ChatVLA: Unified Multimodal Understanding and Robot Control
with Vision-Language-Action Model

Anonymous ACL submission

. '
Multimodal Understanding : ChatVLA Model ' Results on Control & Understanding Dataset
H
|
E Image Tokens Language Instruction H B - g::r\VlA
Visual Grounding H [ MMMy —chatvia
Q: Provide the bounding box |66 B &) 6 &) OOOO0Oad ! YA pealworldaa Mvstar Am L
coordinate of thepolce vehice. Ceneen OooooO : e —
A:[0.26,0.56, 0.4, 0.71] ! wvaa TN wmme Long-Horizon 1
H / N, —
| 1 \
- H [ \
Image Captioning H ! | \ Compositional Il
Q: Provide a one-sentence caption for H Large Language Model HIC | ocRBench I
the image. H H | NG
A: A vintage-style street clock stands. ! l ! | Z ) Bathroom Bl
prominently at a city intersection, OCR VaA i l ' ap \ /" Hallgench
with a historic brick building in the Q: What numberis the | | & What s the colors |+ Action Head LLM Head H /
he h _4 Kitchen W
background and several cars, hour hand pointed at? | | ©f the doorin the ! H ~L = R
including a police car, navigating the A: The number 2 is uldpo ! Actions {3 Understanding @& Reasoning ! InfoVaA T MMB
crosswalk. pointed at. derecylate | ! Oth -
image is red. 1 Il - ther Tasks
' H VA TextvaA —
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, O sy
25 Real Robot Tasks
Long-Horizon Task with Direct Prompting Cross-Skill Multi-Tasking Long-Horizon Task with High-Level Planner
= “Put the spider-man into the drawer.” Pick [L Hang j, Move | Stack
Bk oy || o ]| sosp 1] 2 S S

1. Open the drawer
@ 2 putthetoy 77 intoit
<25 4

3. Close the drawer ‘

Get the plate © Flip the cup ¥ Move the bread
and place iton  and place it on to the plate.
the tablecloth.  the tablecloth.

Figure 1: ChatVLA is the first work to unify multimodal understanding and embodied control. We conduct
extensive evaluations on VQA and multimodal understanding benchmarks to demonstrate that robot foundation

models can also engage in chat. Furthermore, we evaluate our approach on diverse real-world robot tasks.

Abstract

Humans possess a unified cognitive ability to
perceive, comprehend, and interact with the
physical world. Why can’t large language
models replicate this holistic understanding?
Through a systematic analysis of existing train-
ing paradigms in vision-language-action mod-
els (VLA), we identify two key challenges:
spurious forgetting, where robot training over-
writes crucial visual-text alignments, and task
interference, where competing control and un-
derstanding tasks degrade performance when
trained jointly. To overcome these limita-
tions, we propose ChatVLA, a novel frame-
work featuring Phased Alignment Training,
which incrementally integrates multimodal data
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datasets and significantly surpasses state-of-the-
art vision-language-action (VLA) methods on
multimodal understanding benchmarks. No-
tably, it achieves a six times higher perfor-
mance on MMMU and scores 47.2% on MM-
Star with a more parameter-efficient design
than ECoT. Furthermore, ChatVLA demon-
strates superior performance on 25 real-world
robot manipulation tasks compared to existing
VLA methods like OpenVLA. Our findings
highlight the potential of our unified framework
for achieving both robust multimodal under-
standing and effective robot control. The real
robot video demo can be found at video link.

Introduction

after initial control mastery, and a Mixture-
of-Experts architecture to minimize task in-
terference. ChatVLA demonstrates competi-
tive performance on visual question-answering

Recent advancements in Vision-Language-Action
(VLA) models have largely prioritized robotic ac-
tion mastery. While models trained on robotic
control tasks excel at low-level manipulation and
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physical interaction, they often struggle to interpret
and reason about multimodal data like images and
text. This is paradoxical, as modern VLA architec-
tures build upon pre-trained vision-language mod-
els (VLMs). Conversely, VLMs trained on visual-
text pairs demonstrate impressive multimodal scene
understanding but lack the ability to physically in-
teract with the environment. This duality highlights
a critical challenge: unifying embodied control and
multimodal understanding by aligning these dis-
parate data sources (robotic actions and visual-text
semantics) without sacrificing performance in ei-
ther domain.

This work investigates how to unify a single
end-to-end neural network capable of multimodal
scene understanding, conversational ability, and
physical interaction. We first explore existing train-
ing paradigms to assess their feasibility for uni-
fication. Specifically, we examine three data set-
tings for VLA training: 1) training solely on ex-
pert demonstration data containing robot action tra-
jectories (the most common approach, e.g., Open-
VLA (Kim et al., 2024), TinyVLA (Wen et al.,
2024c), my (Black et al., 2024)); 2) augmenting
robot data with reasoning phrases to guide action
(similar to ECoT (Zawalski et al., 2024) and Diffu-
sionVLA (Wen et al., 2024a)); and 3) co-training
with both visual-text pairs and robot data (as in
RT-2 (Brohan et al., 2023a)). We analyze how each
configuration impacts the model’s ability to bal-
ance control and understanding. Our experiments
reveal that training solely with robot data erodes
conversational ability entirely; adding reasoning
data partially preserves multimodal understanding;
and introducing visual-text pairs significantly weak-
ens control capabilities. This suggests two key
challenges: (1) VLA models suffer from spurious
forgetting (Zheng et al., 2025; Zhai et al., 2023;
Luo et al., 2023), where performance degradation
may not reflect complete knowledge loss from pre-
trained VLMs, but rather a shift in how the model
aligns its internal representations with different
tasks. The alignment between robot actions and
visual-text data appears fragile and susceptible to
being overwritten during fine-tuning. (2) Task in-
terference (Wang et al., 2021; Ahn et al., 2025)
arises, where the conflicting parameter spaces of
control and understanding tasks, sharing overlap-
ping representations, cause mutual performance
degradation when trained simultaneously.

To address these challenges, we present
ChatVLA, a simple yet effective framework—in

terms of both neural architecture and training strat-
egy—for enabling a single neural network to mas-
ter both understanding and manipulation. We pro-
pose Phased Alignment Training, a two-stage strat-
egy inspired by curriculum learning. The model
first masters embodied control before incremen-
tally integrating multimodal data to "reactivate"
frozen alignment links. Furthermore, we introduce
a Mixture-of-Experts (MoE) on the MLP layers.
This allows the two tasks to share attention lay-
ers (for cross-task knowledge transfer) while iso-
lating task-specific MLPs (to minimize interfer-
ence). This design is motivated by Dual Coding
Theory, which posits that human minds process in-
formation through two separate but interconnected
systems: one for physical skills and the other for
verbal and visual practice. The shared attention
layers in ChatVLA facilitate the exchange of mutu-
ally beneficial knowledge between understanding
and control tasks, while the separate MLP layers
process learned knowledge independently.

We evaluate ChatVLA across three dimensions:
conversational ability (visual question answering),
general multimodal understanding, and general
robot control. Specifically, we assess its conversa-
tional ability on established datasets like TextVQA
and DocVQA, where it achieves competitive per-
formance compared to existing VLMs. Further-
more, ChatVLA demonstrates strong multimodal
understanding capabilities on general visual and
textual benchmarks, including MMMU, MME, and
MMStar. Notably, compared to state-of-the-art
VLA methods like ECoT, our method achieves
a 6x performance improvement on MMMU and
boosts performance on MMStar from 0 to 47.2, us-
ing 3.5x fewer parameters in the VLM backbone.
Finally, we evaluate ChatVLA on 25 real-world
robot tasks encompassing diverse skills like pick-
ing, placing, pushing, and hanging, across multi-
ple environments such as bathrooms, kitchens, and
tabletops. In this multi-task setting, our method out-
performs state-of-the-art VLA methods like Open-
VLA. These results validate the effectiveness of
our approach, showcasing the potential of a single
unified method for both multimodal understanding
and robot control.

In summary, our contributions are the following:

* We provide an in-depth analysis of exist-
ing VLA approaches under rigorous settings,
demonstrating their limitations in achieving
satisfactory performance across both multi-



modal understanding and robot control.

* We introduce ChatVLA, a simple yet effective
framework that unifies conversational ability,
multimodal understanding, and robot control
within a single neural network.

* We conduct extensive experiments to evaluate
ChatVLA'’s performance on various question-
answering and general understanding bench-
marks.

* We perform extensive real-world robot exper-
iments, encompassing 25 diverse tasks in re-
alistic home environments (tabletop, kitchen,
and bathroom), demonstrating ChatVLA’s su-
perior performance in real-world robot control
scenarios.

2 Related Work

Multimodal understanding Multimodal Large
Language Models (MLLMs) (Lu et al., 2024;
Awadalla et al., 2023; Laurencon et al., 2023; Liu
et al., 2023b,a; Wang et al., 2024a; Chen et al.,
2024c; Zhu et al., 2024c; Ma et al., 2024; Zhou
et al., 2024; Zhu et al., 2024a; Luo et al., 2024,
Chen et al., 2024c; Li et al., 2023a; Dai et al., 2023;
Chen et al., 2024b; Karamcheti et al., 2024) have
significantly advanced the field of multimodal un-
derstanding by integrating visual and linguistic in-
formation to achieve holistic scene comprehension.
MLLMs have demonstrated excellent performance
on tasks requiring cross-modal alignment, such as
visual question answering (VQA), image caption-
ing, and spatial reasoning. This success stems from
their ability to map visual features to semantic rep-
resentations through sophisticated adapter designs.
However, current MLLMs lack a connection to the
physical world, preventing them from interacting
with environments and humans. This work aims to
bridge this gap, enabling vision-language models
to also act.

Vision-langauge-action models in robot learn-
ing. Vision-language-action models (VLAs) form a
growing body of research that leverages pre-trained
vision-language models (VLMs) as a backbone to
enable both language comprehension and observa-
tional understanding. These methods typically fine-
tune large pre-trained VLMs to predict robot ac-
tions (Brohan et al., 2023b; Li et al., 2023b; Huang
et al.; Wen et al., 2024c; Pertsch et al., 2025; Black
et al., 2024; Kim et al., 2024; Chi et al., 2023; Zhu
et al., 2024b; Wang et al., 2024b; Prasad et al.,

2024; Black et al., 2023a,b; Dasari et al., 2024,
Lin et al., 2024; Reuss et al., 2024; Zhao et al.,
2024; Uehara et al., 2024a,b). These methods have
shown strong performance in both simulated and
real-world tasks. However, existing VLA models
have not demonstrated the ability to perform true
multimodal understanding. Based on our experi-
ments, we find that these models lack this capa-
bility. In contrast, our work proposes a unified
approach that enables a single network to effec-
tively handle both multimodal understanding and
robot control.

3 Methodology

This section provides a thorough discussion of our
framework. Section 3.1 presents formal definitions.
Section 3.2 details our motivation and empirical re-
sults demonstrating how existing vision-language-
action models (VLAs) suffer from catastrophic
forgetting, thus hindering the unification of multi-
modal understanding and robot control. Section 3.3
proposes a simple solution to address this problem.

3.1 Formal Definition

Consider two distinct scenarios: robot control
and multimodal understanding. In the context
of robot control, we typically construct a dataset
of demonstrations D,opot = {7i},, where
each demonstration 7; comprises a sequence
of state-action pairs. The state s consists of
an observation (image) v and an instruction
(text) t, such that s = (v,t). We can repre-
sent the sequence of state-action pairs as 7; =
{((Ul’ tl)’ al)a ((UQ, t2>7 a2)7 SRR ((UTa tT)v aT)}’

where each tuple ((v;,t;), a;) represents the state
at timestep j and the corresponding action taken,
and 7T is the length of the demonstration. These
demonstrations are typically provided by a human
expert.

For multimodal understanding and visual con-
versation tasks, we have a dataset D,,_; = {¢; i]\il,
where each data sample ¢; consists of a visual im-
age v; and a corresponding question (or caption) in
textual form ¢;, i.e., ¢; = {(v;, t;)}. Here, M rep-
resents the total number of such image-text pairs.
The notation v — ¢ denote visual-text data.

The overarching goal of our work is to develop a
general model 7 capable of addressing both embod-
ied control and multimodal understanding. For em-
bodied control, this involves learning a policy that
models the joint distribution of robot actions given
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Figure 2: Analysis of how training data influences VLA performance on control and understanding tasks. (a)
We use three different sets of training data, corresponding to the three main training approaches for VLA models.
(b) The experimental results are presented for five real-world robot tasks across three settings. (c) The results on

VQA and multimodal understanding benchmarks.

the current visual observation and textual instruc-
tion: w(a¢|ve, t¢). Simultaneously, for multimodal
understanding and visual question answering, the
model should capture the distribution of the text
(answer or caption) given the visual input: 7(¢|v).
Our objective is to create a unified model that can
effectively learn both distributions, enabling it to
perform well in both robot control tasks and multi-
modal understanding scenarios.

Current VLA research focuses on developing
more robust and generalizable models for learning
visuomotor policies (Kim et al., 2024; Black et al.,
2024; Wen et al., 2024c). Some approaches ex-
plore chain-of-thought-like reasoning to improve
policy generation (Zawalski et al., 2024; Wen et al.,
2024a; Li et al., 2024), while others investigate
co-training VLA models with visual-textual and
robot data (Pertsch et al., 2025). In particular, some
studies report benefits from co-training with visual-
textual data in laboratory settings (Brohan et al.,
2023a), while others find it less effective in real-
world scenarios (Zawalski et al., 2024). Although
a few works suggest that VLA can maintain con-
versational ability (Wen et al., 2024a; Brohan et al.,
2023a), none have thoroughly investigated how this
ability, along with general multimodal understand-
ing, is preserved after applying the VLA training
paradigm. In the following section, we analyze
different training data setups for VLA, focusing
specifically on the resulting model’s performance

in both multimodal understanding and real-world
robot control. Our goal is to provide practical guid-
ance for building unified models capable of both.

3.2 Analysis

To understand the capabilities of existing VLA
models in terms of multimodal understanding
and embodied control, we investigate three dis-
tinct training paradigms, each utilizing a different
dataset: 1) training solely with robot data, the most
prevalent approach in VLA (Black et al., 2024;
Awadalla et al., 2023; Kim et al., 2024; Wen et al.,
2024c), primarily focused on optimizing robot con-
trol performance; 2) augmenting robot data with
chain-of-thought-like reasoning, aiming to provide
auxiliary information that improves both model
generalization and robot task performance (Wen
et al., 2024a; Zawalski et al., 2024); and 3) co-
training with both visual-textual data and robot data.
This latter paradigm was pioneered by RT-2 (Bro-
han et al., 2023a); however, due to proprietary data
and model details, exact replication is challenging.
Following RT-2, we used a 3:1 ratio of robot data
to visual-text data in this experiment.

In this section, we analyze these three train-
ing data setups for VLA models. Specifically,
we utilize DiffusionVLA, a representative VLA
model that supports both language output via au-
toregression and action generation via a diffusion
model. We evaluate performance on six representa-



tive benchmarks: four focused on visual question
answering and two providing a broader evaluation
of multimodal large language models, encompass-
ing tasks like math and OCR. Furthermore, we
assess performance on five real-world robot tasks
covering diverse skills, including hanging, pulling,
picking, and placing. Following the methodology
of DiffusionVLA, we generate robot reasoning data.
For visual-textual data, we randomly sample 54k
image-text pairs from LLaVA. Further details re-
garding experimental setup and data processing are
provided in the Appendix.

Results on multimodal understanding and
question-answering benchmark. The experimen-
tal results are presented in Figure 2. The top-right
portion of the figure displays performance on six
benchmarks, encompassing both visual question
answering (VQA) and general understanding tasks.
The bottom-right portion of Figure 2 shows the
average success rate across a total of 112 trials
conducted on five real-world robot tasks.

The top-right table includes results for the base
model, Qwen2-VL. Some results are intuitive. For
example, training the model solely on robot data
yields a performance of 0 across all benchmarks.
This model completely loses its conversational abil-
ity, exhibiting only murmuring when asked a ques-
tion. As expected, the smallest performance drop
compared to the base model occurs when training
uses both visual-text pairs and robot data. Interest-
ingly, training with robot data including reasoning
also boosts performance from O to a non-negligible
level, despite the highly structured, template-driven
nature of the reasoning phrases within that data.
Even though the reasoning phrases are similar and
structured, explicitly allowing the model to "speak
out" significantly improves performance on ques-
tion answering and even general understanding.

Conclusion 1. Our observations suggest that the
pre-trained VLM component suffers from what ap-
pears to be catastrophic forgetting. Training solely
with robot data causes the model to lose previously
acquired conversational and understanding abili-
ties. However, our experiments indicate that this
isn’t necessarily a complete loss of knowledge, but
rather a misalignment caused by the robot data.
Training with a fixed reasoning template seems to
"reactivate” the visual-text alignment, enabling the
model to engage in conversation and demonstrate
understanding. In Section 5.4, we will delve into
the specific knowledge that is reactivated and dis-
cuss how future work can further bridge the gap

between the base VLM and the VLA model. We
term this phenomenon "spurious forgetting."

Results on real robot multi-task settings. We
further evaluated different approaches to our real
robot setup. All methods were trained on 25 real
robot tasks, and we selected five diverse tasks, cov-
ering skills like pushing, picking, and hanging, for
comparison. Details, including the number of trials
for each experiment, can be found in the Appendix.
Surprisingly, training with only robot data yielded
worse performance than incorporating reasoning.
This confirms previous findings that leveraging ei-
ther visual or textual chain-of-thought enhances the
generalization of robot models. Intriguingly, co-
training robot data with visual-textual data resulted
in a significant performance drop in real-world task
success rates.

Conclusion 2. The initial observation that incor-
porating reasoning into robot data improves per-
formance aligns with Dual Coding Theory. This
theory posits that physical motor skills and visual-
linguistic understanding are not mutually exclusive
but rather interconnected, offering overlapping ben-
efits. However, the performance of robot control
dramatically decreased when visual-text pairs were
added to the training data. This suggests that the
distinct representations required for action gener-
ation and understanding may compete within the
shared parameter space. This phenomenon, we
named as partial task interference, requires care-
ful resolution. A unified system should connect
the two data types while simultaneously enabling
separable representation learning for each task.

3.3 Method: ChatVLA

As discussed above, training on robot policy data
can interfere with learning of visual-text relation-
ships. Furthermore, training exclusively on robot
data can diminish visual-textual alignment, leading
to a degradation of the model’s conversational abil-
ities. Therefore, addressing these two challenges is
crucial for successfully unifying both perspectives
within a single VLA model. We will first describe
the training strategy used to address spurious for-
getting, and then outline the general architecture of
our method to tackle the second challenge.
Phased alignment training. Previously, we
identified that spurious forgetting is a key factor
in causing VLA to lose its ability to chat and un-
derstand scenes. Since the pre-trained VLM is
well-trained and excels at visual-related tasks, it
is intuitive that the ability to chat and understand
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Figure 3: Illustration of the Mixture-of-Experts com-
ponent of ChatVLA. Two distinct expert types process
robot data and visual-text data separately, while shared
self-attention layers facilitate knowledge transfer be-
tween the two domains.

scenes can be reactivated with a small amount of
visual-text pair data. In contrast, robot control tasks
are much more complex to train, so the priority
should be to develop an excellent model that excels
at embodied control tasks. Our training strategy
is straightforward yet effective. We first train the
VLA model on robot data. During this training, we
also include reasoning data to ensure continuous
alignment between the visual and text components.
Once the robot data is trained, we co-train both
visual-text and robot data to help the model retain
proficiency in both tasks.

Mixture of experts. The previous section
demonstrated the use of phased alignment train-
ing to address the spurious forgetting problem, en-
abling the model to retain knowledge from the
previously trained VLM. However, this approach
does not fully resolve task interference issues, as
the model still requires co-training on both visual-
text and robot data. We introduce the mixture-
of-expert to resolve the problem, which is in Fig-
ure 3. Specifically, given 2! be the input of the [-th
block. The input can either belong to the D,.,po OF
D,,_;. Notably, we design a dual router, the one to
deal with tasks regarding multimodal understand-
ing and conversational (f(FFN,_;)), and the other
learn representation on robot control (f (FFN,.opot))-
The input is first coming through a multi-head
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Figure 4: Training strategy. Our framework is ini-
tially trained on robot data with action trajectories, then
co-trained with visual-text and robot data to maintain
performance in both domains.

self-attention = = MHA(z!~1) + 2!~!, where
M H A(-) represents multi-head self attention. It
is then fed into the mixture-of-expert layer, which
can be represented as:

m =0
1<m< M,

/
Moty — [F PPN,
f(FFNrobot)(xl )7
This is then added with input from skip connec-
tion z! = z!' + MoE(z"). Notice that in stage 1
training, only the control expert is activated.

To differentiate task outputs, we employ distinct
system prompts, such as "Answer based on ques-
tion" for understanding and conversation tasks, and
"Predict robot action" for control tasks. Intuitively,
a static MoE architecture applied to the MLP lay-
ers can be viewed as a high-dimensional feature
extractor that partitions the shared parameter space.
This allows each task (e.g., understanding and con-
trol) to utilize a substantial portion of dedicated
neurons, enabling the model to excel at both. A
key advantage of this MoE-like architecture is that
during inference, only one path is activated, pre-
serving the model parameters of the base model.
Our results demonstrate that this straightforward
approach leads to simultaneous improvements in
understanding, conversation, and control perfor-
mance.

Why sharing self-attention layers? A prevail-
ing solution is a use mixture of attention to learn
task-specific representation. However, based on
our experiments (detailed in Section X), we believe
that understanding and robot control tasks share



Table 1: Understanding task: Evaluation of MLLMs and VLAs on 6 Multimodal Understanding benchmarks and
7 VQA benchmarks. Boldface denotes top-ranked methods, underlined entries signify secondary performers.

Method Params Multimodal Understanding Benchmarks VQA Benchmarks
MMMU MMStar MME OCRBench HallBench MMB | TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA
Multimodal Large Language Models

Janus 1.3B 30.5 37.6 1338.0 482 30.3 69.4 — — — 52.8 — — —

DeepSeek-VL 1.3B 322 399 — 409 27.6 64.6 — — — 51.5 — — —
Qwen2-VL 2B 41.1 48.0 1872.0 809 41.7 749 79.7 88.57 61.37 747 735 18.1 62.9

SmolVLM 2.3B 38.8 41.7 — 656 39.5 — 727 81.6 — 64.2 — — —

LLaVA-Phi 2.7B — — 1335.1 — — 59.8 48.6 — — — — — —

MobileVLM-V2 3B — — 1440.5 — — 63.2 575 — — — — — —

MOoE-LLaVA 3.6B — — 1431.3 — — 68 57 — — — — — —

Phi-3-Vision 4.2B 40.4 — — — — 80.5 70.9 — — 76.7 81.4 — —

LLaVA-1.5 7B 342 — 1510.7 — — 64.3 582 — — 63.1 55.0 — —

DeepSeekVL 7B 36.6 — — 456 — 732 — — — — — — —

LLaVA-Next 8B 36.4 — — — — 79.7 55.7 — — 66.9 65.8 — —

Vision-Language-Action Models

OpenVLA 7B 0 0 0 0 0 0 0 0 0 0 0 0 0

ECoT 7B 5.4 0 0 12 0.9 — 0 0 0 0 0 1.7 0
DiVLA 2B 17.2 21.1 186.5 294 9.0 — 7.5 152 14.7 43.1 17.2 6.2 252
ChatVLA(Ours) 2B 374 472 1435.2 729 399 69.0 71.2 833 533 67.6 59.9 115 57.0

Table 2: Long-horizon real robot tasks with direct prompting. The task is completed in a sequence. The Avg.
Len. denotes the average success length of the model. Task 1: Sort toys. Task 2: Stack building blocks. Task 3:
Place the toy in the drawer. Task 4: Clean building blocks to the box.

Method | Task 1 | Task 2 | Task 3 | Task 4
| 1 2 3 4 |AglLen| I 2 |AvgLen| I 2 3 |AvgLen| I 2 |Avg Len
Octo 023 008 000 000| 008 |029 014] 021 |01l 011 011 | 011 [050 017 ] 033
OpenVLA | 0.I5 008 000 000| 006 [043 014 | 029 |022 011 011 | 015 |050 033| 042
ChatVLA(Ours) | 0.92 0.69 031 023 | 0.54 |086 043 | 064 |1.00 1.00 1.00 | 1.00 |083 0.67 | 075

representations that are beneficial to both. For ex-  2024a), MME (Fu et al., 2023), OCRBench (Liu
ample, a typical robot control scenario requires the et al., 2024), HallBench (Guan et al., 2024) and
model to understand the scene, recognize objects, =~ MMBench (Liu et al., 2023c). As delineated in
determine their locations, and then translate this  Table 5, ChatVLA demonstrates competitive per-
information into actions. These high-dimensional ~ formance relative to existing VLMs across multiple
representations share similar semantic concepts.  benchmarks. Notably, in VQA tasks, our frame-
Therefore, the interconnected nature of these two ~ work achieves a notable performance of 71.2 on
tasks is crucial for simultaneously improving per-  TextVQA, surpassing current SOTA VLAs by sub-

formance on both understanding and control. stantial margins. Specifically, it outperforms ECoT
. and DiVLA by relative improvements of 9.2x and
4 Experiment 9.5x over these baseline models. The model ex-

hibits particularly strong capabilities in multimodal
reasoning tasks requiring complex cross-modal in-
tegration. On the MMStar benchmark, ChatVLA
attains a score of 37.4, demonstrating 2.2x and 6.9x

performance enhancements over DiVLA and ECoT
4.1 Results on Multimodal Understanding respectively.

and Visual-Question Answering

In this section, we conduct a series of experiments
to evaluate the performance of ChatVLA across a
range of embodied control and multi-modal under-
standing tasks.

We evaluate the visual question answering abil- 42 Results on Real Robot Tasks

ities of ChatVLA using Vlmevalkit (Duan  The embodied control performance of ChatVLA is
et al, 2024) on TextVQA  (Singh et al.,, evaluated on 25 realworld manipulation tasks. All
2019), DocVQA (Mathew et al., 2021), In- these evaluated tasks can be divided into three cate-
foVQA (Mathew et al., 2022), AI2D (Kemb- gories according to the granularity of the language
havi et al., 2016), ChartQA (Masry et al., 2022), instructions. A more detailed description of these
MTVQA (Tang et al., 2024), and RealorldQA (Re-  tasks can be found in the Appendix (Section 5.4).
alWorld Team, 2024). We also tested against more ~ We conducted 176 trials on a real robot to evaluate
challenging benchmarks designed for MLLMs, i.e.,  the model’s ability.

MMMU (Yue et al., 2024), MMStar (Chen et al., Long-horizon tasks with direct prompting.



Table 3: Long-horizon real robot tasks with high-level policy model. The task is completed in a sequence. The
Avg. Len. denotes the average success length of the model. Task 5-8: Move the block to the basket then put the toy
into the drawer. Task 9-10: Move two blocks to the basket sequentially. Task 11-13: Prepare the breakfast for me.

Method | Task 5-8 | Task9-10 | Task 11-13
1 2 3 4 |Ag| 12 |Ag| I 2 3 |Avg
Octo 042 025 0.17 008023033 022]028|0.15 008 0.00|0.08
OpenVLA | 042 033 033 0.7 | 031|044 022 033|023 008 0.00]0.10
ChatVLA(Ours) | .00 0.92 0.92 0.92 | 0.94 | 0.89 0.78 | 0.83 | 0.69 0.54 0.54 | 0.59

Table 4: Real robot multi-tasking. We evaluated our model in a multi-task setting across diverse scenes, including
bathrooms, kitchens, and tabletops. These tasks also encompassed a range of skills.

Method ‘ Bathroom ‘ Kitchen ‘ Tabletop ‘ Ave
| Task 14 Task 15 Task 16 Task 17 | Task 18 Task 19 | Task20 Task 21 Task22 Task23 Task24 Task 25 |
Octo 3/11 0/6 119 07 ot 311 177 2/9 177 2/13 2/9 37 | 18/107
OpenVLA 2/11 0/6 2/9 177 11 41 2/7 19 177 413 0/9 27| 20/107
ChatVLA(Ours) | 6/11 2/6 5/9 3/7 i e/l 477 5/9 41 6/13 4/9 7| 55107

The model is asked to executing tasks directly from
language instruction(e.g., "Sort toys"). The four
tasks we evaluated were all completed within a toy
scenario constructed on a desktop setup. Challeng-
ing tasks of this category include Task 1, where
all toys are randomly positioned in varying poses,
and Task 3, which demands the integration of
three distinct skills: opening, picking, and closing.
Our method demonstrates substantial advantages
in executing tasks directly from high-level descrip-
tions across all evaluated scenarios. The approach
maintains consistent performance in multi-step se-
quences, achieving a 0.54 average success length in
Task 1 (6.75x% higher than Octo) and perfect success
rates throughout Task 3’s three-step sequence.

Long-horizon tasks with high-level planner.
The model receives intermediate commands that
specify the current sub-task objectives (e.g., "pick
object and place to target location"). The primary
challenge in this evaluation stems from the substan-
tial variations between sub-tasks, which involve:
(1) diverse object types (e.g., plates, cups, bread),
(2) multiple required skills (e.g., pick-place, flip),
(3) varying location heights (e.g. top/bottom shelf
positions) as visually demonstrated in the bottom-
right panel of Fig.1. These variations collectively
create a rigorous testbed for evaluating the model’s
compositional reasoning capability - specifically,
its capacity to integrate object manipulation, spa-
tial reasoning, and interference adaptation. This
requirement is clearly reflected in the experimen-
tal results shown in Table 3, where our method
outperforms OpenVLA and Octo across all task
configurations.

Cross-skill multi-tasking. These tasks require
the integration of multiple manipulation skills (e.g.,
picking, placing, pushing, and hanging) across var-
ious real-world environments, specifically catego-
rized into three test domains: bathroom scenar-
ios (Tasks 14-17), kitchen environments (Tasks 18-
19), and tabletop configurations (Tasks 20-25). As
demonstrated in Table 4, ChatVLA achieves su-
perior performance compared to both Octo and
OpenVLA across all task categories. The model
exhibits particularly strong performance in chal-
lenging bathroom and kitchen tasks, where robotic
arm operations are constrained to a severely limited
spatial range. This experimental setup inherently
introduces substantial safety considerations during
model evaluation, consequently establishing rigor-
ous requirements for the operational precision and
system robustness of the assessed models.

5 Conclusion

Integrating embodied control and multimodal un-
derstanding in Vision-Language-Action (VLA)
models is challenging, as current methods often
compromise one for the other. We identified key
limitations: robot-only training degrades conversa-
tional ability, while visual-text co-training dimin-
ishes control performance due to spurious forget-
ting and task interference. To address this, we
introduce ChatVLA, a unified framework combin-
ing Phased Alignment Training and a Mixture-of-
Experts architecture. ChatVLA achieves competi-
tive VQA and general understanding performance
while excelling at real-world robot control (25 tasks
across diverse scenes).



Limitations

Our work explores the unification of multimodal
understanding and robot control. This is the first
study on this topic, aiming to spark discussion and
advance the field. However, there are several lim-
itations. First, while we identified that spurious
forgetting can be mitigated with visual-text data,
it is crucial to select a representative dataset that
can reactivate all misaligned visual-text links in
the model. In our work, the data was randomly se-
lected, but we believe that curating a more targeted
dataset could significantly enhance model perfor-
mance. Additionally, our work does not include
tasks of extended duration, like those presented in
Pi0 (e.g., laundry folding). Increasing the complex-
ity of robotic tasks may complicate optimization,
requiring careful refinement of both the training
strategy and neural architectures.
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Appendix

5.1 Implement Details

Data details. For visual-text data, we use llava-
1.5 (Liu et al., 2023a) dataset for co-training. Fol-
lowing the data ratio mentioned in ECOT, we use
set the ratio of visual-text data to robot data as
1:3. Using robot data, we evaluated our method
on 25 real-world robot tasks, including long-
horizon tasks with direct prompting. The data was
randomly sampled from the LLaVA fine-tuning
dataset. We hypothesize that carefully curated data
is crucial for mitigating spurious forgetting, a topic
we plan to explore in future work.

Training Details. We use Qwen2-VL-2B as our
VLM backbone and the set of action head follows
DiVLA (Wen et al., 2024b). We train our ChatVLA
using a phased alignment training, as is discussed
in Section 3.3. In the first stage, we train our model
on robot data, only activating the control expert
and its corresponding action head. In the second
stage, we co-train both visual-text data and robot
data. Both control expert and understanding expert
are trained using the same learning rate of 2e-5.
The total training cost is 320 GPU hours.

5.2 Ablation Study

What vision-language data are preferred? In
stage 2, we employed the llava-1.5 (Liu et al.,
2023a) dataset for co-training, which allowed the
model to achieve compatible results on both VQA
and MLLM benchmarks compared to Qwen2-VL.
However, we argue that the remaining performance
gap is attributed to the limitations of the visual-
textual data used. To explore this further, we con-
ducted an in-depth analysis of the results between
ChatVLA and Qwen2-VL on the MMMU dataset,
as illustrated in Fig. 5.

The MMMU dataset is divided into six cate-
gories, and ChatVLA’s performance is slightly
lower than Qwen2-VL in three of them: art,
medicine, and social science. A closer inspec-
tion of the results for the corresponding subcat-
egories reveals that the performance discrepancies
primarily occur in five specific domains: art the-
ory, lab medicine, pharmacy, literature, and psy-
chology. These fields are relatively narrow in
scope and involve specialized knowledge that is
difficult to obtain. Upon reviewing the compo-
sition of the llava dataset, we were surprised to
find that its subdatasets, including COCO, GQA,
OCR-VQA, TextVQA, and VisualGenome, lack
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the expert knowledge required for these domains,
which likely contributed to the observed perfor-
mance drop.

This finding also highlights the considerable po-
tential of our model: with more appropriate expert
data for training, we believe that we can achieve
significantly better performance in multimodal un-
derstanding.

What is the appropriate ratio of visual-text
data to robot data? While co-training with visual-
text data, we followed the settings discussed in
ECOT (Zawalski et al., 2024) and set the overall
visual-text data to robot data ratio at 1:3. How-
ever, whether other data ratios are beneficial or
detrimental to multimodal understanding and robot
tasks still requires attention. Therefore, under the
same number of steps, we modified the ratio of
visual-text data to robot data in co-training to 1:1
and 3:1, respectively. The results of the three se-
tups are shown in the table. Surprisingly, a smaller
amount of visual-text data resulted in better perfor-
mance. This aligns with the discussion in the pre-
vious subsection and the broader discussion in the
paper, which suggests that even a limited amount
of visual-text data is sufficient to reactivate visual-
text alignment and bridge the gap between the base
VLM and the VLA model.

5.3 Evaluation Metrics

The calculation method for long-horizon tasks is
as follows: One point is awarded for each success-
fully completed step. After all steps of the task are
executed, the total score is calculated. Addition-
ally, "Avg. Len." represents the average success
length of the model. This means that for multiple
executions of the long-sequence tasks, the lengths
of the sequences in which the model achieved suc-
cess are recorded. Then, the average value of these
lengths is calculated to obtain the "Avg. Len.",
which serves as an important indicator to evaluate
the performance of the model in handling long-
sequence tasks in terms of the length of successful
operation sequences.

5.4 Robot task

The embodied control performance of ChatVLA
is evaluated on 25 real world manipulation tasks.
Long-horizon tasks with direct prompting. As
is shown in 6, all the tasks of this category are set
under a real world toy scene.

* Task 1: Sort toys. On the desktop, there are
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Table 5: Understanding task: Evaluation of MLLMs and VLAs on 6 Multimodal Understanding benchmarks and 7
VQA benchmarks. We use bold to denote top-ranked methods, and underlined entries signify secondary performers.

Method Multimodal Understanding Benchmarks VQA Benchmarks
€% MMMU MMStar  MME  OCRBench HallBench TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA
1:1 36.1 44.7 1426.9 691 36.2 72.6 82.9 54.0 65.382 62.6 10.0 57.9
3:1 353 453 1399.5 726 36.4 721 83.6 54.3 67.0 63.2 10.3 58.8
1:3 374 47.2 1435.2 729 39.9 712 83.3 53.3 67.6 59.9 11.5 57.0

two toy animals with random positions and
postures, as well as two building blocks. The
robotic arm needs to place all the animals on
the desktop in the box on the left and all the
building blocks in the basket on the right.

* Task 2: Stack cubes. The robotic arm first
needs to pick up the orange building block
from the right side and stack it on the yellow
building block in the middle. Then, it needs
to pick up the smallest pink square and stack
it on the orange building block that was just
stacked.

* Task 3: Place the toy in the drawer. The
drawer is closed. Therefore, the robotic arm
first needs to rotate and pull open the drawer.
Then, it should pick up the toy on the table
and place it into the drawer. Finally, close the
gripper to shut the drawer.

¢ Task 4: Clean building blocks to the box. The
robotic arm needs to put the building blocks
on the table into the box on the right side one
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by one until there are no more building blocks
on the table.

Long-horizon tasks with high-level planner.

The settings are shown in 7.

* Task 5: Move the orange block to the basket.
The robotic arm needs to pick up the building
block next to the doll on the table and place it
into the box on the right side.

* Task 6: Open the drawer. The robotic arm
needs to rotate and grip the drawer handle,
and then move parallel to the right to open the
drawer.

» Task 7: Put the toy into it. The robotic arm
needs to pick up the toy in the middle and
place it into the open drawer.

* Task 8: Close the drawer. The robotic arm
needs to close the gripper and gently push
the open drawer to the left until the drawer is
closed.



Long-horizon tasks with direct prompting
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Figure 6: Settings of Long-horizon tasks with direct
prompting

* Task 9: Move semi-circle building-block to
basket. The robotic arm needs to pick up the
semi-circular building block and place it into
the basket on the right side.

* Task 10:Move rectangle building-block to bas-
ket. The robotic arm needs to pick up the
rectangle building block and place it into the
basket on the right side.

* Task 11: Get the plate and place it on the table-
cloth. The robotic arm needs to pick up the
pink plate from the upper part of the shelf on
the right side and then place it on the table-
cloth at the center of the table.

* Task 12: Flip the cup and place it on the table-
cloth. The robotic arm needs to go to the bot-
tom layer of the shelf on the right side, grip
the mug, then turn it over and place it on the
tablecloth in the middle of the table.

e Task 13: Move the bread to the plate. The
robotic arm needs to grip the bread from the
bread basket on the left side and place it on
the plate that was just taken down.

Cross-skill multi-tasking. The settings are
shown in 8.

e Task 14:Put the soap to the soap box. This is a
bathroom task. The robotic arm needs to pick
up the soap from the left side of the washbasin
and place it into the soap dish on the right side
of the washbasin.
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» Task 15:Pick up the cup and hang it on the
shelf. This is a bathroom task. The robotic
arm needs to pick up the cup from the sink
and hang it on the shelf in front of the mirror.

» Task 16:Pick up the tooth-paste and put it on
the table. This is a bathroom task. The robotic
arm needs to pick up the toothpaste from the
sink and place it on the table.

* Task 17:Remove the towel from the shelf.
This is a bathroom task. The robotic arm
needs to take down the towel hanging on the
shelf and place it on another towel.

* Task 18:Move the bread from the pot to the
plate. This is a kitchen task. The robotic arm
needs to pick up the bread from the pot and
place it on the plate.

* Task 19:Pick up the bread from the refriger-
ator. This is a kitchen task. The robotic arm
needs to find the bread in the refrigerator and
pick it up.

* Task 20:Move the banana onto the plate. The
robotic arm needs to pick up the banana at a
random position and place it on the plate in
the middle.

» Task 21: Move the bread to the empty plate.
The robotic arm needs to ignore the distrac-
tions, grip the bread, and then find the empty
one among the two plates in front of it, and
put the bread into that plate.

* Task 22:Hang on the cup. The robotic arm
needs to pick up the mug and hang it on the
shelf on the left side.

* Task 23:Move the tennis ball to the tennis can.
The robotic arm needs to pick up the tennis
ball and lift it up to place it into the tennis ball
can.

 Task 24:Stack the green cube onto the pink
cube. The robotic arm needs to pick up the
green cube on the right and stack it on top of
the square on the left side.

* Task 25:Take away the lid of the box and put it
on the table. The robotic arm needs to pick up
the lid that is covering the box on the left side
of the table and place the lid on the tabletop
in the middle.



Long-horizon tasks with high-level policy model
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Figure 7: Settings of Long-horizon tasks with high-level planner
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Figure 8: Settings of Cross-skill multi-tasking.
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