et al., 2022). (4) Minority over-sampling methods, including SMOTE (Chawla
et al., 2002), M2m (Kim et al., 2020), CMO (Park et al., 2022) and OTMix (Gao et al., 2024b). (5) OOD
methods, i.e., Open-Sampling (Wei et al., 2022).

4.1 Experiments on Long-tailed CIFAR

Results with the ID setting. Tab. 1 summarizes the average results of our method for three independent
runs with standard deviation on CIFAR-LT-10 / CIFAR-LT-100 under different settings. We find that our
method outperforms the CE baseline and re-weighting methods by a large margin. Moreover, our method
achieves a significant improvement than both feature- and sample- based data augmentation methods, except
for IF = 200 with CIFAR-LT-100 when compared with MetaSAug. Remarkably, the comparison between ours
and the minority sample synthetic method, i.e., M2m, confirms the validity of introducing the distribution
matching loss when transferring the majority samples to the minority classes. Besides, we use MMD and
ED to implement Distθ and report results on CIFAR-LT-10 and time complexity in Section 4.8.

Results with the OOD setting. To validate whether our proposed method can translate OOD instances,
we employ 300,000 random images1 (Hendrycks et al., 2018) as the OOD dataset Dood for CIFAR-LT-10 /
CIFAR-LT-100 by following Open-Sampling (Wei et al., 2022). We report the performance in the case of IF =
100 and IF = 50. As shown in Tab. 2, we find that our method is significantly better than Open-Sampling
(OS), which utilizes open-set noisy labels to re-balance the long-tailed training dataset. It is reasonable
since we optimize the OOD samples from the view of classification and distribution matching rather than

1https://github.com/hendrycks/outlier-exposure.
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Table 2: Test top-1 errors (%) of ResNet-
32 with different imbalance factors on the
OOD setting.

Method CIFAR-LT-10
IF 100 50
OS 22.38±0.28 18.24±0.51

OURS 20.03±0.17 16.39±0.22
IF 100 50
OS 59.74±0.65 55.23±0.25

OURS 55.09±0.23 49.38±0.27

Table 3: Test top-1 errors (%) of ResNet-50 on ImageNet-LT
(INLT) and ResNet-152 on Places-LT (PLT).

Method INLT PLT Method INLT PLT
CE 58.4 70.1 FSA - 63.6
Focal Loss - 65.4 MBJ - 61.9
LDAM-DRW 50.2 - CMO + RIDE 43.8 -
BS 49.0 61.3 OTMix+CE 48.0 -
RIDE (3 experts) 45.1 - OTMix+BS 44.4 -
BCL 44.0 - OTMix+RIDE 42.7 -
M2m + CE 55.40 63.27 OURS+CE 53.77 61.68
Over-Sampling + CE* 55.34 64.27 OURS+BS 47.31 60.37
RSG + LDAM-DRW - 60.7 OURS+RIDE 43.22 -
MisLAS 47.3 - OURS+BCL 41.89 -

endowing them with noisy labels without re-labeling OOD samples. Besides, we perform experiments by
combining both OOD and ID settings, which produce a better performance than that in the ID setting. The
detailed results are provided in the supplementary materials.

Table 4: Test top-1 errors (%) of ResNet-32
on CIFAR-LT-10 dataset under both ID and
OOD settings when combined with different re-
weighting methods.

Method CIFAR-LT-10 (ID) CIFAR-LT-10 (OOD)
IF 200 100 50 200 100 50
CE 34.13 29.86 25.06 - - -

+ M2m 25.34 21.70 18.81 - - -
+ OS - - - 28.28 22.38 18.24

+ OURS 22.85 18.20 15.96 23.43 20.03 16.39
∆ ↓ 2.49 ↓ 3.50 ↓ 2.15 ↓ 4.85 ↓ 2.35 ↓ 1.85

CB-DRW 31.23 27.32 21.87 - - -
+ M2m 25.24 19.33 18.25 - - -
+ OS - - - 29.77 24.23 19.90

+ OURS 21.19 18.07 16.30 22.69 20.16 16.70
∆ ↓ 4.95 ↓ 1.26 ↓ 1.95 ↓ 7.08 ↓ 4.07 ↓ 3.20
BS - 21.97 18.37 - - -

+ M2m 25.16 23.43 19.96 - - -
+ OS - - - 28.59 20.95 17.24

+ OURS 20.98 16.13 14.22 23.08 19.81 17.06
∆ ↓ 4.18 ↓ 7.30 ↓ 5.74 ↓ 5.51 ↓ 1.14 ↓ 0.08

Boosting other methods. To investigate whether our
method can be combined with other long-tailed methods
under ID and OOD settings, we consider several clas-
sical re-weighting losses, including CB loss (Cui et al.,
2019) and BS loss (Ren et al., 2020). As shown in Tab. 4,
our method significantly improves the performance of re-
weighting methods under the ID setting and performs bet-
ter than M2m. Under the OOD setting, M2m is not us-
able, while the performance of Open-Sampling is worse
than our method combined with different re-weighting
losses. These results indicate the effectiveness and flexi-
bility of our method when combined with other methods
under both ID and OOD settings.

4.2 Experiments on ImageNet-LT and Places-LT

Results. As summarized in Tab. 3, we perform experi-
ments on ImageNet-LT and Places-LT. We can see that
our method using CE loss outperforms the vanilla CE,
over-sampling and M2m, which indicates the effectiveness
of generating the minority samples from the view of the distribution matching. Furthermore, our method
can also be combined with other losses, where we take the BS loss as an example and obtain improvements
by 1.69% and 0.93% compared with the BS loss on ImageNet-LT and Places-LT, respectively. These re-
sults show that our proposed data augmentation method is effective on large-scale complicated long-tailed
datasets.

4.3 Ablation Study

We conduct a series of ablation studies to analyze the influence of each term on CIFAR-LT-10, begining with
a brief recall of the key components: a) L(g(x̂m), k) evaluates how strongly a pre-trained classifier g still
associates a synthetic sample x̂ with its target (e.g., minority) class k. b) fk0(x̂m) represents a term measuring
the confidence of our target classifier f that the synthetic sample x̂ correctly aligns with its original majority
label k0. c) fkc

(x̂m) denotes a term reflecting the likelihood, according to our target classifier f , that the
synthetic sample x̂ is misclassified into a known “confusing” class kc. d) Eθ∼Pθ

[Distθ(Pk, Qk)] signifies our
core distribution matching objective, which aims to minimize the discrepancy (e.g., using Optimal Transport
distance) between the feature distributions of real and synthetic samples for a given class k. For brevity in
the subsequent ablation discussion, we will refer to these components as a) L(k), b) L(k0), c) L(kc), and d)
L(D), respectively.
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Figure 1: Ablation studies of our method on CIFAR-LT-10 with varying imbalance factors.

Distribution Matching Loss (L(D)). To verify the effect of our proposed distribution matching loss,
L(D), we first compare M2m (which utilizes an objective based on L(k) + L(k0)) with our method (using
L(k) +L(k0) +L(D)) in Fig. 1(a) under the ID setting. It is clear that our method consistently outperforms
M2m across different imbalance factors. This improvement stems from L(D) guiding the synthetic sample
distribution to closely match that of the real samples, thereby enabling our method to generate more effective
synthetic samples. Additionally, M2m’s reliance on the L(k0) term (target class confidence for x̂m) makes it
challenging to apply directly to OOD samples where the target label k0 for an OOD input is not predefined.
For OOD scenarios, we therefore compare an objective using only L(k) against one that combines L(k)+L(D)
for minority sample synthesis. As shown in Fig. 1(b), the latter configuration, incorporating our L(D) term,
achieves better performance.

Confusing Class Regularization (L(kc)). While M2m is primarily designed for ID settings, our method’s
applicability can extend to OOD scenarios, partly facilitated by introducing the L(kc) term. This term
addresses potential misclassification of a synthetic sample (intended for a target minority class kt) into a
frequently confused class kc. As shown in Fig. 1(b) for OOD settings, our method incorporating an objective
of L(k)+L(kc)+L(D) achieves superior performance compared to an objective with only L(k)+L(D) across
various imbalance factors. Notably, this L(kc) regularization is also beneficial in the ID setting. Fig. 1(a)
demonstrates that our method gains further performance improvements in ID scenarios with the inclusion
of L(kc). These results illustrate that the L(kc) term not only aids OOD applicability but also enhances
ID performance, by promoting the generation of higher-quality synthetic minority samples that are more
discriminable from their confusing classes.

Sample rejection in the OOD setting. As specified in previous section, the unreliable generation quality
of synthetic samples urges us to propose the sample rejection criteria, especially in the OOD setting. To
validate our proposed rejection strategy Eq. 9, we perform an ablation study on the CIFAR-LT-10 with
IF = 10. Results in Fig. 1(c) present that using our proposed rejection strategy consistently improves the
performance when leveraging the OOD samples for CIFAR-LT-10 with different imbalance factors. That is
to say, our method can fully use OOD samples to generate minority samples while alleviating the toxicity of
the distribution shift brought about by OOD samples.

Table 5: Test top-1 errors (%) with different embed-
dings.

Feature Extractor CIFAR-LT-10(ID)
200 100 50

PCA 28.37 23.82 21.98
Model g 25.60 21.24 16.55
Model f 25.72 20.03 16.88

A randomly initialized encoder 25.32 19.78 16.57
CLIP (RN50) 23.32 18.94 16.21

The family of random encoders 22.85 18.20 15.96

Embedding spaces Eθ∼Pθ
[·]. We investigate the

effect of the embedding for computing the distribu-
tion matching loss described in Eq. 7. We use the
encoder in the to-be-learned model f and that in
the pre-trained model g as the baselines, where we
also discuss the performance of a randomly initial-
ized encoder and a CLIP vision encoder (Radford
et al., 2021). All encoders have the same architec-
ture for a fair comparison, except for CLIP. Besides,
we also consider a non-neural network model, Prin-
cipal Component Analysis (PCA). As summarized
in Tab. 5, the PCA serves as the worst embedding
function. The possible reason behind this is the principal components derived from samples can be quite
variable and may not always capture the most discriminative features relevant to the overall distribution,
especially compared to the features extracted by neural networks. Besides, using the encoder in the imperfect
pre-trained g and f also achieves inferior results. It is reasonable since g is a biased model and cannot extract
satisfactory features, and the optimization of f is coupled with that of synthetic samples. Interestingly, we
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Table 6: Test top-1 errors (%) on CIFAR-LT-10 with IF ∈ [100, 50] under the ID and OOD settings. For the
left part, We evaluate the influence of sample rejection criteria and sample selection criteria, where τ = 0.9
and β = 0.999. For the right part, we evaluate the influence of different τ and β. All the experiments are
conducted by using sample selection criteria and sample rejection criteria.

- Selection Rejection 100 50 - τ β 100 50
ID k0 - 31.16 27.25 ID 0.9 0.999 18.20 15.96
ID k0 L(p) 20.73 20.86 ID 0.6 0.999 18.69 16.33
ID k0 L(p) + L(d) 18.20 15.96 ID 0.3 0.999 19.12 16.82
ID Random L(p) + L(d) 20.07 16.32 ID 0.9 0.888 18.53 16.27

OOD Random L(p) 20.32 16.56 ID 0.9 0.777 18.97 16.59
OOD Random L(p) + L(d) 20.03 16.39 ID 0.9 0.666 18.77 16.30

find that only using a randomly initialized encoder during the entire training process can produce acceptable
performance, proving the effectiveness of the appropriate and unbiased embedding function for the loss of
distribution matching. Moreover, randomly initializing the embedding function at each training iteration
outperforms other settings. It shows that the family of embedding spaces can be obtained by sampling
randomly initialized DNNs, and is effective in computing the distance between real and synthetic samples.
Moreover, we find that even the CLIP (Radford et al., 2021) visual encoder can be used for our distribution
matching purposes.

4.4 Detailed ablation study on sample selection and rejection criteria

In this section, we present a detailed ablation study on sample selection strategies and two key rejection
criteria for synthesized samples, which we denote L(p) and L(d) for brevity in this discussion. The L(p)
criterion, is proposed by M2m from a probability perspective, which rejects a synthetic sample x̂ if a biased
pre-trained classifier g can not confidently classify it as its target minority label k (requiring its confidence
score L(g; x̂, k) > τ). Our proposed L(d) criterion, with its precise mathematical condition detailed in Eq. 9
drawn from a representation distance view, evaluates whether x̂ is sufficiently close geometrically to the real
minority samples of the target class to be accepted for training. We now examine the impact of applying
these criteria.

As shown in the left part of Tab. 6, the model performs worst under the ID setting when using only the k0
selection criterion and no rejection criteria, regardless of IF values being 50 or 100. However, the introduction
of the L(p) rejection criterion for synthesized samples results in a marked improvement, with test errors
decreasing from 31.16% to 20.73% for IF = 100 and from 27.25% to 20.86% for IF = 50. This finding
underscores the efficacy of L(p) in discerning and filtering out less reliable synthesized samples, leading to
improved model performance. Furthermore, the subsequent incorporation of our proposed L(d) criterion
contributes to an even more pronounced decrease in test errors, underscoring its effectiveness in further
refining the selection of high-quality synthetic samples. These conclusions are corroborated by results in the
OOD setting, which demonstrate that our combined rejection strategy (L(p)+L(d)) effectively identifies high-
quality, credible samples for model training, thereby catalyzing performance gains across different distribution
settings. Finally, when maintaining L(p) +L(d) as the rejection mechanism and evaluating different sample
selection criteria, we observe that the k0 ∼ 1 − β(N0,Nk)+ approach2 demonstrates superior performance,
surpassing the alternative of randomly selecting a seed sample for initialization.

In the right part of Tab. 6, we evaluate the influence of different values for the threshold τp (for the L(p)
criterion) and β (related to k0 sample selection) on performance, using the combined L(p) + L(d) rejection
criteria. While an excessively lenient τp (a very high value) could theoretically allow more lower-quality
synthetic samples to pass (those L(p) aims to filter) and potentially lead to suboptimal performance, our
experiments reveal a nuanced trend within the tested range. Specifically, with β fixed at 0.999, we observe
that test error decreases as τp increases from 0.3 to 0.9. This suggests that, within this range and in conjunc-
tion with our L(d) criterion effectively filtering samples by their proximity to the target class distribution, a
less stringent L(p) (higher τp) allows for a beneficial set of samples to be considered. This indicates that our

2Assuming Nk here refers to a class count relevant to the k0 selection, ensure consistency with its definition elsewhere.
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Table 7: Test top-1 errors (%) of ResNet-32 on CIFAR-
LT-10 under different imbalance factors, where †and
‡denote the results from the original paper and our re-
production, respectively. The methods are trained with
CE loss unless otherwise stated.

Initialization Method CIFAR-LT-10
Source Imbalance Factor 200 100 50

ID M2m 25.34‡ 21.7† 18.81†
OOD Open-Sampling 28.28‡ 22.38† 18.24†
OOD OURS 23.43 20.03 16.39

ID OURS 22.85 18.20 15.96
OOD to ID OURS 21.83↓ 1.02 17.96↓ 0.24 15.32↓ 0.64

M2m OURS

class_7 class_8 class_9 class_10 Real Synthetic

Figure 2: Visualization of features of synthetic/real
samples on CIFAR-LT-10 (IF = 100) with ResNet-
32, where ’o’ and the star indicate real and synthetic
samples in the same class, respectively.

overall rejection framework (L(p) + L(d)) effectively manages sample quality across different configurations
of τp. Regarding β, which influences the diversity of synthetic sample initialization, a larger β (when τp

is 0.9) yields the best performance, highlighting that greater initialization diversity aids generalization on
long-tailed datasets.

4.5 Combining OOD and ID.

Beyond leveraging the OOD samples to replace the majority samples in our framework, further, we explore
whether combining the OOD setting and ID setting can produce better performance. To this end, we
conduct experiments on CIFAR-LT-10 with IF ∈ {200, 100, 50} on ResNet-32. Specifically, we firstly optimize
synthetic samples and train the target classifier f using Dood. Then we save the best checkpoint and employ
an additional 20 epochs to further train f under the ID setting, where we initialize the minority samples
with majority samples, using the Alg. 1. In other words, we first use the OOD setting to train the target
classifier f and then further train f under ID setting.

As shown in Tab. 7, our method in ID and OOD settings outperform the M2m and Open-Sampling, respec-
tively. Furthermore, introducing the OOD dataset into the ID setting, our method further achieves 1.02%,
0.24% and 0.64% gains with IF ∈ {200, 100, 50}, respectively. These demonstrate that our framework in ID
or OOD setting can achieve better performance than corresponding baselines. Besides, the OOD samples
can be utilized to further improve the performance of our proposed method under the ID setting.

4.6 Visualizations

Visualization of synthetic samples in feature space. As shown in Fig. 2, we visualize synthetic
minority samples and real minority samples in CIFAR-LT-10 (IF = 100) in feature space, using t-SNE
(Van der Maaten & Hinton, 2008). We show classes 7, 8, 9, and 10 (descending ranked by the number of
their samples), each of which has 232, 139, 83, and 50 real samples. We randomly select 50 synthetic samples
for each class after using the sample rejection criteria. In terms of M2m, synthetic samples from each class are
difficult to capture the corresponding real distribution. Besides, synthetic samples from different classes are
seriously coupled together. As expected, our synthetic samples can effectively capture the real distribution
of each class. Therefore, it reveals why our method can generate more beneficial synthetic minority samples
than M2m.

Visualization of synthetic samples in pixel space. We use M2m and ours to optimize a sample x0
with k0 = car to k = deer on the same pre-trained model g. Figure 3(a) shows that x0 is correctly classified
as a car with a probability of 0.99 on g. Then, after optimization, ours and M2m produce different synthetic
samples x̂ and corresponding noise, even though the two x̂ are visually indistinguishable. At this time, the
probability of x̂ optimized by ours being classified as its original class k0 on g is 0.07, and the probability
of being classified to k is 0.91, while the corresponding probabilities of M2m are 0.19 and 0.73. This shows
that ours successfully pushes the synthesized sample away from its original label k0 on g, and makes it closer
to our target label k. At the same time, ours also makes f believe that x̂ is a sample from k with a higher
probability (0.57, 0.32 larger than M2m) on the target classifier f , and its classification probability on k0 is
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(a) An illustration of a synthetic minority sample by our method and M2m, where g
is assumed to be ResNet-32 trained by standard ERM. The noise image is amplified
by 20 for better visibility.
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(b) Top-1 test errors (%) with the in-
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with IF = 100 trained on ResNet-32.

Figure 3: Visualization of synthetic sample (a) and time-consuming analysis (b).
Table 8: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 / CIFAR-LT-100 under different imbalance factors,
where †and ‡denote the results from the original paper and our reproduction, respectively. The methods are trained
with CE loss unless otherwise stated.

Method CIFAR-LT-10 CIFAR-LT-100
Imbalance Factor 200 100 50 200 100 50

M2m† 25.34±0.46‡ 21.7±0.16 18.81±0.76‡ 63.77±0.33‡ 57.1±0.16 50.48±0.43‡
OURS+MMD 23.01±0.37 18.91±0.29 16.42±0.15 62.28±0.27 53.84±0.15 47.25±0.17

OURS+ED 22.93±0.24 18.75±0.15 16.16±0.22 61.97±0.10 53.01±0.22 47.33±0.28
OURS+OT 22.85±0.12 18.20±0.21 15.96±0.11 61.28±0.21 52.95±0.18 47.02±0.26

significantly lower than the corresponding results of M2m by 0.30. This shows that the samples synthesized
by our method are more credible and realistic for f .

In fact, we do not optimize a majority sample x0 into a picture that is similar to a minority sample in the
pixel space, like a generator. Instead, we simply optimize the sample x0 directly to confuse our models g and
f , making the models believe that our synthetic samples x̂ are indeed from real minority class, which helps
the network to generalize on the minority class. Recall the visualization of feature space, which shows that
the feature distributions of our synthetic samples x̂ are closer to real samples x of class k. This indicates
that the features of our synthetic samples are more realistic and credible, where f regards the features of
the real samples and the synthetic samples are from the same distribution. On the other hand, Section C.6
shows that the probability of our synthetic samples being correctly classified as the target class k on the
target classifier f is significantly higher than that of M2m. From the classification perspective, our method
can produce better synthetic minority samples and reduce the difficulty of the model learning.

In summary, our starting point is to generate synthetic samples that are more realistic and credible for the
model. From the perspective of pixel space, our method and M2m have no obvious difference. However, from
the classification probability and feature matching perspectives, our synthetic samples are more realistic and
credible for the network and, therefore, more effective than M2m.

4.7 Comparison of different implements of Distθ(Pk, Qk)

To prove the generality and effectiveness of our method, we conduct experiments on CIFAR-LT-10 and
CIFAR-LT-100 with different imbalanced factors (IF) by using different implements of Distθ(Pk, Qk), where
the results of different methods are summarized in Tab. 8. We implement Distθ(Pk, Qk) using MMD, ED
and OT, denoted as OURS+MMD, OURS+ED and OURS+OT, respectively. We report the average results
of our method for three runs with the standard deviation independently. We can find that all of them
have superior performance compared to the M2m baseline by a large margin. Besides, we can observe that
ours+OT performs best, which might benefit the more accurate characterization and measurement of the
distance between distributions brought by OT. In other words, OT learns an optimal transport plan which
endows each cost element with corresponding importance Tij , demonstrating the effectiveness and generality
of our proposed method.
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4.8 Convergence and time complexity

To fairly compare training time-consuming, we conduct an experiment on CIFAR-LT-10 with IF = 100 on
ResNet-32 in the same device environment with one Tesla-V100 GPU and we run all the methods with the
same epochs. As shown in Fig.3(b), our method (OT, ED and MMD) achieves a lower test error rate within
the same computation time, regardless of whether Optimal Transport (OT), Maximum Mean Discrepancy
(MMD), or Euclidean Distance (ED) is used to calculate Distθ(Pk, Qk).

4.9 Additional Analysis

We analyze the impact of OOD initialization source on synthesis in Appendix C.5, classification confidence
of synthetic samples on the target classifier f in Appendix C.6, influence of the pre-trained model g in
Appendix C.8, visualization of the confusion matrix in Appendix C.9, and more visualization of synthetic
samples in Appendix C.10.

5 Related Work

Over-sampling methods for long-tailed problem. Data-based methods aim to solve the imbalance
problem by building relatively balanced classes from the perspective of data, including under-sampling
majority samples (He & Garcia, 2009; Drummond & Holte, 2003), over-sampling minority samples (Shen
et al., 2016; Buda et al., 2018; Barandela et al., 2004) and data augmentation (Ahn et al., 2023; Park et al.,
2022; Yan et al., 2019; Kim et al., 2020; Gao et al., 2023; 2024a; Li et al., 2025; Guo et al., 2022b). Our
method has a close connection with minority over-sampling methods. A related work is Optimal transport
over-sampling (OTOS) (Yan et al., 2019), which maps the noise to synthetic ones based on the Wasserstein
barycenter. Different from OTOS which generates samples by a mapping matrix and is limited to a binary
classification, we provide a more general and direct optimization objective for generating synthetic samples.
By minimizing this objective, we can obtain synthetic samples with reliable classification confidence and high
representation similarity, where we can handle multi-class classification task and leverage more practical OOD
setting. Another related work, M2m (Kim et al., 2020), translates majority samples to the target minority
class by maximizing the prediction probability. However, in our work, we optimize synthetic minority samples
from both perspectives of classification confidence and distribution matching, where we extend the ID to
OOD setting for further versatility.

Utilizing auxiliary dataset for long-tailed problem. In imbalanced learning, Yang & Xu (2020)
leverage unlabeled ID data as additional samples to compensate for the minority classes, while Su et al.
(2021) adopts a semi-supervised learning framework to incorporate out-of-class samples from related classes.
Open-Sampling (Wei et al., 2022) explores the benefit of using OOD data in the long-tailed problem. The
major difference between ours and Open-Sampling is that we translate OOD samples by introducing an
optimization phase and introducing a sample rejection strategy but Open-Sampling assigns a noisy label to
each OOD sample using a pre-defined label distribution without filtering the OOD data.

6 Conclusion

To address the long-tailed classification issue, we propose a novel framework for translating majority sam-
ples into synthetic minority samples by leveraging classification confidence and distribution matching. Our
method optimizes the synthetic minority samples by enforcing them to satisfy the classification constraints
and being close to the distribution of real samples in the target minority class. In addition, we introduce
an effective regularization term for confusing classes, enabling our framework to better utilize available and
rich OOD data to synthesize minority classes. Extensive experiments on benchmark datasets demonstrate
that our framework can generate effective minority samples and achieve the desired long-tailed classification
performance.
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Appendix For
Synthesizing Minority Samples for Long-tailed

Classification via Distribution Matching

A Alternatives for Distθ(Pk, Qk)

A.1 Maximum Mean Discrepancy (MMD)

Preliminaries. MMD is an effective non-parametric metric for comparing the distributions based on two
sets of data (Gretton et al., 2012), where the general MMD between two distributions P and Q is defined as

MMD2(P,Q) = sup
∥ϕ∥H≤1

∥Ex∼P [ϕ (x)]− Ey∼Q [ϕ (y)]∥2
H , (10)

where Ex∼P [·] denotes the expectation with regard to the distribution P , ϕ is the embedding function, and
∥ϕ∥H ≤ 1 defines a set of functions in the unit ball of a reproducing kernel Hilbert space (RKHS) H.

Define Distθ(Pk, Qk) with MMD. As we do not have access to ground-truth data distributions for syn-
thetic and real samples shown in Eq. 10, we can use a biased empirical estimate of the MMD by replacing
the population expectations with empirical expectations (Gretton et al., 2012), which are computed on the
synthetic and real samples in Pk and Qk and denoted as

Distθ(Pk, Qk) =
∥∥∥∥∥ 1
Nk

Nk∑
n=1

ψθ (xn)− 1
Mk

Mk∑
m=1

ψθ (x̂m)
∥∥∥∥∥

2

(11)

A.2 Energy Distance (ED)

Preliminaries. Drawing inspiration from the concept of potential energy between objects in a gravita-
tional field, Energy Distance (ED) (Rizzo & Székely, 2016) measures the similarity between two probability
distributions, P and Q. This can be mathematically expressed as follows:

ED2(P,Q) = 2Ex∼P,y∼Q∥ϕ(x)− ϕ(y)∥ − Ex∼P ∥ϕ(x)− ϕ(x′)∥ − Ey∼Q∥ϕ(y)− ϕ(y′)∥, (12)

where Ex∼P [·] denotes the expectation with respect to the distribution P and ∥ · ∥ denotes the Euclidean
norm (length) of its argument. In addition, x′ and y′ are independent copies of x and y, respectively.

Define Distθ(Pk, Qk) with ED. Here, we can define Distθ(Pk, Qk) based on the energy distance (ED) as
follows:

Distθ(Pk, Qk) = 2
NkMk

Nk∑
n=1

Mk∑
m=1
∥ψθ(xn)− ψθ(x̂m)∥2

− 1
Nk

2

Nk∑
n,m=1

∥ψθ(xn)− ψθ(xm)∥2

− 1
Mk

2

Mk∑
n,m=1

∥ψθ(x̂n)− ψθ(x̂m)∥2

(13)

B Algorithms of our framework

In this section, we give the algorithm processes 2 of our method under OOD settings as shown in Alg. 2.
Our jointly learning framework is shown in Alg. 3.
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Algorithm 2: Oversampling minority samples via our framework (Out-of-Distribution).

Input : Dataset Dtrain and Dood, classifier f and pre-trained classifier g, a confusion matrix A,
hyper-parameters:{λ1, λ2, γ, η, T , τ , β}

Output: A class-balanced dataset Dbal
1 Initialize Dbal ← Dtrain;
2 Randomly sample a balanced subset from Dtrain and obtain confusion matrix A by evaluate the

pre-trained model g using this subset;
3 for k = 2, ...,K do
4 Compute Mk ← N1 −Nk; Initialize D̂k ← ∅;
5 for m = 1, ...,Mk do // Step 1. Sample selection for x0
6 Sample a xm from Dood randomly;
7 Initialize x̂(0)

m ← xm + ϵm with a standard Gaussian noise ϵm.;
8 update D̂k ← D̂k ∪ {(x̂(0)

m , k)};
9 end

10 Build Qk =
∑Mk

m=1
1

Mk
δx̂m

+ and Pk =
∑Nk

n=1
1

Nk
δxn

according to Eq.4. ;
11 Obtain kc if Ak,kc ≥ Ak,i where i ∈ [1,K] and i ̸= k ;
12 for t = 1, ..., T do // Step 2. Optimization for x̂

13 x̂
(t)
m =

∑Mk

m=1 [L(g(x̂m), k) + λ1 · fkc
(x̂m)] + λ2 ·Distθ(Pk, Qk), according to Eq. 8.

14 end
15 Update D̂k with optimized synthetic samples;
16 for x̂m in D̂k do // Step 3. Sample rejection for x̂
17 if L(g(x̂m), k) ≥ τ or Reject = 1 then
18 x̂m ← with a random sample from class k in Dtrain;
19 end
20 Update Dbal ← Dbal ∪ {(x̂m, k)};
21 end
22 end

Algorithm 3: Joint Training Paradigm with Synthetic Sample Generation
Input: Imbalanced dataset D, warm-up epochs Ewarm, main epochs Emain
Output: Trained classifier f

1 Randomly initialize classifier f ;
2 for e = 1, ..., Ewarm do /* Stage 1: Warm-up */
3 for mini-batch B in D do
4 Update f using B; // standard CE training
5 end
6 end
7 for e = Ewarm + 1, ..., Emain do /* Stage 2: Joint training (ours) */
8 for mini-batch B in D do
9 Resample an embedding function ψθ

10 Generate balanced batch Bbal by synthesizing minority samples; // See Alg. 1
11 Update f using Bbal; // train on augmented data
12 end
13 end

C More details about datasets and experiments

C.1 Settings and Training details

Unless otherwise stated, we set the imbalance factor as IF = N1/NK and use T = 5 iterations with a step
size of η=0.1 to optimize the synthetic samples at each training iteration. The hyper-parameter for the OT
entropy constraint is γ=0.1 and the maximum iteration number in the Sinkhorn algorithm is 200. We use
SGD with momentum 0.9 and weight decay 5e−4 and conduct all the experiments on 8 Tesla-V100 GPUs.
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C.2 CIFAR-10 and CIFAR-100 datasets

CIFAR-LT-10 / CIFAR-LT-100. The original CIFAR-10/CIFAR-100 datasets (Krizhevsky et al., 2009)
include 60,000 images and 10/100 classes with a size of 32× 32, where there are 50,000 images for training
and 10,000 for testing. By following (Kim et al., 2020), we create CIFAR-LT-10 and CIFAR-LT-100 by
randomly under-sampling in the original datasets with IF = {200, 100, 50}. We use the original test dataset
to evaluate our method. Training details. Following (Kim et al., 2020; Li et al., 2021; Guo et al., 2022a),
we use ResNet-32 (He et al., 2016) as the backbone. We employ 200 epochs for training f with an initial
learning rate α of 0.1, which is decayed by 1e−2 at 160-th epoch and 180-th epoch. We set batch size as 32
and start our method at 160-th epoch, where we set λ1 and λ2 as 0.5, β as 0.999 and τ as 0.9.

C.3 ImageNet-LT and Places-LT

ImageNet-LT. The original ImageNet-2012 dataset (Deng et al., 2009) includes 1,281,167 images and 1000
classes with a max size of 1300 × 732. By following (Kim et al., 2020; Li et al., 2021; Liu et al., 2019), we
create ImageNet-LT with 115.8K samples in 1000 classes and IF = 1280/5. We adopt the original validation
dataset to test our method.

Places-LT The original Places-365 dataset(Zhou et al., 2017) includes 1,803,460 images and 365 classes
with a max size of 5000× 3068. By following (Liu et al., 2019), we create Places-LT with 62.5K samples in
1000 classes and the imbalance factor IF = 4980/5. We adopt the original test dataset to test our method.
Training details. Following previous works (Kim et al., 2020; Li et al., 2021; Kang et al., 2019), we use
ResNet-50 as the backbone for ImageNet-LT. We employ 200 epochs for training f with an initial learning
rate α as 0.1, which will be decayed by 1e−1 at the 160-th epoch and 180-th epoch. For Places-LT, we
employ ResNet-152 pre-trained on the full ImageNet dataset (Russakovsky et al., 2015) as the backbone
following (Guo et al., 2022a; Li et al., 2021). We set 200 epochs for training f with an initial learning rate α
as 0.1, decayed by 1e−1 every 40 epochs. We start our method at 160-th epoch for ImageNet-LT and 90-th
for Places-LT. We set λ1 and λ2 as 0.5, β as 0.999 and τ as 0.3. For all experiments, we initialize batch size
as 64 and set it as 32 after deploying our method for training stability.

C.4 Training details about pre-trained model g

CIFAR-LT-10 / CIFAR-LT-100. For CIFAR-LT-10 / CIFAR-LT-100, we use ResNet-32 (He et al., 2016)
as backbone network for pre-training. We employ 200 epochs for training g with an initial learning rate α
of 0.1, which will be decayed by 1e−2 at 160th epoch and 180th epoch. We use SGD with momentum 0.9
and weight decay 5e−4 and set batch size as 128. In the first 160 epochs, we use the original imbalanced
dataset to train the model g. For the last 40 epochs, we use the vanilla over-sample technique by inverse
class frequency to further train the model g. We save the best checkpoint as our pre-trained model g.

ImageNet-LT & Places-LT For ImageNet-LT, we use ResNet-50 (He et al., 2016) as backbone network
for pre-training. We employ 200 epochs for training g with an initial learning rate α of 0.1, which will be
decayed by 1e−2 at 160th epoch and 180th epoch. For Places-LT, we employ ResNet-152 pre-trained on
the full ImageNet dataset. We use 120 epochs for training g with an initial learning rate α as 0.1, which is
decayed by 1e−1 every 10 epochs. For both datasets, we use SGD with momentum 0.9 and weight decay
5e−4 and set batch size as 512. Similar to CIFAR-LT-10 / CIFAR-LT-100, before the 160− th and 90− th
epoch on ImageNet-LT and Places-LT, we use the original imbalanced dataset to train model g. For the last
epochs, we adopt the vanilla over-sample technique by inverse class frequency (Drummond & Holte, 2003)
to further train g. We save the best checkpoint as our pre-trained model g.

C.5 Impact of OOD Initialization Source on Synthesis

To assess the influence of the initial seed on synthetic sample generation, we evaluated several Out-of-
Distribution (OOD) data sources for initialization when targeting the CIFAR-LT-10 dataset, with results
presented in Tab. 9. We compared initializations using: (i) Medical images (OrganAMNIST), (ii) Pure
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Noise, and (iii) OOD Natural images3, against a CE-Baseline without synthetic samples. The results clearly
demonstrate that our synthesis framework, irrespective of the OOD initialization source, yields substantial
improvements over the CE-Baseline across all tested imbalance factors. This underscores the overall benefit
of incorporating synthetic samples.

Among the different OOD initialization strategies, a clear performance hierarchy emerged. While initializing
with Medical images improved upon the baseline, it was generally outperformed by Pure Noise initialization.
This suggests that a very large domain gap (as between medical images and CIFAR-LT-10’s natural scenes)
can limit the effectiveness of the initial seed. Notably, initializing with OOD Natural images consistently
produced the best results, surpassing both Pure Noise and Medical image initializations across all imbalance
factors.

These findings highlight that the choice of OOD initialization source is critical, with closer domain proximity
to the target dataset leading to superior synthesis outcomes. For natural image classification tasks like
CIFAR-LT-10, utilizing OOD natural images as an initialization source is most effective. We attribute this to
their ability to provide more relevant foundational features, such as common textures and color distributions,
which are advantageous for generating high-quality minority class samples tailored to the target domain.

Table 9: Test top-1 errors (%) of ResNet-32 on CIFAR-LT-10 with IF ∈ [200, 100, 50] and different OOD
datasets. Distribution means the initialization of to-be-learned synthetic samples x̂, e.g., OOD denotes we
initialize x̂ with OOD samples. Domain indicates the corresponding domain of OOD dataset.

Domain 200 100 50
CE-Baseline w/o synthetic samples 34.13 29.86 25.06

Pure Noise 23.93 20.40 16.75
Medical 23.95 20.95 17.17
Natural 23.43 20.03 16.39

C.6 Classification confidence of synthetic sample on target classifier f .

To prove the effectiveness of our method in enhancing the generation of high-quality synthetic samples, we
compare the classification performance of the synthetic samples on the target classifier f for CIFAR-LT-10
(ID) with IF = 100 on ResNet-32. Specifically, we use the target classifier to output the probability of the
synthetic samples in class k being correctly predicted as the k class, where we consider k ∈ {2, · · · , 10}. Then
we compute the average probability for all samples and express it as a percentage. Compared to M2m, Fig.
4(a) illustrates that the synthetic samples generated by our method (based on OT) have higher classification
confidence for the corresponding concerned class during the training of target classifier f , in both ID and
OOD settings. This finding suggests that the generated samples by ours are more credible.

C.7 Proportion of Successfully Synthesized Samples

To quantify the contribution of our novel sample generation relative to the fallback mechanism (repeating
existing minority samples), Figure 4(b) illustrates the proportion of successfully synthesized and accepted
minority samples within the total augmented minority slots per epoch on CIFAR-10-LT (ID setting). The
results show that a consistent fraction, typically ranging from 15% to 21% depending on the imbalance
factors, consists of newly generated synthetic samples that pass our quality criteria. This demonstrates
that while the fallback ensures robust minority representation, our synthesis module actively produces a
continuous stream of novel data, and the overall performance improvement is attributable to both this
baseline rebalancing effect and the diversity introduced by these genuinely new instances, distinguishing our
approach from simple upsampling.

3https://github.com/hendrycks/outlier-exposure.
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Figure 4: Visualization of classification accuracy and out-of-distribution (OOD) sample synthesis behavior.

C.8 Influence of pre-trained model g

In this section, we investigate whether the effectiveness of the proposed method is affected by the performance
of pre-trained g. We can see that the better the performance of the pre-trained classifier, the better the
final classification result of ours in general. Although the pre-trained classifier in the 100th epoch and
the best-performed classifier have different classification performance, they have similar impact on the final
classification result. Besides, the ensemble of three best-performed classifiers achieves better performance
than only using one best-performed classifier. In our work, we perform the experiments only using one best-
performed classifier. It demonstrates that the final classification results will increase if we use the ensemble
of the pre-trained classifiers to optimize the synthetic samples.

Table 10: Test top-1 errors (%) on CIFAR-LT-10 with IF = 100 under the in-distribution setting. Pre-trained
performance indicates the overall performance on the g and Final performance is the corresponding final
classification result.

g Pre-trained performance Final performance
1-th epoch 66.51 21.16
3-th epoch 59.75 20.23
10-th epoch 44.26 20.17
20-th epoch 41.71 19.07
100-th epoch 30.95 18.33
Best epoch 28.17 18.37
Ensemble 28.77, 30.23, 29.01 18.01

C.9 Visualization of confusion matrix

To demonstrate the effectiveness of our method in improving the performance of minority classes, we visualize
the confusion matrices of CE, M2m and OURS on CIFAR-LT-10 with IF=200. As shown in Fig.5, CE has
poor classification performance in minority classes. Therefore, it is necessary to solve the long-tailed problem.
Although M2m mitigates the problem, it still performs poorly on the rarest classes. Our proposed method
achieves better performance than CE and M2m. In particular, ours is superior to strong baseline M2m for
almost every class, thereby alleviating the imbalanced classification problem.
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Figure 5: Confusion matrices of the CE, M2m and OURS on CIFAR-LT-10 with the imbalance factor 200.

C.10 Visualization of Synthetic Samples

In this section, as shown in Fig. 6, Fig. 7, and Fig. 8, we present visual examples of synthetic minority
samples generated by our method on the ImageNet-LT dataset. Similarly, while our synthetic samples
and their source images may be difficult to distinguish by eye in pixel space, the subtle, optimized “noise”
introduced during our synthesis process effectively alters the classifier’s perception and classification of these
modified samples.
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Source Image: 5 Noise Synthetic Image: 734

Source Image: 5 Noise Synthetic Image: 412

Source Image: 4 Noise Synthetic Image: 541

Source Image: 2 Noise Synthetic Image: 898

Source Image: 6 Noise Synthetic Image: 913

Figure 6: An illustration of synthetic minority samples by our method on ImageNet-LT.
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Source Image: 5 Noise Synthetic Image: 696

Source Image: 3 Noise Synthetic Image: 158

Source Image: 5 Noise Synthetic Image: 380

Source Image: 5 Noise Synthetic Image: 185

Source Image: 6 Noise Synthetic Image: 544

Figure 7: An illustration of synthetic minority samples by our method on ImageNet-LT.
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Source Image: 5 Noise Synthetic Image: 541

Source Image: 4 Noise Synthetic Image: 64

Source Image: 1 Noise Synthetic Image: 563

Source Image: 3 Noise Synthetic Image: 729

Source Image: 7 Noise Synthetic Image: 369

Figure 8: An illustration of synthetic minority samples by our method on ImageNet-LT.
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