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ABSTRACT

Imbalanced data distributions are prevalent in real-world scenarios, posing signifi-
cant challenges in both imbalanced classification and imbalanced regression tasks.
They often cause deep learning models to overfit in areas of high sample density
(many-shot regions) while underperforming in areas of low sample density (few-
shot regions). This characteristic restricts the utility of deep learning models in
various sectors, notably healthcare, where areas with few-shot data hold greater
clinical relevance. While recent studies have shown the benefits of incorporat-
ing distribution information in imbalanced classification tasks, such strategies are
rarely explored in imbalanced regression. In this paper, we address this issue by
introducing a novel loss function, termed Dist Loss, designed to minimize the
distribution distance between the model’s predictions and the target labels in a
differentiable manner, effectively integrating distribution information into model
training. Dist Loss enables deep learning models to regularize their output dis-
tribution during training, effectively enhancing their focus on few-shot regions.
We have conducted extensive experiments across three datasets spanning com-
puter vision and healthcare: IMDB-WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR.
The results demonstrate that Dist Loss effectively mitigates the negative impact
of imbalanced data distribution on model performance, achieving state-of-the-art
results in sparse data regions. Furthermore, Dist Loss is easy to integrate, com-
plementing existing methods. Our code will be made publicly available following
the review process.

1 INTRODUCTION

Imbalanced data distributions are prevalent in the real world, with certain target values being sig-
nificantly underrepresented Buda et al. (2018); Liu et al. (2019). In regression tasks, conventional
deep learning models tend to predict towards regions of high sample density (many-shot regions)
during training to minimize overall error. This results in models that perform well on the majority
of samples but exhibit significantly higher prediction errors on regions of low sample density (few-
shot regions). This phenomenon severely limits the applicability of deep learning models in certain
contexts, such as healthcare scenarios where minority samples often carry significant importance,
and significant errors in these samples could lead to potential adverse events.

Taking the prediction of potassium concentration based on electrocardiogram (ECG) as an example,
the model takes ECG signals as input and outputs the predicted potassium concentration derived
from ECG signal features. Figure 1a illustrates the distribution of potassium concentrations in a
real-world dataset, where the majority of samples fall within the normal range, and the minority
of abnormal potassium concentrations (potassium concentration ≤ 3.5 mmol/L or ≥ 5.5 mmol/L)
are mostly found in the few-shot region. Due to the imbalanced data distribution, traditional deep
learning models tend to predict abnormal potassium concentration samples as normal to minimize
overall error. However, since abnormal potassium concentrations significantly affect metabolism
and cardiac function, they can lead to serious consequences such as arrhythmias or sudden death
Ferreira et al. (2020); Crotti et al. (2020); Kim et al. (2023). Therefore, in clinical settings, the focus
is often on accurately predicting the minority of abnormal potassium concentrations Galloway et al.
(2019); Harmon et al. (2024), which is challenging for traditional deep learning models. Hence,
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Figure 1: A real-world healthcare task of potassium (K+) concentration regression from ECGs. (a)
Both hyperkalemia (high K+) and hypokalemia (low K+) are predominantly found in the few-shot
region, with normal K+ are located in the many-shot region. Hyperkalemia and hypokalemia are
life-threatening conditions that can lead to cardiac arrest and ventricular fibrillation, necessitating
accurate and timely detection. Conversely, normal K+ concentrations (the many-shot region) are
of little concern, as inaccurate and untimely detection of these samples has minimal impact. Here,
we follow Yang et al. (2021) to define the few-, median-, many-shot regions. (b) illustrates the
significant distribution discrepancy between the vanilla model’s predictions and the labels, stemming
from the imbalanced data distribution. Here, the term ”vanilla model” refers to a model that employs
no specialized techniques to address imbalanced data. The orange histogram represents the label
distribution, while the blue histogram depicts the prediction distribution from the vanilla model. It is
evident that the model’s predictions are heavily concentrated in the many-shot region and seldom fall
into the few-shot region. (c) demonstrates the effectiveness of Dist Loss in reducing the distribution
discrepancy. The orange histogram indicates the label distribution, and the blue histogram shows
the prediction distribution from the model enhanced with Dist Loss. It is clear that the distribution
discrepancy is significantly reduced.

how to effectively enhance model accuracy in few-shot regions under imbalanced data distributions
is of significant importance and value.

In imbalanced regression tasks, a significant issue is the substantial discrepancy between the model’s
prediction distribution and the label distribution, as demonstrated in Figure 1b. The orange his-
togram in the figure represents the ground truth, whereas the blue histogram shows the distribution
of the model’s predictions. It is evident that the model’s predictions are primarily concentrated in
the many-shot region, while very few predictions occur in the few-shot region. This observation
highlights a critical consequence of imbalanced data distributions: the marked deviation between
the model’s prediction distribution and the true label distribution. While prior research has miti-
gated the adverse effects on minority classes in imbalanced classification by integrating distribution
information into the training process Feng et al. (2018); Zheng et al. (2020); Tian et al. (2020),
such strategies are rarely explored in the context of imbalanced regression. Thus, it is crucial to
explore whether significant prediction errors in few-shot regions, resulting from imbalanced
data distributions, can be effectively mitigated by utilizing distribution information to align
the prediction distribution of the model with the label distribution.

Based on this concept, we introduce a novel loss function named Dist Loss, which aims to mini-
mize the distance between model’s prediction distribution and the label distribution. Dist Loss is
implemented in three key steps: (1) Generating pseudo-labels: we use kernel density estimation
(KDE) Parzen (1962) to model the probability distribution of labels and generate pseudo-labels
from this distribution; (2) Creating pseudo-predictions: we sort the model’s predictions to create
pseudo-predictions that reflect the prediction distribution; (3) Distance approximation: we approxi-
mate the distance between the prediction and label distributions by measuring the distance between
the pseudo-labels and pseudo-predictions. By optimizing both the distribution distance and sample-
level prediction errors during training, Dist Loss reduces errors in individual predictions and aligns
the model’s predictions with the label distribution. This approach effectively solves the distribu-
tion discrepancy introduced by imbalanced data distributions, as shown in 1c, thus improving the
accuracy in predicting few-shot regions.

To validate the effectiveness of Dist Loss, we have conducted comprehensive experiments on three
datasets across computer vision and healthcare: IMDB-WIKI-DIR, AgeDB-DIR, and our meticu-
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lously crafted ECG-Ka-DIR dataset. The findings indicate that our approach achieves a substantial
increase in accuracy for rare samples, thereby attaining state-of-the-art (SOTA) performance. More-
over, our experiments reveal that Dist Loss can be integrated with existing techniques, culminating
in further enhanced outcomes.

In summary, the contributions of this paper are:

• We reexamine the impact of imbalanced data distributions in regression tasks from the
perspective of distribution discrepancy and introduce the concept of aligning a model’s
prediction distribution with the label distribution by leveraging distribution priors.

• We propose a novel, differentiable approach for measuring the distribution distance in re-
gression tasks, extending distribution distance optimization techniques from classification
tasks to regression domains.

• Through extensive experiments on multiple datasets, we validate the effectiveness of Dist
Loss in deep imbalanced regression, achieving SOTA performance in few-shot regions.

2 RELATED WORK

2.1 IMBALANCED CLASSIFICATION

Research on the problem of imbalanced classification mainly focuses on improving the loss function
to enhance the model’s ability to identify the minority class. Weighted cross entropy King & Zeng
(2001) gives higher weights to minority class samples, allowing the model to pay more attention to
minority class samples when facing class imbalance. Focal loss Lin (2017) reduces the influence
of the majority class by dynamically adjusting the weights in the loss function, further improving
the performance of the minority class. Combining data augmentation and resampling techniques
is also a common strategy. RUSBoost Seiffert et al. (2009) combines random undersampling and
boosting to reduce the majority class while maintaining the performance of the model. SMOTE
Chawla et al. (2002) further improves the classification results by expanding the minority class
data through synthetic samples. The combination of adversarial training and loss functions has
also gradually attracted attention, and adversarial reweighting Sagawa et al. (2019) improves the
accuracy of minority classes.

2.2 IMBALANCED REGRESSION

Unlike imbalanced classification, regression tasks can have labels that are infinite and boundless,
which prevents methods designed for imbalanced classification from being directly transferred to
imbalanced regression. Consequently, existing methods focus on leveraging the continuity of the
label space. At the input level, methods addressing imbalanced regression primarily focus on re-
sampling the training dataset. SMOTE Chawla et al. (2002); Torgo et al. (2013) and its variant
SMOGN Branco et al. (2017) generate new samples by leveraging the differences between minor-
ity samples and their nearest neighbors. Branco et al. (2018) integrates a bagging-based ensemble
method with SMOTE to mitigate the impact of imbalanced data distributions on the model. At the
feature level, Yang et al. (2021) proposes feature distribution smoothing (FDS) by transferring fea-
ture statistics between nearby target bins to smooth the feature space. VIR Wang & Wang (2024)
borrows data with similar regression labels to compute the variational distribution of the latent repre-
sentation. Ranksim Gong et al. (2022) uses contrastive learning to bring the feature space of samples
with similar labels closer and push the feature space of samples with dissimilar labels apart. ConR
Keramati et al. (2024) designs positive and negative sample pairs based on label similarity, trans-
ferring the label space relationships to the feature space in a contrastive manner, too. At the model
output and label level, regressor retraining (RRT) Yang et al. (2021) decouples the training of the
encoder and regressor, retraining the regressor with inverse reweighting after normal encoder train-
ing. DenseLoss Steininger et al. (2021) and label distribution smoothing (LDS) Yang et al. (2021)
measure label rarity through KDE and assign weights to each sample, with rare samples being as-
signed higher weights to enhance the model’s focus on minority samples. Balanced MSE Ren et al.
(2022) leverages the training label distribution prior to restore a balanced prediction.

However, existing research on deep imbalanced regression often overlooks the significant distribu-
tion discrepancy between model’s predictions and labels, and distribution information, which has
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Figure 2: The presence of imbalanced data distributions introduces a noticeable discrepancy between
the model’s prediction and label distributions. Dist Loss mitigates the impact of this imbalance by
minimizing this discrepancy. Initially, KDE is utilized to ascertain the distribution of labels and to
calculate the expected frequencies of each label within a batch, thereby generating pseudo-labels
imbued with the label distribution information. For example, given the labels [1, 3, 4, 6] and their
calculated expected frequencies [1, 2, 3, 1], the resulting pseudo-labels would be [1, 3, 3, 4, 4, 4,
6], where each label is repeated according to its calculated frequency. Subsequently, the model’s
predictions within a batch are sorted to yield an ordered sequence of predictive values. Assuming
the model’s initial predictions are [5, 2, 6, 3, 2, 7, 1], the sorted sequence, which encapsulates the
prediction distribution information, would be [1, 2, 2, 3, 5, 6, 7]. Measuring the distance between
these pseudo-labels and pseudo-predictions, both equipped with respective distribution information,
provides an approximation of the distribution distance. Thereafter, by simultaneously optimizing
the distribution distance and sample-level prediction errors during the training process, the model
can effectively alleviate the negative effects of imbalanced data, significantly enhancing its accuracy
in few-shot regions.

been proven effective in imbalanced classification, is rarely utilized. In contrast, our approach fo-
cuses on concurrently aligning the prediction distribution with the label distribution and reducing
sample-level prediction errors during the training process. This significantly improves the model’s
accuracy on few-shot regions without incurring additional computational costs or requiring meticu-
lous hyperparameter tuning. Extensive experiments demonstrate the superiority of our approach in
handling critical and informative rare samples in few-shot regions, achieving SOTA results.

3 METHOD

3.1 PROBLEM SETTING

Let D be a training dataset comprising N samples, denoted as D = {(x(i), y(i))}Ni=1, where x(i) ∈
Rd represents the input and y(i) ∈ R denotes the corresponding label. To facilitate processing, the
continuous label space Y is discretized into B bins of equal width: Y =

⋃B
b=1[yb, yb+1), where yb

is the lower bound of bin b, and y1 < y2 < · · · < yB . In subsequent discussions, for convenience,
the lower bound yb of the bin [yb, yb+1) will represent any label value y(i) that falls within that bin.
Similarly, the model prediction space Ŷ is partitioned into bins of equal width. In practical scenarios,
the width of each bin, denoted ∆y , indicates the minimum resolution of interest when processing
the label space. For instance, in age estimation, one might set the bin width to 1, resulting in:
∆y = yb+1 − yb = 1, ∀b ∈ B. Additionally, we define the probability of observing a label yi as
pi, and the probability distribution of labels can be estimated using KDE.
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3.2 DIST LOSS

One of the optimization objectives of Dist Loss is to minimize the distance between the predic-
tion and label distributions in regression tasks. The core challenge lies in measuring the distance
between these two distributions in a differentiable manner. Traditional metrics for measuring dis-
tribution distance, such as Kullback-Leibler divergence and Jensen-Shannon divergence, cannot be
implemented in a differentiable form for regression tasks. Therefore, we have devised an alterna-
tive approach in the implementation of Dist Loss to realize a differentiable distribution distance
measurement in regression scenarios. Specifically, we approximate the distance between the label
and prediction distributions by sampling from these distributions and quantifying the differences
between the sampled values to estimate the distance.

3.2.1 CALCULATION OF DIST LOSS

As illustrated in Figure 2, we sample from the label and prediction distributions to generate pseudo-
labels and pseudo-predictions, which encapsulate the distribution information of the labels and pre-
dictions. Taking the generation of pseudo-labels as an example, we will now detail the process.

To generate pseudo-labels that contain label distribution information, we first randomly sample M
points from the label distribution. The expected frequencies of the label yi can be estimated by
multiplying the number of sampling points M by the probability of that label pi. Based on this, we
construct a sequence NL = (n1, n2, · · · , nB) to represent these expected frequencies, where ni =
M · pi. Each element in the obtained NL represents the expected frequencies of the corresponding
label. Since these frequencies may be fractional, we need to convert them to integers while ensuring
that the sum after conversion still equals M . Here, we denote the converted integer sequence by
NL′ = (n′

1, n
′
2, · · · , n′

B). To acquire NL′ , we first take the floor of each element in NL to obtain
the sequence NLf

= (⌊n1⌋, ⌊n2⌋, · · · , ⌊nB⌋). Then we calculate the difference a, which represents
the difference between the sum of the original expected frequencies (M ) and the sum after applying
the floor function, following a = M −

∑B
i=1⌊ni⌋. Using the difference a, we construct an auxiliary

sequence A, which determines how to evenly distribute the difference to the elements of NLf
to

ensure the sum is M :

ai =

{
1, if i ≤

⌊
a+1
2

⌋
or i > B −

⌊
a
2

⌋
0, otherwise

, (1)

Each n′
i is determined by adding ai to the corresponding element in NLf

, where n′
i = ⌊ni⌋+ai, and

i ∈ B. Finally, we generate the corresponding pseudo-labels SL based on the expected frequencies,
where each element SLj is represented as:

SLj = min
i∈B

(
yi · θ

(
i∑

k=1

n′
k − j

))
, (2)

Here, θ(x) is the unit step function, which returns 1 when x ≥ 0 and 0 otherwise. To illustrate with
a specific example, assume that the label sequence is (y1, y2, y3) = (4, 5, 6) and that the obtained
sequence NL′ is (1, 2, 3). Then, the generated pseudo-labels SL would be (4, 5, 5, 6, 6, 6).

Similarly, we can perform M -point sampling on the prediction distribution and subsequently apply
the same operations to obtain the pseudo-predictions SP , which encapsulate information about the
prediction distribution.

In practice, we can consider a batch during the model training process as a random sampling event,
wherein the model predictions within a batch are viewed as the sampling values of the prediction
distribution. Consequently, we do not need to repeat the aforementioned process to acquire pseudo-
predictions; instead, we simply sort the model predictions in the batch, which already contains the
prediction information. By measuring the distance between the pseudo-predictions and the pseudo-
labels, we can approximate the distance between the respective distributions. Let us denote the
function L(·) as a measure of the distance between two sequences; then, the distribution distance
can be expressed as L(SP ,SL). Furthermore, using the function L(·), we can simultaneously assess
the sample-level prediction errors, which reflect the difference between the predicted values and the
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labels. Ultimately, by synchronously optimizing both the distribution distance and the sample-level
prediction errors during the training process, we can mitigate the issue of distribution discrepancy,
thereby addressing the challenges posed by imbalanced data distributions.

3.2.2 FAST DIFFERENTIABLE SORTING

As previously mentioned, the obtained pseudo-predictions are in ascending order, whereas the order
of the model’s actual predictions is random in practical scenarios. Therefore, it is necessary to
sort the model’s predictions to obtain the pseudo-predictions. Since the sorting operation is non-
differentiable, we employ a fast differentiable sorting algorithm Blondel et al. (2020) to ensure the
differentiability of the entire computation process.

This method achieves the sorting operation by defining it as projections on permutation polytopes.
Specifically, for any given vector w ∈ Rn, we construct the permutation polytope P (w), which
represents the convex hull of all possible permutations of w, i.e.,

P (w) := conv({wσ : σ ∈ Σ}), (3)

where Σ denotes all permutations of [n]. The sorting operation s(θ) is defined as the solution to the
linear programming problem that maximizes the dot product with ρ (a strictly decreasing vector) on
P (θ), i.e.,

s(θ) = arg max
y∈P (θ)

⟨y, ρ⟩. (4)

To ensure the differentiability of the sorting operation, a regularization term Ψ is introduced, trans-
forming the sorting operation into tractable projection problems:

PΨ(z, w) = arg min
µ∈P (w)

{
1

2
∥µ− z∥2 +Ψ(µ)

}
, (5)

where Ψ is a strongly convex function, ensuring the differentiability of the problem. This approach
enables forward propagation with O(n log n) time complexity and backward propagation with O(n)
time complexity.

4 EXPERIMENTS

4.1 BENCHMARKS AND BASELINES

We evaluated our method on three datasets, focusing on tasks of age estimation and potassium
concentration prediction. The IMDI-WIKI-DIR dataset Yang et al. (2021), derived from the IMDB-
WIKI dataset Rothe et al. (2018), consists of 213,553 facial image pairs annotated with age infor-
mation. This dataset is partitioned into 191,509 samples for training, 11,022 for validation, and
11,022 for testing. The AgeDB-DIR dataset Yang et al. (2021), derived from the AgeDB dataset
Moschoglou et al. (2017), comprises 16,488 facial image pairs with age annotations. It is divided
into 12,208 samples for training, 2,140 for validation, and 2,140 for testing. The ECG-Ka-DIR
dataset, sourced from the MIMIC-IV dataset Johnson et al. (2020), includes 375,745 pairs of single-
lead ECG signals paired with potassium concentration values. This dataset is divided into 365,549
samples for training, 5,098 for validation, and 5,098 for testing. All these datasets are character-
ized by imbalanced training sets and balanced validation and test sets. The label distributions of
these three datasets are shown in Figure 3. Please refer to Appendix A.1 and A.2 for baseline and
implementation details.

4.2 EVALUATION METRICS

Following the evaluation metrics of Yang et al. (2021), we report the results for four shots: all,
many, median, and few, where all represents the entire dataset, and many/median/few correspond to
areas of high/medium/low sample density within the dataset. For the IMDB-WIKI-IR and AgeDB-
DIR datasets, we maintain consistency with previous studies, where few/median/many correspond
to areas with fewer than 20, between 20-100, and more than 100 samples, respectively. For the
ECG-Ka-DIR dataset, assuming that the maximum number of samples for a single label is nmax,
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(a) IMDB-WIKI-DIR (b) AgeDB-DIR (c) ECG-Ka-DIR

Figure 3: Overview of label distributions in the training sets for the IMDB-WIKI-DIR, AgeDB-DIR,
and ECG-Ka-DIR datasets. The classification of shot types for IMDB-WIKI-DIR and AgeDB-DIR
follows the definitions provided in Yang et al. (2021).

we define areas with more than 0.5 nmax, between 0.15-0.5 nmax, and fewer than 0.15 nmax samples
as many/median/few shots areas, respectively. For each dataset, we report the mean absolute error
(MAE) and the geometric mean (GM).

4.3 MAIN RESULTS

Table 1 presents the results of baselines and our method in the few-shot region across three datasets,
along with a comparison of these results. For detailed results on each dataset, please refer to Ap-
pendix A.3. This table is divided into two sections. The first section displays the results of the
baselines and our method, with the best results highlighted in bold and red. The second section
shows the improvement of our method over each baseline, with green bold indicating superior per-
formance of our method and blue bold indicating otherwise. From the first section of the table, it is
evident that our method achieves the best results in five out of six metrics across the three datasets,
with SOTA performances of 22.550, 9.122, and 1.329 on the IMDB-WIKI-DIR, AgeDB-DIR, and
ECG-Ka-DIR datasets, respectively. The second section reveals that our method outperforms in 28
out of 30 metrics. Notably, compared to Balanced MSE, which also involves fine-tuning the linear
layers of a pre-trained model and employs data distribution priors, our method demonstrates superior
performance in the few-shot region, highlighting the effectiveness of our approach.

Table 2 further illustrates the complementary nature of our method with existing approaches. This
table is divided into five sections, each showcasing the results of one baseline and the combined
results with our method, with the best results within each section highlighted in bold and black.
From this table, it is shown that our method achieves better results in 26 out of 30 metrics. Taking
the MAE metric as an example, incorporating our method leads to improved performance in the
few-shot region across all three datasets, achieving the best results of 22.331, 9.110, and 1.325 on
the IMDB-WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR datasets, respectively. These experimental
results demonstrate a key advantage of our method, namely its ability to effectively complement
existing methods, thereby enhancing model performance in the few-shot region.

4.4 TIME CONSUMPTION ANALYSIS

Table 3 presents the time required to train each method for one epoch on the IMDB-WIKI-DIR,
AgeDB-DIR, and ECG-Ka-DIR datasets, with all times reported in seconds. It can be observed
that Balanced MSE and Dist Loss have the shortest training times, attributed to their approach of
fine-tuning the model’s linear layers. The time consumption of LDS and the vanilla model are
largely consistent, as these methods only weight the loss function without significantly increasing
computational load. For methods operating at the feature level, including FDS, Ranksim, and ConR,
a notable increase in model training time is evident, due to the computational intensity associated
with feature-level operations.
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Table 1: Results are presented for the few-shot region on the IMDB-WIKI-DIR, AgeDB-DIR, and
ECG-Ka-DIR datasets. The first section of the table reports the results of baselines and our method,
with the best results highlighted in bold and red. In the second section, improvements over corre-
sponding baselines are reported in bold and green, while decreases in performance are reported in
bold and blue.

MAE GM

IMDB-WIKI-DIR AgeDB-DIR ECG-Ka-DIR IMDB-WIKI-DIR AgeDB-DIR ECG-Ka-DIR

Vanilla 26.930 12.894 1.771 21.254 9.789 1.578
+ LDS 22.753 11.279 1.510 12.803 7.846 1.190
+ FDS 24.908 11.161 1.737 14.361 7.361 1.529
+ Ranksim 25.999 12.569 1.791 19.690 9.495 1.600
+ ConR 25.408 12.623 1.756 17.022 8.787 1.556
+ Balanced MSE 23.542 9.613 1.417 12.603 6.248 1.046
+ Dist Loss (Ours) 22.550 9.122 1.329 14.288 5.453 0.978
Ours vs. Vanilla + 4.380 + 3.772 + 0.442 + 6.966 + 4.336 + 0.600
Ours vs. LDS + 0.203 + 2.157 + 0.181 - 1.485 + 2.393 + 0.212
Ours vs. FDS + 2.358 + 2.039 + 0.408 + 0.073 + 1.908 + 0.551
Ours vs. Ranksim + 3.449 + 3.447 + 0.462 + 5.402 + 4.042 + 0.622
Ours vs. ConR + 2.858 + 3.501 + 0.427 + 2.734 + 3.334 + 0.578
Ours vs. Balanced MSE + 0.992 + 0.491 + 0.088 - 1.685 + 0.795 + 0.068

Table 2: Results are presented for the few-shot region on the IMDB-WIKI-DIR, AgeDB-DIR, and
ECG-Ka-DIR datasets. Each section of the table reports the results of a baseline and the baseline
incorporating our method, with the better results highlighted in bold.

MAE GM

IMDB-WIKI-DIR AgeDB-DIR ECG-Ka-DIR IMDB-WIKI-DIR AgeDB-DIR ECG-Ka-DIR

+ LDS 22.753 11.279 1.510 12.803 7.846 1.190
+ LDS + Dist Loss 22.331 10.437 1.325 13.021 7.051 0.957
+ FDS 24.908 11.161 1.737 14.361 7.361 1.529
+ FDS + Dist Loss 24.112 10.444 1.428 14.929 6.696 1.099
+ Ranksim 25.999 12.569 1.791 19.690 9.495 1.600
+ Ranksim + Dist Loss 23.772 12.102 1.325 15.422 8.515 0.970
+ ConR 25.408 12.623 1.756 17.022 8.787 1.556
+ ConR + Dist Loss 22.700 12.303 1.336 14.713 9.123 0.987
+ Balanced MSE 23.542 9.613 1.417 12.603 6.248 1.046
+ Balanced MSE + Dist Loss 22.597 9.110 1.357 14.238 5.585 0.996

Table 3: Time consumption (in seconds) of one training epoch for the IMDB-WIKI-DIR, AgeDB-
DIR, and ECG-Ka-DIR datasets, with batch sizes of 64, 64, and 256, respectively.

IMDB-WIKI-DIR AgeDB-DIR ECG-Ka-DIR

Vanilla 399.8 31.8 94.6
+ LDS 401.2 31.4 104.0
+ FDS 567.5 43.6 155.1
+ Ranksim 512.6 40.2 135.1
+ ConR 1168.7 91.6 192.1
+ Balanced MSE 152.6 14.2 51.8
+ Dist Loss (Ours) 154.0 15.1 58.7
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Table 4: Ablation study on loss functions measuring sequence difference. L1 represents MAE Loss,
L2 represents MSE Loss, INV− denotes the probability-based inversely weighted version of these
loss functions. Results on the few-shot region are reported, with the best results in each section are
in bold.

MAE GM

IMDB-WIKI-DIR AgeDB-DIR ECG-Ka-DIR IMDB-WIKI-DIR AgeDB-DIR ECG-Ka-DIR

Vanilla 26.930 12.894 1.771 21.254 9.789 1.578
+ Dist Loss (INV − L1) 23.334 9.802 1.467 15.437 6.298 1.044
+ Dist Loss (INV − L2) 22.516 9.122 1.329 13.752 5.453 0.978
+ LDS 22.753 11.279 1.510 12.803 7.846 1.190
+ Dist Loss (INV − L1) 22.178 9.872 1.413 11.334 6.109 0.984
+ Dist Loss (INV − L2) 22.331 10.437 1.325 13.021 7.051 0.957
+ FDS 24.908 11.161 1.737 14.361 7.361 1.529
+ Dist Loss (INV − L1) 23.692 9.969 1.515 14.399 6.026 1.122
+ Dist Loss (INV − L2) 24.112 10.444 1.428 14.929 6.696 1.099
+ Ranksim 25.999 12.569 1.791 19.690 9.495 1.600
+ Dist Loss (INV − L1) 23.894 11.877 1.577 16.036 8.164 1.330
+ Dist Loss (INV − L2) 23.772 12.102 1.325 15.422 8.515 0.970
+ ConR 25.408 12.623 1.756 17.022 8.787 1.556
+ Dist Loss (INV − L1) 23.281 11.948 1.452 15.586 8.605 1.044
+ Dist Loss (INV − L2) 22.700 12.303 1.336 14.713 9.123 0.987
+ Balanced MSE 23.542 9.613 1.417 12.603 6.248 1.046
+ Dist Loss (INV − L1) 23.539 9.762 1.474 15.000 6.198 1.051
+ Dist Loss (INV − L2) 22.597 9.110 1.357 14.238 5.585 0.996

4.5 ABLATIONS AND ANALYSIS

4.5.1 DIFFERENT LOSS FUNCTIONS FOR SEQUENCE DIFFERENCE MEASUREMENT

Dist Loss employs the loss function L(·) to measure the difference between two sequences. In this
ablation study, we demonstrate the effects of using different functions, considering the probability-
based inversely weighted MAE and MSE losses. The experimental results are shown in Table 4,
where detailed results on each dataset are shown in Appendix A.4.2. The table illustrates that Dist
Loss reliably boosts model accuracy in the few-shot region.

4.5.2 DIFFERENT BATCH SIZES FOR DISTRIBUTION DISTANCE APPROXIMATION

Dist Loss estimates the overall distribution distance between predictions and labels by measuring
batch-wise distances during training. This ablation study evaluates the sensitivity of model accuracy
to batch size, as detailed in Table 5. We examined batch sizes of 256, 512, and 768, adopting 256
as a standard based on prior research Yang et al. (2021); Gong et al. (2022). The findings show
negligible variations in performance with different batch sizes. This could be attributed to the fact
that accurate distribution information is more critical during sampling than the precise accuracy of
individual pseudo-labels.

4.5.3 DIST LOSS SURPASSES EXISTING METHODS IN THE MEDIAN-SHOT REGION

As depicted in the supplementary Tables 6, 7, and 8 within Appendix A.3, Dist Loss delivers SOTA
results, excelling not only in few-shot regions but also in median-shot regions. In our comparison
with current methods, Dist Loss achieved the lowest MAE and the second-lowest GM on the IMDB-
WIKI-DIR and AgeDB-DIR datasets, with scores of 12.614/7.686 and 7.315/4.563, respectively.
Similarly, on the ECG-Ka-DIR dataset, it secured the highest GM and the second-lowest MAE,
recording 0.445 and 0.674, respectively. Moreover, our experiments show that integrating Dist Loss
with existing methods consistently improved performance in median-shot regions when measured
by both MAE and GM, surpassing the results of using those methods alone on IMDB-WIKI-DIR
and AgeDB-DIR datasets. On the ECG-Ka-DIR dataset, this integration notably increased the GM.
In conclusion, these findings validate Dist Loss’s efficacy in enhancing model accuracy in both few-
shot and median-shot regions.
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Table 5: Ablation study on batch sizes for Dist Loss. Results on the few-shot region are reported.

MAE GM

IMDB-WIKI-DIR AgeDB-DIR

256 22.323 9.013 13.787 5.632
512 22.516 9.122 13.752 5.453
768 22.550 9.148 14.288 5.223

5 CONCLUSION

In this study, we address the significant escalation of prediction errors in few-shot regions, a preva-
lent challenge in deep imbalanced regression. By leveraging distribution priors, we introduce a
novel loss function, Dist Loss, designed to align the model’s prediction distribution with the label
distribution throughout the training process. Our extensive experimental evaluation demonstrates
that Dist Loss effectively enhances prediction accuracy in few-shot regions, achieving state-of-the-
art performance. Furthermore, our results indicate that Dist Loss can be seamlessly integrated with
existing methods to further augment their efficacy. We hope our work underscores the critical role
of integrating distribution information in tackling deep imbalanced regression tasks.
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A APPENDIX

A.1 BASELINES

To ensure a fair comparison, we followed the experimental setup of Yang et al. (2021) on the IMDB-
WIKI-DIR and AgeDB-DIR datasets, i.e., using ResNet-50 as the network architecture and train-
ing for 90 epochs. For the ECG-Ka-DIR dataset, we employed the ResNet variant Net1D Hong
et al. (2020) as the network architecture. Given that previous work Yang et al. (2021); Ren et al.
(2022); Gong et al. (2022); Keramati et al. (2024) has demonstrated superior performance over loss
reweighting and regressor re-training (RRT) in deep imbalanced regression tasks, we do not include
these methods as baselines in this paper. Instead, we focused on widely recognized approaches in
the field: LDS, FDS Yang et al. (2021), Ranksim Gong et al. (2022), ConR Keramati et al. (2024),
and Balanced MSE Ren et al. (2022). LDS and FDS encourage local similarities in label and fea-
ture space, while Ranksim and ConR leverage contrastive learning to translate label similarities into
the feature space. Balanced MSE, based on label distribution priors, restores a balanced distribu-
tion from an imbalanced dataset. Our experimental findings indicate that not only does our method
achieve SOTA performance in few-shot regions, but it also enhances existing methods, offering a
complementary strategy to boost their efficacy.

A.2 IMPLEMENTATION DETAILS

We trained all models on the IMDB-WIKI-DIR and AgeDB-DIR datasets using a single NVIDIA
GeForce RTX 3090 GPU and on the ECG-Ka-DIR dataset using a single NVIDIA GeForce RTX
4090 GPU. To ensure a fair comparison, we followed the training, validation, and test set divisions
from Yang et al. (2021) for the IMDB-WIKI-DIR and AgeDB datasets. During training with Dist
Loss, we used the same strategy as Balanced MSE, fine-tuning the linear layer based on pre-trained
model (vanilla model) parameters. This approach integrates our method with existing methods,
using their model parameters as the starting point for fine-tuning. Additionally, we used probability-
based inversely weighted MSE to measure sequence difference in Dist Loss for all datasets, setting
the distribution loss component weight to 1.

A.2.1 IMDB-WIKI-DIR

On the IMDB-WIKI-DIR dataset, we selected ResNet-50 as the network architecture. During train-
ing, the training epochs were set to 90, with an initial learning rate of 0.001, which was reduced to
1/10 of its value at the 60th and 80th epochs. We employed the Adam optimizer with a momentum
of 0.9 and a weight decay of 0.0001. For our method and Balanced MSE, we used a batch size
of 512. For the other baselines, we followed the experimental setups from their original papers. It
should be noted that the original training epochs for Ranksim and ConR in their respective papers
were 120, which we adjusted to 90 in our experiments to ensure a fair comparison.

A.2.2 AGEDB-DIR

On the AgeDB dataset, we employed ResNet-50 architecture for our model. The training consisted
of 90 epochs with an initial learning rate of 0.001, which was reduced to 1/10 of its original value
at the 60th and 80th epochs. We utilized the Adam optimizer with a momentum of 0.9 and a weight
decay of 0.0001. For our method and Balanced MSE, we used a batch size of 512. For the other
baselines, we followed the experimental configurations outlined in their respective original papers.
To ensure a fair comparison, we also set the training epochs for Ranksim and ConR to 90.

A.2.3 ECG-KA-DIR

On the ECG-Ka-DIR dataset, we utilized the ResNet variant, Net1D Hong et al. (2020), as our
network architecture. The training was set for 10 epochs with an initial learning rate of 0.001,
which was reduced to 1/10 of its initial value at the 5th and 8th epochs. We employed the Adam
optimizer with a momentum of 0.9 and a weight decay of 0.00001. A batch size of 512 was used for
all methods. Additionally, for ConR, we constructed positive and negative sample pairs by adding
Gaussian noise.
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Table 6: Comprehensive results on the IMDB-WIKI-DIR dataset are presented. The table highlights
the best results in each section using bold font. Additionally, the best result in each column is
indicated in bold and red.

MAE GM

All Many Median Few All Many Median Few

Vanilla 8.143 7.260 15.758 26.930 4.642 4.211 11.522 21.254
+ Dist Loss 8.028 7.461 12.614 22.516 4.593 4.335 7.686 13.752
+ LDS 8.036 7.445 12.869 22.753 4.570 4.322 7.528 12.803
+ Dist Loss 8.017 7.479 12.304 22.331 4.593 4.369 7.078 13.021

+ FDS 7.954 7.272 13.523 24.908 4.499 4.192 8.633 14.361
+ Dist Loss 8.712 8.163 12.979 24.112 5.222 4.995 7.575 14.929

+ Ranksim 7.764 6.956 14.606 25.999 4.371 3.996 9.964 19.690
+ Dist Loss 7.721 7.129 12.401 23.772 4.422 4.183 7.091 15.422
+ ConR 7.842 7.033 14.772 25.408 4.329 3.951 10.250 17.022
+ Dist Loss 7.957 7.355 12.906 22.700 4.529 4.244 8.131 14.713
Balanced MSE 8.033 7.441 12.768 23.542 4.716 4.450 8.035 12.603
+ Dist Loss 8.075 7.511 12.625 22.597 4.616 4.354 7.754 14.238

Table 7: Comprehensive results on the AgeDB-DIR dataset are presented. The table highlights the
best results in each section using bold font. Additionally, the best result in each column is indicated
in bold and red.

MAE GM

All Many Median Few All Many Median Few

Vanilla 7.506 6.558 8.794 12.894 4.798 4.176 5.957 9.789
+ Dist Loss 7.637 7.574 7.315 9.122 4.756 4.745 4.563 5.453
+ LDS 7.783 7.070 8.957 11.279 5.088 4.599 6.142 7.846
+ Dist Loss 7.810 7.341 8.464 10.437 5.043 4.752 5.474 7.051
+ FDS 7.818 7.103 9.051 11.161 4.961 4.487 6.064 7.361
+ Dist Loss 7.799 7.351 8.374 10.444 4.863 4.615 5.181 6.696
+ Ranksim 7.272 6.363 8.458 12.569 4.617 3.939 6.120 9.495
+ Dist Loss 7.234 6.506 7.960 12.102 4.629 4.097 5.637 8.515
+ ConR 7.322 6.429 8.456 12.623 4.646 4.052 5.890 8.787
+ Dist Loss 7.383 6.572 8.373 12.303 4.657 4.112 5.591 9.123

Balanced MSE 7.663 7.540 7.353 9.613 4.658 4.558 4.511 6.248
+ Dist Loss 7.633 7.578 7.288 9.110 4.718 4.698 4.505 5.585

Table 8: Comprehensive results on the ECG-Ka-DIR dataset are presented. The table highlights the
best results in each section using bold font. Additionally, the best result in each column is indicated
in bold and red.

MAE GM

All Many Median Few All Many Median Few

Vanilla 1.235 0.274 0.685 1.771 0.835 0.193 0.622 1.578
+ Dist Loss 1.044 0.606 0.674 1.329 0.692 0.403 0.445 0.978
+ LDS 1.092 0.368 0.638 1.510 0.708 0.236 0.500 1.190
+ Dist Loss 1.031 0.557 0.671 1.325 0.671 0.363 0.455 0.957
+ FDS 1.223 0.317 0.681 1.737 0.828 0.201 0.588 1.529
+ Dist Loss 1.095 0.557 0.688 1.428 0.744 0.375 0.490 1.099
+ Ranksim 1.249 0.275 0.696 1.791 0.841 0.190 0.629 1.600
+ Dist Loss 1.040 0.587 0.683 1.325 0.692 0.381 0.487 0.970
+ ConR 1.227 0.277 0.690 1.756 0.824 0.189 0.620 1.556
+ Dist Loss 1.045 0.581 0.684 11.336 0.696 0.376 0.480 0.987
Balanced MSE 1.106 0.606 0.727 1.417 0.722 0.383 0.475 1.046
+ Dist Loss 1.046 0.553 0.658 1.357 0.685 0.358 0.454 0.996
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Table 9: Ablation study examining the impact of batch size on model performance across the IMDB-
WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR datasets.

Dataset Batch size MAE GM

All Many Median Few All Many Median Few

IMDB-WIKI-DIR
256 8.072 7.514 12.591 22.323 4.603 4.340 7.808 13.787
512 8.028 7.461 12.614 22.516 4.593 4.335 7.686 13.752
768 7.989 7.413 12.663 22.550 4.572 4.308 7.763 14.288

AgeDB-DIR
256 8.072 7.514 12.591 22.323 4.603 4.340 7.808 13.787
512 8.028 7.461 12.614 22.516 4.593 4.335 7.686 13.752

1024 7.989 7.413 12.663 22.550 4.572 4.308 7.763 14.288

ECG-Ka-DIR
256 8.072 7.514 12.591 22.323 4.603 4.340 7.808 13.787
512 8.028 7.461 12.614 22.516 4.593 4.335 7.686 13.752

1024 7.989 7.413 12.663 22.550 4.572 4.308 7.763 14.288

A.3 COMPREHENSIVE EXPERIMENTAL RESULTS

Tables 6, 7, and 8 present a comprehensive overview of our experimental results on the IMDB-
WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR datasets. The results indicate that our method achieves
improvements in model performance on median-shot and few-shot regions without compromising
overall error rates. This further demonstrates the effectiveness of our method in sparse data regions.

A.4 ABLATIONS AND ANALYSIS

A.4.1 DIFFERENT BATCH SIZES FOR DISTRIBUTION DISTANCE APPROXIMATION

Table 9 illustrates the impact of varying batch sizes on the final performance across three datasets:
IMDB-WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR. The results indicate that there is no significant
difference in performance among different batch sizes. This observation suggests that the generation
of pseudo-labels primarily requires an approximation of the distribution information, rather than the
precise accuracy of every individual label value.

A.4.2 DIFFERENT LOSS FUNCTIONS FOR SEQUENCE DIFFERENCE MEASUREMENT.

Tables 10, 11, and 12 present the comprehensive results of using different loss functions on IMDB-
WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR, respectively. It is evident that existing methods, when
augmented with Dist Loss, demonstrate superior performance on samples within few-shot regions.

A.4.3 PERFORMANCE OF DIST LOSS ACROSS DIFFERENT IMBALANCED RATIOS

We validated the effectiveness of Dist Loss by varying the imbalance ratios of the ECG-Ka-DIR
dataset. The data distribution diagrams are shown in Figure 4, and the corresponding results in the
few-shot regions are presented in Table 13. Across eight datasets with different imbalance ratios, our
method achieved the best performance in six cases and the second-best performance in the remaining
two. These results collectively demonstrate the robustness of our approach across varying levels of
data imbalance.

A.5 PERFORMANCE OF DIST LOSS ON THE GM METRIC

We observed that on the IMDB-WIKI-DIR dataset, the performance of Dist Loss in the few-shot
region, as measured by the GM metric, is inferior to that of Balanced MSE. To provide a more
intuitive analysis of this phenomenon, we plotted the sorted error distribution curves for both
Dist Loss and Balanced MSE in the few-shot region, as shown in Figure 5. Specifically, for each
method, the error values were first sorted in ascending order. The x-axis represents the rank of
these sorted errors, while the y-axis denotes the corresponding error magnitudes. This visualization
facilitates a direct comparison of the error distributions between the two methods.
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Table 10: An ablation study on loss functions on the IMDB-WIKI-DIR dataset. L1 represents MAE
Loss, L2 represents MSE Loss, INV− denotes the probability-based inversely weighted version of
these loss functions. Results on the few-shot region are reported.

MAE GM

All Many Median Few All Many Median Few

Vanilla 8.143 7.260 15.758 26.930 4.642 4.211 11.522 21.254
+ Dist Loss (INV − L1) 7.807 7.210 12.608 23.334 4.458 4.189 7.717 15.437
+ Dist Loss (INV − L2) 8.028 7.461 12.614 22.516 4.593 4.335 7.686 13.752

+ LDS 8.036 7.445 12.869 22.753 4.570 4.322 7.528 12.803
+ Dist Loss (INV − L1) 8.054 7.545 12.030 22.178 4.678 4.486 6.717 11.334
+ Dist Loss (INV − L2) 8.017 7.479 12.304 22.331 4.593 4.369 7.078 13.021

+ FDS 7.954 7.272 13.523 24.908 4.499 4.192 8.633 14.361
+ Dist Loss (INV − L1) 7.986 7.413 12.486 23.692 4.530 4.315 6.793 14.399
+ Dist Loss (INV − L2) 8.712 8.163 12.979 24.112 5.222 4.995 7.575 14.929

+ Ranksim 7.764 6.956 14.606 25.999 4.371 3.996 9.964 19.690
+ Dist Loss (INV − L1) 7.501 6.888 12.372 23.894 4.150 3.910 7.035 16.036
+ Dist Loss (INV − L2) 7.721 7.129 12.401 23.772 4.422 4.183 7.091 15.422

+ ConR 7.842 7.033 14.772 25.408 4.329 3.951 10.25 17.022
+ Dist Loss (INV − L1) 7.538 6.924 12.499 23.281 4.169 3.893 7.643 15.586
+ Dist Loss (INV − L2) 7.957 7.355 12.906 22.700 4.529 4.244 8.131 14.713

+ Balanced MSE 8.033 7.441 12.768 23.542 4.716 4.450 8.035 12.603
+ Dist Loss (INV − L1) 7.788 7.175 12.732 23.539 4.460 4.182 7.900 15.000
+ Dist Loss (INV − L2) 8.075 7.511 12.625 22.597 4.616 4.354 7.754 14.238

Table 11: An ablation study on loss functions on the AgeDB-DIR dataset. L1 represents MAE Loss,
L2 represents MSE Loss, INV− denotes the probability-based inversely weighted version of these
loss functions. Results on the few-shot region are reported.

MAE GM

All Many Median Few All Many Median Few

Vanilla 7.506 6.558 8.794 12.894 4.798 4.176 5.957 9.789
+ Dist Loss (INV − L1) 7.552 7.282 7.660 9.802 4.700 4.528 4.800 6.298
+ Dist Loss (INV − L2) 7.637 7.574 7.315 9.122 4.756 4.745 4.563 5.453

+ LDS 7.783 7.070 8.957 11.279 5.088 4.599 6.142 7.846
+ Dist Loss (INV − L1) 7.885 7.635 8.020 9.872 5.082 4.964 5.151 6.109
+ Dist Loss (INV − L2) 7.810 7.341 8.464 10.437 5.043 4.752 5.474 7.051

+ FDS 7.818 7.103 9.051 11.161 4.961 4.487 6.064 7.361
+ Dist Loss (INV − L1) 7.911 7.665 8.010 9.969 5.010 4.933 4.941 6.026
+ Dist Loss (INV − L2) 7.799 7.351 8.374 10.444 4.863 4.615 5.181 6.696

+ Ranksim 7.272 6.363 8.458 12.569 4.617 3.939 6.120 9.495
+ Dist Loss (INV − L1) 7.239 6.605 7.727 11.877 4.635 4.194 5.311 8.164
+ Dist Loss (INV − L2) 7.234 6.506 7.960 12.102 4.629 4.097 5.637 8.515

+ ConR 7.322 6.429 8.456 12.623 4.646 4.052 5.890 8.787
+ Dist Loss (INV − L1) 7.398 6.683 8.194 11.948 4.709 4.208 5.560 8.605
+ Dist Loss (INV − L2) 7.383 6.572 8.373 12.303 4.657 4.112 5.591 9.123

+ Balanced MSE 7.663 7.540 7.353 9.613 4.658 4.558 4.511 6.248
+ Dist Loss (INV − L1) 7.537 7.300 7.540 9.762 4.751 4.623 4.737 6.198
+ Dist Loss (INV − L2) 7.633 7.578 7.288 9.110 4.718 4.698 4.505 5.585
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Table 12: An ablation study on loss functions on the ECG-Ka-DIR dataset. L1 represents MAE
Loss, L2 represents MSE Loss, INV− denotes the probability-based inversely weighted version of
these loss functions. Results on the few-shot region are reported.

MAE GM

All Many Median Few All Many Median Few

Vanilla 1.235 0.274 0.685 1.771 0.835 0.193 0.622 1.578
+ Dist Loss (INV − L1) 1.088 0.458 0.648 1.467 0.680 0.300 0.463 1.044
+ Dist Loss (INV − L2) 1.044 0.606 0.674 1.329 0.692 0.403 0.445 0.978

+ LDS 1.092 0.368 0.638 1.510 0.708 0.236 0.500 1.190
+ Dist Loss (INV − L1) 1.059 0.463 0.655 1.413 0.647 0.291 0.445 0.984
+ Dist Loss (INV − L2) 1.031 0.557 0.671 1.325 0.671 0.363 0.455 0.957

+ FDS 1.223 0.317 0.681 1.737 0.828 0.201 0.588 1.529
+ Dist Loss (INV − L1) 1.133 0.497 0.692 1.515 0.725 0.324 0.477 1.122
+ Dist Loss (INV − L2) 1.095 0.557 0.688 1.428 0.744 0.375 0.490 1.099

+ Ranksim 1.249 0.275 0.696 1.791 0.818 0.215 0.566 1.510
+ Dist Loss (INV − L1) 1.139 0.394 0.649 1.577 0.712 0.317 0.472 1.099
+ Dist Loss (INV − L2) 1.040 0.587 0.683 1.325 0.723 0.400 0.479 1.031

+ ConR 1.227 0.277 0.69 1.756 0.841 0.190 0.629 1.600
+ Dist Loss (INV − L1) 1.085 0.484 0.651 1.452 0.780 0.272 0.503 1.330
+ Dist Loss (INV − L2) 1.045 0.581 0.684 1.336 0.692 0.381 0.486 0.970

+ Balanced MSE 1.106 0.606 0.727 1.417 0.824 0.189 0.620 1.556
+ Dist Loss (INV − L1) 1.092 0.457 0.65 1.474 0.678 0.307 0.443 1.044
+ Dist Loss (INV − L2) 1.046 0.553 0.658 1.357 0.696 0.376 0.480 0.987

Table 13: Performance of Dist Loss in the few-shot regions across eight datasets derived from the
ECG-Ka-DIR dataset with varying imbalance ratios, with the best results highlighted in bold.

MAE

Methods Dataset 0 Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7

Vanilla 2.701 2.676 2.658 1.979 2.679 2.647 2.624 1.888
LDS 2.684 2.703 2.642 1.962 2.672 2.507 2.644 1.901
FDS 1.865 2.368 2.191 1.790 2.223 2.625 1.908 1.665

Ranksim 2.470 2.327 2.273 1.831 2.314 2.192 2.258 1.725
ConR 2.461 2.343 2.308 1.828 2.193 2.274 2.255 1.742

Balanced MSE 1.997 1.984 1.981 1.831 1.906 1.863 1.815 1.708
Dist Loss 1.955 1.873 1.963 1.822 1.852 1.803 1.730 1.638

Figure 4: Data distribution diagrams for the eight datasets derived from the ECG-Ka-DIR dataset
with varying imbalance ratios.
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Figure 5: Sorted error distribution curves for Dist Loss and Balanced MSE in the few-shot region
on the IMDB-WIKI-DIR dataset.

From the plot, it is evident that Dist Loss generally exhibits superior performance compared to Bal-
anced MSE, as indicated by its curve lying below or aligning with the curve for Balanced MSE.
However, a localized discrepancy is observed around the x-axis values of approximately 5 and 30,
where the errors of Dist Loss slightly exceed those of Balanced MSE. We hypothesize that this lo-
calized discrepancy may contribute to the overall inferior performance of Dist Loss in terms of the
GM metric, owing to the cumulative multiplicative effect intrinsic to its calculation. Unlike MAE,
which averages error values, the GM metric calculates the geometric mean by multiplying error val-
ues together. This process significantly amplifies the impact of small but frequent errors. For exam-
ple, consider two error distributions: (40, 10.1, 10.1, 10.1, 10.1, 10.1) and (42, 10, 10, 10, 10, 10).
While the former achieves a lower MAE than the latter, its GM metric value is higher due to the
cumulative effect, as 40 × 1.015 > 42 × 105. This example underscores how the GM metric can
magnify the influence of small deviations when they occur frequently.

In conclusion, the sorted error distribution curves demonstrate that Dist Loss consistently achieves
better or comparable performance relative to Balanced MSE, except for minor localized discrepan-
cies. These results suggest that the unique characteristics of the GM metric are the primary factors
contributing to the observed differences in performance between the two methods.
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