

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM PARAMETERS TO BEHAVIORS: UNSUPERVISED COMPRESSION OF THE POLICY SPACE

Anonymous authors

Paper under double-blind review

## ABSTRACT

Despite its recent successes, Deep Reinforcement Learning (DRL) is notoriously sample-inefficient. We argue that this inefficiency stems from the standard practice of optimizing policies directly in the high-dimensional and highly redundant parameter space  $\Theta$ . This challenge is greatly compounded in multi-task settings. In this work, we develop a novel, unsupervised approach that compresses the policy parameter space  $\Theta$  into a low-dimensional latent space  $\mathcal{Z}$ . We train a generative model  $g : \mathcal{Z} \rightarrow \Theta$  by optimizing a behavioral reconstruction loss, which ensures that the latent space is organized by functional similarity rather than proximity in parameterization. We conjecture that the inherent dimensionality of this manifold is a function of the environment’s complexity, rather than the size of the policy network. We validate our approach in continuous control domains, showing that the parameterization of standard policy networks can be compressed up to five orders of magnitude while retaining most of its expressivity. As a byproduct, we show that the learned manifold enables task-specific adaptation via Policy Gradient operating in the latent space  $\mathcal{Z}$ .

## 1 INTRODUCTION

High-dimensional parameterization of policies via deep neural networks has been a key driver of recent successes in Deep Reinforcement Learning (among others, Andrychowicz et al., 2020; Smith et al., 2022; Bakhtin et al., 2022; Wurman et al., 2022; Duval et al., 2024). A major drawback of this approach, however, is a significant increase in sample complexity, which is further compounded when the agent is called to solve multiple and potentially unknown tasks, typically requiring learning *tabula rasa* (Agarwal et al., 2022). This inefficiency often stems from a fundamental redundancy in the parameter space, where a large set of distinct weight configurations maps to a much smaller set of effective behaviors. Various approaches tried to solve this limitation as a *byproduct*, such as explicitly learning diverse behaviors (Eysenbach et al., 2018; Zahavy et al., 2022; De Paola et al., 2025; Zamboni et al., 2025), or enforcing small policy networks in asymmetric actor-critic architectures (Duval et al., 2024; Mastikhina et al., 2025).

In this paper, we address this limitation directly through the lenses of the *Manifold Hypothesis* (Cayton et al., 2005), a widely accepted tenet of Machine Learning, and we hypothesize that it holds in RL as well, namely that:

*The manifold of realizable behaviors is intrinsically low-dimensional and largely independent of the network’s parameter count.*

In view of this hypothesis, we propose a paradigm shift from learning in the parameter space to learning in the (latent) *behavior* space itself. To do so, the agent first needs to learn a latent representation of the possible behaviors, which, according to the aforementioned hypothesis, should be low-dimensional and *policy network invariant*. Then, it needs to find a way to leverage this representation to solve different tasks *efficiently*. The proposed solution is a novel two-stage framework directly inspired by the *Unsupervised* RL formalism (Laskin et al., 2021), allowing for the *explicit* exploitation of this latent structure. In a first *pre-training* phase, we learn a latent representation of the behavior manifold by leveraging a generative model in a fully *unsupervised* fashion, that is, without including any information related to a specific task, i.e., reward. In this way, we can learn a latent

054 structure that models the intrinsic nature of the environment dynamics, rather than its coupling with  
 055 a task, and preserve the end-to-end differentiability that makes gradient-based optimization effec-  
 056 tive. In a second *fine-tuning* phase, we leverage the pre-trained representation to fine-tune policies  
 057 against specific tasks known *a posteriori*, avoiding the need to learn from scratch. In particular,  
 058 the fine-tuning phase involves performing gradient steps in the latent space, thereby optimizing *la-  
 059 tent behaviors* directly. This approach enables the agent to explore the inherently low-dimensional  
 060 behavior space rather than the high-dimensional parameter space.

061 In this paper, we address the following:

063 **Research Questions:**

065 (Q1) Is it possible to learn a low-dimensional latent representation of a high-dimensional  
 066 policy parameter space in an unsupervised fashion?  
 067 (Q2) What are the properties of such a latent representation, if it exists? Is its intrinsic  
 068 dimension a function of the behavioral complexity rather than the size of the parameter  
 069 space?  
 070 (Q3) How can we fine-tune against specific tasks leveraging the low-dimensional space?  
 071 Does this come with positives?

073 **Content Outline and Contributions.** First, in Section 3, we formulate the problem of learning a  
 074 latent representation of behaviors in an unsupervised fashion and then leveraging it to solve specific  
 075 tasks. Then, in Section 4, we characterize our proposed solution to this problem, namely, addressing  
 076 it in a two-stage pipeline. Finally, in Section 5, we perform experiments extensively to address  
 077 the Research Questions. We demonstrate that the proposed pipeline is indeed able to learn low-  
 078 dimensional latent representations (Q1), which are more influenced by the environment than by the  
 079 size of the compressed policies (Q2). Finally, we demonstrate that learning over this reduced space  
 080 can make simple algorithms competitive against complex state-of-the-art DRL algorithms (Q3).

081 **2 PRELIMINARIES**

083 **Notation.** In the following, we denote a set with a calligraphic letter  $\mathcal{A}$  and its size as  $|\mathcal{A}|$ , the  
 084 simplex on  $\mathcal{A}$  is denoted as  $\Delta(\mathcal{A}) := \{p \in [0, 1]^{|\mathcal{A}|} \mid \sum_{a \in \mathcal{A}} p(a) = 1\}$ . For two distributions  
 085  $p_1, p_2 \in \Delta(\mathcal{A})$ , we define a general measure of divergence between distributions with  $D(p_1 || p_2)$ .  
 086

087 **Interaction Protocol.** As a base model for interaction, we consider a (finite-horizon) **Controlled**  
 088 **Markov Process** (CMP). A CMP is defined as the tuple  $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \mathbb{P}, \mu, T)$ , where  $\mathcal{S}$  is the state  
 089 space and  $\mathcal{A}$  is the action space. At the start of an episode, the initial state  $s_0$  of  $\mathcal{M}$  is drawn from  
 090 an initial state distribution  $\mu \in \Delta(\mathcal{S})$ . Upon observing  $s_0$ , the agent takes action  $a_0 \in \mathcal{A}$ , and the  
 091 system transitions to  $s_1 \sim \mathbb{P}(\cdot \mid s_0, a_0)$  according to the transition model  $\mathbb{P} : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ .  
 092 The process is repeated until  $T$  is reached and  $s_T$  is generated, with  $T < \infty$  being the horizon  
 093 of an episode. The agent selects actions according to a decision *policy*  $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$  such that  
 094  $\pi(a|s)$  denotes the conditional probability of taking action  $a$  upon observing state  $s$ . Deploying a  
 095 policy  $\pi$  over  $\mathcal{M}$  leads to the generation of trajectories  $\tau$ , defined as a sequence of state-action pairs  
 096  $\tau := (s_0, a_0, s_1, a_1, \dots, s_T)$ . Furthermore, a policy  $\pi$  induces a state distribution  $d_\pi^s \in \Delta(\mathcal{S})$  over  
 097 the state space of the CMP  $\mathcal{M}$  defined as  $d_\pi^s(s) = \sum_{t=0}^T \Pr(s_t = s)$ . It also induces a state-action  
 098 distribution  $d_\pi^{sa} \in \Delta(\mathcal{S} \times \mathcal{A})$ , defined as  $d_\pi^{sa}(s, a) = \pi(a \mid s)d_\pi^s(s)$ , which we will denote as the  
 099 *behaviors* of the policy. In the following, we will consider deterministic policies  $\pi_\theta : \mathcal{S} \rightarrow \mathcal{A}$   
 100 represented by neural networks parameterized by a set of weights  $\theta \in \Theta$ , where  $\Theta \subseteq \mathbb{R}^P$  is the  
 101 policy parameter space, with  $P$  being the total number of parameters. We define the *Policy Space*  
 102  $\Pi_\Theta$  as the collection of policies that can be represented by  $\Theta$ . For brevity of notation, we denote a  
 103 policy  $\pi_\theta$  as its set of parameters  $\theta$  and the policy space  $\Pi_\Theta$  as the parameter space  $\Theta$  that induces  
 104 it.

104 **(Unsupervised) RL.** In RL, an agent learns how to solve (downstream) *tasks*, encoded by different  
 105 reward signals. For this matter, we define a Markov Decision Process (MDP, Puterman, 2014)  
 106  $\mathcal{M}_R := \mathcal{M} \cup R$  as a coupling of a CMP  $\mathcal{M}$  and a reward function  $R : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ , which the agent  
 107 observes after every state transition. In the **Unsupervised Reinforcement Learning** (URL, Laskin  
 et al., 2021) framework, the reward signal is not always available to the agent from the beginning.

108 It often belongs to a (potentially infinite) family of tasks  $\mathcal{R}$ , also unknown to the agent. URL is  
 109 then composed of two phases: **(1)** an *unsupervised pre-training* phase involves the agent interacting  
 110 with a CMP to acquire general-purpose knowledge without receiving any reward signal, which is  
 111 distilled into a pre-trained model  $\mathbb{M}$ ; **(2)** the *supervised fine-tuning* phase begins once a reward  
 112 function  $R \in \mathcal{R}$  is revealed. At this point, the CMP becomes a standard MDP  $\mathcal{M}_R$ , and the agent  
 113 leverages the pre-trained model  $\mathbb{M}$  to find a set of policy parameters that maximizes the expected  
 114 return for the given task, namely as

$$115 \quad \theta^* = \arg \max_{\theta \in \Theta} J^R(\theta, \mathbb{M}) = \arg \max_{\theta \in \Theta} \mathbb{E}_{(s, a) \sim d_{\pi_\theta}^{sa}, \mathbb{M}} [R(s, a)]. \quad (1)$$

118 **Policy Optimization.** Policy Optimization (PO, Deisenroth et al., 2013), which involves optimizing  
 119 the policy parameters directly, has shown surprisingly good results. This is especially true for deep  
 120 neural policies, where first-order methods have been extensively employed. A popular approach  
 121 to PO is **Policy Gradient** (PG, Peters & Schaal, 2008), which updates the parameters by simple  
 122 gradient ascent  $\theta' \leftarrow \theta + \alpha \nabla_\theta J(\theta)$ . Among others, **Policy Gradient with Parameter-based  
 123 Exploration** (PGPE, Sehnke et al., 2008) is a PG algorithm that handles exploration in the parameter  
 124 space by sampling the policy parameters  $\theta$  from a hyper-policy  $\nu_\phi$ , parameterized by  $\phi$ .<sup>1</sup> PGPE  
 125 optimizes a trajectory-based version of the objective defined in Eq. 1, defined as:

$$126 \quad J^R(\theta, \phi, \mathbb{M}) = \mathbb{E}_{\tau \sim p(\cdot | \theta), \theta \sim \nu_\phi, \mathbb{M}} [R(\tau)], \quad (2)$$

128 where  $R(\tau) = \sum_{t=0}^T R(s_t, a_t)$  is the return of a trajectory, and  $p(\tau | \theta) = \mu(s_0) \prod_{t=0}^T \mathbb{P}(s_{t+1} |$   
 129  $s_t, a_t) \pi_\theta(a_t | s_t)$  is the probability density of a trajectory. In PGPE, the parameter vector  $\phi$  is usually  
 130 updated via gradient ascent using a Monte Carlo estimator of the gradient computed over  $N \in \mathbb{N}$   
 131 trajectories:

$$133 \quad \hat{\nabla}_\phi J^R(\theta, \phi) = \frac{1}{N} \sum_{i=1}^N \nabla_\phi \log \nu_\phi(\theta_i) R(\tau_i). \quad (3)$$

136 **Generative Models.** Generative models have achieved remarkable success in density estimation  
 137 for multi-modal data, drawing significant interest from the RL community. Among others, **Autoen-  
 138 coders** (AE, Hinton & Salakhutdinov, 2006) are a type of artificial neural network used to learn  
 139 efficient data encoding in an unsupervised manner. The aim is first to learn encoded representations  
 140 of data and then generate the input data (as closely as possible) from the learned encoded  
 141 representations. More specifically, their goal is to map a *data space*  $\mathcal{X} \subseteq \mathbb{R}^n$  to a *latent space*  
 142  $\mathcal{Z} \subseteq \mathbb{R}^k$ , with  $k \ll n$ . AEs are composed of an encoder, a function  $f_\xi : \mathcal{X} \rightarrow \mathcal{Z}$ , parameterized  
 143 by vector  $\xi$ , which maps a data sample  $x \in \mathcal{X}$  to a latent code  $z \in \mathcal{Z}$ , and a decoder, a function  
 144  $g_\zeta : \mathcal{Z} \rightarrow \mathcal{X}$ , parameterized by vector  $\zeta$ , which reconstructs the data sample  $\hat{x} \in \mathcal{X}$  from  
 145 the latent code  $z$  in such a way that  $g_\zeta \approx f_\xi^{-1}$ . An AE is typically trained by minimizing the  
 146 reconstruction error  $\mathcal{L}_{AE}(x) = d(x, g_\zeta(f_\xi(x)))$ , where  $d$  is a metric that measures the distance  
 147 of samples in the data space. These sorts of architectures are particularly compelling in view of  
 148 the Manifold Hypothesis (Cayton et al., 2005): AEs learn this underlying structure by compress-  
 149 ing the data into a compact latent space that represents the manifold and then reconstructing the  
 150 original data from it, as illustrated in Fig. 1. Unfortunately, AEs are far from being bulletproof.  
 151 In cases where no plausible embedding exists, even networks  $(f_\xi, g_\zeta)$  which come close  
 152 to perfectly reconstructing the manifold  $\mathcal{M}$  will incur numerical instability (Cornish et al.,  
 153 2020). In some other cases, it is possible to re-  
 154 solve these topological issues by increasing the  
 155 latent dimension  $k$ . For instance, a dimension-  
 156 ality of  $k = 2d^* + 1$  is enough to topologi-  
 157 cally embed any manifold of dimension  $d^*$  in  
 158  $\mathbb{R}$  (Theorem V3, Hurewicz & Wallman, 2015).  
 159



Figure 1: Autoencoder Spaces and Data Manifold.

161 <sup>1</sup>For instance, Gaussian hyper-policies will be parameterized by their mean and standard deviation, i.e.  
 $\phi = (\mu, \sigma)$ .



Figure 2: Pipeline of Unsupervised Compression of the Policy Space.

### 3 PROBLEM FORMULATION

By looking closely to Eq. 1, one should notice that to solve an RL task, the agent *just* needs to focus on visiting the states and actions that *matter for the task*. Yet, this simple intuition hides a few traps. First of all, different policy parameters  $\theta \in \Theta$  might induce nearly identical distributions over actions. Yet, even different distributions over actions could lead to comparable state-action distributions due to the complex structure of the environment. Finally, in almost all problems of interest, there may be multiple and potentially unknown tasks that the agent could be called upon to solve, and it would be risky to deem any state-action distribution irrelevant without additional information on the task structure.

In this work, we aim to address these issues by focusing on *behaviors* rather than parameters, under the lens of the Manifold Hypothesis: we want to learn a latent manifold of realizable behaviors, and we do this by *compressing* parameters inducing similar behaviors to the same latent representation. For a policy parameters space  $\Theta \subseteq \mathbb{R}^n$ , we define  $\mathcal{Z} \subseteq \mathbb{R}^k$  as a  $k$ -dimensional latent space, with  $k \ll n$ , and we look for a function  $g : \mathcal{Z} \rightarrow \Theta$  that maps a latent vector  $z \in \mathcal{Z}$ , which we also refer to as latent code, to a corresponding policy parameter vector  $\theta = g(z)$ . As a result, any policy could be written as  $\pi_\theta = \pi_{\theta=g(z)} = \pi_z$ .

We refer to this problem as **Latent Behavior Compression**, which is formally defined as finding the generative function  $g^* : \mathcal{Z} \rightarrow \Theta$ , such that:

$$\forall \theta \in \Theta, \quad \exists z \in \mathcal{Z} : \quad g^* = \arg \min_g D(d_{\pi_\theta}^{sa} || d_{\pi_{g(z)}}^{sa}). \quad (4)$$

This task is essentially *unsupervised*, as any notion of a specific task is absent. Indeed, it is somewhat similar to the Policy Space Compression framework (Mutti et al., 2022), yet in the latter, the authors aim to reduce the cardinality of the policy space, rather than its dimensionality. Moreover, the constraints defining a valid compression are stricter than ours, resulting in an optimization problem that is known to be NP-hard.

Once such a low-dimensional space and generative function are available, solving for different tasks will require searching over a simpler space than the original one. We call this process **Latent Behavior Optimization**. In other words, the standard PO problem of Eq. 1, which requires finding an optimal policy parameter vector  $\theta^* \in \Theta$ , will be reformulated as the problem of finding an optimal latent code  $z^* \in \mathcal{Z}$  that, via the generative function  $g$ , yields  $\theta^*$ . For a given task with reward  $R \in \mathcal{R}$ , the policy optimization problem is now defined as:

$$z^* = \arg \max_{z \in \mathcal{Z}} J^R(z) = \arg \max_{z \in \mathcal{Z}} J^R(\theta = g(z)). \quad (5)$$

Contrary to the Latent Behavior Compression task, this task is essentially *supervised*, as it is well-defined as soon as the agent is provided with a reward. In the following, we will show how the URL framework can indeed provide essential tools in addressing the two problems.

---

216 **4 METHOD: UNSUPERVISED COMPRESSION OF THE POLICY SPACE**  
217

218 To address the sample inefficiency inherent in high-dimensional policy parameter spaces, we pro-  
219 pose a paradigm shift from directly optimizing in the parameter space to learning within a com-  
220 pact, low-dimensional policy manifold that captures the true diversity of behaviors. This is achieved  
221 through a two-phase framework: a completely unsupervised, task-agnostic pre-training phase to dis-  
222 cover the manifold, followed by a supervised, task-specific fine-tuning phase. As illustrated in Fig. 2,  
223 this framework is composed of three steps: (1) generating a behaviorally diverse dataset of policies,  
224 (2) learning the latent policy manifold via a generative model, and (3) performing fine-tuning by  
225 optimizing over this learned latent space.

226 **Policy Dataset Generation.** Many manifold reconstruction algorithms depend on efficiently cov-  
227 ering the manifold with samples (Bernstein et al., 2000; Cheng et al., 2005; Fefferman et al., 2016).  
228 Thus, the first stage of our framework involves generating a dataset  $\mathcal{D}_\Theta$  of policies intended to cover  
229 the manifold of behaviorally diverse policies.

230 A naïve option is to randomly sample  $N$  policies,  $\hat{\mathcal{D}}_\Theta = \{\boldsymbol{\theta}_i\}_{i=1}^N$ , by drawing their parameters  
231 from a uniform distribution. Unfortunately, it is well-understood that such naïve sampling from the  
232 parameter space is unlikely to produce uniform coverage of the behavior space, as it tends to favor  
233 functionally similar, often non-exploring, policies.

234 To address this bias, an explicit measure of *behavioral diversity* is needed. Looking at Eq. 4, one  
235 notices that optimizing such a measure directly requires estimating the divergence between two  
236 state-action distributions  $d_{\pi_\Theta}^{sa}, d_{\pi_{\Theta'}}^{sa}$ . Unfortunately, this would not only be computationally intensive  
237 but also require sampling from the environment for a potentially vast set of policies. To avoid this,  
238 we will take into account an upper bound to this quantity in the case of finite-horizon tasks (Prop.  
239 E.1, Metelli et al., 2018), namely  $D(\pi_\Theta || \pi_{\Theta'})$ . In practice, we substitute this measure with the  
240 L2 distance of two policies in the action space, evaluated on a finite subset of the state space, or  
241 formally:

242 
$$D(\pi_\Theta || \pi_{\Theta'}) = \sqrt{\sum_{i=1}^M (\pi_\Theta(\cdot | s_i) - \pi_{\Theta'}(\cdot | s_i))^2}. \quad (6)$$
243
244
245

246 Based on this proxy, we apply a Novelty Search algorithm (Lehman & Stanley, 2011) by computing  
247 a *novelty score*,  $\rho(\pi_\Theta)$ , for each policy based on its average divergence from its  $k$ -nearest neighbors:  
248  $\rho(\pi_\Theta) = \frac{1}{k} \sum_{i=1}^k D(\pi_\Theta || \pi_{\Theta_i})$ .

249 Then, a high score indicates a behaviorally unique policy. Using this metric, we form the final  
250 dataset  $\mathcal{D}_\Theta$  by selecting only the top percentile of policies with the highest novelty scores, ensuring  
251 a dataset of behaviorally diverse policies.

252 **Latent Behavior Compression.** In the second stage, we learn the low-dimensional manifold from  
253 the filtered policy dataset  $\mathcal{D}_\Theta$ . Potentially, any generative model would do the work. Still, here  
254 we are interested in learning latent low-dimensional representations while preserving the end-to-end  
255 differentiability that makes gradient-based optimization effective. For these reasons, we employ a  
256 symmetric autoencoder architecture with an encoder  $f_\xi : \Theta \rightarrow \mathcal{Z}$  and a decoder  $g_\zeta : \mathcal{Z} \rightarrow \Theta$ .  
257 While a standard autoencoder minimizes a parameter reconstruction error, our goal is to compress  
258 policy *behavior*. We therefore introduce a novel **Behavioral Reconstruction Loss**, which trains  
259 the autoencoder to minimize the expected behavioral divergence between the original policy and its  
260 reconstruction:

261 
$$\mathcal{L}_B(\xi, \zeta) = \mathbb{E}_{\boldsymbol{\theta} \sim \mathcal{D}_\Theta} [D(\pi_\Theta || \pi_{g_\zeta(f_\xi(\boldsymbol{\theta}))})]. \quad (7)$$
262

263 This objective frees the decoder from reproducing the exact parameter values, allowing it to discover  
264 any parameterization that generates the desired behavior. As a result, the latent space  $\mathcal{Z}$  becomes  
265 organized purely by functional similarity, effectively capturing the policy manifold. In practice, we  
266 use an empirical estimator of the behavioral reconstruction loss based on the notion of divergence in  
267 the action space. For this purpose, we train our autoencoders to minimize the *Mean Squared Error*  
268 between action vectors relative to a subset of the state space sampled at each gradient step, resulting  
269 in the estimator  $\hat{\mathcal{L}}_B(\xi, \zeta) = \frac{1}{NM} \sum_{i,j=1}^{N,M} (\pi_{\Theta_i}(s_j) - \pi_{g_\zeta(f_\xi(\boldsymbol{\theta}_i))}(s_j))^2$ , where  $N$  is the number of  
policies, and  $M$  is the number of sampled states.

270 **Latent Behavior Optimization.** In the final stage, we leverage the learned latent manifold for rapid,  
 271 task-specific fine-tuning. With the decoder parameters  $\zeta^*$  frozen,  $g_{\zeta^*}$  becomes a deterministic and  
 272 differentiable function that generates policies from latent codes. This structure allows us to adapt a  
 273 wide range of PG methods to operate in the latent space. By applying the chain rule, the standard  
 274 policy gradient can be back-propagated through the frozen decoder to update the latent code  $z$ :

$$\nabla_z J^R(z) = \nabla_z g_{\zeta^*}(z)^\top \nabla_\theta J^R(\theta), \quad (8)$$

275 where  $\nabla_\theta J^R(\theta)$  is the conventional policy gradient and  $\nabla_z g_{\zeta^*}(z)$  is the Jacobian of the decoder.  
 276 This provides a general recipe for adapting popular PG algorithms to our framework. This approach  
 277 is particularly advantageous for parameter-exploring PG methods, like PGPE, which notoriously  
 278 struggle with high-dimensional parameter spaces. By operating on the low-dimensional latent space,  
 279 these algorithms regain their effectiveness while still controlling the expressive power of the original  
 280 large network.<sup>2</sup>

281 **Remarks.** In this section, we proposed three specific instantiations for each phase. Yet, we em-  
 282 phasize that the proposed pipeline represents the most relevant contribution *per se*, independently  
 283 of how it is realized, i.e., how the policies are collected, which divergence measure is used, which  
 284 generative model or PO algorithm over the latent space is employed.

## 289 5 EXPERIMENTS

290 We now investigate through extensive empirical corroboration how the proposed method addresses  
 291 the research questions. In order to do so, we will mainly focus on the *unsupervised pre-training*  
 292 phase of the proposed pipeline as of Fig. 2, in which a latent representation is built out of general  
 293 datasets of policies *not designed to address any specific task explicitly*, and we report the empirical  
 294 results in Subsec. 5.1. Finally, we make sure that such a latent space can indeed be leveraged in later  
 295 *supervised fine-tuning* phases *as soon as a task is provided*, and report the results in Subsec. 5.2. **A**  
 296 **detailed description of the environments and experimental settings can be found in Appendix B.**

297 **Experimental Domains.** The experiments are performed to illustrate essential features of Latent  
 298 Behavior Compression, and for this reason, the domains are selected for being challenging while  
 299 keeping high interpretability. The first is the **Mountain Car Continuous** (MC, Moore, 1990) envi-  
 300 ronment. To evaluate the quality and characteristics of the latent space, we define four downstream  
 301 tasks: **standard** and **left** have the goal state on the right and left hill, respectively; **speed**  
 302 and **height** incentivize the car to keep a high speed and vertical coordinate, respectively, with-  
 303 out terminating the episode. **We also consider three environments** from the MuJoCo suite (Tassa  
 304 et al., 2018). For **Reacher** (RC), we define four downstream tasks: **speed**, which incentivizes  
 305 the fingertip to move with high linear velocity; **clockwise** and **c-clockwise** reward the agent  
 306 for each step the fingertip is rotating clockwise and counterclockwise, respectively; and **radial**,  
 307 which promotes the retraction and extension of the arm. For **Hopper** (HP), we define four down-  
 308 stream tasks: **forward**, **backward**, and **standstill** reward the agent for positive, negative,  
 309 or close-to-zero velocity along the  $x$  axis respectively; **jump** rewards the agent for achieving a cer-  
 310 tain position along the  $z$  axis. Finally, for **HalfCheetah** (HC), we define four downstream tasks:  
 311 **forward** and **backward** are defined as for HP; **frontflip** and **backflip** reward the agent  
 312 each time it performs a frontflip and backflip, respectively.

313 **Experimental Regimes.** The experiments are performed over a set of different parameters. In MC,  
 314 we took into account three Policy Sizes (Small, Medium, and Large) with roughly  $10^1$ ,  $10^3$ , and  $10^5$   
 315 parameters respectively, three Policy Dataset Sizes (10k, 50k, and 100k generated policies, with a  
 316 10% novelty-based cut-down), and three Latent Space Sizes (1D, 2D, and 3D). In RC, we focused on  
 317 a specific configuration with Medium policies, Policy Dataset size of 100k, but five possible latent  
 318 space sizes (1D, 2D, 3D, 5D, and 8D). **In HP and HC, we focused on Policy Datasets of 10k, using**  
 319 **Medium policies, with three latent space sizes (5D, 8D, and 16D)**<sup>3</sup>

320 <sup>2</sup> Additionally, running PGPE over the latent space does not actually require computing the Jacobian of the  
 321 decoder  $\nabla_z g_{\zeta^*}(z)$ , as explained in Appendix B.

322 <sup>3</sup> Notably, the AE architecture and training hyper-parameters are left the same for every experiment, regard-  
 323 less of configuration or environment.



Figure 3: Landscape of the Latent Behavior Manifold. **Lighter** and **darker** colors indicate higher and lower returns of the decoded policy. The plots shown here represent a subset of the full results reported in Appendix B. We consider a specific seed with different tasks (**height**, **standard**, **speed**), policy size (Small, Medium, Large), and encoding dimension (1D, 2D, 3D), for both MC (first three columns, datasets of 50k policies) and RC (last column, datasets of 100k policies).

### 5.1 UNSUPERVISED PRE-TRAINING

First, we address the first two research questions, that is:

- (Q1) Is it possible to learn a low-dimensional latent representation of a high-dimensional policy parameter space in an unsupervised fashion?
- (Q2) What are the properties of such a latent representation, if it exists? Is its intrinsic dimension a function of the behavioral complexity rather than the size of the parameter space?

To do so, we discretize the latent space into a subset  $\{\mathbf{z}_i\}_{i=1}^N$  and perform evaluations of the decoded policies  $\{\pi_{\mathbf{z}_i}\}_{i=1}^N$ . This allows for a rough estimate of the quality of the policies compressed in the latent manifold. Further details on how such discretization was performed can be found in Appendix B.

**Landscape of the Latent Behavior Manifold.** We visually inspected the latent spaces trained under different conditions and environments, and we report a handful in Fig. 3. Interestingly, it is apparent that the latent spaces, regardless of the choice of encoding dimension (top-to-bottom) or policy size (left-to-right), can encode *some* behaviorally diverse policies with high performance. For instance, in Fig. 3e,3f, and 3g, a 2D latent space can encode policies of all three sizes, but the landscape grows more complex with the larger policy sizes. We speculate that this is due to the increased range of behaviors expressed by larger policies and the hardness of high-compression regimes. Indeed, the same trend is present for different tasks, as in Fig. 3i,3k. On the other hand, by changing the encoding dimension as in Fig. 3b,3f,3j, it is clear how certain behavioral areas at high performance are able to grow larger, *creating a better optimization landscape*. Unfortunately yet, the compression is only as good as the dataset used to learn the latent space: when a behavior is scarcely represented in the dataset, as is the case for the task **height** in Fig. 3a,3c, it is unlikely that the learned representation will encode it in large areas, or encode it at all. As for RC, the compression architecture struggles to compress the policies at higher compression regimes (Fig. 3d,3h), as the environment is more challenging and presents a wider range of behaviors. On the other hand, large areas of good quality

Table 1: Quality of Latent Behavior Compression in MC. We report the performance recovery for three tasks. We report mean and standard deviation computed over 3 seeds.

| Config. |         | Standard       |                |                | Speed          |                |                | Height         |                |                |
|---------|---------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Policy  | Dataset | 1D             | 2D             | 3D             | 1D             | 2D             | 3D             | 1D             | 2D             | 3D             |
|         |         | 1D             | 2D             | 3D             | 1D             | 2D             | 3D             | 1D             | 2D             | 3D             |
| Small   | 10k     | 0.51 $\pm$ .00 | 0.66 $\pm$ .11 | 0.74 $\pm$ .16 | 0.15 $\pm$ .05 | 0.15 $\pm$ .08 | 0.27 $\pm$ .06 | 0.16 $\pm$ .10 | 0.16 $\pm$ .09 | 0.27 $\pm$ .05 |
|         | 50k     | 0.64 $\pm$ .19 | 0.93 $\pm$ .10 | 0.94 $\pm$ .06 | 0.10 $\pm$ .10 | 0.42 $\pm$ .15 | 0.44 $\pm$ .20 | 0.11 $\pm$ .11 | 0.45 $\pm$ .14 | 0.47 $\pm$ .28 |
|         | 100k    | 0.50 $\pm$ .00 | 0.72 $\pm$ .21 | 0.72 $\pm$ .21 | 0.15 $\pm$ .01 | 0.40 $\pm$ .37 | 0.32 $\pm$ .14 | 0.29 $\pm$ .04 | 0.40 $\pm$ .23 | 0.42 $\pm$ .16 |
| Medium  | 10k     | 0.83 $\pm$ .23 | 1.01 $\pm$ .01 | 1.02 $\pm$ .00 | 0.25 $\pm$ .12 | 0.84 $\pm$ .02 | 0.84 $\pm$ .10 | 0.36 $\pm$ .22 | 0.71 $\pm$ .20 | 0.78 $\pm$ .24 |
|         | 50k     | 0.66 $\pm$ .21 | 1.01 $\pm$ .01 | 1.02 $\pm$ .00 | 0.14 $\pm$ .04 | 0.85 $\pm$ .05 | 0.93 $\pm$ .07 | 0.15 $\pm$ .04 | 0.45 $\pm$ .03 | 0.47 $\pm$ .04 |
|         | 100k    | 0.51 $\pm$ .00 | 1.02 $\pm$ .00 | 1.02 $\pm$ .00 | 0.14 $\pm$ .03 | 0.60 $\pm$ .24 | 0.97 $\pm$ .02 | 0.22 $\pm$ .04 | 0.44 $\pm$ .01 | 0.53 $\pm$ .10 |
| Large   | 10k     | 1.02 $\pm$ .00 | 1.01 $\pm$ .00 | 1.01 $\pm$ .00 | 0.79 $\pm$ .22 | 0.87 $\pm$ .06 | 1.04 $\pm$ .02 | 0.78 $\pm$ .14 | 0.84 $\pm$ .07 | 0.87 $\pm$ .06 |
|         | 50k     | 1.02 $\pm$ .00 | 1.01 $\pm$ .00 | 1.01 $\pm$ .00 | 0.68 $\pm$ .06 | 0.97 $\pm$ .05 | 1.00 $\pm$ .01 | 0.47 $\pm$ .03 | 0.55 $\pm$ .11 | 0.57 $\pm$ .13 |
|         | 100k    | 1.01 $\pm$ .00 | 1.01 $\pm$ .00 | 1.01 $\pm$ .00 | 0.73 $\pm$ .15 | 0.92 $\pm$ .06 | 0.99 $\pm$ .01 | 0.39 $\pm$ .07 | 0.54 $\pm$ .04 | 0.74 $\pm$ .27 |

compression are present for larger dimensions of the encoding (Fig. 31), confirming the expected theoretical behavior (Hurewicz & Wallman, 2015).

**Quality of Latent Behavior Compression.** We also compared the policies encoded in the latent space with the ones in the training dataset. They were compared by examining the *performance recovery*, that is, the ratio between the performances of policies decoded from the latent space and those in the dataset. The values for MC are reported in Table 1.<sup>4</sup> First, it is clear that increasing the number of latent dimensions or policy size frequently leads to better performance recovery, resulting in higher performance as well. Interestingly, some configurations appear to recover *higher* performances than the ones in the training dataset. This may be due to the generalization abilities of the AE, but it may also be influenced by variance in the policy evaluation process. On the contrary, we note that 1D latent spaces trained on Small policies fail to learn any meaningful encoding of the behaviors, collapsing to a uniform representation. We attribute this phenomenon to the instability of the learning process when the latent dimensions are not sufficient. Interestingly, this issue is almost always fixed by increasing the number of latent dimensions and does not arise with large policies, which show excellent performance recovery. Finally, our analysis does not indicate that the dataset’s dimension has any meaningful influence on performance recovery.

**Generalization.** We further investigated the generalization capabilities of Latent Behavior Compression in more complex environments. Focusing on larger latent spaces where grid visualization is infeasible, we estimate performance recovery via random sampling of the latent space instead. Table 2 reports the results for HC and HP. These experiments corroborate the observations in MC and provide statistically significant evidence that the latent space generalizes beyond the training set. More specifically, increasing the latent dimension consistently improves performance recovery in HC, while such trend is likely obscured in HP by the high variance in the sampling process. Finally, we observe that generalization varies by task complexity, as indicated by the lower recovery rates for difficult tasks like `frontflip` and `backflip` in HC.

**Takeaways.** With these experiments, we provided a positive answer to **(Q1)**: the proposed unsupervised pipeline is indeed capable of encoding behaviorally meaningful policies in a wide range of configuration and in multiple environments, ultimately leading to **a compression of up to five orders of magnitude**<sup>5</sup>. As for **(Q2)**, we found that while larger policies produce richer behavioral manifolds, even a one-dimensional latent space is often sufficient to capture a wide range of behaviors, supporting the hypothesis that the intrinsic dimensionality of the policy behavior manifold is dictated by the environment complexity rather than by the cardinality of the parameterization. **Additionally, we study the scalability and generalization capabilities of the latent space.** Finally, we extracted some evidence for the existence of a critical intrinsic dimension in the behavioral manifold, but how to leverage this evidence to learn the *best latent representation possible* is out of the scope of the present work.

<sup>4</sup>Values related to the `left` task have been omitted as they do not present major differences from the `standard` task. Instead, they are reported in Table 3 of Appendix B.

<sup>5</sup>More precisely, a 121801:1 compression rate at peak.

432 Table 2: Quality of Latent Behavior Compression in HP and HC. We report the performance recov-  
 433 ery for four tasks by the mean performance recovery and 95% confidence interval over 10 seeds.  
 434

| 435<br>436<br>437                             | 438<br>439<br>440<br>441                      | 442<br>443<br>444                             | 445<br>446<br>447<br>448<br>449<br>450<br>451 | Latent Dimensions  |                |              |              |              |              |              |              |
|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                               |                                               |                                               |                                               | 5D                 |                | 8D           |              | 16D          |              |              |              |
|                                               |                                               |                                               |                                               | Mean               | 95% CI         | Mean         | 95% CI       | Mean         | 95% CI       |              |              |
| 445<br>446<br>447<br>448<br>449<br>450<br>451 | 445<br>446<br>447<br>448<br>449<br>450<br>451 | 445<br>446<br>447<br>448<br>449<br>450<br>451 | 445<br>446<br>447<br>448<br>449<br>450<br>451 | <b>Hopper</b>      | <b>forward</b> | 1.33         | [1.03, 1.69] | 1.59         | [1.21, 1.99] | 1.48         | [1.21, 1.78] |
|                                               |                                               |                                               |                                               | <b>backward</b>    | 2.66           | [0.95, 5.96] | 1.29         | [1.11, 1.47] | 1.20         | [1.07, 1.33] |              |
|                                               |                                               |                                               |                                               | <b>standstill</b>  | 1.49           | [1.06, 2.08] | 1.51         | [1.02, 2.25] | 1.57         | [1.07, 2.32] |              |
|                                               |                                               |                                               |                                               | <b>jump</b>        | 3.83           | [0.64, 9.32] | 1.54         | [1.07, 2.14] | 2.42         | [1.35, 3.75] |              |
| 445<br>446<br>447<br>448<br>449<br>450<br>451 | 445<br>446<br>447<br>448<br>449<br>450<br>451 | 445<br>446<br>447<br>448<br>449<br>450<br>451 | 445<br>446<br>447<br>448<br>449<br>450<br>451 | <b>HalfCheetah</b> | <b>forward</b> | 1.63         | [1.02, 2.31] | 1.80         | [1.20, 2.47] | 1.84         | [1.41, 2.39] |
|                                               |                                               |                                               |                                               | <b>backward</b>    | 1.27           | [1.04, 1.55] | 1.52         | [1.19, 1.85] | 1.72         | [1.37, 2.06] |              |
|                                               |                                               |                                               |                                               | <b>frontflip</b>   | 0.54           | [0.29, 0.86] | 0.74         | [0.49, 0.99] | 1.20         | [0.80, 1.63] |              |
|                                               |                                               |                                               |                                               | <b>backflip</b>    | 0.55           | [0.31, 0.86] | 0.75         | [0.51, 0.99] | 1.23         | [0.81, 1.66] |              |



452 Figure 4: Performance comparison in MC for different tasks. We report the average and 95%  
 453 confidence interval over 10 runs.  
 454

## 456 5.2 SUPERVISED FINE-TUNING

458 Finally, we address the last research question, namely:

460 (Q3) How can we fine-tune against specific tasks, leveraging the low-dimensional space?  
 461 Does this come with positives?

463 To achieve this, we compared the effect of supervised fine-tuning on the latent space **using a simple**  
 464 **variant of PGPE, which we refer to as Latent PGPE**, with various baselines, including PPO (Schul-  
 465 man et al., 2017), DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja  
 466 et al., 2018). We also tested PGPE (Sehnke et al., 2008) in the high-dimensional parameter space,  
 467 referred to as Parameter PGPE, as a sanity check. **Our implementation of both Parameter PGPE**  
 468 **and Latent PGPE can be found in Appendix B**. All the algorithms were run in the best-performing  
 469 configuration for the policy sizes. Interestingly, DRL baselines always struggle to optimize small  
 470 policies and typically perform better with larger ones. On the contrary, Parameter PGPE benefits  
 471 from having a reduced set of parameters to control; however, it generally suffers from high sample  
 472 complexity. These evidences are reported in Appendix B (Fig. 7,8,9).

473 From these comparisons (reported in Fig. 4 and Fig. 5 for MC and RC, respectively), we were able  
 474 to extract three main findings. First of all, the convergence rate and performance of Latent PGPE  
 475 are positively correlated with the number of dimensions of the latent space, which confirms that  
 476 larger latent spaces are indeed better shaped and with an easier optimization landscape, as hinted in  
 477 Subsec. 5.1 as well. Secondly, Latent PGPE converges faster than all baselines in 7 out of 8 tasks,  
 478 even though it does not always converge to the optimum. Finally, Latent PGPE is able to achieve  
 479 comparable, if not better, performances to most of the baselines, even for complex tasks like **speed**  
 480 in Fig. 4c, 5a. However, we observe that it fails to solve the **height** task in Fig. 4d, due to the  
 481 scarce representation of the high-performance policies in the unsupervised policy dataset.

482 **Takeaways.** These results provide a positive answer to (Q3): Leveraging the learned low-  
 483 dimensional representation of the behavioral manifold, the agent can not only achieve faster con-  
 484 vergence, but also better performances than state-of-the-art DRL algorithms in challenging sparse  
 485 tasks. Unfortunately, **this comes with the limitation** that the fine-tuning performance is related to the  
 486 quality of the learned representation.



Figure 5: Performance comparison in RC for different tasks. We report the average and 95% confidence interval over 10 runs. For clarity, the worst-performing baselines are omitted. A full study is reported in Appendix B.

## 6 CONCLUSIONS

In this work, we proposed a novel, unsupervised framework to address the sample inefficiency of Deep Reinforcement Learning by shifting the focus from parameter space to behavior space. Our approach successfully learns a compact latent manifold of policies, organized by behavioral similarity, using a generative model with an unsupervised behavioral reconstruction loss. Empirically, we showed that this approach can compress policy parameterizations by several orders of magnitude while preserving their functional expressivity. This compressed representation also allows for more efficient fine-tuning for downstream tasks via gradient-based optimization in the low-dimensional latent space.

**Future Directions.** Our framework is intentionally modular, and we view it as a blueprint for a new class of more efficient DRL agents. We believe this approach can inspire significant future research into its core components, including the use of alternative behavioral divergences, more advanced generative architectures for compression, and the adaptation of different algorithms for latent behavior optimization. Furthermore, many RL approaches that condition value functions (Faccio et al., 2021) or meta-learners (Rakelly et al., 2019) directly on policy parameters could greatly benefit from our compression, as it provides a compact and semantically meaningful representation to replace raw parameter vectors.

## ETHICS STATEMENT

This work presents fundamental research in reinforcement learning theory and algorithms. We have carefully reviewed the Code of Ethics and confirm that our research raises no ethical concerns.

## REPRODUCIBILITY STATEMENT

All experiments were run on 50 cores of an Intel(R) Xeon(R) Gold 64118H CPU, 1 TB of RAM, and one NVIDIA H100 GPU. The total wall-clock time to re-run all experiments is approximately 50 hours. Our proposed approach is detailed in Section 4 with full implementation details and hyperparameters included in Appendix B. The source code is available in the supplementary material.

## LLM DISCLOSURE

We used LLMs in a limited capacity as a writing assistance tool. Specifically, LLMs were employed to help refine the clarity and readability of selected paragraphs throughout the paper. All content has been reviewed and verified by the authors, who take full responsibility for the accuracy and originality of all statements in this paper.

## REFERENCES

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery algorithms. *arXiv preprint arXiv:1807.10299*, 2018.

540 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.  
 541 Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. *Ad-*  
 542 *vances in neural information processing systems*, 35:28955–28971, 2022.

543

544 OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,  
 545 Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning  
 546 dexterous in-hand manipulation. *The International Journal of Robotics Research*, 39(1):3–20,  
 547 2020.

548 Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural  
 549 scaling laws. *Proceedings of the National Academy of Sciences*, 121(27):e2311878121, 2024.

550

551 Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew  
 552 Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik Konath, Minae  
 553 Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sandra Mitts, Adithya Renduchintala,  
 554 Stephen Roller, Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David J. Wu, Hugh Zhang,  
 555 and Markus Zijlstra. Human-level play in the game of diplomacy by combining language models  
 556 with strategic reasoning. *Science*, 378:1067 – 1074, 2022. doi: 10.1126/science.ade9097. URL  
 557 <https://www.science.org/doi/abs/10.1126/science.ade9097>.

558

559 Mira Bernstein, Vin De Silva, John C Langford, and Joshua B Tenenbaum. Graph approximations to  
 560 geodesics on embedded manifolds. Technical report, Technical report, Department of Psychology,  
 Stanford University, 2000.

561

562 Lawrence Cayton et al. Algorithms for manifold learning. *Univ. of California at San Diego Tech.*  
 563 *Rep.*, 12(1-17):1, 2005.

564

565 Oscar Chang, Robert Kwiatkowski, Siyuan Chen, and Hod Lipson. Agent embeddings: A latent  
 566 representation for pole-balancing networks. In *International Conference on Autonomous Agents*  
 567 and *MultiAgent Systems*, pp. 656–664, 2019.

568

569 Siu-Wing Cheng, Tamal K Dey, and Edgar A Ramos. Manifold reconstruction from point samples.  
 570 In *SODA*, volume 5, pp. 1018–1027, 2005.

571

572 Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing bijectivity  
 573 constraints with continuously indexed normalising flows. In *International conference on machine*  
 574 *learning*, pp. 2133–2143. PMLR, 2020.

575

576 Vincenzo De Paola, Riccardo Zamboni, Mirco Mutti, and Marcello Restelli. Enhancing diversity  
 577 in parallel agents: A maximum state entropy exploration story. *Proceedings of the International*  
 578 *Conference on Machine Learning (ICML)*, 2025. URL <https://arxiv.org/abs/2505.01336>.

579

580 Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for robotics.  
 581 *Foundations and Trends® in Robotics*, 2(1–2):1–142, 2013.

582

583 B.P. Duval, A. Abdolmaleki, M. Agostini, C.J. Ajay, S. Alberti, E. Alessi, G. Anastasiou,  
 584 Y. Andrèbe, G.M. Apruzzese, F. Auriemma, J. Aylon-Guerola, F. Bagnato, et al. Experimental  
 585 research on the TCV tokamak. *Nuclear Fusion*, 64(11):112023, oct 2024. doi: 10.1088/1741-4326/ad8361. URL <https://dx.doi.org/10.1088/1741-4326/ad8361>.

586

587 Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:  
 588 Learning skills without a reward function. In *International Conference on Learning Representa-*  
 589 *tions*, 2018.

590

591 Francesco Faccio, Louis Kirsch, and Jürgen Schmidhuber. Parameter-based value functions. In  
 592 *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,*  
 593 *May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=tV6oBfuyLTQ>.

594

595 Francesco Faccio, Vincent Herrmann, Aditya Ramesh, Louis Kirsch, and Jürgen Schmidhuber.  
 596 Goal-conditioned generators of deep policies. In *Proceedings of the AAAI Conference on Ar-*  
 597 *ificial Intelligence*, volume 37, pp. 7503–7511, 2023.

594 Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.  
 595 *Journal of the American Mathematical Society*, 29(4):983–1049, 2016.  
 596

597 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-  
 598 critic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.

599 Karol Gregor, Danilo Rezende, and Daan Wierstra. Variational intrinsic control. *International*  
 600 *Conference on Learning Representations, Workshop Track*, 2017.  
 601

602 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy  
 603 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-*  
 604 *ence on machine learning*, pp. 1861–1870. Pmlr, 2018.

605 Steven Hansen, Will Dabney, Andre Barreto, David Warde-Farley, Tom Van de Wiele, and  
 606 Volodymyr Mnih. Fast task inference with variational intrinsic successor features. In *Interna-*  
 607 *tional Conference on Learning Representations*, 2019.

608 Shashank Hegde, Sumeet Batra, KR Zentner, and Gaurav Sukhatme. Generating behaviorally di-  
 609 verse policies with latent diffusion models. *Advances in Neural Information Processing Systems*,  
 610 36:7541–7554, 2023.

611 Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural  
 612 networks. *science*, 313(5786):504–507, 2006.

613 Witold Hurewicz and Henry Wallman. *Dimension theory*, volume 4. Princeton university press,  
 614 2015.

615 Sham M Kakade. A natural policy gradient. *Advances in neural information processing systems*,  
 616 14, 2001.

617 Věra Krková and Paul C Kainen. Functionally equivalent feedforward neural networks. *Neural*  
 618 *Computation*, 6(3):543–558, 1994.

619 Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel  
 620 Pinto, and Pieter Abbeel. Urlb: Unsupervised Reinforcement Learning benchmark. 2021.

621 Joel Lehman and Kenneth O Stanley. Evolving a diversity of virtual creatures through novelty search  
 622 and local competition. In *Proceedings of the 13th annual conference on Genetic and evolutionary*  
 623 *computation*, pp. 211–218, 2011.

624 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,  
 625 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv*  
 626 *preprint arXiv:1509.02971*, 2015.

627 Olya Mastikhina, Dhruv Sreenivas, and Pablo Samuel Castro. Optimistic critics can empower small  
 628 actors. *arXiv preprint arXiv:2506.01016*, 2025.

629 Alberto Maria Metelli, Matteo Papini, Francesco Faccio, and Marcello Restelli. Policy optimization  
 630 via importance sampling. *Advances in Neural Information Processing Systems*, 31, 2018.

631 Atsushi Miyamae, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi. Natural policy gradient  
 632 methods with parameter-based exploration for control tasks. *Advances in neural information*  
 633 *processing systems*, 23, 2010.

634 Alessandro Montenegro, Marco Mussi, Alberto Maria Metelli, and Matteo Papini. Learning optimal  
 635 deterministic policies with stochastic policy gradients. *arXiv preprint arXiv:2405.02235*, 2024.

636 Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear  
 637 regions of deep neural networks. *Advances in neural information processing systems*, 27, 2014.

638 Andrew William Moore. Efficient memory-based learning for robot control. Technical report, Uni-  
 639 versity of Cambridge, 1990.

648 Mirco Mutti, Stefano Del Col, and Marcello Restelli. Reward-free policy space compression for  
 649 reinforcement learning. In *International Conference on Artificial Intelligence and Statistics*, pp.  
 650 3187–3203. PMLR, 2022.

651 William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to  
 652 learn with generative models of neural network checkpoints. *arXiv preprint arXiv:2209.12892*,  
 653 2022.

654 Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. *Neural  
 655 networks*, 21(4):682–697, 2008.

656 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John  
 657 Wiley & Sons, 2014.

658 Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On the  
 659 expressive power of deep neural networks. In *Proceedings of the 34th International Conference  
 660 on Machine Learning-Volume 70*, pp. 2847–2854, 2017.

661 Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy  
 662 meta-reinforcement learning via probabilistic context variables. In *International conference on  
 663 machine learning*, pp. 5331–5340. PMLR, 2019.

664 Nemanja Rakicevic, Antoine Cully, and Petar Kormushev. Policy manifold search: Exploring the  
 665 manifold hypothesis for diversity-based neuroevolution. In *Genetic and Evolutionary Compu-  
 666 tation Conference*, pp. 901–909, 2021.

667 Thomas Rückstiess, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun, and Jürgen Schmidhuber.  
 668 Exploring parameter space in reinforcement learning. *Paladyn*, 1(1):14–24, 2010.

669 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 670 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

671 Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learn-  
 672 ing on neural network weights for model characteristic prediction. *Advances in Neural Infor-  
 673 mation Processing Systems*, 34:16481–16493, 2021.

674 Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-  
 675 representations as generative models: Sampling unseen neural network weights. *Advances in  
 676 Neural Information Processing Systems*, 35:27906–27920, 2022.

677 Konstantin Schürholt, Michael W Mahoney, and Damian Borth. Towards scalable and versatile  
 678 weight space learning. In *Proceedings of the 41st International Conference on Machine Learning*,  
 679 pp. 43947–43966, 2024.

680 Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen  
 681 Schmidhuber. Policy gradients with parameter-based exploration for control. In *International  
 682 Conference on Artificial Neural Networks*, pp. 387–396. Springer, 2008.

683 Laura Smith, Ilya Kostrikov, and Sergey Levine. A walk in the park: Learning to walk in 20  
 684 minutes with model-free Reinforcement Learning. *arXiv preprint arXiv:2208.07860*, 2022. URL  
 685 <https://arxiv.org/abs/2208.07860>.

686 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-  
 687 den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-  
 688 miller. Deepmind control suite, 2018. URL <https://arxiv.org/abs/1801.00690>.

689 Nihat Engin Toklu, Paweł Liskowski, and Rupesh Kumar Srivastava. Clipup: A simple and pow-  
 690 erful optimizer for distribution-based policy evolution. In *International Conference on Parallel  
 691 Problem Solving from Nature*, pp. 515–527. Springer, 2020.

692 Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,  
 693 Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-  
 694 racing champion gran turismo drivers with deep reinforcement learning. *Nature*, 602(7896):223–  
 695 228, 2022.

702 Tom Zahavy, Yannick Schroecker, Feryal Behbahani, Kate Baumli, Sebastian Flennerhag, Shaobo  
703 Hou, and Satinder Singh. Discovering policies with DOMiNO: Diversity optimization maintain-  
704 ing near optimality. *arXiv preprint arXiv:2205.13521*, 2022.

705 Riccardo Zamboni, Mirco Mutti, and Marcello Restelli. Towards principled unsupervised multi-  
706 agent Reinforcement Learning. In *Proceedings of the Annual Conference on Neural Information  
707 Processing Systems (NeurIPS)*, volume 38, 2025.

709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755

756 A RELATED WORK  
757

758 **Simplification of the Policy Space.** A variety of works (among others, Gregor et al., 2017; Eysenbach et al., 2018; Achiam et al., 2018; Hansen et al., 2019) have proposed methods to simplify the  
759 policy space. Yet, those policies should be generally intended as mere initializations for supervised  
760 fine-tuning, which falls back to operating in the original policy space once the downstream task is  
761 revealed. To the best of our knowledge, the only other work defining a formal criterion to operate  
762 a compression of the policy space is Mutti et al. (2022). Yet, this paper seeks a way to reduce the  
763 cardinality of the policy space, rather than its dimensionality. Moreover, the constraints defining a  
764 valid compression are stricter than ours, resulting in an optimization problem that is known to be  
765 NP-hard. Finally, their work does not provide a way to perform *supervised fine-tuning* in a scalable  
766 way.  
767

768 **Weight Space Learning** The goal of our work, namely, to learn a latent representation of neural  
769 network parameters, is shared by the field of Weight Space Learning (WSL). In RL, recent works  
770 have investigated task-specific generative models, conditioning them on goals (Faccio et al., 2023)  
771 or performance checkpoints (Peebles et al., 2022), unlike our fully unsupervised approach. Our  
772 approach is more in line with the works on *hyper-representations* (Schürholt et al., 2021; 2022; 2024)  
773 of networks trained for supervised tasks. Hyper-representations are task-agnostic low-dimensional  
774 embeddings of neural networks learned from a zoo of trained models. Beyond its novel application  
775 to RL, our approach differs from these works in two ways. First, our “zoo” does not require trained  
776 experts. Second, and more critically, WSL methods must often contend with the vast number of  
777 parameter-space symmetries (e.g., neuron permutations and scaling (Krková & Kainen, 1994)) using  
778 complex architectures or workarounds. Our behavioral reconstruction loss fundamentally sidesteps  
779 this challenge. By compressing policies based on their function rather than their specific parameters,  
780 our autoencoder naturally assimilates these redundant parameterizations. This concept of functional  
781 compression is similar to “policy fingerprinting” (Faccio et al., 2023), which also gauges behavior  
782 independent of weights.  
783

784 **Policy Manifold and Quality Diversity.** The idea of employing generative models to learn a  
785 compressed representation of the policy space has received some recent attention outside of the  
786 Weight Space Learning field. Rakicevic et al. (2021) hypothesized that there might be a low-  
787 dimensional manifold embedded in the policy parameter space, even if they did not characterize  
788 it formally. Chang et al. (2019) trains a Variational AE to reconstruct the weights of pre-trained  
789 expert policies to learn expert-agent embeddings and analyze the latent structure of the solution space.  
790 A similar architecture has also been applied in the field of Quality Diversity, either to improve the  
791 sample efficiency of diversity-based search Rakicevic et al. (2021) or to distill a large policy archive  
792 into a compact generative model (Hegde et al., 2023). Notably, all the methods above employ VAE  
793 architectures with a *parameter-reconstruction loss*, which allows only moderate compression ratios  
794 of up to 19 : 1 (Hegde et al., 2023). In comparison, this paper introduces a fully unsupervised  
795 pipeline that focuses on compressing a behavioral loss, intending to provide a compact space for  
796 latent policy optimization *as well* while retaining way stronger compression abilities.  
797

798 **Policy Optimization.** First-order methods have been extensively employed to address PO (Peters  
799 & Schaal, 2008; Lillicrap et al., 2015) as well as natural gradients (Kakade, 2001) and trust-region  
800 methods (Schulman et al., 2017). Yet in this work, we built on the long tradition of PGPE Algo-  
801 rithms (Sehnke et al., 2008; Rückstiess et al., 2010; Miyamae et al., 2010; Montenegro et al., 2024),  
802 as their hard scalability to large parameter spaces is notoriously a blocking factor. Finally, we notice  
803 that Rakicevic et al. (2021) indeed proposed a method to optimize the diversity of the policies by  
804 taking into account the Jacobian of the decoder in a VAE architecture.  
805

806 B EXPERIMENTAL DETAILS  
807

808 **Environments.** We evaluate our methods on **four** control environments from the Gymnasium li-  
809 brary: Mountain Car Continuous, Reacher, **Hopper**, and **HalfCheetah**. The first is a classic control  
810 environment, which consists of a car placed stochastically in the middle of a sinusoidal valley, with  
811 the goal state on top of the right hill. The state is defined by two continuous variables: the position  
812 of the car along the  $x$ -axis  $p \in [-1.2, 0.6]$ , and the velocity of the car  $v \in [-0.07, 0.07]$ . The only  
813 possible action is to apply an acceleration  $a \in [-1, 1]$  to the car. The **standard** task is defined  
814

810 as  $R_{\text{standard},t} = -0.1a^2$ , until the goal is reached and a reward of  $R_{\text{standard},t} = 100$  is obtained, and  
 811 the episode ends. If the goal is not reached, the episode ends after 999 steps. We introduce three  
 812 additional tasks: **left**, which is the same as the standard task, but with the goal moved to the top of  
 813 the left hill ( $p \leq -1.1$ ); **height**, which gives a reward of  $R_{\text{height},t} = h^2$  at each time step for which  
 814  $h \geq 0.2$ , with  $h = \sin(3p) * 0.45 + 0.55$  being the height of the car; **speed**, which gives a reward  
 815 of  $R_{\text{speed},t} = v^2$  at each time step. In the **left** task, the episode ends when the car reaches the left  
 816 goal, while in the **height** and **speed** tasks, the episode ends when the car reaches the right goal.

817 The second environment, Reacher, is a classic continuous control task consisting of a two-jointed  
 818 robot arm, moving in a 2D space, with an end-effector called *fingertip*. The state is originally 10-  
 819 dimensional, but we remove the coordinates of the target and the vector between the fingertip and the  
 820 target. We end up with a 6-dimensional state composed of:  $\cos(q_1)$ ,  $\cos(q_2)$ ,  $\sin(q_1)$ , and  $\sin(q_2)$ ,  
 821 the cosines and sines of the two joint angles, and  $\omega_1$  and  $\omega_2$ , their angular velocities. For the purpose  
 822 of normalization, we consider the state bounded between the vectors  $[-1, -1, -1, -1, -5, -5]$  and  
 823  $[1, 1, 1, 1, 5, 5]$ . The agent controls the arm by applying a distinct torque to each hinge, making the  
 824 action space  $\mathcal{A} = [-1, 1]^2$ . We disregard the standard task and instead define four new behavioral  
 825 tasks that have the same reward shape  $R_{\text{task}} = 1$  if the condition is met, or 0 otherwise. In the  
 826 **speed** task, the condition is that the linear velocity of the tip is greater than 6. In the **clockwise**  
 827 and **c-clockwise** tasks, the condition is that the tangential velocity of the fingertip is greater than  
 828 -11, or 1, respectively. Finally, in the **radial** task, the condition is that the radial velocity of the  
 829 tip is greater than 3. The episodes terminate after 50 steps.

830 The third environment, Hopper, is a classic continuous control task that models a 1-legged robot  
 831 with 3 joints. The state space is 11-dimensional, capturing the robot's  $z$ -position, joint angles,  
 832 and corresponding velocities. For the purpose of normalization, we consider the state  
 833 bounded between the vectors  $[0.7, -0.2, -2.7, -2.7, -0.8, -5.0, -5.0, -5.0, -5.0, -5.0]$  and  
 834  $[1.5, 0.2, 0.0, 0.0, 0.8, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]$ . The agent controls the arm by applying a  
 835 distinct torque to each hinge, making the action space  $\mathcal{A} = [-1, 1]^3$ . Analogously to Reacher, we  
 836 disregard the standard task and instead define four new behavioral tasks that have the same re-  
 837 ward shape  $R_{\text{task}} = 1$  if the condition is met, or 0 otherwise. In the **forward**, **backward**, and  
 838 **standstill** tasks, the condition is that the  $x$ -axis velocity is greater than 1, lower than -1, or  
 839 between -0.05 and 0.05. In the **jump** task, the  $z$  position has to be greater than 1.3. The episodes  
 terminate after 1000 steps.

840 The fourth environment, HalfCheetah, is a classic continuous control task that models a 2D, two-legged robot with 6 actuated joints. The state space is 18-dimensional, including the robot's body position, rotational angles, and joint velocities. For the purpose of normalization, we consider the state bounded between the vectors  $[0, -\pi, -0.52, -0.785, -0.4, -1, -1.2, -0.5, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0]$  and  $[1.5, \pi, 1.05, 0.785, 0.785, 0.7, 0.87, 0.5, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]$ . The agent controls the arm by applying a distinct torque to each hinge, making the action space  $\mathcal{A} = [-1, 1]^6$ . The tasks are almost the same as for Hopper. In the **forward** and **backward**, the condition is that the  $x$ -axis velocity is greater than 2, or lower than -2. In the **frontflip** and **backflip**, the task condition is that the cumulative rotation along the  $y$ -axis increases or decreases by a full rotation from the initial angle. The episodes terminate after 1000 steps.

850 **Policies.** To model the policies, we use fully-connected, feed-forward, deterministic MLPs. Our  
 851 choice of focusing on deterministic policies is dictated by the use of PGPE as an optimization algo-  
 852 rithm in the last stage; however, our pipeline is designed to be general. As such, we believe there  
 853 is an apparent limitation to the use of stochastic policies instead. The input layer has  $\mathcal{S}$  neurons  
 854 and is preceded by a normalization layer that standardizes the state features to have zero mean and  
 855 unit variance. The hidden linear layers are followed by `elu` nonlinearities. The last layer has  $|\mathcal{A}|$   
 856 neurons, followed by a `tanh` activation to squash the action into the valid range. We test three  
 857 different shapes of policies in Mountain Car: Small policies composed of a single 4-neuron hid-  
 858 den layer; Medium policies composed of two 32-neuron hidden layers; Large policies composed  
 859 of a 400-neuron hidden layer followed by a 300-neuron hidden layer. The number of parame-  
 860 ters of the policies increases roughly by two orders of magnitude at each interval ( $P_{\text{Small}} = 17$ ,  
 861  $P_{\text{Medium}} = 1,185$ ,  $P_{\text{Large}} = 121,801$ ). For Hopper and HalfCheetah, we use the same shape of  
 862 Medium policies. While in Reacher we use Medium policies composed of two 64-neuron hidden  
 863 layers, with  $P_{\text{Reacher}} = 4738$ .

864 **Policy Divergence.** To compute the divergence between policies, we instead estimate the distance of  
 865 the deterministic actions over a subset of states. We consider the state spaces bounded as previously  
 866 described, and we extract roughly  $M = 3000$  states. In Mountain Car, we find them by discretizing  
 867 the two dimensions and creating a grid, while in MuJoCo environments, we simply sample them  
 868 uniformly from the bounded state space. In the  $k$ -NN phase, we use  $k = 15$ , and compute the  
 869 distance between two policies as:

$$870 \quad D(\pi_{\theta} || \pi_{\theta'}) = \sqrt{\sum_{i=1}^M (\pi_{\theta}(s_i) - \pi_{\theta'}(s_i))^2}.$$

871 While in the manifold learning phase, we compute it as:

$$875 \quad D(\pi_{\theta} || \pi_{\theta'}) = \frac{1}{M} \sum_{i=1}^M (\pi_{\theta}(s_i) - \pi_{\theta'}(s_i))^2.$$

878 **Autoencoder.** We use a simple, fully-connected, feed-forward, deterministic MLP to model the  
 879 autoencoder. The shape of the autoencoder is the same for all the experiments. The input and output  
 880 layers have size  $P$ , with the input layer being preceded by a standardization layer, and the output  
 881 layer not being activated; the encoder has a 25-neuron hidden layer followed by a 10-neuron hidden  
 882 layer; the decoder has the mirrored shape of the encoder. The first layer of the encoder and the first  
 883 layer of the decoder are followed by `elu` nonlinearities. The autoencoder is trained for 50 epochs  
 884 using the Adam optimizer with an initial learning rate of 0.0001 and a batch size of 64. We employ a  
 885 learning rate scheduler that halves the learning rate after 15 epochs of non-improvement, evaluated  
 886 on a 20% random hold-out set. The empirical loss used to train the autoencoder is defined as:

$$887 \quad \mathcal{L}_B = \frac{1}{N} \frac{1}{M'} \sum_{i=1}^N \sum_{j=1}^{M'} (\pi_{\theta_i}(s_j) - \pi_{\hat{\theta}_i}(s_j))^2,$$

890 where  $N$  is the number of policies in the training dataset,  $M' = 1000$  is the size of the subset of  
 891 the state set that we sample at each gradient step, and  $\pi_{\hat{\theta}_i}$  is the reconstructed policy. In Mountain  
 892 Car, we set the latent dimension of the autoencoders to  $k = 1, 2, 3$ , while in Reacher, we use  
 893  $k = 1, 2, 3, 5, 8$ . In Hopper and HalfCheetah,  $k = 5, 8, 16$ .

894 When we evaluate a latent space, we first compute the interquartile range for each dimension based  
 895 on the spread of the training codes. Then, we discretize each dimension by a variable number of  
 896 points depending on the dimension of the latent code: 100 points for 1D, 50 points for 2D, and  
 897 17 points for 3D. For more than three latent dimensions, we sample 10000 policies from the same  
 898 bounded latent space at random. The decision is based solely on computational feasibility and serves  
 899 the purpose of having a rough conservative estimate of the range of encoded behaviors.

900 **Performance Recovery.** When comparing the policies found in the latent space with the ones  
 901 belonging to the original dataset, we compute a behavior recovery metric in the following way.  
 902 First, we average the dataset lower and upper bounds for all tasks across three seeds with the same  
 903 configuration,  $lb_D, ub_D$ . Then we do the same for the discretized set of policies reconstructed from  
 904 the latent space,  $lb_L, ub_L$ . Finally, for each task, we compute the *performance recovery* as  $\frac{ub_L - lb_L}{ub_D - lb_D}$ .  
 905 In Table 3, we provide the analysis for the reward `left`, which was omitted in Table 1.

906 **(Latent) PGPE.** As a byproduct of the low-dimensionality of the latent space, this framework  
 907 is well suited to parameter-exploring PG methods. Algorithms like PGPE struggle with a high-  
 908 dimensional set of parameters, such as those of a standard DRL network with hundreds of thousands  
 909 of parameters. Yet, they can instead operate on the low-dimensional set of latent parameters while  
 910 maintaining the expressivity of the original parameter space. As a bonus, the extension of PGPE  
 911 to the latent space does *not* require computing the Jacobian of the decoder as in Eq. 8, as it can  
 912 be seen as a deterministic addition to the black-box process that evaluates the parameters produced  
 913 by the Gaussian hyperpolicy  $\nu_{\phi}$ , where  $\phi = (\mu, \sigma)$  is the vector of means and standard deviations  
 914 parameterizing the Gaussian distributions over the latent parameters. In fact, the objective defined in  
 915 Eq. 2 can be rewritten under the latent PG formulation as  $J^R(z) = \mathbb{E}_{\tau \sim p(\cdot | z), z \sim \nu_{\phi}} [R(\tau)]$ , with the  
 916 only change being that the probability density of the trajectories is given by the policy induced by  
 917 the latent parameters as  $p(\tau | z) = \mu(s_0) \prod_{t=0}^T \mathbb{P}(s_{t+1} | s_t, a_t) \pi_{g_{\zeta}(z)}(a_t | s_t)$ . Finally, the gradient  
 918 estimator at Eq. 3 is left unchanged, but for the change in parameter space from  $\theta_i$  to  $z_i$ .

918  
 919 Table 3: Quality of Latent Behavior Compression in MC. We report the performance recovery for  
 920 the **left** task. We report mean and standard deviation computed over 3 seeds.

| Policy | Dataset | Config.        |                |                | Left |                |                |
|--------|---------|----------------|----------------|----------------|------|----------------|----------------|
|        |         | 1D             | 2D             | 3D             | 1D   | 2D             | 3D             |
| Small  | 10k     | 0.73 $\pm$ .16 | 0.66 $\pm$ .18 | 0.98 $\pm$ .03 | 10k  | 0.95 $\pm$ .05 | 1.01 $\pm$ .01 |
|        | 50k     | 0.64 $\pm$ .19 | 0.98 $\pm$ .03 | 0.99 $\pm$ .02 |      | 0.78 $\pm$ .13 | 1.01 $\pm$ .00 |
|        | 100k    | 0.73 $\pm$ .05 | 0.80 $\pm$ .21 | 0.94 $\pm$ .06 |      | 0.82 $\pm$ .10 | 1.01 $\pm$ .00 |
| Medium | 10k     | 1.01 $\pm$ .00 | 1.00 $\pm$ .01 | 1.01 $\pm$ .00 | 10k  | 1.01 $\pm$ .00 | 1.00 $\pm$ .00 |
|        | 50k     | 1.01 $\pm$ .00 | 1.01 $\pm$ .00 | 1.00 $\pm$ .00 |      | 1.01 $\pm$ .00 | 1.00 $\pm$ .00 |
|        | 100k    | 1.01 $\pm$ .00 | 1.01 $\pm$ .00 | 1.00 $\pm$ .00 |      | 1.01 $\pm$ .00 | 1.00 $\pm$ .00 |
| Large  | 10k     | 1.01 $\pm$ .00 | 1.00 $\pm$ .01 | 1.01 $\pm$ .00 | 10k  | 1.01 $\pm$ .00 | 1.00 $\pm$ .00 |
|        | 50k     | 1.01 $\pm$ .00 | 1.01 $\pm$ .00 | 1.00 $\pm$ .00 |      | 1.01 $\pm$ .00 | 1.00 $\pm$ .00 |
|        | 100k    | 1.01 $\pm$ .00 | 1.01 $\pm$ .00 | 1.00 $\pm$ .00 |      | 1.01 $\pm$ .00 | 1.00 $\pm$ .00 |

931  
 932  
 933 We base our implementation of PGPE on an ask-and-tell implementation with symmetric sampling  
 934 Toklu et al. (2020). We modify it to allow for numpy parallelization, reward normalization, center  
 935 learning rate scheduling, learning  $\log \sigma$  instead of  $\sigma$ , and natural gradient computation. The center is  
 936 optimized with Adam, with momentum 0.2. The log-standard deviation instead is learned through  
 937 simple gradient ascent with fixed learning rate. For Mountain Car, we perform 75 seeded runs  
 938 on 75 different autoencoders with the same hyperparameters: center learning rate 0.05, population  
 939 size 4, initial standard deviation 0.6, standard deviation learning rate 0.1, and 50 generations. In  
 940 Reacher, the learning rate has a linear annealing down to 20% of the initial value, and we use the  
 941 same hyperparameters for all runs, which are the following: center learning rate 0.1, population size  
 942 10, initial standard deviation 0.3, standard deviation learning rate 0.1, and 200 generations. In both  
 943 cases, each sample of the population is evaluated on a single episode.

944 Given the episodic nature of PGPE, each generation can take an arbitrary number of environment  
 945 steps to evaluate the samples of the population. Since the center is changed only once at the end of a  
 946 generation, we evaluate the learning curve at different sample checkpoints, contrary to the standard  
 947 StableBaselines3 approach. This causes different runs to have different evaluation checkpoints ( $x$ -  
 948 axis of the learning curve) and a different number of total samples used. To visualize an aggregate  
 949 learning curve across multiple runs, we take two measures: we interpolate the various curves along  
 950 the  $x$ -axis; we extend the final evaluation of each run along the  $x$ -axis so that all runs have identical  
 951 lengths, with the assumption that the algorithm has already converged by the end of the training. To  
 952 ensure the stability of the final evaluation, we evaluate the center solution on 100 episodes (instead  
 953 of 10 episodes used during training).

954 **Reproducibility.** In MC, we perform two main experiments. First, we study different configurations  
 955 by creating 27 different datasets. We seed all the steps of the pipeline with seeds 0 through 26. In  
 956 order, we use seeds 0-8 for Small policies, 9-17 for Medium policies, and 18-26 for Large policies.  
 957 In each batch, the first three seeds are used for datasets of 10k policies, the next three for datasets of  
 958 50k, and the last three for datasets of 100k policies. The second experiment focuses on datasets of  
 959 10k Medium policies, and it is run with seeds starting from 100. In Reacher, we focus on datasets of  
 960 100k Medium policies with seeds starting from 0. **In Hopper and HalfCheetah, we focus on datasets  
 961 of 10k Medium policies with seeds starting from 0.**

## 962 ADDITIONAL EXPERIMENTS

963  
 964 **Baseline Hyperparameters.** Here we provide the hyperparameters used to train the baselines for  
 965 each environment. Where not specified, we use the StableBaselines default parameters. In MC, we  
 966 used higher standard deviations for the stochastic processes used by TD3 and DDPG for exploration:  
 967 0.75 and 0.65, respectively. For DDPG, we also used a smaller replay buffer size of 50000. For SAC,  
 968 we used a soft update coefficient ( $\tau$ ) of 0.01, train frequency of 32, entropy coefficient of 0.1, 32  
 969 gradient steps per rollout, replay buffer size of 50000, and we used generalized State Dependent  
 970 Exploration (gSDE). For PPO, we used a learning rate of 0.0001, 32 steps per rollout, batch size  
 971 of 256, 4 epochs of optimization of the surrogate loss, lambda value of 0.9 for the Generalized  
 972 Advantage Estimator (GAE), a clip range of 0.1, entropy coefficient of 0.1, value function coefficient



Figure 6: Reward distribution comparison of datasets of 10k Small (blue) and Large (orange) policies in MC. The  $y$ -axis uses a logarithmic scale. We report the average and 95% CI over 5 seeds.



Figure 7: Baseline Ablation study in MC. We report the average and 95% confidence interval over 10 runs.

of 0.19, max gradient norm of 5 and we used gSDE. In RC, we kept the same hyperparameters used for MC, changing only the standard deviation of DDPG to 0.5.

**Baseline Ablation Study.** We report complete baseline studies for both MC and RC. In MC, we study how the baselines operate with different-sized policies. We report our results in Figure 7. We observe that almost all algorithms struggle with optimizing small policies. In Figure 8, we report a separate study for PGPE, in order to offer a cleaner visualization, given the major difference in sample complexity. We can observe the opposite behavior, namely, PGPE is often more sample-efficient and better-performing when using smaller policies. Finally, in Figure 9, we report the complete study of baselines for the RC environment.

**Policy Representation Range.** We analyze the behavioral distributions of randomly sampled Small and Large policies in the MC environment (Figure 8). For simpler tasks (`standard`, `left`, and `speed`), both architectures cover a similar reward range, though their probability distributions differ. However, in the more complex `height` task, Large policies exhibit a significantly broader support, reaching higher maximum rewards than their Small counterparts. While this observation relies on random weight sampling and is limited to a single environment, it aligns with theoretical findings on the relationship between parameter count and network expressivity (Montúfar et al., 2014; Raghu et al., 2017; Bahri et al., 2024), suggesting that larger networks are naturally capable of representing a richer diversity of behaviors.

**Latent Behavior Manifolds.** To complement the results in the main paper, we provide an extensive set of visualizations of the learned latent behavior manifolds. These plots illustrate how the latent representations organize policies across different tasks, policy sizes, and encoding dimensions. They cover both environments studied in this work—Mountain Car (MC) and Reacher (RC)—and show how the manifold structure emerges consistently across settings. The visualizations serve two purposes: (i) to confirm that the latent space captures meaningful behavioral structure qualitatively, and (ii) to demonstrate the consistency of this organization across seeds and settings. For clarity in the main text, we only reported a subset of representative plots; here, to enable a more thorough inspection and reproducibility, we visualize one seed per configuration in MC and all seeds for RC. Each figure shows the latent spaces for 1, 2, and 3 dimensions for all tasks. The tasks are ordered from left to right as follows: `standard`, `left`, `speed`, `height` for MC, and `speed`, `clockwise`, `c-clockwise`, and `radial` for RC.



Figure 8: PGPE Ablation study in MC. We report the average and 95% confidence interval over 10 runs.



Figure 9: Baseline study in RC. We report the average and 95% confidence interval over 10 runs.



Figure 10: MC - Small, 10k - Seed 0



Figure 11: MC - Small, 50k - Seed 3



Figure 12: MC - Small, 100k - Seed 6



Figure 13: MC - Medium, 10k - Seed 9



Figure 14: MC - Medium, 50k - Seed 12



Figure 15: MC - Medium, 100k - Seed 15



Figure 16: MC - Large, 10k - Seed 18



Figure 17: MC - Large, 50k - Seed 21



Figure 18: MC - Large, 100k - Seed 24



Figure 19: RC - Seed 0



Figure 20: RC - Seed 1



Figure 21: RC - Seed 2



Figure 22: RC - Seed 3



Figure 24: RC - Seed 5



Figure 25: RC - Seed 6



Figure 26: RC - Seed 7



Figure 27: RC - Seed 8



Figure 28: RC - Seed 9