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VQA
Q: What is the colors 
of the door in the 
building?
A: The door in the 
image is red.

Visual Grounding
Q: Provide the bounding box 
coordinate of the police vehicle.
A: [0.26, 0.56, 0.44, 0.71]

Image Captioning

Q: Provide a one-sentence caption for 
the image.
A: A vintage-style street clock stands 
prominently at a city intersection, 
with a historic brick building in the 
background and several cars, 
including a police car, navigating the 
crosswalk.

OCR
Q: What number is the 
hour hand pointed at?
A: The number 2 is 
pointed at.
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Figure 1: ChatVLA is the first work to unify multimodal understanding and embodied control. We conduct
extensive evaluations on VQA and multimodal understanding benchmarks to demonstrate that robot foundation
models can also engage in chat. Furthermore, we evaluate our approach on diverse real-world robot tasks.

Abstract001

Humans possess a unified cognitive ability to002
perceive, comprehend, and interact with the003
physical world. Why can’t large language004
models replicate this holistic understanding?005
Through a systematic analysis of existing train-006
ing paradigms in vision-language-action mod-007
els (VLA), we identify two key challenges:008
spurious forgetting, where robot training over-009
writes crucial visual-text alignments, and task010
interference, where competing control and un-011
derstanding tasks degrade performance when012
trained jointly. To overcome these limita-013
tions, we propose ChatVLA, a novel frame-014
work featuring Phased Alignment Training,015
which incrementally integrates multimodal data016
after initial control mastery, and a Mixture-017
of-Experts architecture to minimize task in-018
terference. ChatVLA demonstrates competi-019
tive performance on visual question-answering020

datasets and significantly surpasses state-of-the- 021
art vision-language-action (VLA) methods on 022
multimodal understanding benchmarks. No- 023
tably, it achieves a six times higher perfor- 024
mance on MMMU and scores 47.2% on MM- 025
Star with a more parameter-efficient design 026
than ECoT. Furthermore, ChatVLA demon- 027
strates superior performance on 25 real-world 028
robot manipulation tasks compared to existing 029
VLA methods like OpenVLA. Our findings 030
highlight the potential of our unified framework 031
for achieving both robust multimodal under- 032
standing and effective robot control. The real 033
robot video demo can be found at video link. 034

1 Introduction 035

Recent advancements in Vision-Language-Action 036

(VLA) models have largely prioritized robotic ac- 037

tion mastery. While models trained on robotic 038

control tasks excel at low-level manipulation and 039
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physical interaction, they often struggle to interpret040

and reason about multimodal data like images and041

text. This is paradoxical, as modern VLA architec-042

tures build upon pre-trained vision-language mod-043

els (VLMs). Conversely, VLMs trained on visual-044

text pairs demonstrate impressive multimodal scene045

understanding but lack the ability to physically in-046

teract with the environment. This duality highlights047

a critical challenge: unifying embodied control and048

multimodal understanding by aligning these dis-049

parate data sources (robotic actions and visual-text050

semantics) without sacrificing performance in ei-051

ther domain.052

This work investigates how to unify a single053

end-to-end neural network capable of multimodal054

scene understanding, conversational ability, and055

physical interaction. We first explore existing train-056

ing paradigms to assess their feasibility for uni-057

fication. Specifically, we examine three data set-058

tings for VLA training: 1) training solely on ex-059

pert demonstration data containing robot action tra-060

jectories (the most common approach, e.g., Open-061

VLA (Kim et al., 2024), TinyVLA (Wen et al.,062

2024c), π0 (Black et al., 2024)); 2) augmenting063

robot data with reasoning phrases to guide action064

(similar to ECoT (Zawalski et al., 2024) and Diffu-065

sionVLA (Wen et al., 2024a)); and 3) co-training066

with both visual-text pairs and robot data (as in067

RT-2 (Brohan et al., 2023a)). We analyze how each068

configuration impacts the model’s ability to bal-069

ance control and understanding. Our experiments070

reveal that training solely with robot data erodes071

conversational ability entirely; adding reasoning072

data partially preserves multimodal understanding;073

and introducing visual-text pairs significantly weak-074

ens control capabilities. This suggests two key075

challenges: (1) VLA models suffer from spurious076

forgetting (Zheng et al., 2025; Zhai et al., 2023;077

Luo et al., 2023), where performance degradation078

may not reflect complete knowledge loss from pre-079

trained VLMs, but rather a shift in how the model080

aligns its internal representations with different081

tasks. The alignment between robot actions and082

visual-text data appears fragile and susceptible to083

being overwritten during fine-tuning. (2) Task in-084

terference (Wang et al., 2021; Ahn et al., 2025)085

arises, where the conflicting parameter spaces of086

control and understanding tasks, sharing overlap-087

ping representations, cause mutual performance088

degradation when trained simultaneously.089

To address these challenges, we present090

ChatVLA, a simple yet effective framework—in091

terms of both neural architecture and training strat- 092

egy—for enabling a single neural network to mas- 093

ter both understanding and manipulation. We pro- 094

pose Phased Alignment Training, a two-stage strat- 095

egy inspired by curriculum learning. The model 096

first masters embodied control before incremen- 097

tally integrating multimodal data to "reactivate" 098

frozen alignment links. Furthermore, we introduce 099

a Mixture-of-Experts (MoE) on the MLP layers. 100

This allows the two tasks to share attention lay- 101

ers (for cross-task knowledge transfer) while iso- 102

lating task-specific MLPs (to minimize interfer- 103

ence). This design is motivated by Dual Coding 104

Theory, which posits that human minds process in- 105

formation through two separate but interconnected 106

systems: one for physical skills and the other for 107

verbal and visual practice. The shared attention 108

layers in ChatVLA facilitate the exchange of mutu- 109

ally beneficial knowledge between understanding 110

and control tasks, while the separate MLP layers 111

process learned knowledge independently. 112

We evaluate ChatVLA across three dimensions: 113

conversational ability (visual question answering), 114

general multimodal understanding, and general 115

robot control. Specifically, we assess its conversa- 116

tional ability on established datasets like TextVQA 117

and DocVQA, where it achieves competitive per- 118

formance compared to existing VLMs. Further- 119

more, ChatVLA demonstrates strong multimodal 120

understanding capabilities on general visual and 121

textual benchmarks, including MMMU, MME, and 122

MMStar. Notably, compared to state-of-the-art 123

VLA methods like ECoT, our method achieves 124

a 6x performance improvement on MMMU and 125

boosts performance on MMStar from 0 to 47.2, us- 126

ing 3.5x fewer parameters in the VLM backbone. 127

Finally, we evaluate ChatVLA on 25 real-world 128

robot tasks encompassing diverse skills like pick- 129

ing, placing, pushing, and hanging, across multi- 130

ple environments such as bathrooms, kitchens, and 131

tabletops. In this multi-task setting, our method out- 132

performs state-of-the-art VLA methods like Open- 133

VLA. These results validate the effectiveness of 134

our approach, showcasing the potential of a single 135

unified method for both multimodal understanding 136

and robot control. 137

In summary, our contributions are the following: 138

• We provide an in-depth analysis of exist- 139

ing VLA approaches under rigorous settings, 140

demonstrating their limitations in achieving 141

satisfactory performance across both multi- 142
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modal understanding and robot control.143

• We introduce ChatVLA, a simple yet effective144

framework that unifies conversational ability,145

multimodal understanding, and robot control146

within a single neural network.147

• We conduct extensive experiments to evaluate148

ChatVLA’s performance on various question-149

answering and general understanding bench-150

marks.151

• We perform extensive real-world robot exper-152

iments, encompassing 25 diverse tasks in re-153

alistic home environments (tabletop, kitchen,154

and bathroom), demonstrating ChatVLA’s su-155

perior performance in real-world robot control156

scenarios.157

2 Related Work158

Multimodal understanding Multimodal Large159

Language Models (MLLMs) (Lu et al., 2024;160

Awadalla et al., 2023; Laurençon et al., 2023; Liu161

et al., 2023b,a; Wang et al., 2024a; Chen et al.,162

2024c; Zhu et al., 2024c; Ma et al., 2024; Zhou163

et al., 2024; Zhu et al., 2024a; Luo et al., 2024;164

Chen et al., 2024c; Li et al., 2023a; Dai et al., 2023;165

Chen et al., 2024b; Karamcheti et al., 2024) have166

significantly advanced the field of multimodal un-167

derstanding by integrating visual and linguistic in-168

formation to achieve holistic scene comprehension.169

MLLMs have demonstrated excellent performance170

on tasks requiring cross-modal alignment, such as171

visual question answering (VQA), image caption-172

ing, and spatial reasoning. This success stems from173

their ability to map visual features to semantic rep-174

resentations through sophisticated adapter designs.175

However, current MLLMs lack a connection to the176

physical world, preventing them from interacting177

with environments and humans. This work aims to178

bridge this gap, enabling vision-language models179

to also act.180

Vision-langauge-action models in robot learn-181

ing. Vision-language-action models (VLAs) form a182

growing body of research that leverages pre-trained183

vision-language models (VLMs) as a backbone to184

enable both language comprehension and observa-185

tional understanding. These methods typically fine-186

tune large pre-trained VLMs to predict robot ac-187

tions (Brohan et al., 2023b; Li et al., 2023b; Huang188

et al.; Wen et al., 2024c; Pertsch et al., 2025; Black189

et al., 2024; Kim et al., 2024; Chi et al., 2023; Zhu190

et al., 2024b; Wang et al., 2024b; Prasad et al.,191

2024; Black et al., 2023a,b; Dasari et al., 2024; 192

Lin et al., 2024; Reuss et al., 2024; Zhao et al., 193

2024; Uehara et al., 2024a,b). These methods have 194

shown strong performance in both simulated and 195

real-world tasks. However, existing VLA models 196

have not demonstrated the ability to perform true 197

multimodal understanding. Based on our experi- 198

ments, we find that these models lack this capa- 199

bility. In contrast, our work proposes a unified 200

approach that enables a single network to effec- 201

tively handle both multimodal understanding and 202

robot control. 203

3 Methodology 204

This section provides a thorough discussion of our 205

framework. Section 3.1 presents formal definitions. 206

Section 3.2 details our motivation and empirical re- 207

sults demonstrating how existing vision-language- 208

action models (VLAs) suffer from catastrophic 209

forgetting, thus hindering the unification of multi- 210

modal understanding and robot control. Section 3.3 211

proposes a simple solution to address this problem. 212

3.1 Formal Definition 213

Consider two distinct scenarios: robot control 214

and multimodal understanding. In the context 215

of robot control, we typically construct a dataset 216

of demonstrations Drobot = {τi}Ni=1, where 217

each demonstration τi comprises a sequence 218

of state-action pairs. The state s consists of 219

an observation (image) v and an instruction 220

(text) t, such that s = (v, t). We can repre- 221

sent the sequence of state-action pairs as τi = 222

{((v1, t1), a1), ((v2, t2), a2), . . . , ((vT , tT ), aT )}, 223

where each tuple ((vj , tj), aj) represents the state 224

at timestep j and the corresponding action taken, 225

and T is the length of the demonstration. These 226

demonstrations are typically provided by a human 227

expert. 228

For multimodal understanding and visual con- 229

versation tasks, we have a dataset Dv−t = {ϕi}Mi=1, 230

where each data sample ϕi consists of a visual im- 231

age vi and a corresponding question (or caption) in 232

textual form ti, i.e., ϕi = {(vi, ti)}. Here, M rep- 233

resents the total number of such image-text pairs. 234

The notation v − t denote visual-text data. 235

The overarching goal of our work is to develop a 236

general model π capable of addressing both embod- 237

ied control and multimodal understanding. For em- 238

bodied control, this involves learning a policy that 239

models the joint distribution of robot actions given 240

3



MM
MU

MM
Sta
r

OC
RB
en
ch

Ha
llB
en
ch

Te
xtV
QA

Do
cV
QA

Inf
oV
QA

Setting 1 Robot Data

?

Setting 2 Robot Data + Reasoning

Setting 3 Robot Data + Reasoning 
+ Vision-Language Data 

Images Instruction State

Images Instruction State

Images Instruction State

Images Instruction

<Plan>
<Subtask>
<Move>

Reasoning Actions

Actions

Actions

Understanding

Input OutputVLA

(a)

(c)

Setting1
Setting2
Setting3
Ours

Setting1
Setting2
Setting3
Ours

Qwen2-VL

(b)

Figure 2: Analysis of how training data influences VLA performance on control and understanding tasks. (a)
We use three different sets of training data, corresponding to the three main training approaches for VLA models.
(b) The experimental results are presented for five real-world robot tasks across three settings. (c) The results on
VQA and multimodal understanding benchmarks.

the current visual observation and textual instruc-241

tion: π(at|vt, tt). Simultaneously, for multimodal242

understanding and visual question answering, the243

model should capture the distribution of the text244

(answer or caption) given the visual input: π(t|v).245

Our objective is to create a unified model that can246

effectively learn both distributions, enabling it to247

perform well in both robot control tasks and multi-248

modal understanding scenarios.249

Current VLA research focuses on developing250

more robust and generalizable models for learning251

visuomotor policies (Kim et al., 2024; Black et al.,252

2024; Wen et al., 2024c). Some approaches ex-253

plore chain-of-thought-like reasoning to improve254

policy generation (Zawalski et al., 2024; Wen et al.,255

2024a; Li et al., 2024), while others investigate256

co-training VLA models with visual-textual and257

robot data (Pertsch et al., 2025). In particular, some258

studies report benefits from co-training with visual-259

textual data in laboratory settings (Brohan et al.,260

2023a), while others find it less effective in real-261

world scenarios (Zawalski et al., 2024). Although262

a few works suggest that VLA can maintain con-263

versational ability (Wen et al., 2024a; Brohan et al.,264

2023a), none have thoroughly investigated how this265

ability, along with general multimodal understand-266

ing, is preserved after applying the VLA training267

paradigm. In the following section, we analyze268

different training data setups for VLA, focusing269

specifically on the resulting model’s performance270

in both multimodal understanding and real-world 271

robot control. Our goal is to provide practical guid- 272

ance for building unified models capable of both. 273

3.2 Analysis 274

To understand the capabilities of existing VLA 275

models in terms of multimodal understanding 276

and embodied control, we investigate three dis- 277

tinct training paradigms, each utilizing a different 278

dataset: 1) training solely with robot data, the most 279

prevalent approach in VLA (Black et al., 2024; 280

Awadalla et al., 2023; Kim et al., 2024; Wen et al., 281

2024c), primarily focused on optimizing robot con- 282

trol performance; 2) augmenting robot data with 283

chain-of-thought-like reasoning, aiming to provide 284

auxiliary information that improves both model 285

generalization and robot task performance (Wen 286

et al., 2024a; Zawalski et al., 2024); and 3) co- 287

training with both visual-textual data and robot data. 288

This latter paradigm was pioneered by RT-2 (Bro- 289

han et al., 2023a); however, due to proprietary data 290

and model details, exact replication is challenging. 291

Following RT-2, we used a 3:1 ratio of robot data 292

to visual-text data in this experiment. 293

In this section, we analyze these three train- 294

ing data setups for VLA models. Specifically, 295

we utilize DiffusionVLA, a representative VLA 296

model that supports both language output via au- 297

toregression and action generation via a diffusion 298

model. We evaluate performance on six representa- 299
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tive benchmarks: four focused on visual question300

answering and two providing a broader evaluation301

of multimodal large language models, encompass-302

ing tasks like math and OCR. Furthermore, we303

assess performance on five real-world robot tasks304

covering diverse skills, including hanging, pulling,305

picking, and placing. Following the methodology306

of DiffusionVLA, we generate robot reasoning data.307

For visual-textual data, we randomly sample 54k308

image-text pairs from LLaVA. Further details re-309

garding experimental setup and data processing are310

provided in the Appendix.311

Results on multimodal understanding and312

question-answering benchmark. The experimen-313

tal results are presented in Figure 2. The top-right314

portion of the figure displays performance on six315

benchmarks, encompassing both visual question316

answering (VQA) and general understanding tasks.317

The bottom-right portion of Figure 2 shows the318

average success rate across a total of 112 trials319

conducted on five real-world robot tasks.320

The top-right table includes results for the base321

model, Qwen2-VL. Some results are intuitive. For322

example, training the model solely on robot data323

yields a performance of 0 across all benchmarks.324

This model completely loses its conversational abil-325

ity, exhibiting only murmuring when asked a ques-326

tion. As expected, the smallest performance drop327

compared to the base model occurs when training328

uses both visual-text pairs and robot data. Interest-329

ingly, training with robot data including reasoning330

also boosts performance from 0 to a non-negligible331

level, despite the highly structured, template-driven332

nature of the reasoning phrases within that data.333

Even though the reasoning phrases are similar and334

structured, explicitly allowing the model to "speak335

out" significantly improves performance on ques-336

tion answering and even general understanding.337

Conclusion 1. Our observations suggest that the338

pre-trained VLM component suffers from what ap-339

pears to be catastrophic forgetting. Training solely340

with robot data causes the model to lose previously341

acquired conversational and understanding abili-342

ties. However, our experiments indicate that this343

isn’t necessarily a complete loss of knowledge, but344

rather a misalignment caused by the robot data.345

Training with a fixed reasoning template seems to346

"reactivate" the visual-text alignment, enabling the347

model to engage in conversation and demonstrate348

understanding. In Section 5.4, we will delve into349

the specific knowledge that is reactivated and dis-350

cuss how future work can further bridge the gap351

between the base VLM and the VLA model. We 352

term this phenomenon "spurious forgetting." 353

Results on real robot multi-task settings. We 354

further evaluated different approaches to our real 355

robot setup. All methods were trained on 25 real 356

robot tasks, and we selected five diverse tasks, cov- 357

ering skills like pushing, picking, and hanging, for 358

comparison. Details, including the number of trials 359

for each experiment, can be found in the Appendix. 360

Surprisingly, training with only robot data yielded 361

worse performance than incorporating reasoning. 362

This confirms previous findings that leveraging ei- 363

ther visual or textual chain-of-thought enhances the 364

generalization of robot models. Intriguingly, co- 365

training robot data with visual-textual data resulted 366

in a significant performance drop in real-world task 367

success rates. 368

Conclusion 2. The initial observation that incor- 369

porating reasoning into robot data improves per- 370

formance aligns with Dual Coding Theory. This 371

theory posits that physical motor skills and visual- 372

linguistic understanding are not mutually exclusive 373

but rather interconnected, offering overlapping ben- 374

efits. However, the performance of robot control 375

dramatically decreased when visual-text pairs were 376

added to the training data. This suggests that the 377

distinct representations required for action gener- 378

ation and understanding may compete within the 379

shared parameter space. This phenomenon, we 380

named as partial task interference, requires care- 381

ful resolution. A unified system should connect 382

the two data types while simultaneously enabling 383

separable representation learning for each task. 384

3.3 Method: ChatVLA 385

As discussed above, training on robot policy data 386

can interfere with learning of visual-text relation- 387

ships. Furthermore, training exclusively on robot 388

data can diminish visual-textual alignment, leading 389

to a degradation of the model’s conversational abil- 390

ities. Therefore, addressing these two challenges is 391

crucial for successfully unifying both perspectives 392

within a single VLA model. We will first describe 393

the training strategy used to address spurious for- 394

getting, and then outline the general architecture of 395

our method to tackle the second challenge. 396

Phased alignment training. Previously, we 397

identified that spurious forgetting is a key factor 398

in causing VLA to lose its ability to chat and un- 399

derstand scenes. Since the pre-trained VLM is 400

well-trained and excels at visual-related tasks, it 401

is intuitive that the ability to chat and understand 402
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Figure 3: Illustration of the Mixture-of-Experts com-
ponent of ChatVLA. Two distinct expert types process
robot data and visual-text data separately, while shared
self-attention layers facilitate knowledge transfer be-
tween the two domains.

scenes can be reactivated with a small amount of403

visual-text pair data. In contrast, robot control tasks404

are much more complex to train, so the priority405

should be to develop an excellent model that excels406

at embodied control tasks. Our training strategy407

is straightforward yet effective. We first train the408

VLA model on robot data. During this training, we409

also include reasoning data to ensure continuous410

alignment between the visual and text components.411

Once the robot data is trained, we co-train both412

visual-text and robot data to help the model retain413

proficiency in both tasks.414

Mixture of experts. The previous section415

demonstrated the use of phased alignment train-416

ing to address the spurious forgetting problem, en-417

abling the model to retain knowledge from the418

previously trained VLM. However, this approach419

does not fully resolve task interference issues, as420

the model still requires co-training on both visual-421

text and robot data. We introduce the mixture-422

of-expert to resolve the problem, which is in Fig-423

ure 3. Specifically, given xl be the input of the l-th424

block. The input can either belong to the Drobot or425

Dv−l. Notably, we design a dual router, the one to426

deal with tasks regarding multimodal understand-427

ing and conversational (f(FFNv−l)), and the other428

learn representation on robot control (f(FFNrobot)).429

The input is first coming through a multi-head430

Control-Expert Understanding-
Expert
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ViT  +  LoRA

Action Head LLM Head

LLM

Stage 1 :
Train only robot data

Stage 2 :
Co-training

Images

Instruction

Images

Control-Expert Understanding-
Expert

N×

ViT  +  LoRA

Action Head LLM Head

LLM
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Understanding

Reasoning&ReasoningActions Actions

Figure 4: Training strategy. Our framework is ini-
tially trained on robot data with action trajectories, then
co-trained with visual-text and robot data to maintain
performance in both domains.

self-attention xl
′
= MHA(xl−1) + xl−1, where 431

MHA(·) represents multi-head self attention. It 432

is then fed into the mixture-of-expert layer, which 433

can be represented as: 434

MoE(xl
′
) =

{
f(FFNv−l)(x

l′), m = 0

f(FFNrobot)(x
l′), 1 ≤ m ≤ Mr

435

This is then added with input from skip connec- 436

tion xl = xl
′
+MoE(xl

′
). Notice that in stage 1 437

training, only the control expert is activated. 438

To differentiate task outputs, we employ distinct 439

system prompts, such as "Answer based on ques- 440

tion" for understanding and conversation tasks, and 441

"Predict robot action" for control tasks. Intuitively, 442

a static MoE architecture applied to the MLP lay- 443

ers can be viewed as a high-dimensional feature 444

extractor that partitions the shared parameter space. 445

This allows each task (e.g., understanding and con- 446

trol) to utilize a substantial portion of dedicated 447

neurons, enabling the model to excel at both. A 448

key advantage of this MoE-like architecture is that 449

during inference, only one path is activated, pre- 450

serving the model parameters of the base model. 451

Our results demonstrate that this straightforward 452

approach leads to simultaneous improvements in 453

understanding, conversation, and control perfor- 454

mance. 455

Why sharing self-attention layers? A prevail- 456

ing solution is a use mixture of attention to learn 457

task-specific representation. However, based on 458

our experiments (detailed in Section X), we believe 459

that understanding and robot control tasks share 460
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Table 1: Understanding task: Evaluation of MLLMs and VLAs on 6 Multimodal Understanding benchmarks and
7 VQA benchmarks. Boldface denotes top-ranked methods, underlined entries signify secondary performers.

Method Params
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench MMB TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

Multimodal Large Language Models

Janus 1.3B 30.5 37.6 1338.0 482 30.3 69.4 — — — 52.8 — — —
DeepSeek-VL 1.3B 32.2 39.9 — 409 27.6 64.6 — — — 51.5 — — —

Qwen2-VL 2B 41.1 48.0 1872.0 809 41.7 74.9 79.7 88.57 61.37 74.7 73.5 18.1 62.9
SmolVLM 2.3B 38.8 41.7 — 656 39.5 — 72.7 81.6 — 64.2 — — —
LLaVA-Phi 2.7B — — 1335.1 — — 59.8 48.6 — — — — — —

MobileVLM-V2 3B — — 1440.5 — — 63.2 57.5 — — — — — —
MoE-LLaVA 3.6B — — 1431.3 — — 68 57 — — — — — —
Phi-3-Vision 4.2B 40.4 — — — — 80.5 70.9 — — 76.7 81.4 — —
LLaVA-1.5 7B 34.2 — 1510.7 — — 64.3 58.2 — — 63.1 55.0 — —

DeepSeekVL 7B 36.6 — — 456 — 73.2 — — — — — — —
LLaVA-Next 8B 36.4 — — — — 79.7 55.7 — — 66.9 65.8 — —

Vision-Language-Action Models

OpenVLA 7B 0 0 0 0 0 0 0 0 0 0 0 0 0
ECoT 7B 5.4 0 0 12 0.9 — 0 0 0 0 0 1.7 0

DiVLA 2B 17.2 21.1 186.5 294 9.0 — 7.5 15.2 14.7 43.1 17.2 6.2 25.2
ChatVLA(Ours) 2B 37.4 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 11.5 57.0

Table 2: Long-horizon real robot tasks with direct prompting. The task is completed in a sequence. The Avg.
Len. denotes the average success length of the model. Task 1: Sort toys. Task 2: Stack building blocks. Task 3:
Place the toy in the drawer. Task 4: Clean building blocks to the box.

Method
Task 1 Task 2 Task 3 Task 4

1 2 3 4 Avg. Len. 1 2 Avg. Len. 1 2 3 Avg. Len. 1 2 Avg. Len.

Octo 0.23 0.08 0.00 0.00 0.08 0.29 0.14 0.21 0.11 0.11 0.11 0.11 0.50 0.17 0.33
OpenVLA 0.15 0.08 0.00 0.00 0.06 0.43 0.14 0.29 0.22 0.11 0.11 0.15 0.50 0.33 0.42

ChatVLA(Ours) 0.92 0.69 0.31 0.23 0.54 0.86 0.43 0.64 1.00 1.00 1.00 1.00 0.83 0.67 0.75

representations that are beneficial to both. For ex-461

ample, a typical robot control scenario requires the462

model to understand the scene, recognize objects,463

determine their locations, and then translate this464

information into actions. These high-dimensional465

representations share similar semantic concepts.466

Therefore, the interconnected nature of these two467

tasks is crucial for simultaneously improving per-468

formance on both understanding and control.469

4 Experiment470

In this section, we conduct a series of experiments471

to evaluate the performance of ChatVLA across a472

range of embodied control and multi-modal under-473

standing tasks.474

4.1 Results on Multimodal Understanding475

and Visual-Question Answering476

We evaluate the visual question answering abil-477

ities of ChatVLA using Vlmevalkit (Duan478

et al., 2024) on TextVQA (Singh et al.,479

2019), DocVQA (Mathew et al., 2021), In-480

foVQA (Mathew et al., 2022), AI2D (Kemb-481

havi et al., 2016), ChartQA (Masry et al., 2022),482

MTVQA (Tang et al., 2024), and RealorldQA (Re-483

alWorld Team, 2024). We also tested against more484

challenging benchmarks designed for MLLMs, i.e.,485

MMMU (Yue et al., 2024), MMStar (Chen et al.,486

2024a), MME (Fu et al., 2023), OCRBench (Liu 487

et al., 2024), HallBench (Guan et al., 2024) and 488

MMBench (Liu et al., 2023c). As delineated in 489

Table 5, ChatVLA demonstrates competitive per- 490

formance relative to existing VLMs across multiple 491

benchmarks. Notably, in VQA tasks, our frame- 492

work achieves a notable performance of 71.2 on 493

TextVQA, surpassing current SOTA VLAs by sub- 494

stantial margins. Specifically, it outperforms ECoT 495

and DiVLA by relative improvements of 9.2x and 496

9.5x over these baseline models. The model ex- 497

hibits particularly strong capabilities in multimodal 498

reasoning tasks requiring complex cross-modal in- 499

tegration. On the MMStar benchmark, ChatVLA 500

attains a score of 37.4, demonstrating 2.2x and 6.9x 501

performance enhancements over DiVLA and ECoT 502

respectively. 503

4.2 Results on Real Robot Tasks 504

The embodied control performance of ChatVLA is 505

evaluated on 25 realworld manipulation tasks. All 506

these evaluated tasks can be divided into three cate- 507

gories according to the granularity of the language 508

instructions. A more detailed description of these 509

tasks can be found in the Appendix (Section 5.4). 510

We conducted 176 trials on a real robot to evaluate 511

the model’s ability. 512

Long-horizon tasks with direct prompting. 513
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Table 3: Long-horizon real robot tasks with high-level policy model. The task is completed in a sequence. The
Avg. Len. denotes the average success length of the model. Task 5-8: Move the block to the basket then put the toy
into the drawer. Task 9-10: Move two blocks to the basket sequentially. Task 11-13: Prepare the breakfast for me.

Method
Task 5-8 Task 9-10 Task 11-13

1 2 3 4 Avg 1 2 Avg 1 2 3 Avg

Octo 0.42 0.25 0.17 0.08 0.23 0.33 0.22 0.28 0.15 0.08 0.00 0.08
OpenVLA 0.42 0.33 0.33 0.17 0.31 0.44 0.22 0.33 0.23 0.08 0.00 0.10

ChatVLA(Ours) 1.00 0.92 0.92 0.92 0.94 0.89 0.78 0.83 0.69 0.54 0.54 0.59

Table 4: Real robot multi-tasking. We evaluated our model in a multi-task setting across diverse scenes, including
bathrooms, kitchens, and tabletops. These tasks also encompassed a range of skills.

Method
Bathroom Kitchen Tabletop

Avg
Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20 Task 21 Task 22 Task 23 Task 24 Task 25

Octo 3/11 0/6 1/9 0/7 0/11 3/11 1/7 2/9 1/7 2/13 2/9 3/7 18/107
OpenVLA 2/11 0/6 2/9 1/7 1/11 4/11 2/7 1/9 1/7 4/13 0/9 2/7 20/107

ChatVLA(Ours) 6/11 2/6 5/9 3/7 3/11 6/11 4/7 5/9 4/7 6/13 4/9 7/7 55/107

The model is asked to executing tasks directly from514

language instruction(e.g., "Sort toys"). The four515

tasks we evaluated were all completed within a toy516

scenario constructed on a desktop setup. Challeng-517

ing tasks of this category include Task 1, where518

all toys are randomly positioned in varying poses,519

and Task 3, which demands the integration of520

three distinct skills: opening, picking, and closing.521

Our method demonstrates substantial advantages522

in executing tasks directly from high-level descrip-523

tions across all evaluated scenarios. The approach524

maintains consistent performance in multi-step se-525

quences, achieving a 0.54 average success length in526

Task 1 (6.75× higher than Octo) and perfect success527

rates throughout Task 3’s three-step sequence.528

Long-horizon tasks with high-level planner.529

The model receives intermediate commands that530

specify the current sub-task objectives (e.g., "pick531

object and place to target location"). The primary532

challenge in this evaluation stems from the substan-533

tial variations between sub-tasks, which involve:534

(1) diverse object types (e.g., plates, cups, bread),535

(2) multiple required skills (e.g., pick-place,flip),536

(3) varying location heights (e.g. top/bottom shelf537

positions) as visually demonstrated in the bottom-538

right panel of Fig.1. These variations collectively539

create a rigorous testbed for evaluating the model’s540

compositional reasoning capability - specifically,541

its capacity to integrate object manipulation, spa-542

tial reasoning, and interference adaptation. This543

requirement is clearly reflected in the experimen-544

tal results shown in Table 3, where our method545

outperforms OpenVLA and Octo across all task546

configurations.547

Cross-skill multi-tasking. These tasks require 548

the integration of multiple manipulation skills (e.g., 549

picking, placing, pushing, and hanging) across var- 550

ious real-world environments, specifically catego- 551

rized into three test domains: bathroom scenar- 552

ios (Tasks 14-17), kitchen environments (Tasks 18- 553

19), and tabletop configurations (Tasks 20-25). As 554

demonstrated in Table 4, ChatVLA achieves su- 555

perior performance compared to both Octo and 556

OpenVLA across all task categories. The model 557

exhibits particularly strong performance in chal- 558

lenging bathroom and kitchen tasks, where robotic 559

arm operations are constrained to a severely limited 560

spatial range. This experimental setup inherently 561

introduces substantial safety considerations during 562

model evaluation, consequently establishing rigor- 563

ous requirements for the operational precision and 564

system robustness of the assessed models. 565

5 Conclusion 566

Integrating embodied control and multimodal un- 567

derstanding in Vision-Language-Action (VLA) 568

models is challenging, as current methods often 569

compromise one for the other. We identified key 570

limitations: robot-only training degrades conversa- 571

tional ability, while visual-text co-training dimin- 572

ishes control performance due to spurious forget- 573

ting and task interference. To address this, we 574

introduce ChatVLA, a unified framework combin- 575

ing Phased Alignment Training and a Mixture-of- 576

Experts architecture. ChatVLA achieves competi- 577

tive VQA and general understanding performance 578

while excelling at real-world robot control (25 tasks 579

across diverse scenes). 580
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Limitations581

Our work explores the unification of multimodal582

understanding and robot control. This is the first583

study on this topic, aiming to spark discussion and584

advance the field. However, there are several lim-585

itations. First, while we identified that spurious586

forgetting can be mitigated with visual-text data,587

it is crucial to select a representative dataset that588

can reactivate all misaligned visual-text links in589

the model. In our work, the data was randomly se-590

lected, but we believe that curating a more targeted591

dataset could significantly enhance model perfor-592

mance. Additionally, our work does not include593

tasks of extended duration, like those presented in594

Pi0 (e.g., laundry folding). Increasing the complex-595

ity of robotic tasks may complicate optimization,596

requiring careful refinement of both the training597

strategy and neural architectures.598
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Appendix914

5.1 Implement Details915

Data details. For visual-text data, we use llava-916

1.5 (Liu et al., 2023a) dataset for co-training. Fol-917

lowing the data ratio mentioned in ECOT, we use918

set the ratio of visual-text data to robot data as919

1:3. Using robot data, we evaluated our method920

on 25 real-world robot tasks, including long-921

horizon tasks with direct prompting. The data was922

randomly sampled from the LLaVA fine-tuning923

dataset. We hypothesize that carefully curated data924

is crucial for mitigating spurious forgetting, a topic925

we plan to explore in future work.926

Training Details. We use Qwen2-VL-2B as our927

VLM backbone and the set of action head follows928

DiVLA (Wen et al., 2024b). We train our ChatVLA929

using a phased alignment training, as is discussed930

in Section 3.3. In the first stage, we train our model931

on robot data, only activating the control expert932

and its corresponding action head. In the second933

stage, we co-train both visual-text data and robot934

data. Both control expert and understanding expert935

are trained using the same learning rate of 2e-5.936

The total training cost is 320 GPU hours.937

5.2 Ablation Study938

What vision-language data are preferred? In939

stage 2, we employed the llava-1.5 (Liu et al.,940

2023a) dataset for co-training, which allowed the941

model to achieve compatible results on both VQA942

and MLLM benchmarks compared to Qwen2-VL.943

However, we argue that the remaining performance944

gap is attributed to the limitations of the visual-945

textual data used. To explore this further, we con-946

ducted an in-depth analysis of the results between947

ChatVLA and Qwen2-VL on the MMMU dataset,948

as illustrated in Fig. 5.949

The MMMU dataset is divided into six cate-950

gories, and ChatVLA’s performance is slightly951

lower than Qwen2-VL in three of them: art,952

medicine, and social science. A closer inspec-953

tion of the results for the corresponding subcat-954

egories reveals that the performance discrepancies955

primarily occur in five specific domains: art the-956

ory, lab medicine, pharmacy, literature, and psy-957

chology. These fields are relatively narrow in958

scope and involve specialized knowledge that is959

difficult to obtain. Upon reviewing the compo-960

sition of the llava dataset, we were surprised to961

find that its subdatasets, including COCO, GQA,962

OCR-VQA, TextVQA, and VisualGenome, lack963

the expert knowledge required for these domains, 964

which likely contributed to the observed perfor- 965

mance drop. 966

This finding also highlights the considerable po- 967

tential of our model: with more appropriate expert 968

data for training, we believe that we can achieve 969

significantly better performance in multimodal un- 970

derstanding. 971

What is the appropriate ratio of visual-text 972

data to robot data? While co-training with visual- 973

text data, we followed the settings discussed in 974

ECOT (Zawalski et al., 2024) and set the overall 975

visual-text data to robot data ratio at 1:3. How- 976

ever, whether other data ratios are beneficial or 977

detrimental to multimodal understanding and robot 978

tasks still requires attention. Therefore, under the 979

same number of steps, we modified the ratio of 980

visual-text data to robot data in co-training to 1:1 981

and 3:1, respectively. The results of the three se- 982

tups are shown in the table. Surprisingly, a smaller 983

amount of visual-text data resulted in better perfor- 984

mance. This aligns with the discussion in the pre- 985

vious subsection and the broader discussion in the 986

paper, which suggests that even a limited amount 987

of visual-text data is sufficient to reactivate visual- 988

text alignment and bridge the gap between the base 989

VLM and the VLA model. 990

5.3 Evaluation Metrics 991

The calculation method for long-horizon tasks is 992

as follows: One point is awarded for each success- 993

fully completed step. After all steps of the task are 994

executed, the total score is calculated. Addition- 995

ally, "Avg. Len." represents the average success 996

length of the model. This means that for multiple 997

executions of the long-sequence tasks, the lengths 998

of the sequences in which the model achieved suc- 999

cess are recorded. Then, the average value of these 1000

lengths is calculated to obtain the "Avg. Len.", 1001

which serves as an important indicator to evaluate 1002

the performance of the model in handling long- 1003

sequence tasks in terms of the length of successful 1004

operation sequences. 1005

5.4 Robot task 1006

The embodied control performance of ChatVLA 1007

is evaluated on 25 real world manipulation tasks. 1008

Long-horizon tasks with direct prompting. As 1009

is shown in 6, all the tasks of this category are set 1010

under a real world toy scene. 1011

• Task 1: Sort toys. On the desktop, there are 1012
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Figure 5: Comparison with Qwen2-VL on MMMUval.

Table 5: Understanding task: Evaluation of MLLMs and VLAs on 6 Multimodal Understanding benchmarks and 7
VQA benchmarks. We use bold to denote top-ranked methods, and underlined entries signify secondary performers.

Method
Multimodal Understanding Benchmarks VQA Benchmarks

MMMU MMStar MME OCRBench HallBench TextVQA DocVQA InfoVQA AI2D ChartQA MTVQA RealWorldQA

1:1 36.1 44.7 1426.9 691 36.2 72.6 82.9 54.0 65.382 62.6 10.0 57.9
3:1 35.3 45.3 1399.5 726 36.4 72.7 83.6 54.3 67.0 63.2 10.3 58.8
1:3 37.4 47.2 1435.2 729 39.9 71.2 83.3 53.3 67.6 59.9 11.5 57.0

two toy animals with random positions and1013

postures, as well as two building blocks. The1014

robotic arm needs to place all the animals on1015

the desktop in the box on the left and all the1016

building blocks in the basket on the right.1017

• Task 2: Stack cubes. The robotic arm first1018

needs to pick up the orange building block1019

from the right side and stack it on the yellow1020

building block in the middle. Then, it needs1021

to pick up the smallest pink square and stack1022

it on the orange building block that was just1023

stacked.1024

• Task 3: Place the toy in the drawer. The1025

drawer is closed. Therefore, the robotic arm1026

first needs to rotate and pull open the drawer.1027

Then, it should pick up the toy on the table1028

and place it into the drawer. Finally, close the1029

gripper to shut the drawer.1030

• Task 4: Clean building blocks to the box. The1031

robotic arm needs to put the building blocks1032

on the table into the box on the right side one1033

by one until there are no more building blocks 1034

on the table. 1035

Long-horizon tasks with high-level planner. 1036

The settings are shown in 7. 1037

• Task 5: Move the orange block to the basket. 1038

The robotic arm needs to pick up the building 1039

block next to the doll on the table and place it 1040

into the box on the right side. 1041

• Task 6: Open the drawer. The robotic arm 1042

needs to rotate and grip the drawer handle, 1043

and then move parallel to the right to open the 1044

drawer. 1045

• Task 7: Put the toy into it. The robotic arm 1046

needs to pick up the toy in the middle and 1047

place it into the open drawer. 1048

• Task 8: Close the drawer. The robotic arm 1049

needs to close the gripper and gently push 1050

the open drawer to the left until the drawer is 1051

closed. 1052
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Task 1 Sort toys

Task 2 Stack cubes

Task 3
Place the 
toy in the 
drawer

Task 4

Clean 
building 
blocks to 
the box.

Long-horizon tasks with direct prompting

Figure 6: Settings of Long-horizon tasks with direct
prompting

• Task 9: Move semi-circle building-block to1053

basket. The robotic arm needs to pick up the1054

semi-circular building block and place it into1055

the basket on the right side.1056

• Task 10:Move rectangle building-block to bas-1057

ket. The robotic arm needs to pick up the1058

rectangle building block and place it into the1059

basket on the right side.1060

• Task 11: Get the plate and place it on the table-1061

cloth. The robotic arm needs to pick up the1062

pink plate from the upper part of the shelf on1063

the right side and then place it on the table-1064

cloth at the center of the table.1065

• Task 12: Flip the cup and place it on the table-1066

cloth. The robotic arm needs to go to the bot-1067

tom layer of the shelf on the right side, grip1068

the mug, then turn it over and place it on the1069

tablecloth in the middle of the table.1070

• Task 13: Move the bread to the plate. The1071

robotic arm needs to grip the bread from the1072

bread basket on the left side and place it on1073

the plate that was just taken down.1074

Cross-skill multi-tasking. The settings are1075

shown in 8.1076

• Task 14:Put the soap to the soap box. This is a1077

bathroom task. The robotic arm needs to pick1078

up the soap from the left side of the washbasin1079

and place it into the soap dish on the right side1080

of the washbasin.1081

• Task 15:Pick up the cup and hang it on the 1082

shelf. This is a bathroom task. The robotic 1083

arm needs to pick up the cup from the sink 1084

and hang it on the shelf in front of the mirror. 1085

• Task 16:Pick up the tooth-paste and put it on 1086

the table. This is a bathroom task. The robotic 1087

arm needs to pick up the toothpaste from the 1088

sink and place it on the table. 1089

• Task 17:Remove the towel from the shelf. 1090

This is a bathroom task. The robotic arm 1091

needs to take down the towel hanging on the 1092

shelf and place it on another towel. 1093

• Task 18:Move the bread from the pot to the 1094

plate. This is a kitchen task. The robotic arm 1095

needs to pick up the bread from the pot and 1096

place it on the plate. 1097

• Task 19:Pick up the bread from the refriger- 1098

ator. This is a kitchen task. The robotic arm 1099

needs to find the bread in the refrigerator and 1100

pick it up. 1101

• Task 20:Move the banana onto the plate. The 1102

robotic arm needs to pick up the banana at a 1103

random position and place it on the plate in 1104

the middle. 1105

• Task 21: Move the bread to the empty plate. 1106

The robotic arm needs to ignore the distrac- 1107

tions, grip the bread, and then find the empty 1108

one among the two plates in front of it, and 1109

put the bread into that plate. 1110

• Task 22:Hang on the cup. The robotic arm 1111

needs to pick up the mug and hang it on the 1112

shelf on the left side. 1113

• Task 23:Move the tennis ball to the tennis can. 1114

The robotic arm needs to pick up the tennis 1115

ball and lift it up to place it into the tennis ball 1116

can. 1117

• Task 24:Stack the green cube onto the pink 1118

cube. The robotic arm needs to pick up the 1119

green cube on the right and stack it on top of 1120

the square on the left side. 1121

• Task 25:Take away the lid of the box and put it 1122

on the table. The robotic arm needs to pick up 1123

the lid that is covering the box on the left side 1124

of the table and place the lid on the tabletop 1125

in the middle. 1126
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Figure 7: Settings of Long-horizon tasks with high-level planner

Real robot multi-tasking
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Figure 8: Settings of Cross-skill multi-tasking.
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