
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM PARAMETERS TO BEHAVIORS: UNSUPERVISED
COMPRESSION OF THE POLICY SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite its recent successes, Deep Reinforcement Learning (DRL) is notoriously
sample-inefficient. We argue that this inefficiency stems from the standard prac-
tice of optimizing policies directly in the high-dimensional and highly redundant
parameter space Θ. This challenge is greatly compounded in multi-task settings.
In this work, we develop a novel, unsupervised approach that compresses the pol-
icy parameter space Θ into a low-dimensional latent space Z . We train a gener-
ative model g : Z → Θ by optimizing a behavioral reconstruction loss, which
ensures that the latent space is organized by functional similarity rather than prox-
imity in parameterization. We conjecture that the inherent dimensionality of this
manifold is a function of the environment’s complexity, rather than the size of the
policy network. We validate our approach in continuous control domains, show-
ing that the parameterization of standard policy networks can be compressed up
to five orders of magnitude while retaining most of its expressivity. As a byprod-
uct, we show that the learned manifold enables task-specific adaptation via Policy
Gradient operating in the latent space Z .

1 INTRODUCTION

High-dimensional parameterization of policies via deep neural networks has been a key driver of
recent successes in Deep Reinforcement Learning (among others, Andrychowicz et al., 2020; Smith
et al., 2022; Bakhtin et al., 2022; Wurman et al., 2022; Duval et al., 2024). A major drawback of
this approach, however, is a significant increase in sample complexity, which is further compounded
when the agent is called to solve multiple and potentially unknown tasks, typically requiring learn-
ing tabula rasa (Agarwal et al., 2022). This inefficiency often stems from a fundamental redundancy
in the parameter space, where a large set of distinct weight configurations maps to a much smaller
set of effective behaviors. Various approaches tried to solve this limitation as a byproduct, such as
explicitly learning diverse behaviors (Eysenbach et al., 2018; Zahavy et al., 2022; De Paola et al.,
2025; Zamboni et al., 2025), or enforcing small policy networks in asymmetric actor-critic architec-
tures (Duval et al., 2024; Mastikhina et al., 2025).

In this paper, we address this limitation directly through the lenses of the Manifold Hypothesis (Cay-
ton et al., 2005), a widely accepted tenet of Machine Learning, and we hypothesize that it holds in
RL as well, namely that:

The manifold of realizable behaviors is intrinsically low-dimensional and largely
independent of the network’s parameter count.

In view of this hypothesis, we propose a paradigm shift from learning in the parameter space to
learning in the (latent) behavior space itself. To do so, the agent first needs to learn a latent repre-
sentation of the possible behaviors, which, according to the aforementioned hypothesis, should be
low-dimensional and policy network invariant. Then, it needs to find a way to leverage this repre-
sentation to solve different tasks efficiently. The proposed solution is a novel two-stage framework
directly inspired by the Unsupervised RL formalism (Laskin et al., 2021), allowing for the explicit
exploitation of this latent structure. In a first pre-training phase, we learn a latent representation of
the behavior manifold by leveraging a generative model in a fully unsupervised fashion, that is, with-
out including any information related to a specific task, i.e., reward. In this way, we can learn a latent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

structure that models the intrinsic nature of the environment dynamics, rather than its coupling with
a task, and preserve the end-to-end differentiability that makes gradient-based optimization effec-
tive. In a second fine-tuning phase, we leverage the pre-trained representation to fine-tune policies
against specific tasks known a posteriori, avoiding the need to learn from scratch. In particular,
the fine-tuning phase involves performing gradient steps in the latent space, thereby optimizing la-
tent behaviors directly. This approach enables the agent to explore the inherently low-dimensional
behavior space rather than the high-dimensional parameter space.

In this paper, we address the following:

Research Questions:
(Q1) Is it possible to learn a low-dimensional latent representation of a high-dimensional
policy parameter space in an unsupervised fashion?
(Q2) What are the properties of such a latent representation, if it exists? Is its intrinsic
dimension a function of the behavioral complexity rather than the size of the parameter
space?
(Q3) How can we fine-tune against specific tasks leveraging the low-dimensional space?
Does this come with positives?

Content Outline and Contributions. First, in Section 3, we formulate the problem of learning a
latent representation of behaviors in an unsupervised fashion and then leveraging it to solve specific
tasks. Then, in Section 4, we characterize our proposed solution to this problem, namely, addressing
it in a two-stage pipeline. Finally, in Section 5, we perform experiments extensively to address
the Research Questions. We demonstrate that the proposed pipeline is indeed able to learn low-
dimensional latent representations (Q1), which are more influenced by the environment than by the
size of the compressed policies (Q2). Finally, we demonstrate that learning over this reduced space
can make simple algorithms competitive against complex state-of-the-art DRL algorithms (Q3).

2 PRELIMINARIES

Notation. In the following, we denote a set with a calligraphic letter A and its size as |A|, the
simplex on A is denoted as ∆(A) := {p ∈ [0, 1]|A| |

∑
a∈A p(a) = 1}. For two distributions

p1, p2 ∈ ∆(A), we define a general measure of divergence between distributions with D(p1||p2).
Interaction Protocol. As a base model for interaction, we consider a (finite-horizon) Controlled
Markov Process (CMP). A CMP is defined as the tupleM := (S,A,P, µ, T), where S is the state
space and A is the action space. At the start of an episode, the initial state s0 ofM is drawn from
an initial state distribution µ ∈ ∆(S). Upon observing s0, the agent takes action a0 ∈ A, and the
system transitions to s1 ∼ P(· | s0, a0) according to the transition model P : S × A → ∆(S).
The process is repeated until T is reached and sT is generated, with T < ∞ being the horizon
of an episode. The agent selects actions according to a decision policy π : S → ∆(A) such that
π(a|s) denotes the conditional probability of taking action a upon observing state s. Deploying a
policy π overM leads to the generation of trajectories τ , defined as a sequence of state-action pairs
τ := (s0, a0, s1, a1, . . . , sT). Furthermore, a policy π induces a state distribution dsπ ∈ ∆(S) over
the state space of the CMPM defined as dsπ(s) =

∑T
t=0 Pr(st = s). It also induces a state-action

distribution dsaπ ∈ ∆(S × A), defined as dsaπ (s, a) = π(a | s)dsπ(s), which we will denote as the
behaviors of the policy. In the following, we will consider deterministic policies πθ : S → A
represented by neural networks parameterized by a set of weights θ ∈ Θ, where Θ ⊆ RP is the
policy parameter space, with P being the total number of parameters. We define the Policy Space
ΠΘ as the collection of policies that can be represented by Θ. For brevity of notation, we denote a
policy πθ as its set of parameters θ and the policy space ΠΘ as the parameter space Θ that induces
it.

(Unsupervised) RL. In RL, an agent learns how to solve (downstream) tasks, encoded by different
reward signals. For this matter, we define a Markov Decision Process (MDP, Puterman, 2014)
MR :=M∪R as a coupling of a CMPM and a reward function R : S ×A → R, which the agent
observes after every state transition. In the Unsupervised Reinforcement Learning (URL, Laskin
et al., 2021) framework, the reward signal is not always available to the agent from the beginning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

It often belongs to a (potentially infinite) family of tasks R, also unknown to the agent. URL is
then composed of two phases: (1) an unsupervised pre-training phase involves the agent interacting
with a CMP to acquire general-purpose knowledge without receiving any reward signal, which is
distilled into a pre-trained model M; (2) the supervised fine-tuning phase begins once a reward
function R ∈ R is revealed. At this point, the CMP becomes a standard MDPMR, and the agent
leverages the pre-trained model M to find a set of policy parameters that maximizes the expected
return for the given task, namely as

θ∗ = argmax
θ∈Θ

JR(θ,M) = argmax
θ∈Θ

E(s,a)∼dsa
πθ

,M[R(s, a)]. (1)

Policy Optimization. Policy Optimization (PO, Deisenroth et al., 2013), which involves optimizing
the policy parameters directly, has shown surprisingly good results. This is especially true for deep
neural policies, where first-order methods have been extensively employed. A popular approach
to PO is Policy Gradient (PG, Peters & Schaal, 2008), which updates the parameters by simple
gradient ascent θ′ ← θ + α∇θJ(θ). Among others, Policy Gradient with Parameter-based
Exploration (PGPE, Sehnke et al., 2008) is a PG algorithm that handles exploration in the parameter
space by sampling the policy parameters θ from a hyper-policy νϕ, parameterized by ϕ.1 PGPE
optimizes a trajectory-based version of the objective defined in Eq. 1, defined as:

JR(θ,ϕ,M) = Eτ∼p(·|θ),θ∼νϕ,M[R(τ)], (2)

where R(τ) =
∑T

t=0 R(st, at) is the return of a trajectory, and p(τ | θ) = µ(s0)
∏T

t=0 P(st+1 |
st, at)πθ(at|st) is the probability density of a trajectory. In PGPE, the parameter vector ϕ is usually
updated via gradient ascent using a Monte Carlo estimator of the gradient computed over N ∈ N
trajectories:

∇̂ϕJ
R(θ,ϕ) =

1

N

N∑
i=1

∇ϕ log νϕ(θi)R(τi). (3)

Generative Models. Generative models have achieved remarkable success in density estimation
for multi-modal data, drawing significant interest from the RL community. Among others, Autoen-
coders (AE, Hinton & Salakhutdinov, 2006) are a type of artificial neural network used to learn
efficient data encoding in an unsupervised manner. The aim is first to learn encoded representa-
tions of data and then generate the input data (as closely as possible) from the learned encoded
representations. More specifically, their goal is to map a data space X ⊆ Rn to a latent space
Z ⊆ Rk, with k ≪ n. AEs are composed of an encoder, a function fξ : X → Z , parameterized
by vector ξ, which maps a data sample x ∈ X to a latent code z ∈ Z , and a decoder, a func-
tion gζ : Z → X , parameterized by vector ζ, which reconstructs the data sample x̂ ∈ X from
the latent code z in such a way that gζ ≈ f−1

ξ . An AE is typically trained by minimizing the
reconstruction error LAE(x) = d(x, gζ(fξ(x))), where d is a metric that measures the distance
of samples in the data space. These sorts of architectures are particularly compelling in view of
the Manifold Hypothesis (Cayton et al., 2005): AEs learn this underlying structure by compress-
ing the data into a compact latent space that represents the manifold and then reconstructing the
original data from it, as illustrated in Fig. 1. Unfortunately, AEs are far from being bulletproof.

Figure 1: Autoencoder Spaces and Data Manifold.

In cases where no plausible embedding ex-
ists, even networks (fξ, gζ) which come close
to perfectly reconstructing the manifold M
will incur numerical instability (Cornish et al.,
2020). In some other cases, it is possible to re-
solve these topological issues by increasing the
latent dimension k. For instance, a dimension-
ality of k = 2d⋆ + 1 is enough to topologi-
cally embed any manifold of dimension d⋆ in
R (Theorem V3, Hurewicz & Wallman, 2015).

1For instance, Gaussian hyper-policies will be parameterized by their mean and standard deviation, i.e.
ϕ = (µ, σ).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Unsupervised Supervised

Policy Dataset
Generation

Latent
Behavior

Compression

Latent
Behavior

Optimization

Figure 2: Pipeline of Unsupervised Compression of the Policy Space.

3 PROBLEM FORMULATION

By looking closely to Eq. 1, one should notice that to solve an RL task, the agent just needs to
focus on visiting the states and actions that matter for the task. Yet, this simple intuition hides a
few traps. First of all, different policy parameters θ ∈ Θ might induce nearly identical distributions
over actions. Yet, even different distributions over actions could lead to comparable state-action
distributions due to the complex structure of the environment. Finally, in almost all problems of
interest, there may be multiple and potentially unknown tasks that the agent could be called upon
to solve, and it would be risky to deem any state-action distribution irrelevant without additional
information on the task structure.

In this work, we aim to address these issues by focusing on behaviors rather than parameters, under
the lens of the Manifold Hypothesis: we want to learn a latent manifold of realizable behaviors, and
we do this by compressing parameters inducing similar behaviors to the same latent representation.
For a policy parameters space Θ ⊆ Rn, we define Z ⊆ Rk as a k-dimensional latent space, with
k ≪ n, and we look for a function g : Z → Θ that maps a latent vector z ∈ Z , which we also
refer to as latent code, to a corresponding policy parameter vector θ = g(z). As a result, any policy
could be written as πθ = πθ=g(z) = πz .

We refer to this problem as Latent Behavior Compression, which is formally defined as finding
the generative function g⋆ : Z → Θ, such that:

∀θ ∈ Θ, ∃z ∈ Z : g⋆ = argmin
g

D(dsaπθ
||dsaπg(z)

). (4)

This task is essentially unsupervised, as any notion of a specific task is absent. Indeed, it is somewhat
similar to the Policy Space Compression framework (Mutti et al., 2022), yet in the latter, the authors
aim to reduce the cardinality of the policy space, rather than its dimensionality. Moreover, the
constraints defining a valid compression are stricter than ours, resulting in an optimization problem
that is known to be NP-hard.

Once such a low-dimensional space and generative function are available, solving for different tasks
will require searching over a simpler space than the original one. We call this process Latent
Behavior Optimization. In other words, the standard PO problem of Eq. 1, which requires finding
an optimal policy parameter vector θ∗ ∈ Θ, will be reformulated as the problem of finding an
optimal latent code z∗ ∈ Z that, via the generative function g, yields θ∗. For a given task with
reward R ∈ R, the policy optimization problem is now defined as:

z∗ = argmax
z∈Z

JR(z) = argmax
z∈Z

JR(θ = g(z)). (5)

Contrary to the Latent Behavior Compression task, this task is essentially supervised, as it is well-
defined as soon as the agent is provided with a reward. In the following, we will show how the URL
framework can indeed provide essential tools in addressing the two problems.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 METHOD: UNSUPERVISED COMPRESSION OF THE POLICY SPACE

To address the sample inefficiency inherent in high-dimensional policy parameter spaces, we pro-
pose a paradigm shift from directly optimizing in the parameter space to learning within a com-
pact, low-dimensional policy manifold that captures the true diversity of behaviors. This is achieved
through a two-phase framework: a completely unsupervised, task-agnostic pre-training phase to dis-
cover the manifold, followed by a supervised, task-specific fine-tuning phase. As illustrated in Fig. 2,
this framework is composed of three steps: (1) generating a behaviorally diverse dataset of policies,
(2) learning the latent policy manifold via a generative model, and (3) performing fine-tuning by
optimizing over this learned latent space.

Policy Dataset Generation. Many manifold reconstruction algorithms depend on efficiently cov-
ering the manifold with samples (Bernstein et al., 2000; Cheng et al., 2005; Fefferman et al., 2016).
Thus, the first stage of our framework involves generating a datasetDΘ of policies intended to cover
the manifold of behaviorally diverse policies.

A naı̈ve option is to randomly sample N policies, D̂Θ = {θi}Ni=1, by drawing their parameters
from a uniform distribution. Unfortunately, it is well-understood that such naı̈ve sampling from the
parameter space is unlikely to produce uniform coverage of the behavior space, as it tends to favor
functionally similar, often non-exploring, policies.

To address this bias, an explicit measure of behavioral diversity is needed. Looking at Eq. 4, one
notices that optimizing such a measure directly requires estimating the divergence between two
state-action distributions dsaπθ

, dsaπθ′ . Unfortunately, this would not only be computationally intensive
but also require sampling from the environment for a potentially vast set of policies. To avoid this,
we will take into account an upper bound to this quantity in the case of finite-horizon tasks (Prop.
E.1, Metelli et al., 2018), namely D(πθ||πθ′). In practice, we substitute this measure with the
L2 distance of two policies in the action space, evaluated on a finite subset of the state space, or
formally:

D(πθ||πθ′) =

√√√√ M∑
i=1

(πθ(·|si)− πθ′(·|si))2. (6)

Based on this proxy, we apply a Novelty Search algorithm (Lehman & Stanley, 2011) by computing
a novelty score, ρ(πθ), for each policy based on its average divergence from its k-nearest neighbors:
ρ(πθ) =

1
k

∑k
i=1 D(πθ||πθi).

Then, a high score indicates a behaviorally unique policy. Using this metric, we form the final
dataset DΘ by selecting only the top percentile of policies with the highest novelty scores, ensuring
a dataset of behaviorally diverse policies.

Latent Behavior Compression. In the second stage, we learn the low-dimensional manifold from
the filtered policy dataset DΘ. Potentially, any generative model would do the work. Still, here
we are interested in learning latent low-dimensional representations while preserving the end-to-end
differentiability that makes gradient-based optimization effective. For these reasons, we employ a
symmetric autoencoder architecture with an encoder fξ : Θ → Z and a decoder gζ : Z → Θ.
While a standard autoencoder minimizes a parameter reconstruction error, our goal is to compress
policy behavior. We therefore introduce a novel Behavioral Reconstruction Loss, which trains
the autoencoder to minimize the expected behavioral divergence between the original policy and its
reconstruction:

LB(ξ, ζ) = Eθ∼DΘ

[
D

(
πθ||πgζ(fξ(θ))

)]
. (7)

This objective frees the decoder from reproducing the exact parameter values, allowing it to discover
any parameterization that generates the desired behavior. As a result, the latent space Z becomes
organized purely by functional similarity, effectively capturing the policy manifold. In practice, we
use an empirical estimator of the behavioral reconstruction loss based on the notion of divergence in
the action space. For this purpose, we train our autoencoders to minimize the Mean Squared Error
between action vectors relative to a subset of the state space sampled at each gradient step, resulting
in the estimator L̂B(ξ, ζ) = 1

NM

∑N,M
i,j=1(πθi

(sj) − πgζ(fξ(θi))(sj))
2, where N is the number of

policies, and M is the number of sampled states.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Latent Behavior Optimization. In the final stage, we leverage the learned latent manifold for rapid,
task-specific fine-tuning. With the decoder parameters ζ⋆ frozen, gζ⋆ becomes a deterministic and
differentiable function that generates policies from latent codes. This structure allows us to adapt a
wide range of PG methods to operate in the latent space. By applying the chain rule, the standard
policy gradient can be back-propagated through the frozen decoder to update the latent code z:

∇zJ
R(z) = ∇zgζ⋆(z)⊤∇θJ

R(θ), (8)

where ∇θJ
R(θ) is the conventional policy gradient and ∇zgζ⋆(z) is the Jacobian of the decoder.

This provides a general recipe for adapting popular PG algorithms to our framework. This approach
is particularly advantageous for parameter-exploring PG methods, like PGPE, which notoriously
struggle with high-dimensional parameter spaces. By operating on the low-dimensional latent space,
these algorithms regain their effectiveness while still controlling the expressive power of the original
large network.2

Remarks. In this section, we proposed three specific instantiations for each phase. Yet, we em-
phasize that the proposed pipeline represents the most relevant contribution per se, independently
of how it is realized, i.e., how the policies are collected, which divergence measure is used, which
generative model or PO algorithm over the latent space is employed.

5 EXPERIMENTS

We now investigate through extensive empirical corroboration how the proposed method addresses
the research questions. In order to do so, we will mainly focus on the unsupervised pre-training
phase of the proposed pipeline as of Fig. 2, in which a latent representation is built out of general
datasets of policies not designed to address any specific task explicitly, and we report the empirical
results in Subsec. 5.1. Finally, we make sure that such a latent space can indeed be leveraged in later
supervised fine-tuning phases as soon as a task is provided, and report the results in Subsec. 5.2. A
detailed description of the environments and experimental settings can be found in Appendix B.

Experimental Domains. The experiments are performed to illustrate essential features of Latent
Behavior Compression, and for this reason, the domains are selected for being challenging while
keeping high interpretability. The first is the Mountain Car Continuous (MC, Moore, 1990) envi-
ronment. To evaluate the quality and characteristics of the latent space, we define four downstream
tasks: standard and left have the goal state on the right and left hill, respectively; speed
and height incentivize the car to keep a high speed and vertical coordinate, respectively, with-
out terminating the episode. We also consider three environments from the MuJoCo suite (Tassa
et al., 2018). For Reacher (RC), we define four downstream tasks: speed, which incentivizes
the fingertip to move with high linear velocity; clockwise and c-clockwise reward the agent
for each step the fingertip is rotating clockwise and counterclockwise, respectively; and radial,
which promotes the retraction and extension of the arm. For Hopper (HP), we define four down-
stream tasks: forward, backward, and standstill reward the agent for positive, negative,
or close-to-zero velocity along the x axis respectively; jump rewards the agent for achieving a cer-
tain position along the z axis. Finally, for HalfCheetah (HC), we define four downstream tasks:
forward and backward are defined as for HP; frontflip and backflip reward the agent
each time it performs a frontflip and backflip, respectively.

Experimental Regimes. The experiments are performed over a set of different parameters. In MC,
we took into account three Policy Sizes (Small, Medium, and Large) with roughly 101, 103, and 105

parameters respectively, three Policy Dataset Sizes (10k, 50k, and 100k generated policies, with a
10% novelty-based cut-down), and three Latent Space Sizes (1D, 2D, and 3D). In RC, we focused on
a specific configuration with Medium policies, Policy Dataset size of 100k, but five possible latent
space sizes (1D, 2D, 3D, 5D, and 8D). In HP and HC, we focused on Policy Datasets of 10k, using
Medium policies, with three latent space sizes (5D, 8D, and 16D)3

2Additionally, running PGPE over the latent space does not actually require computing the Jacobian of the
decoder ∇zgζ⋆(z), as explained in Appendix B.

3Notably, the AE architecture and training hyper-parameters are left the same for every experiment, regard-
less of configuration or environment.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) height, Small,
1D, MC

(b) standard, Medium,
1D, MC

(c) height, Large,
1D, MC

(d) speed, Medium,
1D, RC

(e) standard, Small,
2D, MC

(f) standard, Medium,
2D, MC

(g) standard, Large,
2D, MC

(h) speed, Medium,
2D, RC

(i) speed, Small,
3D, MC

(j) standard, Medium,
3D, MC

(k) speed, Large,
3D, MC

(l) speed, Medium,
3D, RC

Figure 3: Landscape of the Latent Behavior Manifold. Lighter and darker colors indicate higher
and lower returns of the decoded policy. The plots shown here represent a subset of the full results
reported in Appendix B. We consider a specific seed with different tasks (height, standard,
speed), policy size (Small, Medium, Large), and encoding dimension (1D, 2D, 3D), for both MC
(first three columns, datasets of 50k policies) and RC (last column, datasets of 100k policies).

5.1 UNSUPERVISED PRE-TRAINING

First, we address the first two research questions, that is:

(Q1) Is it possible to learn a low-dimensional latent representation of a high-dimensional
policy parameter space in an unsupervised fashion?
(Q2) What are the properties of such a latent representation, if it exists? Is its intrinsic
dimension a function of the behavioral complexity rather than the size of the parameter
space?

To do so, we discretize the latent space into a subset {zi}Ni=1 and perform evaluations of the decoded
policies {πzi}Ni=1. This allows for a rough estimate of the quality of the policies compressed in
the latent manifold. Further details on how such discretization was performed can be found in
Appendix B.

Landscape of the Latent Behavior Manifold. We visually inspected the latent spaces trained under
different conditions and environments, and we report a handful in Fig. 3. Interestingly, it is apparent
that the latent spaces, regardless of the choice of encoding dimension (top-to-bottom) or policy size
(left-to-right), can encode some behaviorally diverse policies with high performance. For instance,
in Fig. 3e,3f, and 3g, a 2D latent space can encode policies of all three sizes, but the landscape grows
more complex with the larger policy sizes. We speculate that this is due to the increased range of
behaviors expressed by larger policies and the hardness of high-compression regimes. Indeed, the
same trend is present for different tasks, as in Fig. 3i,3k. On the other hand, by changing the encod-
ing dimension as in Fig. 3b,3f,3j, it is clear how certain behavioral areas at high performance are able
to grow larger, creating a better optimization landscape. Unfortunately yet, the compression is only
as good as the dataset used to learn the latent space: when a behavior is scarcely represented in the
dataset, as is the case for the task height in Fig. 3a,3c, it is unlikely that the learned representation
will encode it in large areas, or encode it at all. As for RC, the compression architecture struggles
to compress the policies at higher compression regimes (Fig. 3d,3h), as the environment is more
challenging and presents a wider range of behaviors. On the other hand, large areas of good quality

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quality of Latent Behavior Compression in MC. We report the performance recovery for
three tasks. We report mean and standard deviation computed over 3 seeds.

Config. Standard Speed Height
Po

lic
y

D
at

as
et

1D 2D 3D 1D 2D 3D 1D 2D 3D

Sm
al

l 10k 0.51±.00 0.66±.11 0.74±.16 0.15±.05 0.15±.08 0.27±.06 0.16±.10 0.16±.09 0.27±.05

50k 0.64±.19 0.93±.10 0.94±.06 0.10±.10 0.42±.15 0.44±.20 0.11±.11 0.45±.14 0.47±.28

100k 0.50±.00 0.72±.21 0.72±.21 0.15±.01 0.40±.37 0.32±.14 0.29±.04 0.40±.23 0.42±.16

M
ed

iu
m 10k 0.83±.23 1.01±.01 1.02±.00 0.25±.12 0.84±.02 0.84±.10 0.36±.22 0.71±.20 0.78±.24

50k 0.66±.21 1.01±.01 1.02±.00 0.14±.04 0.85±.05 0.93±.07 0.15±.04 0.45±.03 0.47±.04

100k 0.51±.00 1.02±.00 1.02±.00 0.14±.03 0.60±.24 0.97±.02 0.22±.04 0.44±.01 0.53±.10

L
ar

ge 10k 1.02±.00 1.01±.00 1.01±.00 0.79±.22 0.87±.06 1.04±.02 0.78±.14 0.84±.07 0.87±.06

50k 1.02±.00 1.01±.00 1.01±.00 0.68±.06 0.97±.05 1.00±.01 0.47±.03 0.55±.11 0.57±.13

100k 1.01±.00 1.01±.00 1.01±.00 0.73±.15 0.92±.06 0.99±.01 0.39±.07 0.54±.04 0.74±.27

compression are present for larger dimensions of the encoding (Fig. 3l), confirming the expected
theoretical behavior (Hurewicz & Wallman, 2015).

Quality of Latent Behavior Compression. We also compared the policies encoded in the latent
space with the ones in the training dataset. They were compared by examining the performance
recovery, that is, the ratio between the performances of policies decoded from the latent space and
those in the dataset. The values for MC are reported in Table 1.4 First, it is clear that increasing
the number of latent dimensions or policy size frequently leads to better performance recovery,
resulting in higher performance as well. Interestingly, some configurations appear to recover higher
performances than the ones in the training dataset. This may be due to the generalization abilities of
the AE, but it may also be influenced by variance in the policy evaluation process. On the contrary,
we note that 1D latent spaces trained on Small policies fail to learn any meaningful encoding of the
behaviors, collapsing to a uniform representation. We attribute this phenomenon to the instability of
the learning process when the latent dimensions are not sufficient. Interestingly, this issue is almost
always fixed by increasing the number of latent dimensions and does not arise with large policies,
which show excellent performance recovery. Finally, our analysis does not indicate that the dataset’s
dimension has any meaningful influence on performance recovery.

Generalization. We further investigated the generalization capabilities of Latent Behavior Com-
pression in more complex environments. Focusing on larger latent spaces where grid visualization
is infeasible, we estimate performance recovery via random sampling of the latent space instead.
Table 2 reports the results for HC and HP. These experiments corroborate the observations in MC
and provide statistically significant evidence that the latent space generalizes beyond the training
set. More specifically, increasing the latent dimension consistently improves performance recovery
in HC, while such trend is likely obscured in HP by the high variance in the sampling process. Fi-
nally, we observe that generalization varies by task complexity, as indicated by the lower recovery
rates for difficult tasks like frontflip and backflip in HC.

Takeaways. With these experiments, we provided a positive answer to (Q1): the proposed unsu-
pervised pipeline is indeed capable of encoding behaviorally meaningful policies in a wide range
of configuration and in multiple environments, ultimately leading to a compression of up to five
orders of magnitude 5. As for (Q2), we found that while larger policies produce richer behavioral
manifolds, even a one-dimensional latent space is often sufficient to capture a wide range of behav-
iors, supporting the hypothesis that the intrinsic dimensionality of the policy behavior manifold is
dictated by the environment complexity rather than by the cardinality of the parameterization. Ad-
ditionally, we study the scalability and generalization capabilities of the latent space. Finally, we
extracted some evidence for the existence of a critical intrinsic dimension in the behavioral mani-
fold, but how to leverage this evidence to learn the best latent representation possible is out of the
scope of the present work.

4Values related to the left task have been omitted as they do not present major differences from the
standard task. Instead, they are reported in Table 3 of Appendix B.

5More precisely, a 121801:1 compression rate at peak.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Quality of Latent Behavior Compression in HP and HC. We report the performance recov-
ery for four tasks by the mean performance recovery and 95% confidence interval over 10 seeds.

Environment Task
Latent Dimensions

5D 8D 16D

Mean 95% CI Mean 95% CI Mean 95% CI

Hopper

forward 1.33 [1.03, 1.69] 1.59 [1.21, 1.99] 1.48 [1.21, 1.78]
backward 2.66 [0.95, 5.96] 1.29 [1.11, 1.47] 1.20 [1.07, 1.33]
standstill 1.49 [1.06, 2.08] 1.51 [1.02, 2.25] 1.57 [1.07, 2.32]

jump 3.83 [0.64, 9.32] 1.54 [1.07, 2.14] 2.42 [1.35, 3.75]

HalfCheetah

forward 1.63 [1.02, 2.31] 1.80 [1.20, 2.47] 1.84 [1.41, 2.39]
backward 1.27 [1.04, 1.55] 1.52 [1.19, 1.85] 1.72 [1.37, 2.06]
frontflip 0.54 [0.29, 0.86] 0.74 [0.49, 0.99] 1.20 [0.80, 1.63]
backflip 0.55 [0.31, 0.86] 0.75 [0.51, 0.99] 1.23 [0.81, 1.66]

Latent PGPE 1D Latent PGPE 2D Latent PGPE 3D Best in Dataset DDPG PPO SAC TD3 Parameter PGPE

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e5

75

50

25

0

25

50

75

100

R
et

ur
n

(a) standard
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e5

60

40

20

0

20

40

60

80

100

R
et

ur
n

(b) left
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e5

0.0

0.5

1.0

1.5

2.0

R
et

ur
n

(c) speed
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps 1e5

0

200

400

600

800

R
et

ur
n

(d) height

Figure 4: Performance comparison in MC for different tasks. We report the average and 95%
confidence interval over 10 runs.

5.2 SUPERVISED FINE-TUNING

Finally, we address the last research question, namely:

(Q3) How can we fine-tune against specific tasks, leveraging the low-dimensional space?
Does this come with positives?

To achieve this, we compared the effect of supervised fine-tuning on the latent space using a simple
variant of PGPE, which we refer to as Latent PGPE, with various baselines, including PPO (Schul-
man et al., 2017), DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja
et al., 2018). We also tested PGPE (Sehnke et al., 2008) in the high-dimensional parameter space,
referred to as Parameter PGPE, as a sanity check. Our implementation of both Parameter PGPE
and Latent PGPE can be found in Appendix B. All the algorithms were run in the best-performing
configuration for the policy sizes. Interestingly, DRL baselines always struggle to optimize small
policies and typically perform better with larger ones. On the contrary, Parameter PGPE benefits
from having a reduced set of parameters to control; however, it generally suffers from high sample
complexity. These evidences are reported in Appendix B (Fig. 7,8,9).

From these comparisons (reported in Fig. 4 and Fig. 5 for MC and RC, respectively), we were able
to extract three main findings. First of all, the convergence rate and performance of Latent PGPE
are positively correlated with the number of dimensions of the latent space, which confirms that
larger latent spaces are indeed better shaped and with an easier optimization landscape, as hinted in
Subsec. 5.1 as well. Secondly, Latent PGPE converges faster than all baselines in 7 out of 8 tasks,
even though it does not always converge to the optimum. Finally, Latent PGPE is able to achieve
comparable, if not better, performances to most of the baselines, even for complex tasks like speed
in Fig. 4c, 5a. However, we observe that it fails to solve the height task in Fig. 4d, due to the
scarce representation of the high-performance policies in the unsupervised policy dataset.

Takeaways. These results provide a positive answer to (Q3): Leveraging the learned low-
dimensional representation of the behavioral manifold, the agent can not only achieve faster con-
vergence, but also better performances than state-of-the-art DRL algorithms in challenging sparse
tasks. Unfortunately, this comes with the limitation that the fine-tuning performance is related to the
quality of the learned representation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Latent PGPE 1D Latent PGPE 2D Latent PGPE 3D Latent PGPE 5D Latent PGPE 8D Best in Dataset SAC Parameter PGPE

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e5

0

5

10

15

20

25

30

35

R
et

ur
n

(a) speed
0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e5

0

5

10

15

20

25

30

35

R
et

ur
n

(b) clockwise
0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e5

0

5

10

15

20

25

30

35

R
et

ur
n

(c) c-clockwise
0.0 0.2 0.4 0.6 0.8 1.0

Timesteps 1e5

0

5

10

15

20

25

30

35

R
et

ur
n

(d) radial

Figure 5: Performance comparison in RC for different tasks. We report the average and 95% confi-
dence interval over 10 runs. For clarity, the worst-performing baselines are omitted. A full study is
reported in Appendix B.

6 CONCLUSIONS

In this work, we proposed a novel, unsupervised framework to address the sample inefficiency of
Deep Reinforcement Learning by shifting the focus from parameter space to behavior space. Our
approach successfully learns a compact latent manifold of policies, organized by behavioral similar-
ity, using a generative model with an unsupervised behavioral reconstruction loss. Empirically, we
showed that this approach can compress policy parameterizations by several orders of magnitude
while preserving their functional expressivity. This compressed representation also allows for more
efficient fine-tuning for downstream tasks via gradient-based optimization in the low-dimensional
latent space.

Future Directions. Our framework is intentionally modular, and we view it as a blueprint for a
new class of more efficient DRL agents. We believe this approach can inspire significant future
research into its core components, including the use of alternative behavioral divergences, more ad-
vanced generative architectures for compression, and the adaptation of different algorithms for latent
behavior optimization. Furthermore, many RL approaches that condition value functions (Faccio
et al., 2021) or meta-learners (Rakelly et al., 2019) directly on policy parameters could greatly ben-
efit from our compression, as it provides a compact and semantically meaningful representation to
replace raw parameter vectors.

ETHICS STATEMENT

This work presents fundamental research in reinforcement learning theory and algorithms. We have
carefully reviewed the Code of Ethics and confirm that our research raises no ethical concerns.

REPRODUCIBILITY STATEMENT

All experiments were run on 50 cores of an Intel(R) Xeon(R) Gold 64118H CPU, 1 TB of RAM,
and one NVIDIA H100 GPU. The total wall-clock time to re-run all experiments is approximately
50 hours. Our proposed approach is detailed in Section 4 with full implementation details and hy-
perparameters included in Appendix B. The source code is available in the supplementary material.

LLM DISCLOSURE

We used LLMs in a limited capacity as a writing assistance tool. Specifically, LLMs were employed
to help refine the clarity and readability of selected paragraphs throughout the paper. All content
has been reviewed and verified by the authors, who take full responsibility for the accuracy and
originality of all statements in this paper.

REFERENCES

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. Ad-
vances in neural information processing systems, 35:28955–28971, 2022.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121, 2024.

Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew
Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mo jtaba Komeili, Karthik Konath, Minae
Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sandra Mitts, Adithya Renduchintala,
Stephen Roller, Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David J. Wu, Hugh Zhang,
and Markus Zijlstra. Human-level play in the game of diplomacy by combining language models
with strategic reasoning. Science, 378:1067 – 1074, 2022. doi: 10.1126/science.ade9097. URL
https://www.science.org/doi/abs/10.1126/science.ade9097.

Mira Bernstein, Vin De Silva, John C Langford, and Joshua B Tenenbaum. Graph approximations to
geodesics on embedded manifolds. Technical report, Technical report, Department of Psychology,
Stanford University, 2000.

Lawrence Cayton et al. Algorithms for manifold learning. Univ. of California at San Diego Tech.
Rep, 12(1-17):1, 2005.

Oscar Chang, Robert Kwiatkowski, Siyuan Chen, and Hod Lipson. Agent embeddings: A latent
representation for pole-balancing networks. In International Conference on Autonomous Agents
and MultiAgent Systems, pp. 656–664, 2019.

Siu-Wing Cheng, Tamal K Dey, and Edgar A Ramos. Manifold reconstruction from point samples.
In SODA, volume 5, pp. 1018–1027, 2005.

Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing bijectivity
constraints with continuously indexed normalising flows. In International conference on machine
learning, pp. 2133–2143. PMLR, 2020.

Vincenzo De Paola, Riccardo Zamboni, Mirco Mutti, and Marcello Restelli. Enhancing diversity
in parallel agents: A maximum state entropy exploration story. Proceedings of the International
Conference on Machine Learning (ICML), 2025. URL https://arxiv.org/abs/2505.
01336.

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for robotics.
Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

B.P. Duval, A. Abdolmaleki, M. Agostini, C.J. Ajay, S. Alberti, E. Alessi, G. Anastasiou,
Y. Andrèbe, G.M. Apruzzese, F. Auriemma, J. Ayllon-Guerola, F. Bagnato, et al. Experimen-
tal research on the TCV tokamak. Nuclear Fusion, 64(11):112023, oct 2024. doi: 10.1088/
1741-4326/ad8361. URL https://dx.doi.org/10.1088/1741-4326/ad8361.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2018.

Francesco Faccio, Louis Kirsch, and Jürgen Schmidhuber. Parameter-based value functions. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
tV6oBfuyLTQ.

Francesco Faccio, Vincent Herrmann, Aditya Ramesh, Louis Kirsch, and Jürgen Schmidhuber.
Goal-conditioned generators of deep policies. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 37, pp. 7503–7511, 2023.

11

https://www.science.org/doi/abs/10.1126/science.ade9097
https://arxiv.org/abs/2505.01336
https://arxiv.org/abs/2505.01336
https://dx.doi.org/10.1088/1741-4326/ad8361
https://openreview.net/forum?id=tV6oBfuyLTQ
https://openreview.net/forum?id=tV6oBfuyLTQ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Karol Gregor, Danilo Rezende, and Daan Wierstra. Variational intrinsic control. International
Conference on Learning Representations, Workshop Track, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018.

Steven Hansen, Will Dabney, Andre Barreto, David Warde-Farley, Tom Van de Wiele, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. In Interna-
tional Conference on Learning Representations, 2019.

Shashank Hegde, Sumeet Batra, KR Zentner, and Gaurav Sukhatme. Generating behaviorally di-
verse policies with latent diffusion models. Advances in Neural Information Processing Systems,
36:7541–7554, 2023.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Witold Hurewicz and Henry Wallman. Dimension theory, volume 4. Princeton university press,
2015.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

Věra Krková and Paul C Kainen. Functionally equivalent feedforward neural networks. Neural
Computation, 6(3):543–558, 1994.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel
Pinto, and Pieter Abbeel. Urlb: Unsupervised Reinforcement Learning benchmark. 2021.

Joel Lehman and Kenneth O Stanley. Evolving a diversity of virtual creatures through novelty search
and local competition. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pp. 211–218, 2011.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Olya Mastikhina, Dhruv Sreenivas, and Pablo Samuel Castro. Optimistic critics can empower small
actors. arXiv preprint arXiv:2506.01016, 2025.

Alberto Maria Metelli, Matteo Papini, Francesco Faccio, and Marcello Restelli. Policy optimization
via importance sampling. Advances in Neural Information Processing Systems, 31, 2018.

Atsushi Miyamae, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi. Natural policy gradient
methods with parameter-based exploration for control tasks. Advances in neural information
processing systems, 23, 2010.

Alessandro Montenegro, Marco Mussi, Alberto Maria Metelli, and Matteo Papini. Learning optimal
deterministic policies with stochastic policy gradients. arXiv preprint arXiv:2405.02235, 2024.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. Advances in neural information processing systems, 27, 2014.

Andrew William Moore. Efficient memory-based learning for robot control. Technical report, Uni-
versity of Cambridge, 1990.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mirco Mutti, Stefano Del Col, and Marcello Restelli. Reward-free policy space compression for
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
3187–3203. PMLR, 2022.

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,
2022.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On the
expressive power of deep neural networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 2847–2854, 2017.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Nemanja Rakicevic, Antoine Cully, and Petar Kormushev. Policy manifold search: Exploring the
manifold hypothesis for diversity-based neuroevolution. In Genetic and Evolutionary Computa-
tion Conference, pp. 901–909, 2021.

Thomas Rückstiess, Frank Sehnke, Tom Schaul, Daan Wierstra, Yi Sun, and Jürgen Schmidhuber.
Exploring parameter space in reinforcement learning. Paladyn, 1(1):14–24, 2010.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learn-
ing on neural network weights for model characteristic prediction. Advances in Neural Informa-
tion Processing Systems, 34:16481–16493, 2021.

Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-
representations as generative models: Sampling unseen neural network weights. Advances in
Neural Information Processing Systems, 35:27906–27920, 2022.

Konstantin Schürholt, Michael W Mahoney, and Damian Borth. Towards scalable and versatile
weight space learning. In Proceedings of the 41st International Conference on Machine Learning,
pp. 43947–43966, 2024.

Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen
Schmidhuber. Policy gradients with parameter-based exploration for control. In International
Conference on Artificial Neural Networks, pp. 387–396. Springer, 2008.

Laura Smith, Ilya Kostrikov, and Sergey Levine. A walk in the park: Learning to walk in 20
minutes with model-free Reinforcement Learning. arXiv preprint arXiv:2208.07860, 2022. URL
https://arxiv.org/abs/2208.07860.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-
miller. Deepmind control suite, 2018. URL https://arxiv.org/abs/1801.00690.

Nihat Engin Toklu, Paweł Liskowski, and Rupesh Kumar Srivastava. Clipup: A simple and pow-
erful optimizer for distribution-based policy evolution. In International Conference on Parallel
Problem Solving from Nature, pp. 515–527. Springer, 2020.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, 2022.

13

https://arxiv.org/abs/2208.07860
https://arxiv.org/abs/1801.00690

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tom Zahavy, Yannick Schroecker, Feryal Behbahani, Kate Baumli, Sebastian Flennerhag, Shaobo
Hou, and Satinder Singh. Discovering policies with DOMiNO: Diversity optimization maintain-
ing near optimality. arXiv preprint arXiv:2205.13521, 2022.

Riccardo Zamboni, Mirco Mutti, and Marcello Restelli. Towards principled unsupervised multi-
agent Reinforcement Learning. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS), volume 38, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

Simplification of the Policy Space. A variety of works (among others, Gregor et al., 2017; Eysen-
bach et al., 2018; Achiam et al., 2018; Hansen et al., 2019) have proposed methods to simplify the
policy space. Yet, those policies should be generally intended as mere initializations for supervised
fine-tuning, which falls back to operating in the original policy space once the downstream task is
revealed. To the best of our knowledge, the only other work defining a formal criterion to operate
a compression of the policy space is Mutti et al. (2022). Yet, this paper seeks a way to reduce the
cardinality of the policy space, rather than its dimensionality. Moreover, the constraints defining a
valid compression are stricter than ours, resulting in an optimization problem that is known to be
NP-hard. Finally, their work does not provide a way to perform supervised fine-tuning in a scalable
way.

Weight Space Learning The goal of our work, namely, to learn a latent representation of neural
network parameters, is shared by the field of Weight Space Learning (WSL). In RL, recent works
have investigated task-specific generative models, conditioning them on goals (Faccio et al., 2023)
or performance checkpoints (Peebles et al., 2022), unlike our fully unsupervised approach. Our
approach is more in line with the works on hyper-representations (Schürholt et al., 2021; 2022; 2024)
of networks trained for supervised tasks. Hyper-representations are task-agnostic low-dimensional
embeddings of neural networks learned from a zoo of trained models. Beyond its novel application
to RL, our approach differs from these works in two ways. First, our “zoo” does not require trained
experts. Second, and more critically, WSL methods must often contend with the vast number of
parameter-space symmetries (e.g., neuron permutations and scaling (Krková & Kainen, 1994)) using
complex architectures or workarounds. Our behavioral reconstruction loss fundamentally sidesteps
this challenge. By compressing policies based on their function rather than their specific parameters,
our autoencoder naturally assimilates these redundant parameterizations. This concept of functional
compression is similar to ”policy fingerprinting” (Faccio et al., 2023), which also gauges behavior
independent of weights.

Policy Manifold and Quality Diversity. The idea of employing generative models to learn a
compressed representation of the policy space has received some recent attention outside of the
Weight Space Learning field. Rakicevic et al. (2021) hypothesized that there might be a low-
dimensional manifold embedded in the policy parameter space, even if they did not characterize
it formally. Chang et al. (2019) trains a Variational AE to reconstruct the weights of pre-trained ex-
pert policies to learn expert-agent embeddings and analyze the latent structure of the solution space.
A similar architecture has also been applied in the field of Quality Diversity, either to improve the
sample efficiency of diversity-based search Rakicevic et al. (2021) or to distill a large policy archive
into a compact generative model (Hegde et al., 2023). Notably, all the methods above employ VAE
architectures with a parameter-reconstruction loss, which allows only moderate compression ratios
of up to 19 : 1 (Hegde et al., 2023). In comparison, this paper introduces a fully unsupervised
pipeline that focuses on compressing a behavioral loss, intending to provide a compact space for
latent policy optimization as well while retaining way stronger compression abilities.

Policy Optimization. First-order methods have been extensively employed to address PO (Peters
& Schaal, 2008; Lillicrap et al., 2015) as well as natural gradients (Kakade, 2001) and trust-region
methods (Schulman et al., 2017). Yet in this work, we built on the long tradition of PGPE Algo-
rithms (Sehnke et al., 2008; Rückstiess et al., 2010; Miyamae et al., 2010; Montenegro et al., 2024),
as their hard scalability to large parameter spaces is notoriously a blocking factor. Finally, we notice
that Rakicevic et al. (2021) indeed proposed a method to optimize the diversity of the policies by
taking into account the Jacobian of the decoder in a VAE architecture.

B EXPERIMENTAL DETAILS

Environments. We evaluate our methods on four control environments from the Gymnasium li-
brary: Mountain Car Continuous, Reacher, Hopper, and HalfCheetah. The first is a classic control
environment, which consists of a car placed stochastically in the middle of a sinusoidal valley, with
the goal state on top of the right hill. The state is defined by two continuous variables: the position
of the car along the x-axis p ∈ [−1.2, 0.6], and the velocity of the car v ∈ [−0.07, 0.07]. The only
possible action is to apply an acceleration a ∈ [−1, 1] to the car. The standard task is defined

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

as Rstandard,t = −0.1a2, until the goal is reached and a reward of Rstandard,t = 100 is obtained, and
the episode ends. If the goal is not reached, the episode ends after 999 steps. We introduce three
additional tasks: left, which is the same as the standard task, but with the goal moved to the top of
the left hill (p ≤ −1.1); height, which gives a reward of Rheight,t = h2 at each time step for which
h ≥ 0.2, with h = sin(3p) ∗ 0.45 + 0.55 being the height of the car; speed, which gives a reward
of Rspeed,t = v2 at each time step. In the left task, the episode ends when the car reaches the left
goal, while in the height and speed tasks, the episode ends when the car reaches the right goal.

The second environment, Reacher, is a classic continuous control task consisting of a two-jointed
robot arm, moving in a 2D space, with an end-effector called fingertip. The state is originally 10-
dimensional, but we remove the coordinates of the target and the vector between the fingertip and the
target. We end up with a 6-dimensional state composed of: cos(q1), cos(q2), sin(q1), and sin(q2),
the cosines and sines of the two joint angles, and ω1 and ω2, their angular velocities. For the purpose
of normalization, we consider the state bounded between the vectors [−1,−1,−1,−1,−5,−5] and
[1, 1, 1, 1, 5, 5]. The agent controls the arm by applying a distinct torque to each hinge, making the
action space A = [−1, 1]2. We disregard the standard task and instead define four new behavioral
tasks that have the same reward shape Rtask = 1 if the condition is met, or 0 otherwise. In the
speed task, the condition is that the linear velocity of the tip is greater than 6. In the clockwise
and c-clockwise tasks, the condition is that the tangential velocity of the fingertip is greater than
-11, or 1, respectively. Finally, in the radial task, the condition is that the radial velocity of the
tip is greater than 3. The episodes terminate after 50 steps.

The third environment, Hopper, is a classic continuous control task that models a 1-legged robot
with 3 joints. The state space is 11-dimensional, capturing the robot’s z-position, joint an-
gles, and corresponding velocities. For the purpose of normalization, we consider the state
bounded between the vectors [0.7,−0.2,−2.7,−2.7,−0.8,−5.0,−5.0,−5.0,−5.0,−5.0,−5.0]
and [1.5, 0.2, 0.0, 0.0, 0.8, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]. The agent controls the arm by applying a dis-
tinct torque to each hinge, making the action space A = [−1, 1]3. Analogously to Reacher, we
disregard the standard task and instead define four new behavioral tasks that have the same re-
ward shape Rtask = 1 if the condition is met, or 0 otherwise. In the forward, backward, and
standstill tasks, the condition is that the x-axis velocity is greater than 1, lower than -1, or
between -0.05 and 0.05. In the jump task, the z position has to be greater than 1.3. The episodes
terminate after 1000 steps.

The fourth environment, HalfCheetah, is a classic continuous control task that mod-
els a 2D, two-legged robot with 6 actuated joints. The state space is 18-dimensional,
including the robot’s body position, rotational angles, and joint velocities. For
the purpose of normalization, we consider the state bounded between the vectors
[0,−π,−0.52,−0.785,−0.4,−1,−1.2,−0.5,−5.0,−5.0,−5.0,−5.0,−5.0,−5.0,−5.0,−5.0,−5.0]
and [1.5, π, 1.05, 0.785, 0.785, 0.7, 0.87, 0.5, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0]. The agent
controls the arm by applying a distinct torque to each hinge, making the action space A = [−1, 1]6.
The tasks are almost the same as for Hopper. In the forward and backward, the condition is
that the x-axis velocity is greater than 2, or lower than -2. In the frontflip and backflip,
the task condition is that the cumulative rotation along the y-axis increases or decreases by a full
rotation from the initial angle. The episodes terminate after 1000 steps.

Policies. To model the policies, we use fully-connected, feed-forward, deterministic MLPs. Our
choice of focusing on deterministic policies is dictated by the use of PGPE as an optimization algo-
rithm in the last stage; however, our pipeline is designed to be general. As such, we believe there
is an apparent limitation to the use of stochastic policies instead. The input layer has S neurons
and is preceded by a normalization layer that standardizes the state features to have zero mean and
unit variance. The hidden linear layers are followed by elu nonlinearities. The last layer has |A|
neurons, followed by a tanh activation to squash the action into the valid range. We test three
different shapes of policies in Mountain Car: Small policies composed of a single 4-neuron hid-
den layer; Medium policies composed of two 32-neuron hidden layers; Large policies composed
of a 400-neuron hidden layer followed by a 300-neuron hidden layer. The number of parame-
ters of the policies increases roughly by two orders of magnitude at each interval (PSmall = 17,
PMedium = 1, 185, PLarge = 121, 801). For Hopper and HalfCheetah, we use the same shape of
Medium policies. While in Reacher we use Medium policies composed of two 64-neuron hidden
layers, with PReacher = 4738.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Policy Divergence. To compute the divergence between policies, we instead estimate the distance of
the deterministic actions over a subset of states. We consider the state spaces bounded as previously
described, and we extract roughly M = 3000 states. In Mountain Car, we find them by discretizing
the two dimensions and creating a grid, while in MuJoCo environments, we simply sample them
uniformly from the bounded state space. In the k-NN phase, we use k = 15, and compute the
distance between two policies as:

D(πθ||πθ′) =

√√√√ M∑
i=1

(πθ(si)− πθ′(si))2.

While in the manifold learning phase, we compute it as:

D(πθ||πθ′) =
1

M

M∑
i=1

(πθ(si)− πθ′(si))
2.

Autoencoder. We use a simple, fully-connected, feed-forward, deterministic MLP to model the
autoencoder. The shape of the autoencoder is the same for all the experiments. The input and output
layers have size P , with the input layer being preceded by a standardization layer, and the output
layer not being activated; the encoder has a 25-neuron hidden layer followed by a 10-neuron hidden
layer; the decoder has the mirrored shape of the encoder. The first layer of the encoder and the first
layer of the decoder are followed by elu nonlinearities. The autoencoder is trained for 50 epochs
using the Adam optimizer with an initial learning rate of 0.0001 and a batch size of 64. We employ a
learning rate scheduler that halves the learning rate after 15 epochs of non-improvement, evaluated
on a 20% random hold-out set. The empirical loss used to train the autoencoder is defined as:

LB =
1

N

1

M ′

N∑
i=1

M ′∑
j=1

(πθi(sj)− πθ̂i
(sj))

2,

where N is the number of policies in the training dataset, M ′ = 1000 is the size of the subset of
the state set that we sample at each gradient step, and πθ̂i

is the reconstructed policy. In Mountain
Car, we set the latent dimension of the autoencoders to k = 1, 2, 3, while in Reacher, we use
k = 1, 2, 3, 5, 8. In Hopper and HalfCheetah, k = 5, 8, 16.

When we evaluate a latent space, we first compute the interquartile range for each dimension based
on the spread of the training codes. Then, we discretize each dimension by a variable number of
points depending on the dimension of the latent code: 100 points for 1D, 50 points for 2D, and
17 points for 3D. For more than three latent dimensions, we sample 10000 policies from the same
bounded latent space at random. The decision is based solely on computational feasibility and serves
the purpose of having a rough conservative estimate of the range of encoded behaviors.

Performance Recovery. When comparing the policies found in the latent space with the ones
belonging to the original dataset, we compute a behavior recovery metric in the following way.
First, we average the dataset lower and upper bounds for all tasks across three seeds with the same
configuration, lbD, ubD. Then we do the same for the discretized set of policies reconstructed from
the latent space, lbL, ubL. Finally, for each task, we compute the performance recovery as ubL−lbD

ubD−lbD
.

In Table 3, we provide the analysis for the reward left, which was omitted in Table 1.

(Latent) PGPE. As a byproduct of the low-dimensionality of the latent space, this framework
is well suited to parameter-exploring PG methods. Algorithms like PGPE struggle with a high-
dimensional set of parameters, such as those of a standard DRL network with hundreds of thousands
of parameters. Yet, they can instead operate on the low-dimensional set of latent parameters while
maintaining the expressivity of the original parameter space. As a bonus, the extension of PGPE
to the latent space does not require computing the Jacobian of the decoder as in Eq. 8, as it can
be seen as a deterministic addition to the black-box process that evaluates the parameters produced
by the Gaussian hyperpolicy νϕ, where ϕ = (µ,σ) is the vector of means and standard deviations
parameterizing the Gaussian distributions over the latent parameters. In fact, the objective defined in
Eq. 2 can be rewritten under the latent PG formulation as JR(z) = Eτ∼p(·|z),z∼νϕ

[R(τ)], with the
only change being that the probability density of the trajectories is given by the policy induced by
the latent parameters as p(τ | z) = µ(s0)

∏T
t=0 P(st+1 | st, at)πgζ(z)(at|st). Finally, the gradient

estimator at Eq. 3 is left unchanged, but for the change in parameter space from θi to zi.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Quality of Latent Behavior Compression in MC. We report the performance recovery for
the left task. We report mean and standard deviation computed over 3 seeds.

Config. Left

Policy Dataset 1D 2D 3D

Sm
al

l 10k 0.73±.16 0.66±.18 0.98±.03

50k 0.64±.19 0.98±.03 0.99±.02

100k 0.73±.05 0.80±.21 0.94±.06

M
ed

iu
m 10k 0.95±.05 1.01±.01 1.01±.01

50k 0.78±.13 1.01±.00 1.01±.00

100k 0.82±.10 1.01±.00 1.01±.01

L
ar

ge 10k 1.01±.00 1.00±.01 1.01±.00

50k 1.01±.00 1.01±.00 1.00±.00

100k 1.01±.00 1.01±.00 1.00±.00

We base our implementation of PGPE on an ask-and-tell implementation with symmetric sampling
Toklu et al. (2020). We modify it to allow for numpy parallelization, reward normalization, center
learning rate scheduling, learning log σ instead of σ, and natural gradient computation. The center is
optimized with Adam, with momentum 0.2. The log-standard deviation instead is learned through
simple gradient ascent with fixed learning rate. For Mountain Car, we perform 75 seeded runs
on 75 different autoencoders with the same hyperparameters: center learning rate 0.05, population
size 4, initial standard deviation 0.6, standard deviation learning rate 0.1, and 50 generations. In
Reacher, the learning rate has a linear annealing down to 20% of the initial value, and we use the
same hyperparameters for all runs, which are the following: center learning rate 0.1, population size
10, initial standard deviation 0.3, standard deviation learning rate 0.1, and 200 generations. In both
cases, each sample of the population is evaluated on a single episode.

Given the episodic nature of PGPE, each generation can take an arbitrary number of environment
steps to evaluate the samples of the population. Since the center is changed only once at the end of a
generation, we evaluate the learning curve at different sample checkpoints, contrary to the standard
StableBaselines3 approach. This causes different runs to have different evaluation checkpoints (x-
axis of the learning curve) and a different number of total samples used. To visualize an aggregate
learning curve across multiple runs, we take two measures: we interpolate the various curves along
the x-axis; we extend the final evaluation of each run along the x-axis so that all runs have identical
lengths, with the assumption that the algorithm has already converged by the end of the training. To
ensure the stability of the final evaluation, we evaluate the center solution on 100 episodes (instead
of 10 episodes used during training).

Reproducibility. In MC, we perform two main experiments. First, we study different configurations
by creating 27 different datasets. We seed all the steps of the pipeline with seeds 0 through 26. In
order, we use seeds 0-8 for Small policies, 9-17 for Medium policies, and 18-26 for Large policies.
In each batch, the first three seeds are used for datasets of 10k policies, the next three for datasets of
50k, and the last three for datasets of 100k policies. The second experiment focuses on datasets of
10k Medium policies, and it is run with seeds starting from 100. In Reacher, we focus on datasets of
100k Medium policies with seeds starting from 0. In Hopper and HalfCheetah, we focus on datasets
of 10k Medium policies with seeds starting from 0.

ADDITIONAL EXPERIMENTS

Baseline Hyperparameters. Here we provide the hyperparameters used to train the baselines for
each environment. Where not specified, we use the StableBaselines default parameters. In MC, we
used higher standard deviations for the stochastic processes used by TD3 and DDPG for exploration:
0.75 and 0.65, respectively. For DDPG, we also used a smaller replay buffer size of 50000. For SAC,
we used a soft update coefficient (tau) of 0.01, train frequency of 32, entropy coefficient of 0.1, 32
gradient steps per rollout, replay buffer size of 50000, and we used generalized State Dependent
Exploration (gSDE). For PPO, we used a learning rate of 0.0001, 32 steps per rollout, batch size
of 256, 4 epochs of optimization of the surrogate loss, lambda value of 0.9 for the Generalized
Advantage Estimator (GAE), a clip range of 0.1, entropy coefficient of 0.1, value function coefficient

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

100 50 0 50 100
Return

10 2

10 1

100

Pr
ob

ab
ili

ty
 M

as
s

Standard

Small
Large

100 50 0 50 100
Return

10 2

10 1

Left

0.0 0.5 1.0 1.5 2.0
Return

10 2

10 1

Speed

0 200 400 600 800
Return

10 8

10 6

10 4

10 2

100
Height

Figure 6: Reward distribution comparison of datasets of 10k Small (blue) and Large (orange) poli-
cies in MC. The y-axis uses a logarithmic scale. We report the average and 95% CI over 5 seeds.

DDPG PPO SAC TD3 PGPE Small Medium Large

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e5

75

50

25

0

25

50

75

100

R
et

ur
n

(a) standard
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps 1e5

75

50

25

0

25

50

75

R
et

ur
n

(b) left
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps 1e5

0.0

0.5

1.0

1.5

2.0

R
et

ur
n

(c) speed
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps 1e5

0

200

400

600

800

R
et

ur
n

(d) height

Figure 7: Baseline Ablation study in MC. We report the average and 95% confidence interval over
10 runs.

of 0.19, max gradient norm of 5 and we used gSDE. In RC, we kept the same hyperparameters used
for MC, changing only the standard deviation of DDPG to 0.5.

Baseline Ablation Study. We report complete baseline studies for both MC and RC. In MC, we
study how the baselines operate with different-sized policies. We report our results in Figure 7. We
observe that almost all algorithms struggle with optimizing small policies. In Figure 8, we report
a separate study for PGPE, in order to offer a cleaner visualization, given the major difference in
sample complexity. We can observe the opposite behavior, namely, PGPE is often more sample-
efficient and better-performing when using smaller policies. Finally, in Figure 9, we report the
complete study of baselines for the RC environment.

Policy Representation Range. We analyze the behavioral distributions of randomly sampled Small
and Large policies in the MC environment (Figure 8). For simpler tasks (standard, left, and
speed), both architectures cover a similar reward range, though their probability distributions dif-
fer. However, in the more complex height task, Large policies exhibit a significantly broader
support, reaching higher maximum rewards than their Small counterparts. While this observation
relies on random weight sampling and is limited to a single environment, it aligns with theoreti-
cal findings on the relationship between parameter count and network expressivity (Montúfar et al.,
2014; Raghu et al., 2017; Bahri et al., 2024), suggesting that larger networks are naturally capable
of representing a richer diversity of behaviors.

Latent Behavior Manifolds. To complement the results in the main paper, we provide an extensive
set of visualizations of the learned latent behavior manifolds. These plots illustrate how the latent
representations organize policies across different tasks, policy sizes, and encoding dimensions. They
cover both environments studied in this work—Mountain Car (MC) and Reacher (RC)—and show
how the manifold structure emerges consistently across settings. The visualizations serve two pur-
poses: (i) to confirm that the latent space captures meaningful behavioral structure qualitatively, and
(ii) to demonstrate the consistency of this organization across seeds and settings. For clarity in the
main text, we only reported a subset of representative plots; here, to enable a more thorough inspec-
tion and reproducibility, we visualize one seed per configuration in MC and all seeds for RC. Each
figure shows the latent spaces for 1, 2, and 3 dimensions for all tasks. The tasks are ordered from
left to right as follows: standard, left, speed, height for MC, and speed, clockwise,
c-clockwise, and radial for RC.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Small Medium Large

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

75

50

25

0

25

50

75

100

R
et

ur
n

(a) standard
0.0 0.5 1.0 1.5 2.0 2.5

Timesteps 1e6

75

50

25

0

25

50

75

R
et

ur
n

(b) left
0.0 0.5 1.0 1.5 2.0 2.5

Timesteps 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
et

ur
n

(c) speed
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Timesteps 1e6

0

25

50

75

100

125

150

R
et

ur
n

(d) height

Figure 8: PGPE Ablation study in MC. We report the average and 95% confidence interval over 10
runs.

DDPG PPO SAC TD3 PGPE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Timesteps 1e5

0

5

10

15

20

25

30

35

R
et

ur
n

(a) speed
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Timesteps 1e5

0

5

10

15

20

25

30

35

R
et

ur
n

(b) clockwise
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Timesteps 1e5

0

5

10

15

20

25

30

35

R
et

ur
n

(c) c-clockwise
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Timesteps 1e5

0

5

10

15

20

25

30

R
et

ur
n

(d) radial

Figure 9: Baseline study in RC. We report the average and 95% confidence interval over 10 runs.

Figure 10: MC - Small, 10k - Seed 0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 11: MC - Small, 50k - Seed 3

Figure 12: MC - Small, 100k - Seed 6

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 13: MC - Medium, 10k - Seed 9

Figure 14: MC - Medium, 50k - Seed 12

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 15: MC - Medium, 100k - Seed 15

Figure 16: MC - Large, 10k - Seed 18

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 17: MC - Large, 50k - Seed 21

Figure 18: MC - Large, 100k - Seed 24

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 19: RC - Seed 0

Figure 20: RC - Seed 1

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 21: RC - Seed 2

Figure 22: RC - Seed 3

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 23: RC - Seed 4

Figure 24: RC - Seed 5

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 25: RC - Seed 6

Figure 26: RC - Seed 7

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 27: RC - Seed 8

Figure 28: RC - Seed 9

29

	Introduction
	Preliminaries
	Problem Formulation
	Method: Unsupervised Compression of the Policy Space
	Experiments
	Unsupervised Pre-training
	Supervised Fine-Tuning

	Conclusions
	Related Work
	Experimental Details

