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Abstract

Electrocardiograms (ECGs) are essential, non-001
invasive diagnostic tools for assessing cardiac002
conditions. Existing methods suffer from lim-003
ited generalizability, focusing on a narrow004
range of conditions, and typically depend on005
raw physiological signals, which may not be006
available in resource-limited settings where007
only printed or digital ECG images are accessi-008
ble. Recent advancements in multimodal large009
language models (MLLMs) present promis-010
ing opportunities for addressing these chal-011
lenges. However, the application of MLLMs012
to ECG image interpretation remains challeng-013
ing due to the lack of instruction-tuning data014
and well-established ECG image benchmarks015
for quantitative evaluation. To address these016
challenges, we introduce ECGInstruct, the017
first ECG image instruction-tuning dataset with018
over one million samples, covering a wide019
range of ECG-related tasks from diverse data020
sources. We develop PULSE, a fully open-021
source MLLM for ECG image interpretation022
trained on ECGInstruct. We curate ECGBench,023
a human expert-curated benchmark covering024
four key ECG image interpretation tasks across025
nine different datasets. Our experiments show026
that PULSE sets a new state-of-the-art, outper-027
forming general MLLMs with an average accu-028
racy improvement of 21% to 33%. This work029
highlights the potential of PULSE to enhance030
ECG interpretation in clinical practice.1031

1 Introduction032

Electrocardiograms (ECGs) are essential, non-033

invasive tools for diagnosing cardiovascular dis-034

eases. Despite the availability of automated ECG035

diagnosis models (Hannun et al., 2019; Ribeiro036

et al., 2020; Hughes et al., 2021), their clinical037

adoption remains challenging. Many models can038

only classify a restricted set of conditions (Ribeiro039

et al., 2020), limiting their ability to detect previ-040

ously unseen abnormalities. Additionally, they rely041

on time-series physiological signals, which may042

be unavailable in resource-limited settings (Siontis043

1All code, data and models are available at anonymous.
4open.science/r/PULSE-4ECD

et al., 2021) where ECGs are stored only as printed 044

or digital images (Sangha et al., 2022, 2023). 045

Recent advances in multimodal large language 046

models (MLLMs)(OpenAI, 2023; Li et al., 2024a,b; 047

Liu et al., 2024c) have demonstrated exceptional 048

capabilities in vision-language tasks, opening new 049

possibilities for ECG interpretation directly from 050

ECG images, the primary format used by clini- 051

cians (Cuevas-González et al., 2022). 052

However, adapting MLLMs for ECG image anal- 053

ysis presents several obstacles. First, there are 054

no large-scale ECG image datasets, as most ex- 055

isting ECG datasets contain only raw signal data, 056

necessitating the creation of ECG images. Sec- 057

ond, instruction-tuning datasets specific to ECG 058

images are lacking, requiring the development of 059

high-quality instruction-response pairs tailored to 060

ECG interpretation. Lastly, the absence of a stan- 061

dardized benchmark for evaluating MLLM perfor- 062

mance on ECG images makes it difficult to quantify 063

progress and identify areas for improvement. 064

To address these challenges, we introduce a 065

comprehensive suite of resources aimed at advanc- 066

ing ECG image interpretation: 1) ECGInstruct, 067

the first large-scale ECG image instruction-tuning 068

dataset with over one million ECG image-text sam- 069

ples; 2) PULSE, a fully open-source 7B MLLM 070

trained on ECGInstruct that achieves state-of- 071

the-art performance in ECG diagnosis; and 3) 072

ECGBench, a human expert-curated benchmark cov- 073

ering four ECG image interpretation tasks across 074

nine different datasets. 075

Specifically, ECGInstruct integrates diverse 076

ECG-related tasks informed by clinical expertise, 077

ensuring real-world applicability. To enhance ro- 078

bustness, we introduce synthetic ECG images with 079

common artifacts, helping the model generalize 080

to noisy clinical data. We collect ECG samples 081

from multiple geographic regions to promote adapt- 082

ability across different populations and healthcare 083

systems. Additionally, we employ a large-scale 084

synthetic data generation pipeline that leverages 085

LLMs for instruction-tuning, with strict quality 086

control through expert validation and automated 087
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Figure 1: Overview of ECG image instruction-tuning data generation and MLLM training. (1) ECG images are
synthesized from raw signals with realistic distortions. (2) ECG instruction-tuning data (ECGInstruct) is curated
from clinician-defined tasks, diagnoses, and clinical reports. (3) An independent LLM scores the data for quality
control. (4) PULSE, an MLLM trained on ECGInstruct, enables advanced ECG image interpretation.

assessment. Using the LLaVA architecture (Liu088

et al., 2024c), we train PULSE-7B on ECGInstruct,089

demonstrating that this straightforward training090

recipe significantly enhances ECG interpretation091

across various tasks.092

For evaluation, we develop ECGBench, a bench-093

mark designed with clinical experts to comprehen-094

sively assess ECG image interpretation. ECGBench095

includes four key tasks: (1) Abnormality detec-096

tion, aligning diagnostic labels across heteroge-097

neous datasets; (2) Report generation, standardiz-098

ing expert-validated clinical reports; (3) MMMU099

ECG, a high-quality multi-choice question set with100

strict quality control; and (4) ECG Arena, a multi-101

turn interaction task that simulates real-world rea-102

soning. Our evaluation strategy combines tradi-103

tional metrics like AUC and F1 with GPT-4o-based104

scoring for open-ended tasks, ensuring both objec-105

tivity and clinical relevance.106

Evaluated on ECGBench, our fully open-source107

PULSE sets a new state-of-the-art, significantly out-108

performing proprietary MLLMs across all bench-109

marks with an average accuracy gain of 21%110

to 33% compared to GPT-4o on out-of-domain111

datasets. Ablation experiments demonstrate the112

importance of incorporating diverse data sources113

and ECG instruction tasks into the training data.114

A case study and discussion further illustrate the115

model’s effectiveness in ECG image interpretation.116

2 Teach MLLMs to Read ECG Images117

In this section, we introduce ECGInstruct, the first118

large and comprehensive ECG image instruction-119

tuning data generation (Sec. 2.1) and PULSE, a120

fully open 7B MLLM trained on ECGInstruct for121

ECG image interpretation (Sec. 2.2). The overview122

of instruction-tuning data generation and MLLM123

training is shown in Fig. 1.124

2.1 ECGInstruct 125

Existing ECG datasets lack ECG images for train- 126

ing MLLMs. To address this gap, we curate 127

ECGInstruct, an instruction-tuning dataset with 128

1) realistic image synthesis resembling artifacts in 129

paper ECGs, 2) diverse expert-curated tasks, and 130

3) data from varied geographical regions. We show 131

the data summary in Table 1. 132

ECG image synthesis with various distortions 133

To enhance the robustness and real-world applica- 134

bility of our model, we synthesize ECG images 135

mimicking common artifacts found in paper ECGs. 136

We adopt an ECG image synthesis tool (Shiv- 137

ashankara et al., 2024) that provides various im- 138

perfections such as grid line interference, creases, 139

wrinkles, paper rotations, etc. By including these 140

synthesized artifacts, we aim to train models that 141

can effectively interpret ECGs in less-than-ideal 142

conditions, as often encountered in clinical settings. 143

More details are provided in Appendix C. 144

ECG-related tasks with clinical experts’ insights 145

To construct a comprehensive set of ECG-related 146

tasks, we consulted domain experts to curate di- 147

verse and clinically relevant tasks covering four 148

different categories. Each category is designed 149

to address specific aspects of ECG interpretation 150

and analysis, including (1) basic feature recog- 151

nition (see examples in Appendix Fig. A1), (2) 152

heart rhythm analysis (see examples in Appendix 153

Fig. A2), (3) morphology and pathology identifi- 154

cation (see examples in Appendix Fig. A3) and 155

(4) clinical report generation (see examples in Ap- 156

pendix Fig. A4). Basic feature recognition (e.g., 157

interval or segment, etc.) forms the foundation of 158

ECG interpretation, enabling the model to grasp 159

essential cardiac parameters. Heart rhythm anal- 160

ysis (e.g., arrhythmias, conduction abnormalities, 161
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Source Dataset Task Type N

PTB-XL
(Wagner et al., 2020)

Feature ■■■■ 30K
Rhythm ■■■■ 36K
Morphology ■■■■ 67K
Report ■ 16K

ECG-QA
(Oh et al., 2024)

Feature ■ 40K
Rhythm ■ 9K
Morphology ■ 90K

MIMIC ECG
(Gow et al., 2023)

Feature ■■■■ 29K
Rhythm ■■■■ 115K
Morphology ■■■■ 169K
Report ■ 487K

CODE-15%
(Ribeiro et al., 2021)

Feature ■ 22K
Rhythm ■ 14K
Morphology ■ 31K

Total (ECGInstruct) 1.2M

Table 1: Summary of ECGInstruct. Feature: basic fea-
ture recognition, Rhythm: heart rhythm analysis, Mor-
phology: morphology and pathology identification, Re-
port: clinical report generation. ■: close-ended QA, ■:
open-ended QA, ■: fill-in-the-blank, ■: multi-choice
QA (See Appendix Table A1 for more details).

etc.) and morphology and pathology identification162

(e.g., wave shape, pathological conditions, etc.) are163

more advanced and critical aspects of ECG analy-164

sis, ensuring that the model can detect and classify165

complex conditions accurately. Lastly, clinical re-166

port generation mirrors the process of healthcare167

professionals synthesizing a comprehensive inter-168

pretation of an ECG. By incorporating clinical ex-169

perts’ insights, we encourage the model to learn170

the practical skills required in a clinical context.171

Diverse types of tasks and data sources Based172

on the original diagnoses and clinical reports from173

the existing ECG datasets, we curate diverse types174

of tasks including multi-choice questions, fill-in-175

the-blank, close-ended QA, and open-ended QA.176

This variety of task types not only enhances the177

model’s versatility but also mimics the diverse cog-178

nitive processes involved in real-world ECG in-179

terpretation. By incorporating these varied task180

types, we aim to develop a more robust and adapt-181

able model capable of handling a wide spectrum of182

ECG-related queries and analyses.183

To ensure broad applicability and generalizabil-184

ity, we collect publicly available ECG data from185

four different sources across geographically dis-186

tinct regions: 1) PTB-XL (Wagner et al., 2020):187

a large Germany-based ECG dataset; (2) MIMIC-188

IV-ECG (Gow et al., 2023): a large set of ECGs189

for patients who appear in the MIMIC-IV Clini- 190

cal Database from Beth Israel Deaconess Medical 191

Center in Boston (Johnson et al., 2023); 3) CODE- 192

15% (Ribeiro et al., 2021): an ECG dataset from a 193

central ECG repository from Minas Gerais, Brazil 194

under the clinical outcomes in digital electrocar- 195

diology (CODE) study (Ribeiro et al., 2019); 4) 196

ECG-QA (Oh et al., 2024), a question answering 197

dataset for ECGs that is constructed based on PTB- 198

XL (Wagner et al., 2020). This diverse geographi- 199

cal representation enhances the model’s ability to 200

generalize across different populations and health- 201

care systems, accounting for potential variations in 202

ECG patterns and interpretations across regions. 203

Quality control To guarantee the quality of gen- 204

erated instructions and corresponding responses, 205

we apply an independent LLM as a judge to eval- 206

uate and score the content. This process involves 207

several steps: 1) initial generation: instructions 208

and responses are first generated using our primary 209

model; 2) evaluation criteria: we establish a set 210

of evaluation criteria including the instruction rele- 211

vance, clarity, answerability of the responses, etc; 212

3) LLM judge and scoring: an independent LLM 213

(Llama 3 (Meta, 2024)) is used as a judge to assess 214

each instruction-response pair against established 215

criteria and assign scores (see prompt in Appendix 216

Fig. A8); 4) feedback loop: low-scoring items are 217

flagged for human expert review and potential re- 218

vision or removal; 5) iterative refinement: based 219

on the scoring patterns and human expert input, we 220

continually refine our instruction generation pro- 221

cess. By combining automated LLM evaluation 222

with human expert oversight, we create a robust 223

system for maintaining and improving the quality 224

of our instruction-response pairs. 225

Data synthesizing at scale Since large-scale an- 226

notation of ECG features is extremely expensive 227

and time-consuming, we develop an automatic data 228

synthesizing pipeline to address this data scarcity is- 229

sue. We utilized clinical reports from PTB-XL and 230

MIMIC-IV-ECG as initial seed data and leveraged 231

an advanced LLM (i.e., Llama-3-70B-Instruct) for 232

data synthesis. Building upon the expert-in-the- 233

loop process and diverse data resources described 234

in the previous sections, we synthesized a substan- 235

tial volume of ECG-related instructions and corre- 236

sponding responses. These were based on expert- 237

provided examples and real-world scenarios, with 238

the specific prompts used in this process detailed in 239

the Appendix E. For datasets lacking comprehen- 240
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sive reports, such as CODE-15%, we manually con-241

structed diverse templates to transform the existing242

data into an instruction-response format. Formally,243

we have the data synthesis process as follows,244

Ds = Fs(Prompts(D); θ) (1)245

where θ is the teacher LLM (i.e., Llama3-70B-246

Instruct), D is the initial seed data (e.g., clinical247

reports from PTB-XL), Prompts is the text prompt248

used to guide the generation, Fs is the quality con-249

trol function used to shepherd the synthetic data.250

2.2 PULSE: Model Training251

We develop PULSE, a fully open-source 7B MLLM252

trained on ECGInstruct for ECG image interpreta-253

tion. Our model architecture closely follows that of254

LLaVA (Liu et al., 2024b,c), adapting it for ECG255

image analysis. We use a vision encoder to process256

ECG images and a large language model as the257

text decoder, connected via a projection layer. We258

organize the data into three components: the im-259

age, the instructions, and the outputs. The instruc-260

tion is query or task related to the ECG image and261

the output is the expected response or prediction262

base on the image and instruction. We place the263

image at the beginning of each conversation, serv-264

ing as the visual grounding for the entire dialogue.265

During training, we update the parameters of the266

vision encoder (θenc), projection layer (θproj), and267

the language model (θllm) using an autoregressive268

training objective. Specifically, given an instruc-269

tion Q, a reference answer A, and an image I, all270

represented as sequences of tokenized inputs, we271

train the model by maximizing the likelihood of272

each token in A, indexed by i = 1, . . . , L:273

L = −
L∑

i=1

log p(Ai | A1:i−1,Q, I; θenc, θproj, θllm) (2)274

This objective guides the model to generate re-275

sponses that are both accurate and contextually276

appropriate by leveraging information from the in-277

struction, prior generated tokens, and the visual278

features extracted from the ECG image.279

3 ECGBench280

In this section, we present ECGBench, a comprehen-281

sive benchmark for evaluating MLLMs on ECG282

image interpretation. Our benchmark contains both283

repurposed tasks from existing datasets and newly284

created tasks from external resources. We provide285

the data curation process in Fig. 2 and details of286

each evaluation dataset in Appendix Table A2.287

3.1 Evaluation Task Curation 288

Abnormality detection This task focuses on de- 289

tecting cardiac abnormalities using ECG images. 290

We curate this task by repurposing six existing ECG 291

datasets: three in-domain datasets: PTB-XL (Su- 292

per) (Wagner et al., 2020), CODE-15% (Ribeiro 293

et al., 2021), ECG-QA (Oh et al., 2024), and 294

three out-of-domain datasets: CPSC 2018 (Liu 295

et al., 2018), CSN (Zheng et al., 2020a,b) and 296

G12EC (Liu et al., 2018). For all datasets, we 297

first synthesize images using raw signals and then 298

curate queries based on the original diagnosis and 299

reports. For datasets with fewer than 10 diagnos- 300

tic labels, we curate close-ended questions. For 301

those with more labels, we construct multi-choice 302

questions with 8 options, including the original 303

diagnosis and randomly sampled negative labels. 304

Report generation This task involves generating 305

detailed reports for given ECG images. We bench- 306

mark using 500 randomly selected reports from the 307

test set of PTB-XL, which contains high-quality 308

ECG reports written and validated by cardiologists. 309

Similarly, the ECG images are synthesized from 310

the raw signals. 311

MMMU ECG Inspired by MMMU (Yue et al., 312

2024), a widely adopted evaluation benchmark for 313

MLLMs, we manually curated an ECG version 314

with 200 multi-choice questions with the help of 315

medical school students. The curation process in- 316

volved three key steps: (1) Resource selection: 317

We gathered ECG materials from diverse and reli- 318

able sources such as ECG textbooks, clinical case 319

reports from medical journals, and widely used 320

online ECG learning materials. This ensures the 321

comprehensiveness and quality of collected ECG 322

examples and interpretations. (2) Question cre- 323

ation and collection: Five medical school students 324

with basic knowledge of ECG were recruited for 325

this task. They extracted existing questions from 326

the collected resources. For ECG images accom- 327

panied only by clinical interpretations, the anno- 328

tators created questions based on these interpreta- 329

tions. Additionally, they formulated new questions 330

drawing from their expertise, ensuring a balance 331

between various ECG interpretation aspects (e.g., 332

rhythm analysis, morphology assessment, clinical 333

interpretation). (3) Quality control: To maintain 334

high standards, we implemented a quality control 335

process. In particular, each question was reviewed 336

by at least two other annotators, checking for ac- 337
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Question: What is the rhythm shown in this ECG?

MMMU ECG

Question type: Multi-choice; Close-ended
Image type: 6*2 layout; Real-world ECG printout
Source: Online Quiz

ECG Arena
Question: Can you describe the features observed in
this ECG, including the rhythm, waveforms, intervals,
and any other notable findings?
Follow-up: Given the findings
you've mentioned, e.g., the ST
segment, what is the diagnosis?

Question type: Multi-turn; Open-ended
Image type: 4*3 layout; Real-world ECG printout
Source: Textbook

Resource Selection

Question 
Creation

Quality 
Control

Data Curation

Answer: The ECG shows a dual
chamber paced rhythm at 60…

Option:
(A) Sinus tachycardia with
ventricular tachycardia
(B) Atrial fibrillation with
right bundle branch aberrancy
(C) Atrial tachycardia with right bundle branch aberrancy
(D) Polymorphic ventricular tachycardia Answer: (D)

Evaluation Task Examples

Figure 2: The evaluation data curation and example questions of MMMU ECG and ECG Arena in ECGBench. More
details for abnormality detection and report generation are provided in Appendix Fig. A11

curacy and clarity. An independent reviewer cross-338

checked the final images, questions, and answers339

against the original sources to ensure fidelity to the340

source material. Any discrepancies or ambiguities341

were resolved during this process.342

ECG Arena To assess the model’s instruction-343

following ability in ECG comprehension, we devel-344

oped ECG Arena, inspired by MT-Bench (Zheng345

et al., 2024) and Arena-hard (Chiang et al., 2024)346

used in general LLM chat evaluations. We manu-347

ally curated 50 multi-turn ECG-related questions,348

focusing on open-ended interactions. The data349

curation process for ECG Arena, like MMMU350

ECG, involves three main steps: resource selec-351

tion, question creation, and quality control. The352

key distinction is that MMMU ECG focuses on353

multiple-choice questions, whereas ECG Arena354

involves more complex, flexible multi-turn, open-355

ended questions. Each follow-up question is contin-356

gent on the initial question and its response, making357

the process more challenging and reflective of real-358

world applications. Since multi-turn conversations359

are rare in existing sources, this posed significant360

challenges during data curation. To address this, an-361

notators created such conversations by referencing362

original clinical interpretations and ECG images.363

The questions are designed to feel natural and sim-364

ulate a real clinical setting (e.g., the first question365

may ask about basic findings from the image, fol-366

lowed by a question about potential clinical causes367

or diagnoses based on those findings).368

3.2 Evaluation Metrics369

Abnormality detection: We use macro AUC,370

macro F1, and hamming loss (HL) for multi-label371

datasets, and accuracy for others. Report gener-372

ation: We employ GPT-4o as a judge, evaluating373

reports based on rhythms, waveform, and diagnosis,374

with a maximum score of 100 points (see evalua- 375

tion prompt in Appendix Fig. A9). MMMU ECG: 376

We use accuracy as the primary metric, with sys- 377

tematic, rule-based evaluation pipelines to ensure 378

consistent scoring. ECG Arena: GPT-4o assesses 379

model performance by comparing generated re- 380

sponses with ground truth answers, considering 381

accuracy, completeness, and instruction adherence, 382

with a maximum score of 100 points (see evaluation 383

prompt in Appendix Fig. A10). More evaluation 384

details are provided in the Appendix G. 385

4 Experiments 386

4.1 Methods for Comparison 387

In order to evaluate the performance of our pro- 388

posed model, we compare it against a set of estab- 389

lished methods including domain-specific methods 390

and state-of-the-art MLLMs. 391

• Domain-specific methods. We consider six 392

domain-specific methods including five signal- 393

based methods: METS (Li et al., 2024c), 394

MERL (Liu et al., 2024a), ST-MEM (Na et al., 395

2023), MMCL (Turgut et al., 2025), MO- 396

MENT (Goswami et al., 2024); one image-based 397

method: ECG-GPT (Khunte et al., 2024). 398

• Proprietary MLLMs. We consider three pro- 399

prietary MLLMs: GPT-4o, GPT-4o mini (OpenAI, 400

2024), Gemini 1.5 Pro (Reid et al., 2024), and 401

Claude 3.5 Sonnet (Anthropic, 2024). 402

• Open-source MLLMs. We select various open- 403

source models to ensure coverage across different 404

model sizes and visual components, including the 405

general models LLaVA-1.5 (Liu et al., 2024d,b), 406

LLaVA-1.6 (Liu et al., 2024c), Phi-3-Vision (Ab- 407

din et al., 2024), Idefics2-8B (Laurençon et al., 408

2024), DeepSeek-Vl-7B (Lu et al., 2024a), Mantis- 409

8B-siglip-Llama3 (Jiang et al., 2024), MiniCPM- 410

V-2.6 (Yao et al., 2024), InternVL2 (Chen et al., 411
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Datasets PTB-XL Super PTB-XL Report CODE-15% ECG-QA

Metric AUC F1 HL Report Score AUC F1 HL Accuracy

Random 50.3 33.2 50.1 0 48.8 15.0 32.1 16.2

Domain-specific Methods

METS - 65.7† - N/A - - - N/A
MERL 74.2† - - N/A - - - N/A
ST-MEM 71.4† - - N/A - - - N/A
ECG-GPT 69.5∗ 53.9∗ 20.1∗ 47.8∗ 68.9∗ 40.1∗ 17.4∗ N/A

Proprietary MLLMs

GPT-4o 55.6 28.3 26.2 50.2 59.9 24.9 15.7 35.2
GPT-4o mini 52.0 20.4 31.7 37.1 57.5 22.0 15.1 14.9
Gemini 1.5 Pro 50.7 15.3 27.9 35.9 56.7 20.0 15.9 33.2
Claude 3.5 Sonnet 54.0 27.5 29.6 43.7 58.3 20.3 17.8 34.2

Open-source MLLMs

LLaVA-Med 50.0 12.3 28.1 24.3 69.2 27.0 33.4 29.5
LLaVA-1.6-34B 50.2 19.9 36.0 17.0 57.2 12.8 16.6 22.4
LLaVA-OneVision-7B 49.8 11.4 34.5 30.0 58.7 17.0 20.6 20.4
LLaVA-OneVision-72B 50.6 29.6 50.4 40.6 52.3 7.0 13.1 25.0
Deepseek-VL-Chat-7B 50.9 15.7 27.9 15.6 63.7 27.5 22.4 21.1
MiniCPM-V-2.6 49.0 37.7 63.8 15.4 56.6 25.3 22.0 20.8
Phi-3-Vision-128k-Instruct 50.0 29.6 48.4 20.2 69.6 22.6 38.8 28.4
Qwen2-VL-72B 54.0 28.3 30.2 48.9 60.6 23.6 16.1 23.7
InternVL2-8B 50.6 14.3 27.8 38.1 55.8 16.1 17.7 22.3
InternVL2-40B 51.2 18.7 34.6 41.8 56.7 16.2 17.4 18.2

PULSE-7B (Ours) 82.9 76.9 10.2 65.4 91.7 87.0 4.6 71.6
∆ over best proprietary MLLM +27 +49 +16 +15 +32 +62 +11 +36
∆ over best open-source MLLM +29 +39 +18 +17 +22 +60 +9 +42

Table 2: In-domain evaluation results. † indicates results from original papers, ∗ denotes results obtained using the
provided online software, N/A indicates methods not applicable or not designed for certain tasks, and - indicates
unreported scores in original papers. Results on all baselines are provided in Appendix Table A4.

2023, 2024) and state-of-the-art multimodal mod-412

els LLaVA-OneVision (Li et al., 2024a), Qwen2-413

VL (Wang et al., 2024), and the domain-specific414

models LLaVA-Med (Li et al., 2024b).415

4.2 Implementation Details416

We follow the architecture of LLaVA-v1.6-Vicuna-417

7B, which includes three core components: a vision418

encoder, a large language model, and a projector419

to align image and text modalities. We format all420

datasets into a chatbot-style multi-turn dialogue for-421

mat and use the special token “<image>” to repre-422

sent image features within the text data. We utilize423

anyres to support the model’s ability to recognize424

ECG images of various sizes that may appear in425

real-world scenarios. We freeze the parameters of426

the vision encoder and fine-tune all parameters of427

the projector and LLM. We use a learning rate of428

2e-5, set the batch size to 128, and employ a co-429

sine scheduler with a 5% warm-up period for three430

epochs. The model is trained on 8 H100 GPUs,431

each running for 40 hours, totaling 320 GPU hours432

of computation. Detailed implementation details 433

are provided in Appendix H. 434

4.3 Main Results 435

We show in-domain and out-of-domain results in 436

Table 2 and Table 3 respectively. Overall, we ob- 437

serve that PULSE achieves state-of-the-art perfor- 438

mance on different datasets and tasks. 439

Results on in-domain datasets As shown in 440

Table 2, PULSE demonstrates significant improve- 441

ments over both proprietary and open-source 442

MLLMs across all in-domain datasets. Specifi- 443

cally, PULSE surpasses the best proprietary model 444

(GPT-4o) with a 27% improvement in AUC, a 15- 445

point gain in report score, and a 36% increase in 446

accuracy on the PTB-XL Super, PTB-XL Report, 447

and ECG-QA tasks, respectively. Moreover, PULSE 448

achieves notable gains over the best open-source 449

model, with a 29% improvement in AUC, a 17- 450

point gain in report score, and a 42% increase in 451

accuracy on the same tasks. 452
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Datasets CPSC 2018 CSN G12EC MMMU ECG ECG Arena

Metric AUC F1 HL Accuracy Accuracy Accuracy Arena Score

Random 51.2 15.1 28.8 11.6 12.1 24.2 0

Domain-specific Methods

METS - - - N/A N/A N/A N/A
MERL 82.8† - - N/A N/A N/A N/A
ST-MEM 70.4† - - N/A N/A N/A N/A
ECG-GPT 69.3∗ 44.0∗ 9.9∗ N/A N/A N/A N/A

Proprietary MLLMs

GPT-4o 50.9 10.6 18.2 57.5 49.2 43.5 33.5
GPT-4o mini 49.2 11.0 25.5 32.1 33.2 39.5 30.1
Gemini-1.5-Pro 50.1 7.4 20.5 50.5 36.0 40.0 31.2
Claude 3.5 Sonnet 52.8 11.5 18.9 51.5 51.4 42.0 37.1

Open-source MLLMs

LLaVA-Med 50.0 2.5 20.2 13.8 14.1 27.0 15.9
LLaVA-1.6-34B 49.6 19.3 62.8 44.3 45.9 31.0 17.5
LLaVA-OneVision-7B 49.6 8.0 28.3 23.3 25.7 26.0 22.5
LLaVA-OneVision-72B 51.5 12.8 29.4 44.0 42.6 35.0 15.5
Deepseek-VL-Chat-7B 50.7 6.0 20.0 35.7 32.9 34.5 15.3
MiniCPM-2.6 50.0 18.0 48.4 12.7 19.6 34.5 20.4
Phi-3-Vision-128k-Instruct 50.6 19.0 70.2 14.8 18.4 31.0 11.3
Qwen2-VL-72B 50.7 9.8 18.9 35.5 42.9 35.0 10.3
InternVL2-8B 52.1 8.2 22.2 47.7 37.5 30.0 22.9
InternVL2-40B 52.4 8.2 21.4 41.0 45.0 30.5 28.0

PULSE-7B (Ours) 80.7 65.4 6.8 87.9 81.4 64.0 41.5
∆ over best proprietary MLLM +28 +54 +11 +30 +30 +21 +4
∆ over best open-source MLLM +28 +46 +12 +40 +36 +26 +14

Table 3: Out-of-domain (OOD) evaluation results. † indicates results from original papers, ∗ denotes results
obtained using the provided online software, N/A indicates methods not applicable or not designed for certain tasks,
and - indicates unreported scores in original papers. Results on all baselines are provided in Appendix Table A5.

These results highlight the complexity of ECG453

image interpretation, a task where even the best454

proprietary models perform near randomly. By455

fine-tuning on ECGInstruct, PULSE achieves sub-456

stantial performance improvements, demonstrat-457

ing the importance of high-quality and task-458

related instruction-tuning. Moreover, while cer-459

tain domain-specific methods (e.g., MERL) achieve460

comparable performance on specific datasets, their461

specialized designs limit their generalization to462

other diverse tasks, restricting their broader applica-463

bility in real-world, complex healthcare scenarios.464

Results on out-of-domain datasets Table 3465

presents the comparison results on out-of-domain466

datasets, where PULSE consistently delivers out-467

standing performance. Notably, it achieves a signif-468

icant 21% improvement in accuracy on the MMMU469

ECG benchmark compared to GPT-4o. This sub-470

stantial improvement indicates the PULSE’s robust-471

ness and ability to generalize to unseen data.472

The ECG Arena benchmark presents a more473

challenging task for all models, characterized by 474

a multi-turn, open-ended question-answering for- 475

mat, which closely simulates real clinical scenarios. 476

Despite these challenges, PULSE still surpasses the 477

best proprietary model by 4 points and outperforms 478

the leading open-source model by an impressive 14 479

points in terms of arena score. These results high- 480

light PULSE’s relative strength in handling complex, 481

clinically-oriented ECG interpretation and analysis. 482

Additionally, the performance gap across models 483

on this challenging benchmark indicates consider- 484

able room for future improvements in this task. 485

4.4 Ablation Study 486

Effect of training data source Given that 487

ECGInstruct is compiled from diverse datasets, 488

it is crucial to examine how each dataset con- 489

tributes to the model’s overall performance. Ta- 490

ble 4 presents a comparative analysis of mod- 491

els trained on various dataset combinations. The 492

model trained exclusively on PTB-XL (P) exhibits 493
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Training Data
PTB-XL

Super
PTB-XL
Report

CSN
CODE
15%

ECG
QA

CPSC G12
MMMU

ECG
ECG
Arena

AVG

P 70.3 60.8 85.5 33.1 29.6 31.2 68.6 46.0 31.0 50.7
P + M 76.2 66.5 91.4 50.1 33.6 60.2 82.0 64.5 39.6 62.7
P + M + C 76.2 67.9 90.2 87.4 41.2 58.8 78.7 61.5 42.0 67.1

P + M + C + E 76.9 65.4 87.9 87.0 71.6 65.4 81.4 64.0 41.5 71.2

Table 4: Performance of different training dataset combinations. P: PTB-XL, M: MIMIC-IV-ECG, C: CODE-15%,
E: ECG-QA. F1 for PTB-XL Super, CODE-15%, and CPSC; Accuracy for CSN, ECG-QA, G12, and MMMU ECG;
Report Scores for PTB-XL Report; Arena Scores for ECG Arena. AVG denotes the average across all metrics.

the lowest performance across all datasets, indi-494

cating the limitations of relying on a single data495

source for effective generalization. As we progres-496

sively incorporate additional datasets into the train-497

ing set, the model’s performance consistently im-498

proves. These results highlight the importance of499

curating diverse training data, as expanding beyond500

a single source enhances the model’s capacity to501

generalize across datasets and tasks. We provide502

the ablation study on different instruction tasks in503

Appendix Table A8.504

Comparison between signal encoder and im-505

age encoder We present the comparison results506

between the image-based encoder (ours) and the507

signal-based encoder in Fig. 3. Both models were508

trained using the exact same data and architec-509

tural framework, differing only in the approach510

used to encode ECGs (i.e., treating ECGs as time-511

series or digital images). The results show that the512

image-based encoder consistently outperforms the513

signal-based encoder across different evaluation514

tasks, with particularly significant improvements515

observed in out-of-domain datasets. These find-516

ings highlight that encoding ECGs as images not517

only aligns with the goal of enabling broader ap-518

plicability of automated ECG diagnosis, especially519

in resource-constrained or remote settings (where520

only printed or digital ECGs are available) but also521

empirically surpasses the performance of signal-522

based encoder model.523

4.5 Case Study524

We present some examples from our benchmark,525

comparing the outputs of our model with GPT-4o526

for ECG report generation (Appendix Figs. A13-527

A15) and ECG Arena (Appendix Fig. A16). While528

GPT-4o is capable of generating reports and an-529

swering questions by following instructions, it530

often produces responses that, although well-531

structured and seemingly relevant, contain sig-532

0

20

40

60

80

In-domain datasets Out-of-domain datasets
Sc

or
e

Signal encoder Image encoder (Ours)

+8 +17

Figure 3: Performance comparison between signal-
based encoder and image-based encoder.

nificant inaccuracies in interpretation. In con- 533

trast, PULSE consistently provides more accurate 534

responses that align closely with the ground truths. 535

Additionally, we observed that GPT-4o tends to 536

over-rely on its OCR capabilities when textual in- 537

formation (e.g., printed axis labels, numerical val- 538

ues like heart rate or QRS duration) is present in 539

images, leading to superficial reasoning based on 540

text rather than a deep analysis of visual data. As 541

shown in Appendix Fig. A15, GPT-4o identifies a 542

left axis deviation based on the printed QRS axis 543

degree, without analyzing the visual waveform pat- 544

terns. If such axis information were absent, the 545

model would likely fail to identify the deviation. 546

5 Conclusion 547

In this paper, we study the problem of ECG im- 548

age interpretation, which is a crucial task in as- 549

sessing cardiac conditions. We develop PULSE, a 550

fully open-source MLLM trained on ECGInstruct 551

with over one million samples across a diverse 552

range of ECG-related tasks. Evaluated on the pro- 553

posed benchmark, ECGBench, our model shows 554

state-of-the-art performance, surpassing both pro- 555

prietary and open-source MLLMs across multiple 556

in-domain and out-of-domain evaluation datasets. 557

This work demonstrates the potential of using 558

MLLMs for enhancing ECG image analysis and 559

interpretation in clinical applications. 560
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Limitations561

While PULSE demonstrates superior performance562

across various evaluation datasets, there remains563

room for improvement in handling more complex564

and open-ended tasks, such as report generation565

and multi-turn conversations. These tasks demand566

advanced reasoning abilities and strong instruction-567

following capabilities, which are crucial for clinical568

applications.569

To address these challenges, future work can fo-570

cus on two key areas: (1) incorporating a more571

diverse set of instruction-following data to enhance572

the model’s generalizability, and (2) scaling up573

high-quality chain-of-thought (CoT) and multi-turn574

training data, leveraging expert insights, structured575

knowledge databases (e.g., SNOMED CT (Stearns576

et al., 2001)), medical literature, and clinical guide-577

lines. This will guide the model through intermedi-578

ate reasoning steps, including identifying key ECG579

features, mapping them to diagnoses, and generat-580

ing well-grounded clinical rationales.581

Our data ablation studies (Tables 4 and A8) sug-582

gest that increasing and diversifying training data583

can further enhance model performance. Based on584

these findings, we plan to explore these directions585

in future research to bridge the identified gaps.586
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A Related Work 901

Domain-specific Models for ECG. Many domain-specific models have been proposed to enhance 902

automatic ECG diagnosis (Hannun et al., 2019; Ribeiro et al., 2020; Hughes et al., 2021). For example, 903

Ribeiro et al. (2020) applied convolutional neural networks (CNNs) to encode ECG signals for diagnosing 904

6 types of abnormalities. To reduce dependence on high-quality labeled data, recent studies (Li et al., 905

2024c; Liu et al., 2024a; Na et al., 2023) have further explored self-supervised learning approaches 906

using unlabeled ECG training data. For example, Liu et al. (2024a) proposed an ECG representation 907

learning framework by integrating the ECG signals and clinical reports, showing improved performance in 908

zero-shot ECG classification tasks. Despite these successes, most approaches treat ECG data as temporal 909

physiological signals, which could be limiting in certain resource-constrained or remote settings where 910

only printed or digital images are available. Recently, a few methods (Sangha et al., 2022, 2023; Khunte 911

et al., 2024) have been proposed for ECG diagnosis using ECG images. For example, Khunte et al. (2024) 912

developed a diagnostic report generation framework for ECG images, which is built upon a BEiT (Bao 913

et al., 2021) vision transformer encoder and a GPT-2 (Radford et al., 2019) decoder. However, their model 914

is only capable of the clinical report generation task, without generalizability to other diverse tasks. In 915

contrast, our study investigates the capabilities of MLLMs for ECG image interpretation. We curate a 916

diverse range of instruction-tuning datasets to fine-tune the model, thus improving model generalizability. 917

MLLMs in Healthcare Recent advancements in MLLMs have shown promising results in various 918

healthcare domains. General medical multimodal models such as LLaVA-Med (Li et al., 2024a), Med- 919

PaLM (Singhal et al., 2023a,b), and Med-Gemini (Saab et al., 2024) have demonstrated capabilities 920

in processing diverse medical data types. Additionally, domain-specific multimodal models have been 921

developed for specialized fields like pathology (Lu et al., 2024b; Xu et al., 2024) and radiology (Wu et al., 922

2023). These models have shown potential in integrating visual and textual information to support clinical 923

decision-making and medical education. However, despite the importance of ECG data in cardiac diagno- 924

sis and monitoring, current MLLMs often struggle to process ECG images effectively. This limitation 925

highlights a significant gap in the application of MLLMs to cardiology, where the ability to interpret both 926

visual ECG representations and accompanying clinical information is crucial. 927

Multimodal Instruction-tuning. Instruction-tuning has proven effective in the multimodal domain, 928

particularly in vision-language models like LLaVA (Liu et al., 2024d), MiniGPT-4 (Zhu et al., 2023) and 929

InstructBLIP (Dai et al., 2023). These models demonstrate impressive generalizability across various 930

visual understanding and reasoning tasks. While multimodal instruction-tuning has been applied to 931

general medical imaging tasks (Li et al., 2024b; Singhal et al., 2023a), its application to ECG images 932

remains largely unexplored. A recent work (Wan et al., 2024) introduced a targeted instruction-tuning 933

framework and fine-tuned existing open-source LLMs for ECG report generation. However, their approach 934

is limited by a single-task instruction dataset focused solely on report generation, potentially constraining 935

its adaptability to other ECG-related tasks. Moreover, their work also treats ECG data as temporal signals, 936

whereas our paper focuses on encoding ECG images with MLLMs, which is more applicable to real 937

scenarios where only printed or digital ECG images are available. 938

B Preliminary on 12-lead ECG 939

ECG is a vital diagnostic tool that measures the electrical activity of the heart over time, providing insights 940

into both spatial and temporal aspects of cardiac function. Typically, an ECG recording is presented as 941

a 12-lead multivariate time series, where each lead offers a unique perspective on heart activity. The 942

six limb leads (I, II, III, aVR, aVL, and aVF) assess the electrical movements across the arms and legs, 943

giving views from the frontal plane. Simultaneously, the six precordial leads (V1, V2, V3, V4, V5, and 944

V6) monitor the chest, offering horizontal plane views. In this paper, we focus on ECG images that are 945

synthesized from raw signals. 946
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C Details of ECG Image Synthesis947

We employ the ECG-image-kit (Shivashankara et al., 2024) framework to synthesize diverse ECG images948

from raw signal data. This toolkit allows for the generation of ECG images under various conditions by949

introducing a range of distortions and noises to better simulate real-world clinical data.950

Specifically, in addition to generating standard 12-lead ECG images—characterized by black waveforms951

on a white background, red grid lines, and a 4x3 layout—we introduce a variety of perturbations to the952

images. These modifications include the addition of wrinkles and creases, simulating the physical wear953

and tear commonly observed in paper-printed ECGs. Our image synthesis process includes various954

augmentation methods to simulate physical distortions, image quality variations, and layout alterations.955

We introduce wrinkles and creases to mimic wear and tear commonly observed in paper-printed ECGs,956

and apply random rotations at varying angles to simulate misaligned scans or prints. To account for957

different acquisition systems and scanning qualities, we vary image resolutions and introduce random958

background colors, such as slight yellowing to represent aging or poor scanning quality. We also add959

noise to the images to simulate imperfections in the scanning or printing process. Furthermore, we960

experiment with different aspect ratios, overall image sizes, and ECG plot positions within the image to961

reflect the heterogeneity of ECG printouts across different systems and formats. In some cases (with a962

0.02 probability), we randomly remove grid lines to account for variations in ECG presentation.963

To further enrich the synthetic images, we randomly insert meta-information into the image header964

to simulate the annotations typically seen in clinical ECG reports. For the PTB-XL dataset, we extract965

patient demographics (e.g., age, gender) and basic ECG features (e.g., heart rate, axis deviations) from the966

associated PTB-XL feature annotation dataset, PTB-XL+ (Strodthoff et al., 2023). This extracted data967

is used to impute realistic meta-information, which is then randomly printed on the synthesized image.968

This random insertion of meta-data not only increases the visual variety of the images but also provides969

additional context, simulating real-world ECG prints that include patient and diagnostic information. To970

further increase diversity, we adopt alternative lead configurations beyond the standard 4x3 layout, such as971

12x1 (single row of leads), 6x2 (two rows of six leads), and other commonly used clinical formats. These972

variations ensure that our model is exposed to a wide range of ECG presentation styles.973

The augmentation process is designed to balance the dataset, with an approximate ratio of 1:1 between974

augmented and standard ECG images. This balance ensures that the model is exposed to both clean and975

distorted images, aiding in its generalization to real-world clinical scenarios.976

D Details of Instruction-tuning Datasets977

The detailed statistics of curated instruction-tuning datasets are provided in Table A1, with training978

examples of Figs. A1, A2, A3, A4.979
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Source Dataset Task Type # Samples

PTB-XL

Basic Feature Recognition Close-ended QA 22,759
Open-ended QA 906
Fill-in-blank 449
Multi-choice QA 5,716

Heart Rhythm Analysis Close-ended QA 19,550
Open-ended QA 201
Fill-in-blank 436
Multi-choice QA 16,179

Morphology and Pathology Identification Close-ended QA 50,166
Open-ended QA 2,649
Fill-in-blank 680
Multi-choice QA 13,432

Clinical Report Open-ended QA 16,302

PTB-XL Total 149,425

ECG-QA
Basic Feature Recognition Close-ended QA 40,154
Heart Rhythm Analysis Close-ended QA 8,993
Morphology and Pathology Identification Close-ended QA 90,211

ECG-QA Total 139,358

MIMIC-ECG

Basic Feature Recognition Close-ended QA 759
Open-ended QA 4,759
Fill-in-blank 6,470
Multi-choice QA 17,186

Heart Rhythm Analysis Close-ended QA 48,625
Open-ended QA 5,262
Fill-in-blank 11,487
Multi-choice QA 49,352

Morphology and Pathology Identification Close-ended QA 8,241
Open-ended QA 81,080
Fill-in-blank 18,264
Multi-choice QA 61,456

Clinical Open-ended QA 486,746

MIMIC-ECG Total 799,687

CODE-15%
Basic Feature Recognition Close-ended QA 22,177
Heart Rhythm Analysis Close-ended QA 13,893
Morphology and Pathology Identification Close-ended QA 31,570

CODE-15% Total 67,640

ECGInstruct Total 1,156,110

Table A1: Detailed data statistics of ECGInstruct.
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Training Data Examples: Basic Feature Recognition

Instruction:
What are the main ECG features I'm seeing here?
Response:
Let's break it down. We have a rhythm that appears to be irregular, with varying P-P
intervals. The heart rate is not explicitly stated, but based on the ECG tracing, it seems to
be within the normal range. The cardiac axis appears to be normal as well. One notable
feature is the presence of an rSr' pattern in lead V1, which is likely a normal variant.
Additionally, we can see some nonspecific T wave changes in the septal leads.

Sub-task:  Basic Waveform Understanding; Question type: Open-ended; Source dataset: MIMIC-IV-ECG

Instruction:
What can be inferred about the heart's electrical conduction system based on this ECG?
Options:
A. There is a block in the electrical conduction pathway
B. There is an abnormality in the heart's electrical conduction system
C. The heart's electrical conduction system is functioning normally
D. There is a rhythm disturbance
Response:
This image indicates that the heart's electrical conduction system is functioning normally, as there are no apparent
abnormalities or disturbances in the electrical activity. The presence of a sinus rhythm and a normal axis suggests
that the heart's electrical conduction system is operating within normal limits, without any significant defects or
anomalies. This ECG image is consistent with a normal heart, and there is no evidence of any conduction system
abnormalities.
We can conclude that the answer is C. The heart's electrical conduction system is functioning normally

Sub-task: Conduction System Interpretation; Question type: Multi-choice QA; Source dataset: PTB-XL

Instruction:
You are reviewing an ECG tracing in a clinical setting. Based on the ECG morphology, fill 
in the blanks: 
This ECG tracing is most consistent with a rhythm of _______________________, with a 
cardiac axis of _______________________, and a bundle branch block of the ___________ 
bundle.
Response:
This ECG tracing is most consistent with a rhythm of atrial fibrillation, with a cardiac 
axis of left axis deviation, and a bundle branch block of the left bundle.

Sub-task: Axis and Rhythm Determination; Question type: Fill-in-the-blank; Source dataset: MIMIC-IV-ECG

Instruction:
Given this ECG image, please answer the following question. From the provided options, 
select all that apply. List your selections, separated by slashes.
Question: 
Which ECG leads are affected by baseline drift?
Options: 
llead III, lead V2, none, lead V4, lead aVL, lead V5, lead V6, lead aVF, lead V3, lead aVR, 
lead V1, lead I, lead II. Provide the accurate response without additional details.
Response:
lead aVF/lead V3

Sub-task: Lead Placement Determination; Question type: Close-ended QA; Source dataset: ECG-QA

Follow-up Instruction:
Can you explain the significance of the rSr' pattern in lead V1? Is it a cause for concern?
Response:
The rSr' pattern in lead V1 is often seen in healthy individuals, especially in younger people. It's considered a normal
variant because it doesn't necessarily indicate any underlying cardiac pathology. The "r" represents a small initial
positive deflection, followed by a larger negative deflection (the "S" wave), and then a secondary positive deflection
(the "r'"). This pattern is thought to be related to the normal activation sequence of the right ventricle. Since it's
isolated to lead V1 and doesn't appear to be associated with any other abnormalities, it's unlikely to be a cause for
concern in this case.

Figure A1: The Examples of basic feature recognition instructions for finetuning PULSE.
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Training Data Examples: Heart Rhythm Analysis

Instruction:
Analyze the ECG image and identify the combination of cardiac rhythm abnormalities
that can be diagnosed simultaneously in this patient. Rank the abnormalities in order
of their potential impact on the patient's hemodynamic stability, with 1 being the
most critical. Use a semicolon-separated list with the rhythm abnormality followed by
its severity ranking
Response:
Sinus tachycardia; 1; Right bundle branch block; 3; Premature atrial contraction; 2;
Premature ventricular contraction; 2.
Justification: Sinus tachycardia is ranked as the most critical abnormality since it can lead to decreased cardiac
output, increased myocardial oxygen demand, and potentially exacerbate underlying cardiac conditions. Premature
atrial contractions and premature ventricular contractions are ranked equally as they can both disrupt normal
cardiac function, although their individual impact might be less severe than sinus tachycardia. Right bundle branch
block, while still a significant abnormality, is ranked last as it may not have an immediate impact on hemodynamic
stability, but rather serves as an indicator of underlying cardiac pathology.

Sub-task: Rhythm Analysis; Question Type: Open-ended; Source Dataset: PTB-XL

Instruction:
Imagine you're an ER doctor reviewing this ECG, what would be your primary concern 
regarding the patient’s heart rhythm? Directly output one of the following options without 
explanation:
Options:
A) Tachycardia; B) Ventricular Fibrillation; C) Atrial Fibrillation; D) Bradycardia; 
E) Long QT Syndrome; F) First-Degree AV Block; G) Second-Degree AV Block; 
H) Normal Sinus Rhythm
Response:
D) Bradycardia

Sub-task: Arrhythmia Identification; Question Type: Multi-choice QA; Source Dataset: MIMIC-IV-ECG

Instruction:
If you were to categorize the ECG rhythm of this patient into one of the following options: 
Normal Sinus Rhythm, Atrial Fibrillation, Ventricular Tachycardia, or Sinus Rhythm with 
Premature Atrial Contractions, 
which one would you choose? _______________
Response:
Sinus Rhythm with Premature Atrial Contractions

Sub-task: Rhythm Classification; Question Type: Fill-in-the-blank; Source Dataset: PTB-XL

Instruction:
As part of a heart health assessment, your task is to examine the ECG, 
identify all fitting options from the 
provided list, and enumerate them using semicolon: 
1dAVb(1st degree av block), RBBB(right bundle branch block), 
LBBB(left bundle branch block), SB(sinus bradycardia), ST(sinus tachycardia), 
AF(atrial fibrillation). 
Only answer based on the given options without any explanation.
Response:
RBBB(right bundle branch block)

Sub-task: Conduction Abnormality Detection; Question Type: Close-ended QA; Source Dataset: CODE-15%

Figure A2: The Examples of heart rhythm analysis instructions for finetuning PULSE.
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Training Data Examples: Morphology and Pathological Condition Identification

Instruction:
What specific features of the ECG tracing suggest the presence of a right bundle branch
block, and how do these features relate to the overall cardiac conduction pattern,
considering the morphology of the QRS complexes in leads V1 and V2? Provide a
detailed explanation in 2-3 sentences.

Sub-task: Wave Morphology Analysis; Question Type: Open-ended; Source Dataset: PTB-XL

Instruction:
Answer the following multiple choice question. Think step by step before answering.
What is the likely location of a previous myocardial infarction (MI) based on this ECG?
Options:
A. Anterior wall B. Lateral wall C. Inferior wall D. Septal wall
Response:
The ECG shows a pattern consistent with a previous MI, as evidenced by the abnormal
Q-waves and ST-segment changes. The location of the MI can be inferred by the leads
involved. We can observe that the inferior leads (II, III, and aVF) show the most
prominent changes, indicating that the MI likely occurred in the inferior wall. Based on
this, we select C. Inferior wall

Sub-task: Interpretation of Ischemia or Infarction; Question Type: Multi-choice QA; Source Dataset: MIMIC-IV-ECG

Instruction:
Compare the QRS complex morphology in leads V1-V4 to that of a normal sinus rhythm 
ECG. Explain the significance of the observed differences, considering the context of 
intraventricular conduction disorder and delayed R progression. 
Then, fill in the blanks: The QRS complex morphology in leads V1-V4 is most indicative 
of _________. (Provide a detailed explanation in 2-3 sentences before filling in the blank.)
Response:
The QRS complex morphology in leads V1-V4 exhibits a notable difference from that of
a normal sinus rhythm ECG. Specifically, the delayed R progression and intraventricular
conduction disorder in V4 suggest a disruption in the normal ventricular depolarization sequence, resulting in
altered QRS complex morphology. This deviation is significant because it indicates a pathological EKG pattern,
which may be associated with underlying cardiac conditions such as left ventricular hypertrophy.
The QRS complex morphology in leads V1-V4 is most indicative of pathological left ventricular conduction.

Sub-task: Pathological Conduction Identification; Question Type: Fill-in-the-blank; Source Dataset: PTB-XL

Instruction:
Imagine you are an expert cardiologist reviewing this ECG image. Considering the 
patient's history and this ECG, what could have contributed to the development of the 
prolonged QT interval? 
Rank your top three possibilities in order of likelihood, using a semicolon-separated list.
Response:
Hypokalemia; certain medications or drugs; genetic mutations or channelopathies.

Sub-task: Electrolyte imbalances Interpretation; Question Type: Open-ended QA; Source Dataset: PTB-XL

Response:
The ECG tracing exhibits a right bundle branch block (RBBB) due to the characteristic 
wide S waves in leads I and V6, accompanied by QS complexes in leads V2, indicative 
of delayed right ventricular depolarization. The QRS complexes in lead V1 display a prolonged duration, exceeding 
140 ms, with a characteristic "M" or "W" shape, further supporting the diagnosis of RBBB. This conduction pattern is 
a result of a block in the right bundle branch, leading to an altered sequence of ventricular activation, causing the 
delayed and abnormal depolarization of the right ventricle.

Figure A3: The Examples of morphology and pathological condition identification instructions for finetuning PULSE.
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Training Data Examples: Clinical Reporting

Instruction:
Review this electrocardiogram image and provide your expert diagnosis.

Question Type: Open-ended; Source Dataset: PTB-XL

Instruction:
Examine the ECG signal image and produce a thorough report based on your findings, 
ending with the final diagnosis.

Response:
The electrocardiogram (ECG) reveals atrial fibrillation with a rapid ventricular
response, indicating a chaotic and rapid heart rhythm originating from the atria.
Additionally, there are signs of a possible anterior myocardial infarction, although the
age of the infarct cannot be determined from this ECG. Furthermore, ST-T changes

Question Type: Open-ended; Source Dataset: MIMIC-ECG

Response:
The electrocardiogram (ECG) reveals a sinus tachycardia, characterized by a heart rate
exceeding 100 beats per minute, indicating an abnormal acceleration of the heart
rhythm. This is further accentuated by the presence of an exaggerated left type,
suggesting an increased electrical activity in the left ventricle.
Additionally, peripheral hypotension is noted, indicating lower-than-normal blood
pressure in the peripheral arteries, which may be a concern as it can lead to inadequate
perfusion of vital organs.The ECG also demonstrates an incomplete right bundle branch block (RBBB), which
suggests a delay or obstruction in the electrical conduction pathway of the right ventricle.
Furthermore, the QRS complex is abnormal, with an altered morphology and duration, indicating a disruption in
the ventricular depolarization process. The presence of an old inferior infarct is likely, suggesting a previous
myocardial infarction (MI) in the inferior wall of the heart.
Moreover, the ECG shows signs of old ST and T wave abnormalities, indicating possible previous episodes of
ischemia or injury to the myocardium. The ECG also suggests likely anterior ischemia or left ventricular strain,
which may indicate ongoing or previous damage to the anterior wall of the heart.

in the inferior and lateral leads suggest myocardial ischemia, which may be partly attributed to the rapid heart rate
and rhythm, but also raises concerns for underlying coronary artery disease.
Final Diagnosis: Atrial fibrillation with rapid ventricular response, possible anterior myocardial infarction, and
signs of myocardial ischemia.

Figure A4: The Examples of clinical reporting instructions for finetuning PULSE.
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E Prompts980

The prompt used to synthesize instruction tasks (Fig. A5). The prompt used to synthesize ECG multi-turn981

dialogue (Fig. A6). The prompt used to revise (and translate) original reports (Fig. A7). The prompt used982

to score and filter generated instruction data (Fig. A8). The prompt used to evaluate the generated report983

(Fig. A9). The prompt used to evaluate the ECG Arena (Fig. A10).984
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Your task: Create a complex ECG visual task based on the given report and target task type:

Guidelines for task creation:
1. Design a concise yet challenging graduate-level task that requires deep reasoning.
2. Frame the task as interacting with an actual ECG image, without mentioning the report. Make the task
visually centric, assuming direct ECG image analysis.
3. Strictly base all information on the given ECG report only. Avoid tasks and answers that are
inconsistent with the report.
4. Avoid restating the report or using phrases like "As described in the report."
5. Generate one task from a diverse range of task types, including but not limited to:
Direct questions (e.g. "What is the heart rhythm?")
Hypothetical scenarios (e.g. "Imagine you're an ER doctor reviewing this ECG...")
Comparative tasks (e.g. "How does this ECG differ from a normal sinus rhythm?")
Explanation requests (e.g. "Explain the significance of the QS complexes seen in V2.")
Problem-solving scenarios (e.g. "Given these ECG findings, what further tests might you order?")
Educational prompts (e.g. "Teach a medical student about the key features of this ECG.")
Role-playing scenarios (e.g. "You're consulting with a cardiologist about this ECG. What do you tell

them?")
Decision-making tasks (e.g. "Based on this ECG, would you clear this patient for surgery? Why or

why not?")
6. Specify a clear, appropriate output format within the task instructions(free-form, "think-step-by-step",
direct output the short answer(in one phrase or one sentence), JSON format, table, list, different
delimiters(such as commas, semicolons, numeric order), etc.). Do not limited to the given task type and
format, you have the freedom to design any type of task you deem appropriate.
7. Focus the task on one or more of the following ECG analysis aspects:
a. Basic ECG feature interpretation (e.g. heart rate, rhythm, cardiac axis)
b. Diagnosis and classification (e.g. diagnosis identification, waveform classification, rhythm

classification)
c. Waveform and interval analysis (e.g. P wave morphology, PR interval, QT interval, QRS complexes,

T wave morphology)
8. Ensure the task complexity aligns with the given report's information.

After creating the task:
1. Provide a detailed, accurate answer to your own task.
2. Ensure your answer is comprehensive and strictly based on the report.
3. Strictly follow the output format and requirements specified in your task instructions.

ECG Report:
{report}

Target Task Type:
{target}

Present your work in this format:
Task: [Concise content of the ECG tasks, including required output format. Do not include phrases like
"Output format:..." or like "[Insert image here]", but in more natural expression. ]

Response: [Comprehensive response following the task's requirements, strictly based on the report]

Do not include any content outside of the Task and Response sections.

Prompt: Multi-task Data Synthesizing

Figure A5: The prompt used to synthesize ECG instruction tasks based on clinical reports.
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Your task: Create a 2-4 turn dialogue between a medical professional and an AI assistant analyzing an ECG, based
on the given report:

Guidelines for dialogue creation:
1. Design a series of questions and answers that progressively explore the ECG findings in depth, suitable for
graduate-level medical professionals.
2. Frame the dialogue as if the medical professional is directly analyzing an actual ECG image, without mentioning
the report. Make the conversation visually centric, assuming direct ECG image analysis.
3. Strictly base all information on the given ECG report only. Avoid including details inconsistent with the report.
4. Do not use phrases like "As described in the report," "The report mentions," or "The term..." The dialogue should
not appear to reference an external report.
5. Begin with direct questions about basic ECG features, then progress to more complex interpretations and clinical
implications.
6. Include a mix of question types, with an emphasis on direct questions:
- Direct questions (e.g., "What are the main ECG features?", "What is the heart rhythm?")
- Requests for explanations (e.g., "Can you explain the significance of the QS complexes?", "What the cause of these
features?")
- Clinical reasoning questions (e.g., "Given these findings, what's your diagnosis?")
- Hypothetical scenarios (e.g., "How would you manage a patient presenting with this ECG?")
7. Focus the dialogue on one or more of the following ECG analysis aspects:
a. Basic ECG feature interpretation (e.g., heart rate, rhythm, cardiac axis)
b. Diagnosis and classification (e.g. diagnosis identification, waveform classification, rhythm classification)
c. Waveform and interval analysis (e.g. P wave morphology, PR interval, QT interval, QRS complexes, T wave
morphology)
d. Clinical implications and management
8. Ensure the dialogue complexity aligns with the given report's information.

After creating the dialogue:
1. Provide extremely comprehensive and detailed answers from the AI assistant's perspective. Each response should
thoroughly cover all relevant aspects of the question asked.
2. Ensure all answers are comprehensive and strictly based on the report, without explicitly referencing it.
3. Make the dialogue flow naturally, as if a real user is progressively exploring the ECG findings.
4. Structure the AI assistant's responses to be highly readable:
- Break down complex information into digestible parts.
- Use bullet points or numbered lists to organize information
- Include brief explanations of medical terms or concepts when necessary
- Provide context for why certain findings are significant
Aim for a balance between depth of information and clarity of presentation in each response.

ECG Report:
{report}

Present your work in this format:
Human: [First question about the ECG]

Assistant: [Comprehensive response based strictly on the report]

Human: [Follow-up question delving deeper into the ECG analysis]

Assistant: [Detailed answer providing further insights]

[Continue the dialogue for up to 2 more turns if necessary, ensuring a natural progression of inquiry]

Do not include any content outside of the dialogue format. Ensure that the entire conversation appears to be about
analyzing an actual ECG image, without any indication that the information comes from a written report.

Prompt: Multi-turn Dialogue Synthesizing

Figure A6: The prompt used to synthesize ECG multi-turn dialogue as instruction-tuning data.
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I will provide you with an ECG report. Please expand the report into a comprehensive and
detailed version, considering all aspects mentioned in the original report. The expanded
version should be at least 4 sentences long. Ensure that you elaborate on each point from the
original report, providing more context and explanation where possible. Do not add any new
content, interpretations, or conclusions beyond what is explicitly stated in the original report.
Avoid using phrases like "Here is the revised report" or similar introductions. Simply begin
with the expanded content.

Original Report:
{report}
Expanded Report:

Prompt: Report Revision

Figure A7: The prompt used to revise (and translate) original reports.

Task: Given an ECG report and a corresponding question-answer pair, score the quality of the
answer based on the guidelines provided. The score should range from 0 to 5, where 0
represents poor quality and 5 represents excellent quality. You should be strict when giving
the final assessment if some of the criteria are not satisfied. Please consider the following
criteria for scoring:

1. Relevance: Does the answer directly address the question asked?
2. Accuracy: Is the information in the answer accurate and consistent with the ECG report?
3. Usefulness: Does the answer provide helpful information that would aid understanding or
decision-making based on the ECG report?
4. Constructed Information: Does the answer invent details not present in the ECG report?
5. Presence of Direct Report Quotation: A good answer does not simply quote or directly
replicate phrases from the ECG report. It should assume that the questioner does not know the
report’s specific content. The presence of direct report quotations is not allowed in the answer,
otherwise, the overall scores should be at most 2.

Output format:
Please first output a single line containing a comprehensive explanation of your evaluation,
avoiding any potential bias. In the subsequent line, please provide the value indicating the
scores in the format: "Score: [your rating score]"

Please apply the above scoring guide to the following ECG report and question-answer pair:

ECG Report: {report}
Question: {question}
Answer: {answer}

Prompt: Instruction Data Scoring

Figure A8: The prompt used to score and filter generated instruction data.
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Evaluate the alignment and quality of a generated ECG report by comparing it to a ground
truth clinician’s report. The evaluation will focus on three key aspects: Diagnosis, Waveform,
and Rhythm. Use specific criteria for each aspect and be precise in comparing medical
terminologies. Only focus on information present in the ground truth report, identifying any
mistakes. Remain objective and do not let the response length affect your evaluation.

Evaluation Criteria:
1. Diagnosis (0-10):
Assess how well the generated ECG report matches the clinical diagnoses in the ground truth
report. Focus on conditions like conduction disturbances, ischemia, hypertrophy, and other
abnormalities as presented in the ground truth report.
- 10: All key diagnoses are correctly identified with no errors or omissions.
- 5: Partially accurate, with some diagnoses identified correctly but key conditions missing or
incorrect.
- 0: Fails to identify key diagnoses, with multiple critical errors.

2. Waveform (0-10):
Evaluate the accuracy and quality of the ECG waveform morphology in the generated report
compared to the ground truth. Focus on abnormalities in P-wave, QRS complex, ST changes,
T-wave, and intervals (PR, QT), ensuring waveform morphology is consistent with the ground
truth.
- 10: All waveform abnormalities are correctly identified without errors.
- 5: Some waveform abnormalities are identified, but key issues are missed or misinterpreted.
- 0: Fails to identify key waveform abnormalities, with multiple critical errors.

3. Rhythm (0-10):
Assess the accuracy and clarity of rhythm interpretation in the generated report. Focus on
identifying and describing normal and abnormal rhythms (e.g., sinus rhythm, atrial
fibrillation, ventricular tachycardia) as presented in the ground truth report.
- 10: Rhythm interpretation is fully accurate and clearly described.
- 5: Rhythm interpretation is partially accurate but contains notable errors or omissions.
- 0: Rhythm interpretation is largely incorrect, with critical errors.

Please organize your output in a JSON format of diagnosis, form and rhythm, with a brief
explanation of each aspect. For example: {Diagnosis: {Score: $SCORE$, Explanation:
$EXPLANATION$}}

[The Start of Ground Truth Report]
{ground_truth_report}
[The End of Ground Truth Report]
[The Start of Generated Report]
{generated_report}
[The End of Generated Report]

Prompt: Evaluation of Report Generation

Figure A9: The prompt used to evaluate the generated report.

24



Evaluate the quality of a model's response to an ECG-related question by comparing it with a
given ground truth answer. Focus on three aspects: accuracy, completeness, and instruction
adherence. Be precise and objective, especially when identifying errors in medical
terminology. Do not let the response length affect your evaluation.

Evaluation Criteria:
1. Accuracy (0-10):
How well does the model's response match the ground truth, particularly in ECG
interpretation and diagnosis? This score emphasizes whether the key information is correct,
such as the correct identification of waveforms, intervals, and clinical diagnoses.
- 10: Fully accurate, with correct ECG interpretation, terminology, and diagnosis.
- 5: Partially accurate, with some correct information but notable errors or omissions.
- 0: Largely inaccurate or misleading.

2. Completeness (0-10):
Does the response cover essential aspects of ECG interpretation (e.g., rhythm, axis, waveforms,
clinical causes) mentioned in the ground truth? This score focuses on whether the answer is
comprehensive and includes as much essential information as possible.
- 10: Comprehensive, covering all key details.
- 5: Partially complete, with important points missing.
- 0: Incomplete, lacking critical information.

3. Instruction Adherence (0-10):
Does the model follow the specific instructions in the question (e.g., listing features, suggesting
a diagnosis)? This score focuses on how well the model follows the task instructions,
regardless of the correctness of the answer.
- 10: Fully follows instructions.
- 5: Partially follows instructions, with some deviations.
- 0: Fails to follow instructions or provides an irrelevant response.

Please organize your output in a JSON format of accuracy, completeness, and instruction
adherence, with a brief explanation of each aspect. For example: {Accuracy: {Score: $SCORE$,
Explanation: $EXPLANATION$}}

[The Start of Ground Truth Answer]
{ground_truth_answer}
[The End of Ground Truth Answer]

[The Start of Model's Response]
{model_response}
[The End of Model's Response

Prompt: Evaluation of ECG Arena

Figure A10: The prompt used to evaluate the ECG Arena.
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F Details of Evaluation Datasets985

We provide the data curation process in Fig. A11 and details of each evaluation dataset in Table A2.986

Repurposed Tasks from Diagnosis and Reports 

Sythesized 
ECG Images

Diagnosis 
and Reports

Query: Please determine the appropriate diagnosis for the
ECG image: right bundle branch block, ST depression,
ventricular ectopics, 1st degree av block, ST elevation, left
bundle branch block, atrial fibrillation, premature atrial
contraction, normal ECG.

Query: Please write a clinical report based on this ECG image.

Question: What is the rhythm shown in this ECG?

Question type: Diagnosis Classification; Close-ended
Image type: 12*1 layout; Rotation; Wrinkles; Colored image
Source: CPSC (out-of-domain)

Abnormality Detection

Answer: atrial fibrillation; right
bundle branch block

Report Generation

Answer: Premature ventricular
contractions are present. There is a
rapid, regular supraventricular
tachycardia. The rhythm is likely
atrial flutter with a 2:1 atrioventricular
block. There is left ventricular
hypertrophy. Non-specific ST-T wave
changes are noted.

Question type: Report generation; Open-ended
Image type: 4*3 layout; w/o Distortions
Source: PTB-XL (in-domain)

MMMU ECG

Question type: Multi-choice; Close-ended
Image type: 6*2 layout; Rea-world ECG Image
Source: Online Quiz

ECG Arena
Question: Can you describe the features observed in this
ECG, including the rhythm, waveforms, intervals, and any
other notable findings?
Follow-up Question: Given the
findings you've mentioned,
especially the ST-segment
changes and dual-chamber
pacing, what is the diagnosis?

Question type: Multi-turn; Open-ended
Image type: 4*3 layout; Rea-world ECG Image
Source: Textbook

Resource Selection

Question 
Creation

Quality 
Control

Created Tasks from External ECG-related Resources

Answer: The ECG shows a dual-chamber paced rhythm at
60 bpm. There is ST-segment elevation (STE) in leads II…

Option:
(A) Sinus tachycardia with
ventricular tachycardia
(B) Atrial fibrillation with
right bundle branch aberrancy
(C) Atrial tachycardia with right bundle branch aberrancy
(D) Polymorphic ventricular tachycardia
Answer: (D)

ECG 
Datasets

ECG-related 
Tasks

Repurposing

Figure A11: The data curation process for ECGBench. There are four key tasks involved: (1) two repurposed
tasks (abnormality detection and report generation) derived from existing ECG datasets, where ECG images are
synthesized from raw signals, and queries/answers are extracted based on diagnostic and clinical reports; (2) Two
newly developed tasks using external resources, where ECG images and associated questions and answers are
collected and generated from real-world sources.

Evaluation Dataset Task Type # Samples In-Domain?

PTB-XL Super Abnormality Detection Close-ended 2,082 YES
PTB-XL Report Report Generation Open-ended 500 YES
CODE-15% Abnormality Detection Close-ended 1,400 YES
ECG-QA Abnormality Detection Close-ended 1,317 YES

CPSC 2018 Abnormality Detection Close-ended 2,061 NO
CSN Abnormality Detection MCQ (8-option) 1,611 NO
G12EC Abnormality Detection MCQ (8-option) 2,026 NO
MMMU ECG Multimodal Understanding MCQ (4-option) 200 NO
ECG Arena Multi-turn Conversation Open-ended 50 NO

Table A2: Overview of evaluation datasets in ECGBench. This collection contains both in-domain and out-of-domain
problems across four key tasks with diverse answer types.
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G Details of Evaluation Metrics 987

Abnormality Detection. we utilize multi-label classification metrics, including Macro AUC, Macro 988

F1, and Hamming Loss, to evaluate the datasets PTB-XL Super, CODE-15%, and CPSC 2018, where 989

multiple correct labels may exist. For the ECG-QA, CSN, and G12EC datasets, we adopt accuracy as the 990

evaluation metric. 991

Report Generation. Rather than relying on traditional text generation metrics, we leverage strong 992

LLMs as evaluators, following the approach of Zheng et al. (2024). This method provides a more nuanced 993

evaluation by focusing on key aspects of the reports. Specifically, we use GPT-4o to compare the model- 994

generated reports against those written by cardiologists. We introduce a “Report Perfect Score”, which is 995

based on three critical components of a generated report: (1) Rhythms (0 to 10 points), (2) Waveform 996

Morphology (0 to 10 points), and (3) Diagnosis (0 to 10 points). The final score is the average of these 997

three components, scaled to a maximum of 100 points. The prompt used to query GPT-4o for evaluating 998

the report score is provided in Fig. A9. 999

MMMU ECG. We adopt accuracy as the primary metric. We have designed systematic, rule-based 1000

evaluation pipelines to ensure robust and consistent scoring. To mitigate the potential influence of any 1001

intermediate generations (e.g., reasoning steps) in long responses, we employ robust regular expressions 1002

and develop response-processing workflows. These are used to extract answer options from the long 1003

responses for accurate answer matching. In cases where no valid answer can be extracted from the model’s 1004

response, we perform random selection to assign a score. 1005

ECG Arena. We also employ a strong judge model, GPT-4o, to assess model performance by comparing 1006

generated responses with ground truth answers. The evaluation considers three perspectives, each scored 1007

on a scale of 0-10: Accuracy (how closely the model’s response matches the ground truth), Completeness 1008

(whether the model provides a comprehensive answer covering all aspects of ECG interpretation), and 1009

Instruction Adherence (how well the model follows the specific instructions in the question). We calculate 1010

the final score by averaging these three aspects and scaling to a maximum of 100 points. The specific 1011

prompt used for GPT-4 evaluation is provided in Fig. A10. 1012

H Implementation Details 1013

We follow the model architecture of LLaVA, which includes three core components: a vision encoder, a 1014

large language model, and a projector to align image and text modalities. Table A3 summarizes all the 1015

model parameters. Specifically, for the LLM, we utilize Vicuna-1.5-7B, while the vision encoder is based 1016

on CLIP-ViT-Large-Patch14-336. We employ a 2-layer MLP as a projector to map the visual features 1017

from the CLIP encoder onto the tokens used by the LLM. These features are mapped onto predefined 1018

image tokens, which encapsulate the features of ECG images. The tokens representing ECG features are 1019

then concatenated as an image context preceding the dialogue. 1020

We format all datasets into a chatbot-style multi-turn dialogue format (same as Vicuna-1.5-7B) and use 1021

the special token <image> to represent image features within the text data. For example, a sample data 1022

instance is: “Human: <image> Describe this ECG image. \n Assistant: This image . . . ”. To enhance the 1023

model’s ability to handle ECG images of various sizes encountered in real-world scenarios, we employ 1024

Anyres. Anyres divides high-resolution images into multiple sub-images of size 336x336. The features of 1025

these sub-images are then concatenated with the global features of the original image to form the final 1026

image representation. 1027

We fine-tune all parameters of the vision encoder, projector, and LLM. The training process uses a 1028

learning rate of 2e-5, a batch size of 128, and a cosine scheduler with a 5% warm-up period over three 1029

epochs. The loss is calculated using the cross-entropy loss function, focusing on the response portion of 1030

the dialogue. 1031
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Model Parameters

Total 7.06B
Vision Encoder(clip-vit-large-patch14-336) 303.5M
Connector 21M
LLM(Vicuna-1.5-7B) 6.74B

Training Parameters

Learning Rate 2e-5
Weight Decay 0.0
Warmup Ratio 0.03
Learning Rate Scheduler Cosine
Batch Size 128

Vision Encoder Arch

Hidden Size 1024
Input Resolution 336
ViT Layer 24
ViT Heads 16
Patch Size 14

LLM Arch

Hidden Size 4096
Max Context Length 4096
Attention Heads 32
Hidden Layers 32
KV Heads 32

Table A3: Summary of model parameters.
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I Main Results 1032

We provide the overall results in Fig. A12, results on all baselines in Table A4 for in-domain evaluation 1033

and Table A5 for out-of-domain evaluation. 1034

Question:
Determine the abnormality of the given ECG image: Normal
ECG, Atrial fibrillation, First degree atrioventricular block, Left

Abnormality Detection GPT 4o Response:
Based on the provided ECG image, here’s a breakdown to help
determine its abnormalities: 1. Rate & Rhythm: The rhythm appears
irregular, which suggests it may not be normal sinus rhythm. This
irregularity, combined with the lack of clearly identifiable P waves,
suggests atrial fibrillation. 2. PR Interval: The PR interval is difficult
to identify due to the absence of well formed P waves, which again
leans toward atrial fibrillation. 3. QRS Complex: The QRS duration
does not appear to be widened, so and right bundle branch block are
unlikely. 4. ST Segment: No clear ST elevation or depression is visible,
ruling out STE and STD. 5. Other abnormalities: There are no obvious
premature atrial contractions or premature ventricular contractions.
Therefore, this ECG most likely represents Atrial Fibrillation.

Overall Model Performance on ECGBench

MMMU ECG
Out-of-domain Evaluation

ECG Arena
Out-of-domain Evaluation

Abnormality Detection
Out-of-domain Evaluation

Report Generation
In-domain Evaluation

bundle branch block, Right bundle
branch block, Premature atrial
contraction, Premature ventricular
contraction, ST segment depression,
ST segment elevated
Ground Truth:
Right bundle branch block; 
Premature atrial contraction

Figure A12: The proposed PULSE demonstrates superior performance across multiple in-domain and out-of-domain
datasets on our constructed ECGBench compared with advanced proprietary MLLMs (e.g., GPT-4o). Notably, the
proprietary MLLMs often fail to accurately interpret ECG images, generating well-structured and contextually
relevant responses but ultimately incorrect (with errors highlighted in red) compared to the ground truth diagnosis.

29



Datasets PTB-XL Super PTB-XL Report CODE-15% ECG-QA

Metric AUC F1 HL Report Score AUC F1 HL Accuracy

Random 50.3 33.2 50.1 0 48.8 15.0 32.1 16.2

Domain-specific Methods

METS - 65.7† - N/A - - - N/A
MERL 74.2† - - N/A - - - N/A
ST-MEM 71.4† - - N/A - - - N/A
MMCL 81.6 - - N/A - - - N/A
MOMENT 83.3 - - N/A - - - N/A
ECG-GPT 69.5∗ 53.9∗ 20.1∗ 47.8∗ 68.9∗ 40.1∗ 17.4∗ N/A

Proprietary MLLMs

GPT-4o 55.6 28.3 26.2 50.2 59.9 24.9 15.7 35.2
GPT-4o mini 52.0 20.4 31.7 37.1 57.5 22.0 15.1 14.9
Gemini 1.5 Pro 50.7 15.3 27.9 35.9 56.7 20.0 15.9 33.2
Claude 3.5 Sonnet 54.0 27.5 29.6 43.7 58.3 20.3 17.8 34.2

Open-source MLLMs

LLaVA-Med 50.0 12.3 28.1 24.3 69.2 27.0 33.4 29.5
LLaVA-1.5-7B 50.0 12.3 28.1 27.2 63.9 19.2 25.3 25.2
LLaVA-1.5-13B 50.0 35.2 48.4 20.7 53.9 13.1 13.6 21.2
LLaVA-1.6-Vicuna-7B 50.0 15.8 29.4 16.5 50.1 1.0 13.6 13.3
LLaVA-1.6-Vicuna-13B 50.0 20.1 38.3 5.9 53.0 3.6 16.6 22.0
LLaVA-1.6-34B 50.2 19.9 36.0 17.0 57.2 12.8 16.6 22.4
LLaVA-OneVision-7B 49.8 11.4 34.5 30.0 58.7 17.0 20.6 20.4
LLaVA-OneVision-72B 50.6 29.6 50.4 40.6 52.3 7.0 13.1 25.0
Deepseek-VL-Chat-7B 50.9 15.7 27.9 15.6 63.7 27.5 22.4 21.1
Idefics2-8B 50.7 21.9 31.2 10.6 49.0 17.9 47.9 26.1
Mantis-8B-siglip-Llama3 50.6 20.4 30.0 16.0 57.5 17.9 15.7 23.8
MiniCPM-V-2.6 49.0 37.7 63.8 15.4 56.6 25.3 22.0 20.8
Phi-3-Vision-128k-Instruct 50.0 29.6 48.4 20.2 69.6 22.6 38.8 28.4
Qwen2-VL-7B 51.3 22.4 30.8 43.0 60.7 24.8 20.5 20.4
Qwen2-VL-72B 54.0 28.3 30.2 48.9 60.6 23.6 16.1 23.7
InternVL2-8B 50.6 14.3 27.8 38.1 55.8 16.1 17.7 22.3
InternVL2-40B 51.2 18.7 34.6 41.8 56.7 16.2 17.4 18.2
InternVL2-Llama3-76B 50.4 9.4 35.6 41.4 59.0 20.2 20.5 21.8

PULSE-7B (Ours) 82.9 76.9 10.2 65.4 91.7 87.0 4.6 71.6
∆ over best proprietary MLLM +27 +49 +16 +15 +32 +62 +11 +36
∆ over best open-source MLLM +29 +39 +18 +17 +22 +60 +9 +42

Table A4: In-domain evaluation results on representative baselines. † indicates results from original papers, ∗

denotes results obtained using the provided online software, N/A indicates methods not applicable or not designed
for certain tasks, and - indicates unreported scores in original papers.
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Datasets CPSC 2018 CSN G12EC MMMU ECG ECG Arena

Metric AUC F1 HL Accuracy Accuracy Accuracy Arena Score

Random 51.2 15.1 28.8 11.6 12.1 24.2 0

Domain-specific Methods

METS - - - N/A N/A N/A N/A
MERL 82.8† - - N/A N/A N/A N/A
ST-MEM 70.4† - - N/A N/A N/A N/A
MMCL 52.7 - - N/A N/A N/A N/A
MOMENT 50.5 - - N/A N/A N/A N/A
ECG-GPT 69.3∗ 44.0∗ 9.9∗ N/A N/A N/A N/A

Proprietary MLLMs

GPT-4o 50.9 10.6 18.2 57.5 49.2 43.5 33.5
GPT-4o mini 49.2 11.0 25.5 32.1 33.2 39.5 30.1
Gemini-1.5-Pro 50.1 7.4 20.5 50.5 36.0 40.0 31.2
Claude 3.5 Sonnet 52.8 11.5 18.9 51.5 51.4 42.0 37.1

Open-source MLLMs

LLaVA-Med 50.0 2.5 20.2 13.8 14.1 27.0 15.9
LLaVA-1.5-7B 50.0 2.5 20.0 32.1 25.4 33.0 12.7
LLaVA-1.5-13B 50.4 13.3 30.1 30.7 30.7 35.0 13.1
LLaVA-1.6-Vicuna-7B 50.5 19.7 66.0 23.7 23.3 28.0 16.0
LLaVA-1.6-Vicuna-13B 50.0 19.3 62.8 31.4 35.0 38.0 17.9
LLaVA-1.6-34B 49.6 19.3 62.8 44.3 45.9 31.0 17.5
LLaVA-OneVision-7B 49.6 8.0 28.3 23.3 25.7 26.0 22.5
LLaVA-OneVision-72B 51.5 12.8 29.4 44.0 42.6 35.0 15.5
Deepseek-VL-Chat-7B 50.7 6.0 20.0 35.7 32.9 34.5 15.3
Idefics2-8B 49.0 17.9 47.9 22.8 26.2 36.0 4.9
Mantis-8B-siglip-Llama3 51.3 19.1 48.5 17.6 22.6 38.5 13.6
MiniCPM-2.6 50.0 18.0 48.4 12.7 19.6 34.5 20.4
Phi-3-Vision-128k-Instruct 50.6 19.0 70.2 14.8 18.4 31.0 11.3
Qwen2-VL-7B 49.4 17.5 46.3 25.5 32.9 31.5 8.5
Qwen2-VL-72B 50.7 9.8 18.9 35.5 42.9 35.0 10.3
InternVL2-8B 52.1 8.2 22.2 47.7 37.5 30.0 22.9
InternVL2-40B 52.4 8.2 21.4 41.0 45.0 30.5 28.0
InternVL2-Llama3-76B 51.3 6.5 20.4 26.6 34.7 38.0 22.5

PULSE-7B (Ours) 80.7 65.4 6.8 87.9 81.4 64.0 41.5
∆ over best proprietary MLLM +28 +54 +11 +30 +30 +21 +4
∆ over best open-source MLLM +28 +46 +12 +40 +36 +26 +14

Table A5: Out-of-domain evaluation results. † indicates results from original papers, ∗ denotes results obtained
using the provided online software, N/A indicates methods not applicable or not designed for certain tasks, and -
indicates unreported scores in original papers.
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J Ablation Study1035

Effect of Freezing the Vision Encoder. We performed an ablation study by freezing the vision encoder1036

parameters during training and reported the model’s performance in Table A6. The results indicate a1037

further decline in performance, with the average score dropping from 71.2 to 68.1, compared to the1038

original model with unfrozen vision encoder parameters.

Models
PTB-XL

Super
PTB-XL
Report

CSN CODE-15 ECG-QA CPSC G12
MMMU

ECG
ECG
Arena

AVG

Unfrozen ViT 76.9 65.4 87.9 87.0 71.6 65.4 81.4 64.0 41.5 71.2
Frozen ViT 74.8 61.3 85.2 85.4 73.8 57.6 78.2 58.0 38.9 68.1

Table A6: Ablation results on the impact of freezing vision encoder parameters

1039

Fine-tuning results against other MLLMs We fine-tune Qwen2-VL-7B using ECGInstruct and show1040

the results in Table A7. The performance of the two backbone models is comparable, with LLaVA slightly1041

outperforming Qwen.1042

Models PTB-XL Super PTB-XL Report CSN G12 MMMU ECG

PULSE (Qwen2-VL-7B) 75.1 62.8 85.2 79.2 60.4
PULSE (LLaVA-v1.6 -Vicuna-7B) 76.9 65.4 87.9 81.4 64.0

Table A7: Comparison of different MLLM backbones

Effect of Instruction Task. To understand the individual contribution of each ECG-related task to model1043

performance, we analyze combinations of four instruction tasks. As shown in Table A8, adding more1044

tasks progressively improves performance across multiple benchmarks. Models trained solely on basic1045

feature recognition (F) performed poorly across all metrics, highlighting the limitations of a single-task1046

approach. In contrast, the sequential addition of tasks led to substantial performance gains across multiple1047

benchmarks. The model incorporating all four tasks achieved the highest performance, indicating a more1048

comprehensive understanding of ECG images.1049

Instruction Task
PTB-XL

Super
PTB-XL
Report

CSN CODE-15 ECG-QA CPSC G12
MMMU

ECG
ECG
Arena

AVG

F 14.4 40.1 59.3 12.8 52.6 10.3 14.4 40.0 15.0 28.8
F + R 29.0 58.1 86.5 74.9 59.2 38.8 70.5 53.5 27.9 55.4
F + R + M 72.5 61.7 87.9 84.3 66.4 51.6 74.2 58.5 33.0 65.6

F + R + M + C 76.9 65.4 87.9 87.0 71.6 65.4 81.4 64.0 41.5 71.2

Table A8: Performance of different ECG-related instruction task combinations. F: basic feature recognition, R:
heart rhythm analysis, M: morphology and pathology identification, C: clinical report generation. F1 for PTB-XL
Super, CODE-15%, and CPSC; Accuracy for CSN, ECG-QA, G12, and MMMU ECG; Report Scores for PTB-XL
Report; Arena Scores for ECG Arena. AVG denotes the average across all metrics.
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K Human Expert Performance 1050

We engaged three domain experts specializing in ECG to evaluate a sample of 30 questions from 1051

the MMMU ECG. The performance comparison is provided in Table A9. Our results highlight a 1052

significant performance gap between current MLLMs and human expertise, indicating the need for further 1053

improvements in model capabilities for ECG image analysis.

Category MMMU ECG (%)

Human Expert (Low) 70.0
Human Expert (Medium) 90.0
Human Expert (High) 93.3
Human Expert (Average) 84.4

GPT-4o 43.5
PULSE 64.0

Table A9: Comparison results on MMMU ECG among human experts, GPT-4o, and PULSE

1054

L Human Evaluation 1055

We performed a human evaluation on 50 sampled reports from the PTB-XL Report and 30 questions 1056

from the ECG Arena. Human evaluation scores and their Pearson correlation with LLM-based scores are 1057

presented in Table A10. The results indicate a strong correlation between the two sets of scores.

Models
PTB-XL Report

(LLM score)
PTB-XL Report
(Human score)

Pearsons Correlation
ECG Arena
(LLM score)

ECG Arena
(Human score)

Pearsons Correlation

GPT-4o 51.9 50.8 93.4 32.8 35.1 92.0
PULSE 62.8 64.1 91.9 37.4 39.0 91.7

Table A10: Comparison of human evaluation scores and LLM-based scores on report generation and ECG arena.

1058
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M Case Study1059

We provide three examples of ECG report generation (Fig. A13, Fig. A14 and Fig. A15) and one example1060

of ECG Arena (Fig. A16).1061
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Case Study: PTB-XL Report 

PULSE Response: The electrocardiogram (ECG) reveals a sinus rhythm, indicating that the heart is beating in a regular,
rhythmic pattern, with a normal heart rate and P-wave morphology. The PR interval is prolonged, measuring longer than the
normal range of 120-200 milliseconds, suggesting a delay in the conduction of electrical impulses from the atria to the
ventricles. This prolongation may be indicative of a first-degree atrioventricular (AV) block, which can be a benign finding but
may also be associated with underlying cardiac conditions. The ECG also demonstrates high voltages in the limb leads,
specifically leads I, II, and III, which is suggestive of left ventricular hypertrophy (LVH). This finding is consistent with an
increase in the thickness of the left ventricular wall, which can be a response to chronic pressure overload or volume overload.
The ST segments are depressed in leads I, II, aVL, V5, and V6, indicating a possible alteration in the repolarization pattern of
the ventricles. This depression may be indicative of left ventricular strain or ischemia, which can be a sign of myocardial injury
or infarction. Furthermore, the T waves are low or flat in leads I, II, aVL, V5, and V6, which may be a manifestation of left
ventricular strain or ischemia. The combination of these findings, including the prolonged PR interval, high voltages in the
limb leads, and ST segment depression, suggests that the patient may be experiencing myocardial ischemia, which is a
condition where the heart muscle does not receive sufficient blood flow, leading to a mismatch between oxygen demand and
supply. In conclusion, based on the ECG findings, the diagnosis is consistent with myocardial ischemia, left ventricular
hypertrophy, T wave abnormality, prolonged PR interval, and sinus rhythm.

LLM-as-Judge Feedback for PULSE Response:
1. Diagnosis
Score: 10. Explanation: The generated report correctly identifies all key diagnoses present in the ground truth report,
including sinus rhythm, prolonged PR interval, left ventricular hypertrophy (LVH), ST segment depression, and T wave
abnormalities. The interpretation of these findings as consistent with myocardial ischemia is also accurate.
2. Form
Score: 10. Explanation: The generated report accurately describes the waveform abnormalities, including the prolonged PR
interval, high voltages in the limb leads, ST segment depression in leads I, II, aVL, V5, and V6, and flat T waves in these leads.
These descriptions match the ground truth report precisely.
3. Rhythm
Score: 10. Explanation: The generated report correctly identifies the rhythm as sinus rhythm, which is consistent with the
ground truth report. The description of the rhythm is clear and accurate.
Final Score: (10+10+10)/3 * 10 = 100

GPT-4o Response:
Clinical Report: Electrocardiogram (ECG)
ECG Interpretation: Heart Rate: The heart rate appears to be within normal limits. Precise calculation of the heart rate is
recommended for confirmation. Rhythm: The rhythm appears to be regular. There are consistent R-R intervals, suggesting a
regular sinus rhythm.
P Waves: P waves are present before each QRS complex, indicating sinus rhythm. The morphology of the P waves appears
normal. PR Interval: The PR interval appears to be within normal limits (120-200 ms). QRS Complex: The QRS duration
appears to be within normal limits (less than 120 ms). There is no evidence of significant QRS complex abnormalities such as
bundle branch block.
ST Segment: The ST segments appear to be isoelectric (flat) in most leads, with no significant elevation or depression
noted. T Waves: T waves appear to be upright in leads I, II, V3-V6, and inverted in aVR, which is normal. There are no
significant T wave abnormalities noted. Axis: The QRS axis appears to be normal. The exact axis calculation is recommended
for confirmation.
Additional Observations: There are no significant signs of ischemia, infarction, or other acute changes. No evidence of left
ventricular hypertrophy or other chamber enlargement.
Conclusion: This ECG shows a normal sinus rhythm with no significant abnormalities. The patient’s ECG is within normal
limits for her age and clinical presentation.

LLM-as-Judge Feedback for GPT-4o Response:
1. Diagnosis
Score: 0. Explanation: The generated report fails to identify key diagnoses present in the ground truth report. It does not 
mention the prolonged PR interval, left ventricular hypertrophy (LVH), ST segment depression, or flat T waves. Instead, it 
incorrectly states that there are no significant signs of ischemia, infarction, or other acute changes, and no evidence of left 
ventricular hypertrophy. 
2. Form
Score: 0. Explanation: The generated report inaccurately describes the waveform morphology. It incorrectly states that the PR 
interval is within normal limits, fails to identify the high voltages in limb leads, and does not mention the ST segment 
depression or flat T waves. These are critical waveform abnormalities that are present in the ground truth report.
3. Rhythm
Score: 5. Explanation: The generated report correctly identifies a regular sinus rhythm, which is consistent with the ground 
truth report. However, it fails to mention the prolonged PR interval, which is a notable omission. Therefore, while the rhythm 
interpretation is partially accurate, it contains a significant error. 
Final Score: (0+0+5)/3 * 10 = 16.7

Question:
Please write a clinical report based on this ECG image.

Ground Truth Report: 
Sinus rhythm. Prolonged PR interval. R-S transition zone in V leads displaced to the left. Voltages 
are high in limb leads suggesting left ventricular hypertrophy (LVH). ST segments are depressed 
in leads I, II, aVL, V5, and V6. T waves are flat in these leads. Non-specific but consistent with 
myocardial changes.

Figure A13: Comparison of model outputs on ECG report generation task (Example 1). Blue indicates correct
information, while red highlights errors. Our model’s output fully aligns with the ground truth, with a report score
of 10. In comparison, GPT-4’s report, though structurally sound, contains notable inaccuracies despite its initial
appearance of relevance.
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Case Study: PTB-XL Report 

PULSE Response: The electrocardiogram (ECG) reveals a normal sinus rhythm, characterized by a regular heartbeat with a
rate between 60-100 beats per minute, indicating that the heart's natural pacemaker, the sinoatrial (SA) node, is functioning
properly. The axis of the heart's electrical activity is also within normal limits, suggesting that the electrical impulses are being
conducted through the heart in a normal and coordinated manner. However, the ST segment and T waves exhibit
abnormalities, which may be indicative of myocardial ischemia or strain, particularly in the anterior region of the heart. This
could be a sign of reduced blood flow to the heart muscle, potentially leading to damage or even necrosis of the myocardial
tissue. The presence of these abnormalities in the ST segment and T waves suggests that the heart is under stress, which may
be caused by a variety of factors, including coronary artery disease, hypertension, or cardiomyopathy. Overall, the diagnosis
based on this ECG report is sinus rhythm with ST changes, indicating that the heart is functioning normally in terms of
rhythm, but is exhibiting signs of potential myocardial ischemia or strain.

LLM-as-Judge Feedback for PULSE Response:
1. Diagnosis
Score: 8. Explanation: The generated report correctly identifies the sinus rhythm and the presence of abnormalities in the ST
segment and T waves, which are consistent with myocardial ischemia. However, it does not specifically mention the low or
flat T waves in V3, V4, V5, and the slightly inverted T wave in V2, which are key details in the ground truth report.
2. Form
Score: 7. Explanation: The generated report accurately identifies the presence of ST segment and T wave abnormalities, which
are indicative of myocardial ischemia. However, it lacks the specific details about the T wave morphology in V2, V3, V4, and
V5, which are crucial for a precise comparison with the ground truth report.
3. Rhythm
Score: 10. Explanation: The generated report correctly identifies the sinus rhythm and provides a clear and accurate
description of the heart's rhythm, matching the ground truth report.
Final Score: (8+7+10)/3 * 10 = 83.3

GPT-4o Response:
ECG Interpretation:
1. Heart Rate: The heart rate is approximately 75 beats per minute, which is within the normal range (60-100 bpm).
2. Rhythm: The rhythm appears to be regular with consistent R-R intervals, indicating a normal sinus rhythm.
3. P Waves: P waves are present before each QRS complex, indicating normal atrial depolarization. The P wave morphology is
normal.
4. PR Interval: The PR interval is within the normal range (120-200 ms), suggesting normal atrioventricular conduction.
5. QRS Complex: The QRS duration is within the normal range (less than 120 ms), indicating normal ventricular
depolarization. There are no significant Q waves observed, which rules out previous myocardial infarction.
6. ST Segment: The ST segments are isoelectric (flat) in all leads, indicating no signs of acute ischemia or injury.
7. T Waves: T waves are upright in leads I, II, V3-V6, and inverted in aVR, which is a normal finding. There are no signs of
T wave inversion or hyperacute T waves.
8. QT Interval: The QT interval appears to be within the normal range (less than 440 ms for males and less than 460 ms for
females), indicating no prolonged QT syndrome.
9. Axis: The QRS axis is normal, approximately 0 to +90 degrees.
10. Additional Observations: No evidence of left or right ventricular hypertrophy. No signs of bundle branch block or other
conduction abnormalities.
Conclusion: The ECG findings are within normal limits. There are no signs of acute ischemia, infarction, or other significant
cardiac abnormalities. The patient has a normal sinus rhythm with normal atrioventricular and intraventricular conduction.

LLM-as-Judge Feedback for GPT-4o Response:
1. Diagnosis
Score: 0. Explanation: The generated report fails to identify the key diagnosis of myocardial ischemia indicated by the T wave 
abnormalities in the ground truth report. It incorrectly concludes that there are no signs of acute ischemia or other significant 
cardiac abnormalities. 
2. Form
Score: 0. Explanation: The generated report does not mention the low or flat T waves in V3, V4, V5, and the slightly inverted T 
waves in V2, which are critical waveform abnormalities noted in the ground truth report. Instead, it incorrectly states that T 
waves are upright in V3-V6 and does not acknowledge any T wave inversion. 
3. Rhythm
Score: 10. Explanation: The generated report correctly identifies the rhythm as normal sinus rhythm, which is consistent with 
the ground truth report. 
Final Score: (0+0+10)/3 * 10 = 33.3

Question:
Please write a clinical report based on this ECG image.

Ground Truth Report: 
Sinus rhythm. T waves are low or flat in V3, V4, V5 and slightly inverted in V2. Non-specific but 
consistent with myocardial ischemia. The age of the changes is uncertain.

Figure A14: Comparison of model outputs on ECG report generation task (Example 2). Blue indicates correct
information, while red highlights errors. Our model’s output mostly aligns with the ground truth, achieving a report
score of 83.3. In comparison, GPT-4’s output correctly identifies only the ECG rhythm, omitting most other key
details.
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Case Study: PTB XL Report 

PULSE Response: The electrocardiogram (ECG) reveals a sinus arrhythmia, characterized by an irregular heart rhythm with
varying intervals between beats, originating from the sinoatrial node. This arrhythmia is often benign and can be influenced by
factors such as respiration, with heart rate increasing during inhalation and decreasing during exhalation. The ECG also
demonstrates an overdriven left type, indicating that the left ventricle is dominant in the cardiac conduction system, which can
be a normal variant or associated with certain cardiac conditions.
Furthermore, the ECG shows evidence of left anterior hemiblock, a conduction defect affecting the anterior fascicle of the left
bundle branch, resulting in delayed activation of the anterior wall of the left ventricle. This can be a sign of underlying cardiac
disease or injury. Additionally, the presence of right bundle branch block is noted, indicating a conduction defect affecting the
right bundle branch, leading to delayed activation of the right ventricle. The combination of left anterior hemiblock and RBBB is
consistent with bifascicular block, a condition where two of the three main fascicles of the cardiac conduction system are affected.
The ECG also reveals a left axis deviation, indicating that the electrical axis of the heart is shifted to the left, which can be a
normal variant or associated with certain cardiac conditions such as left ventricular hypertrophy or cardiomyopathy.
Overall, the ECG findings are consistent with a diagnosis of left axis deviation, sinus arrhythmia, left anterior fascicular block,
and right bundle branch block.

LLM as Judge Feedback for PULSE Response:
1. Diagnosis
Score: 7. Explanation: The generated report correctly identifies sinus arrhythmia, left axis deviation, left anterior hemiblock, and
right bundle branch block. It also correctly identifies the combination of left anterior hemiblock and RBBB as bifascicular block.
However, it fails to mention 'abnormal QRS(T)' and 'possible lateral myocardial damage,' which are key diagnoses.
2. Form
Score: 5. Explanation: The generated report accurately describes the conduction defects (left anterior hemiblock, right bundle
branch block) and left axis deviation. However, it does not address 'abnormal QRS(T)' and 'possible lateral myocardial damage,'
which are critical waveform abnormalities mentioned in the ground truth report.
3. Rhythm
Score: 10. Explanation: The generated report provides a detailed and accurate description of sinus arrhythmia, including its
characteristics and potential influences. This matches the rhythm interpretation in the ground truth report.
Final Score: (7+6+10)/3 * 10 = 73

GPT 4o Response: Clinical Report: Electrocardiogram (ECG) Analysis:
1. Heart Rate and Rhythm: Heart Rate: Approximately 75 beats per minute (bpm). Rhythm: Sinus rhythm is present, as indicated
by the presence of P waves before each QRS complex and a consistent PR interval.
2. Intervals and Durations: PR Interval: 152 ms (within normal range: 120 200 ms). QRS Duration: 125 ms (slightly prolonged;
normal range: 80 120 ms). QT Interval: 421 ms (QT interval, QTcB: 447.5 ms, QTcF: 439.0 ms; within normal limits for QTc).
3. Axis: QRS Axis: 72.0 degrees (left axis deviation). P Axis: 71.5 degrees. T Axis: 73.0 degrees.
4. Waveform Analysis: P Waves: Normal morphology, consistent in all leads. QRS Complexes: Slightly widened, indicating a
possible intraventricular conduction delay. ST Segment: No significant elevation or depression noted. T Waves: Normal
morphology, no inversion or significant abnormalities observed.
5. Additional Observations: Lead V1 V6: Normal R wave progression. No evidence of acute ischemia or infarction. No significant
arrhythmias detected.
Conclusion:
The ECG shows a sinus rhythm with a heart rate of approximately 75 bpm. There is a slight prolongation of the QRS duration,
suggesting a possible intraventricular conduction delay. The QRS axis is deviated to the left. No acute ischemic changes or
significant arrhythmias are noted. The overall findings are within normal limits, with minor deviations that may warrant further
clinical correlation and follow up.

LLM as Judge Feedback for GPT 4o Response:
1. Diagnosis
Score: 5. Explanation: The generated report correctly identifies left axis deviation but misses several key diagnoses present in the 
ground truth report, such as sinus arrhythmia, left anterior hemiblock, right bundle branch block, bifascicular block, abnormal 
QRS(T), and possible lateral myocardial damage. The generated report mentions a possible intraventricular conduction delay, 
which is not explicitly stated in the ground truth report. 
2. Form
Score: 5. Explanation: The generated report correctly identifies the left axis deviation and slightly prolonged QRS duration. 
However, it fails to identify the abnormal QRS(T) and possible lateral myocardial damage mentioned in the ground truth report. 
The generated report also does not mention any abnormalities in the P-wave, ST changes, or T-wave, which are critical for a 
comprehensive waveform analysis. 
3. Rhythm
Score: 5. Explanation: The generated report identifies a sinus rhythm but misses the sinus arrhythmia mentioned in the ground 
truth report. The generated report does not identify any significant arrhythmias, which is a notable omission given the ground 
truth report's mention of sinus arrhythmia. 
Final Score: (5+5+5)/3 * 10 = 50

Question:
Please write a clinical report based on this ECG image.

Ground Truth Report: 
sinus arrhythmia, left axis deviation, left anterior hemiblock, right bundle branch block, bifascicular
block, abnormal QRS(T), possible lateral myocardial damage

Figure A15: Comparison of model outputs on ECG report generation task (Example 3). Blue indicates correct
information, while red highlights errors. Our model’s output mostly aligns with the ground truth report, achieving a
report score of 73. In comparison, GPT-4’s output partially aligns with the ground truth report.

37



Case Study: ECG Arena 

PULSE Response to the First Question:
The presence of qR complexes and rS complexes in the leads suggests a pattern of abnormal ventricular depolarization. The
qR complexes, which are small q waves followed by a larger R wave, indicate a possible conduction delay or block in the
ventricular conduction system. The rS complexes, which are small R waves followed by a larger S wave, may indicate a
pattern of abnormal ventricular activation, possibly related to the left anterior fascicular block. The combination of these
complexes suggests that the ventricular depolarization is not following a normal pattern, which can be indicative of
underlying cardiac pathology.
PULSE Response to the Follow-up Question:
The key feature that supports the diagnosis in this ECG image is the presence of a left anterior fascicular block…The left
anterior fascicular block is a specific type of conduction block that affects the left anterior fascicle of the left bundle branch,
resulting in abnormal ventricular activation. This diagnosis is further supported by the presence of left ventricular
hypertrophy, which can contribute to the development of conduction abnormalities.

LLM-as-Judge Feedback for PULSE Response:
1. Accuracy
Score: 5. Explanation: The model's response correctly identifies the presence of qR and rS complexes and associates them with
a conduction abnormality, specifically a left anterior fascicular block (LAFB). However, it introduces inaccuracies by
suggesting a general 'abnormal ventricular depolarization' and mentioning left ventricular hypertrophy, which is not part of
the ground truth answer.
2. Completeness
Score: 5. Explanation: The model's response partially covers the essential aspects of ECG interpretation related to LAFB, such
as the identification of qR and rS complexes. However, it misses critical details like the specific leads involved (I, aVL, II, III,
aVF) and the explanation of left axis deviation (LAD) as a key feature supporting the diagnosis.
3. Instruction Adherence
Score: 7. Explanation: The model follows the instructions by addressing the pattern of qR and rS complexes and suggesting a
diagnosis. However, it deviates slightly by introducing unrelated information about left ventricular hypertrophy and not
explicitly mentioning left axis deviation (LAD) as the key feature supporting the diagnosis.
Final Score: (5+5+7)/3 * 10 = 56.7

GPT-4o Response to the First Question:
The ECG image shows a pattern of qR complexes in leads V1 and V2, and rS complexes in leads V5 and V6. This pattern is
indicative of a right bundle branch block (RBBB).Here are the key features that support this diagnosis:
1. qR Complexes in V1 and V2: In RBBB, the initial part of the QRS complex is normal because the left ventricle is activated
first. This is followed by a delayed right ventricular activation, which results in a secondary R wave (R') in the right precordial
leads (V1 and V2). This can appear as a qR complex. 2. rS Complexes in V5 and V6: In the left precordial leads (V5 and V6), the
delayed right ventricular activation results in a wide S wave….In summary, the pattern of qR complexes in V1 and V2, and rS
complexes in V5 and V6, along with a prolonged QRS duration, is characteristic of a right bundle branch block.
GPT-4o Response to the Follow-up Question:
The key feature that supports the diagnosis of right bundle branch block (RBBB) in this ECG image is the presence of a qR
complex in leads V1 and V2 and an rS complex in leads V5 and V6. Additionally, the QRS complex duration is prolonged,
which is another hallmark of RBBB.
To summarize: qR Complex in V1 and V2: This indicates delayed right ventricular activation…These features collectively
support the diagnosis of right bundle branch block.

LLM-as-Judge Feedback for GPT-4o Response:
1. Accuracy
Score: 0. Explanation: The model's response is largely inaccurate. It incorrectly identifies the pattern of qR complexes in leads
V1 and V2 and rS complexes in leads V5 and V6 as indicative of a right bundle branch block (RBBB). The ground truth
specifies that the pattern of qR complexes in leads I and aVL, along with rS complexes in leads II, III, and aVF, is characteristic
of a Left Anterior Fascicular Block (LAFB). The model's response does not match the correct identification of waveforms,
intervals, and clinical diagnosis.
2. Completeness
Score: 0. Explanation: The model's response partially covers the essential aspects of ECG interpretation related to LAFB, such
as the identification of qR and rS complexes. However, it misses critical details like the specific leads involved (I, aVL, II, III,
aVF) and the explanation of left axis deviation (LAD) as a key feature supporting the diagnosis.
3. Instruction Adherence
Score: 5. Explanation: The model follows the instructions by addressing the pattern of qR and rS complexes and suggesting a
diagnosis. However, it deviates slightly by introducing unrelated information about left ventricular hypertrophy and not
explicitly mentioning left axis deviation (LAD) as the key feature supporting the diagnosis.
Final Score: (0+0+5)/3 * 10 = 16.7

Question:
What can be inferred from the pattern of the qR complexes and rS complexes in the
leads of this ECG image?
Ground Truth Answer:
The pattern of qR complexes in leads I and aVL, along with rS complexes in leads
II, III, and aVF, is characteristic of a Left Anterior Fascicular Block (LAFB). In LAFB,
the ECG typically shows small Q waves and tall R waves in leads I and aVL (qR
complexes), and small R waves followed by deep S waves in leads II, III, and aVF
(rS complexes). This pattern is a result of the altered conduction through the left anterior fascicle, which causes the electrical
activity to spread upwards and leftwards in the heart, leading to these distinctive ECG findings.
Follow-up Question:
What is the key feature that supports the diagnosis in this ECG image?
Ground Truth Answer:
The left axis deviation (LAD) observed in the ECG is a key feature that supports the diagnosis of Left Anterior Fascicular
Block (LAFB). LAD is indicated by the negative deflections in leads II, III, and aVF, and positive deflections in leads I and
aVL. In LAFB, the abnormal conduction pathway leads to the electrical axis of the heart shifting towards the left, which
manifests as a left axis deviation on the ECG. This deviation, combined with the specific patterns of qR complexes in leads I
and aVL and rS complexes in leads II, III, and aVF, strongly suggests LAFB.

Figure A16: Comparison of model outputs on ECG Arena (Example 1). Blue indicates correct information, while
red highlights errors. Given the challenging nature of this task, our model’s output partially aligns with the ground
truth, and GPT-4o’s output largely deviates from the reference.
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