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Abstract

Large Vision-Language Models (LVLMs) have
achieved impressive performance, yet research
has pointed out a serious issue with object hallu-
cinations within these models. However, there
is no clear conclusion as to which part of the
model these hallucinations originate from. In
this paper, we present an in-depth investigation
into the object hallucination problem specifi-
cally within the CLIP model, which serves as
the backbone for many state-of-the-art vision-
language systems. We unveil that even in isola-
tion, the CLIP model is prone to object halluci-
nations, suggesting that the hallucination prob-
lem is not solely due to the interaction between
vision and language modalities. To address this,
we propose a counterfactual data augmentation
method by creating negative samples with a va-
riety of hallucination issues. We demonstrate
that our method can effectively mitigate object
hallucinations for CLIP model, and we show
the the enhanced model can be employed as a
visual encoder, effectively alleviating the object
hallucination issue in LVLMs. !

1 Introduction

Current Large Vision-Language Models (LVLMs)
demonstrate significant potential in tasks requiring
joint visual and linguistic perception, such as image
captioning (Agrawal et al., 2019b), visual question
answering (Antol et al., 2015), visual grounding
(Yu et al., 2016), and autonomous agents (Durante
et al., 2024; Xi et al., 2023). Despite the success of
LVLMs, previous studies have revealed that they
commonly suffer from hallucinations in practice,
including object hallucinations (Li et al., 2023b;
Leng et al., 2023; Zhou et al., 2023), spatial hallu-
cinations (Kamath et al., 2023), attribute hallucina-
tions (Zhang et al., 2024), etc. It is widely believed
that hallucinations degrade model performance and

'Our benchmark and code are publicly available

on https://anonymous.4open.science/r/clip_
hallucination-71EC.

reliability, and severely impair the user experience
in real-world applications (Ji et al., 2023).

In this work, we focus on investigating the
causes of the highly-concerned object hallucina-
tions, i.e., LVLMs generate nonexistent objects in
the image (Biten et al., 2022). A typical LVLM uti-
lizes a Large Language Model (LLM) as its cogni-
tive foundational model and employs a pre-trained
image encoder as its visual perception module
(mainly the CLIP encoder). Kamath et al. (2023)
investigated the spatial hallucination (e.g., confus-
ing “left of” and “right of’) in LVLMs, and they
found that various CLIP encoders struggle to rec-
ognize simple spatial relationships (achieving only
a 55.0% accuracy on benchmarks, whereas humans
are 98.8%). Inspired by their findings, we hypoth-
esize that the CLIP visual encoder might also be
one of the causes of object hallucinations.

Hence, we first curate the Object Hallucination
Detection (OHD-Caps) benchmark from subsets
of the COCO (Lin et al., 2014), Flickr30K (Young
et al., 2014), and Nocaps (as an out-of-domain
benchmark because it comprises unseen objects)
(Agrawal et al., 2019a) image caption datasets re-
spectively, to more strictly measure the extent of
object hallucinations present in CLIP encoders. We
randomly select 16k/1k/1.5k (train/dev/test) sam-
ples, with each sample containing one image, one
positive descriptive text, and 27 negative descrip-
tive texts. The negative samples are perturbations
of the positive sample, achieved by adding descrip-
tions of nonexistent objects or reducing descrip-
tions of existing objects. Theoretically, a CLIP
model without object hallucinations should accu-
rately assign the highest CLIP score to the positive
sample. However, taking the most commonly used
“CLIP ViT-L/14” in LVLMs as an example, it only
scores the highest for positive samples in 19.0%
of cases. Since we have observed that the CLIP
encoder already has a serious issue with object hal-
lucination, how can we mitigate it?
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In the contrastive pretraining of CLIP, negative
samples come from text descriptions of other im-
ages within the batch, which makes the distinc-
tion between them quite straightforward. However,
mitigating object hallucinations requires the CLIP
encoder to be able to differentiate between sub-
tle errors at the object level. We further fine-tune
the CLIP model using the training set from OHD-
Caps. By incorporating a fine-grained object-level
contrastive loss, we greatly reduce object halluci-
nations in the CLIP. Then employing the fine-tuned
CLIP as the visual encoder, the object hallucina-
tions in our retrained LVLM, LLaVA-1.5, are also
diminished.

In this paper, we study the object hallucinations
of CLIP models. Our main contributions are,

* we propose a benchmark, OHD-Caps, for evalu-
ating object hallucinations in CLIP models.

* we quantitatively evaluate a wide range of en-
coders from the CLIP family and find that they
all exhibit severe object hallucination issues.

* we propose a fine-grained object-level contrastive
loss to further fine-tune the CLIP model, signifi-
cantly alleviating its object hallucination issues
(e.g., from 28.7 to 83.2 for “CLIP ViT-B/32”) and
concurrently reducing the hallucination problems
of the LLaVA-1.5 (from 80.3 to 82.4 on Nocaps),
which uses it as a visual encoder.

2 Related Work

2.1 Large Vision-Language Model

Recently, inspired by the success of large language
models (LLMs), researchers have begun to dedicate
efforts to enhance vision language models (VLMs)
by integrating robust LLMs, aiming to broaden
the knowledge scope of the model and amplify its
linguistic comprehension capabilities.

LVLM architectures typically consist of three
components: a visual encoder, a modality con-
nection module, and a LLM. The visual encoder
and LLM are typically fixed large pretrained mod-
els, the visual encoder is usually a variant of
the CLIP model (Radford et al., 2021), used for
extract visual features, while the LLM, such as
LLaMA (Touvron et al., 2023) and Vicuna (Chiang
et al., 2023), is used to integrate image information
and text information, and completes the predic-
tion of the target. Research focuses on optimizing
modality connection modules, with approaches like

Flamingo’s (Alayrac et al., 2022) cross-attention
module, LLaVA’s (Liu et al., 2023b) linear layer,
and BLIP2’s (Li et al., 2023a) Q-former, diverse yet
all boosting VLM performance on various vision-
language tasks.

2.2 Hallucination in LVLMs

Despite the fact that LVLMs perform well in solv-
ing visual-language tasks, they are also plagued
by hallucinations. The problem of hallucinations
in LVLMs mainly refers to the mismatch between
visual input and textual output. For example, in
the image captioning task, hallucination refers to
the generation of captions that describe objects that
do not exist in the image. Although the halluci-
nation problem of LLMs has been widely stud-
ied in the NLP field (Ji et al., 2023), there has
not been enough research on mitigating the hallu-
cination issue in LVLMs (Liu et al., 2024). Re-
cent efforts to mitigate hallucination in LVLMs
have focused on enhancing each compoment of the
model. For example, (Liu et al., 2023a; Hu et al.,
2023) constuct instruction-tuning datasets with con-
trastive question-answer pairs for LVLMs; (Sun
etal., 2023; Yu et al., 2023) employ Reinforcement
Learning from Human Feedback (RLHF) (Stien-
non et al., 2020) to enchance the connection mod-
ule between the modalities; (Leng et al., 2023)
propose a visual contrastive decoding strategy for
LLM decoing. Despite the wide application of the
CLIP model in VLMs and its in-depth study in
pairwise comparison context (Yiiksekgoniil et al.,
2023; Hsieh et al., 2023), there has been little dis-
cussion on its evaluation regarding hallucinations.
Our research addresses this gap in the literature.

3 The OHD-Caps Benchmark

Recent studies have found that LVLMs are prone to
object hallucinations (Li et al., 2023b; Zhou et al.,
2023). In response, researchers have developed
several datasets to assess the extent of these hallu-
cinations in such models (Li et al., 2023b; Wang
et al., 2023). However, there is a relative lack of
assessment work regarding the hallucinatory ef-
fects of the CLIP model, which is widely used as
a visual encoder within LVLMSs. In this section,
we introduce the Object Hallucination Detection
benchmark (OHD-Caps) we create to evaluate the
object hallucination problem in CLIP models and
the pipeline for evaluations. Figure 1 shows the
pipeline of our benchmark creation process.
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Figure 1: The pipeline of our benchmark creation process. For an image, we first use SEEM (Zou et al., 2023)
to identify objects within the image and obtain illusory objects that do not exist in the picture through different
sampling strategies. Then we ask GPT to insert or delete objects in the original sentences to create negative samples.
We provide both positive and negative samples to the CLIP model to observe if the model predicts the positive
samples as having the highest score. This image is from the Nocaps dataset, and the model is CLIP ViT-B/32.

3.1 Dataset Construction

CLIP is a versatile neural network that excels at
image understanding and can predict text for im-
ages in a zero-shot manner. To evaluate the CLIP
model’s ability to handle object hallucinations in
paired comparison scenarios, given an image with
a correct caption, we create incorrect captions con-
taining hallucinatory content. The purpose is to
observe whether the model can accurately select
the correct text without hallucinations.

Inserting Hallucinatory Objects Previous
work (Li et al., 2023b; Zhou et al., 2023) show that
LVLMs are more prone to generate hallucinatory
responses for objects that frequently appear in
the dataset. Inspired by this, we create negative
samples by inserting objects prone to hallucination
into the correct captions. To collect object
annotations, we first use SEEM (Zou et al., 2023)
to automatically segment objects in the images.
Three kinds of hallucinatory objects are collected:
random objects which are sampled randomly,
popular objects which are the top frequent objects
in the whole dataset, and adversarial objects
which are the top frequent objects with the
segmented objects. Each category contains three
objects. To create examples with varying levels of
hallucinations, we attempt to insert one to three
objects for each category, resulting in each type
of hallucination containing a total of 7 (Zizl Cs)
samples.

Given a caption text and several hallucinatory

objects, we insert the objects into the appropriate
locations in the caption, which can be effectively
achieved by the help of GPT4. In an automatical
way, the caption and objects are fed to the GPT4,
with the prompt as follows: Given a sentence {cap-
tion}, generate a new sentence and includes each
object from the list {objects}. Make the changes
to the original sentence as minimal as possible.
Ensure that the new sentence is coherent, natural,
semantically smooth and free of grammatical er-
rors.

Removing existing Objects Except from insert-
ing hallucinatory objects, we also remove objects
from the captions to create negative samples. We
randomly select 1 or 2 segmented objects in the im-
age which results in 6 negative samples (23:1 Cs),
and ask GPT4 to remove them from the caption
with the prompt: Given a sentence {caption}, gen-
erate a new sentence and remove each object from
list {objects} to make the semantics of the sentence
different. Ensure that the new sentence is coherent,
natural, semantically smooth and free of grammat-
ical errors. To account for scenarios where the
identified objects are not present in the title text,
we ask GPT to alter elements like objects, colors,
and properties in the original caption: Given a sen-
tence {caption}, choose to modify the objects, col-
ors, attributes, etc., within the sentence to make
the semantics of the sentence different. Make the
changes to the original sentence as minimal as pos-
sible. Ensure that the new sentence is coherent,



natural, semantically smooth and free of grammat-
ical errors.

we construct a dataset of 500 samples for each
of the COCO (Lin et al., 2014), Flickr30K (Young
et al., 2014), and the out of domain subset of No-
Caps Validation datasets (Agrawal et al., 2019a),
with 27 negative samples for each image. Specif-
ically, the out of domain subset of NoCaps com-
prises objects not seen in the COCO dataset, com-
monly used to measure a model’s ability to gener-
alize to unseen classes. The average length of the
captions in the datasets is shown in Table 7.

3.2 Evaluation and Analysis

We study several models to evaluate their perfor-
mance on our benchmark. Each image is paired
with a correct caption and 27 negative samples, and
models are required to calculate the similarity be-
tween the image and the caption candidates and
select the correct caption.

Models We evaluate a variety of models on our
benchmark, including CLIP (Radford et al., 2021)
ViT-B/32 and ViT-L/14; RoBERTaCLIP (Ilharco
et al., 2021) which is a CLIP ViT-B/32 model ini-
tialized with RoBERTa-pretrained (Liu et al., 2019)
weights; NegCLIP (Yiiksekgoniil et al., 2023), an
improved model based on CLIP ViT-B/32, which
enhances the understanding of relationships be-
tween objects, attributes, and the sequence of words
by swapping phrases; CECLIP (Zhang et al., 2023)
which further develop enhanced negative samples
and employ contrastive loss to enhance composi-
tional reasoning; FLAVA (Singh et al., 2022) which
is a single unified foundation model which can
work across vision, language as well as vision-and-
language multi-modal tasks; CoCa (Yu et al., 2022)
is a pretrained model with contrastive and genera-
tive learning objectives; XVLM (Zeng et al., 2021)
which aligns the visual concept and textual input
in a multi-grained manner with 14M and 16M pre-
trained images; BLIP (Li et al., 2022) which effec-
tively utilizes the noisy web data by bootstrapping
the captions with 14M and 129M pretrained im-
ages; BLIP2 (Li et al., 2023a) which bridges the
gap between the visual and textual modalities with
a Q-former.?

We also evaluate the performance of the models
after fine-tuning on downstream tasks: CoCa fine-
tuned on COCO captioning, and XVLM 14M and

We use the image-text matching head for both BLIP and
BLIP2.

OHD-Caps Benchmark

Model #Params

COCO Flickr30K Nocaps Avg.
CLIP ViT-B/32 151IM 15.2 17.6 10.2 14.3
CLIP ViT-L/14 428M 224 22.6 12.0 19.0
RoBERTaCLIP 213M 1.0 1.6 1.0 1.2
NegCLIP ISIM 328 28.0 25.0 28.6
CECLIP I5IM 528 40.8 234 39.0
FLAVA 350M  28.0 28.4 16.6 243
CoCa 2.1B  26.0 24.4 20.0 235
XVLM 4M 216M 464 35.8 34.0 38.7
XVLM 16M 216M 418 19.4 21.8 27.7
BLIP 14M 583M 514 48.0 42.0 471
BLIP 129M 583M  40.8 38.0 312 36.7
BLIP2 34B  62.6 422 412 487
CoCa-Caption 2.1B 6.8 5.6 6.8 6.4
XVLM-Flickr30K 216M  62.6 60.4 41.6 549
XVLM-COCO 216M  68.2 47.6 47.6 545
BLIP-Flickr30K 583M  53.6 52.0 384  48.0
BLIP-COCO 583M 592 472 412 492

Table 1: Results of varied models on our benchmark:
models in the first section are evaluated in zero-shot,
and models in the second section have been finetuned
on some downstream task: COCO captioning, image-
text retrieval on Flickr30K or COCO.

BLIP models respectively finetuned on Flickr30K
retrieval and COCO retrieval.

Results Table 1 shows the results of the models
on our benchmark. From the results, we could find
that,

e First of all, the vanilla CLIP models (CLIP ViT-
B/32, CLIP ViT-L/14, RoBERTaCLIP) perform
poorly across all three datasets, indicating their
limited ability to recognize illusory objects in
images. On the other hand, NegCLIP attempts
to enhance the model’s understanding of text
by parsing and substituting phrases, but it only
achieves a marginal improvement compared to
the original CLIP model. CECLIP exhibits rela-
tively better performance, which is mainly due to
the constructed negative samples enhancing the
model’s comprehension of the combined seman-
tics of sentences. The NegCLIP and CECLIP
models are trained on the COCO training set
to distinguish between positive samples and en-
hanced negative samples. This might contribute
to CECLIP’s good performance on the COCO
dataset, owing in part to the model’s memory of
the original correct text. However, their perfor-
mance on the Nocaps dataset indicates that these
models lack the ability to effectively differentiate
hallucinated objects.

* Secondly, generative vision-language models typ-
ically achieve higher performance than vanilla
CLIP models due to their more precise alignment



of image and text representations. Furthermore,
it is generally observed that the larger the model
parameters, the better the performance. In partic-
ular, BLIP2, which has the highest number of pa-
rameters, performs best across all three datasets.
In comparison, the XVLM 4M model has rel-
atively fewer parameters but still demonstrates
good performance. This indicates that XVLM’s
strategy of multi-scale alignment indeed assists
the model in more accurately capturing the fine-
grained details within images.

Furthermore, the overall trend among different
models is consistent across the three datasets,
with their performance typically being the low-
est on the Nocaps dataset. Although fewer ob-
jects are recognized on the Nocaps dataset than
Flickr30K, the performance is the lowest there
due to the inclusion of categories that are out-
of-domain. The BLIP 14M model demonstrates
the best performance on both Flickr and Nocaps,
which indicates its strong generalization capabil-
ities.

* Finally, under normal circumstances, models usu-
ally experience a improvement in performance
after being fine-tuned on downstream tasks, with
the CoCa model being an exception. Moreover,
these performance enhancements can also be gen-
eralized to other datasets.

Analysis The inability of models to recognize
hallucinated objects primarily stems from the data
used and the learning methods employed. The
vanilla CLIP model is trained with a large number
of image-caption pairs collected from the internet,
using a contrastive loss function for optimization.
Those captions are often brief and noisy, and the
model is optimized to differentiate between cor-
rect and a multitude of incorrect image-text pairs.
However, because the incorrect pairs are usually
significantly different from the correct ones, the
model can easily distinguish them. This means that
the model does not need to learn the rich details in
the pictures to make accurate predictions. To ad-
dress this issue, we need to make improvements to
the original CLIP model in terms of data utilization
and learning methodologies.

4 Methodology

We first revisit the training process of vanilla CLIP
model. Let [ be the image and 7" be the text, the

training objective of CLIP is to maximize the sim-
ilarity between the image and text pairs, and min-
imize the similarity between the image and text
pairs that are not matched. The loss function is
defined as:

exp(I-T%/7)
Sop—exp(I-T=/7)’

exp(T - I1/7) )
ST eI /7)

1
Ly = 3 (Liot + L12:),

where T and I are the correct text and image,
and T~ and I~ are the incorrect text and image,
respectively.

With the addition of the negative samples 1Y
created as in the previous section, we can expand
T as T* = {T—,T"9}. Then we could modify
the loss Lo as:

Lz = —log

Ligi = —lo

exp(I-T%/7)
Sopwexp(I-T*/71)

To further enhance the model’s ability to distin-
guish between positive and negative samples, we
additionally introduce a margin loss. This is to
ensure that the distance between an image and its
corresponding correct text is smaller than the dis-
tance to incorrect text by a specific threshold. This
concept can be formulated as:

£1 = maX(O,Tl — [‘T+ +I'T*)7 (3)

Liot = —log

2

where 7 is the margin threshold.

Additionally, we generate enhanced negative
samples by introducing perturbations to the orig-
inal positive samples. Such negative samples are
typically more challenging to distinguish than other
negative samples within the batch. To encourage
the model to recognize the partially correct infor-
mation contained in the enhanced negative samples,
resulting in a higher similarity to the positive sam-
ples compared to other negative samples within the
batch, we introduce a margin loss between the in-
batch negative samples and the enhanced negative
samples:

Ly =max(0,7, — - T~ +1-T"), (4)

where 75 is the margin threshold.

Next, we assign different weights to the afore-
mentioned loss terms, allowing the model to learn
adaptively. Consequently, the final loss function
can be expressed as follows:

1
L= §(£t2i + »CiQt) + ALy + A2Le. (5)



S Experiments

Training Datasets In order to enable the model
to possess not only compositional understanding
capability but also the ability to recognize illusory
objects in images, we combine data featuring com-
positional understanding with a dataset for hallu-
cination recognition dataset that we create. We
start with the COCO dataset’s training set, 3 fol-
lowing the methods (Zhang et al., 2023), we gener-
ate four types of negative samples for each image.
These negative samples are designed to enhance the
model’s recognition of relationship, attribution, ac-
tions, and objects, respectively. To create negatives
samples for relationship, we use Spacy (Honnibal
and Montani, 2017) to get Parts-of-Speech (POS)
tag and swap the positions of two noun words in
the sentence. For the enhancement of attribution,
actions, and objects, we randomly mask adjectives,
verbs, or nouns in the sentences and employ the
RoBERTa model to fill in these masked words.
For hallucination recognition, we sample 8k im-
ages from training set of COCO and 8k images
from Flickr30k datasets, then generate negative
samples for each image as in Section 3. Addition-
ally, we randomly select ~2k samples from the
COCO dataset’s validation set as our dev set for
compositional understanding (~1k) and hallucina-
tion recognition (~1k).

Training Details We utilize the CLIP ViT/32-B
and CLIP ViT/14-L-336px implemented by Hug-
gingface (Wolf et al., 2020) as the initial models
and conduct fine-tuning for three epochs. The best-
performing model is selected based on its perfor-
mance on the validation set. The training process
is carried out on a single A100 GPU, with batch
sizes of 64 and 16 set for the base and large mod-
els, respectively, and the learning rate is set at le-5.
The selection of hyper-parameters is determined by
their performance on the validation set, where \;
and )\ are set as 0.3 and 0.2, 71 and 7 are set as 5.

Evaluation We evaluate our fine-tuned CLIP
models on two common Visual Language (VL)
combination benchmarks: ARO (Yiiksekgoniil
et al., 2023) and SugarCrepe (Hsieh et al., 2023),
and the OHD-Caps benchmark we create. The
ARO benchmark contains more than 50,000 test
cases, is designed to systematically assess the capa-
bilities of VLMs in comprehending various types

3To prevent information leakage, we exclude 8k samples
that are subsequently used to create the hallucination dataset.

of relationships, attributes, and sequential informa-
tion through tests focused on object properties and
relational understanding within the Visual Genome
dataset (Krishna et al., 2017). The SugarCrepe
benchmark is an enhanced version of CREPE (Ma
et al., 2023) that mitigates bias issues which uses
large language models to generate hard negatives
with human validation. Both ARO and SuparCrepe
datasets require classifying positive and negative
captions for a given image, with a random success
probability of 50%.

5.1 Main Results

We present the results for ARO dataset and our self-
constructed dataset in Table 2, and SuparCrepe in
Table 3. From the results, we could find:

e Our model shows comparable performance to
previously state-of-the-art model (CECLIP) on
both datasets for compositional understanding
and achieves significant improvements in hallu-
cination recognition. The performance of the
CLIP models on the ARO dataset, as well as
the hallucination detection dataset, is relatively
poor and close to the performance of random
guessing, indicating that the model lacks a fine-
grained understanding of images. NegCLIP and
CECLIP enhance the model’s capability of un-
derstanding composites by constructing negative
samples, and also make progress on the hallu-
cination detection dataset, achieves a moderate
improvement on OHD-Caps benchmark, with
performance rising from 14.3% to 39.0%. Our
model, while being comparable in compositional
understanding to CECLIP, further enhances the
performance of hallucination detection to 83.2%.

* Our model also demonstrates strong general-
ization capabilities in hallucination recognition.
NegCLIP, CECLIP, and our model are all fine-
tuned on the training set of the COCO dataset.
Although they show varying degrees of perfor-
mance improvement in COCO-related halluci-
nation tests (NegCLIP at 32.8%, CECLIP at
52.8%), their performances are worse when fac-
ing unknown categories (NegCLIP at 25.0%, CE-
CLIP at 23.4% for Nocaps images), indicating
limited generalization capabilities of the mod-
els. In contrast, our model performs consistently
across three different datasets, at approximately
83%. This result verifies that our model can
effectively distinguish hallucinated objects in dif-



Model ARO OHD-Caps

Relation Attribute Avg. COCO Flickr30k Nocaps Avg.
Radom Chance 50.0 50.0 50.0 3.6 3.6 3.6 3.6
CLIP ViT-B/32 59.3 62.8 61.1 15.2 17.6 10.2 14.3
NegCLIP 80.2 70.5 754 328 28.0 25.0 28.6
CECLIP 83.0 76.4 79.7 528 40.8 23.4 39.0
Ours w/o object 83.7 74.7 79.2  39.8 242 22.0 28.7
Ours 83.8 76.3 80.1 82.6 85.0 82.0 83.2
CLIP ViT-L/14-336px 62.7 62.0 624  26.0 27.0 16.8 233
Ours w/o object 85.2 76.3 80.8 50.6 352 234 36.4
Ours 84.6 76.3 804  89.0 88.0 81.6 86.2

Table 2: Results(%) on the ARO dataset and our OHD-Caps benchmark. The ARO dataset evaluates the model’s
accurate understanding of relationships and attributes by swapping the positions of two objects. The table is divided
into two sections, which respectively show the results obtained from fine-tuning on the CLIP ViT-B/32 and CLIP
ViT-L/14-336px configurations. ‘w/o object’ means without the data we create for object hallucination. In each

section, the best results are highlighted in bold.

Model REPLACE SWAP ADD

Object Attribute Relation Avg. Object Attribute Avg. Object Attribute Avg.
Human 100.0 99.0 97.0 98.7  99.0 100.0 99.5  99.0 99.0 99.0
Random 50.0 50.0 50.0 50.0  50.0 50.0 50.0 50.0 50.0 50.0
CLIP ViT-B/32 90.9 80.1 69.2 80.1 61.2 64.0 62.6 772 68.8 73.0
NegCLIP 92.7 85.9 76.5 85.0 755 75.4 75.5  88.8 82.8 85.8
CECLIP 93.1 88.8 79.0 87.0 728 77.0 749 924 93.4 92.9
Ours w/o object 92.4 88.6 75.7 85.6 771 77.8 775 822 84.4 83.3
Ours 94.1 89.6 80.6 88.1 763 77.0 76.7  89.9 85.1 87.5
CLIP ViT-L/14-336px  94.5 80.6 66.7 80.6 637 62.3 63.0 813 74.1 71.7
Ours w/o object 94.7 87.3 79.4 87.1 78.0 77.5 777 823 85.8 84.1
Ours 95.2 89.8 82.9 89.2 767 76.9 76.8  86.1 78.0 82.1

Table 3: Results(%) on SugarCrepe dataset. The SuparCrep dataset aims to test the model’s ability to comprehend
combinations by replacing, swapping, and augmenting concepts within the dataset.

ferent datasets and possesses the capability to
generalize across datasets.

* With the increase in model parameters, upgrading
from CLIP ViT-B/32 to CLIP ViT-L/14-336px,
the model generally performs better on datasets
involving the compositional understanding as
well as the recognition of hallucinations, with
a slight enhancement in performance. The only
exception is observed in the SuparCrepe dataset,
where there is a decline in performance on the
subset that involves the insertion of attributes and
objects. We observe that even without incorporat-
ing our constructed hallucination detection data,
there is still a decline in performance during the
evaluations. This could be due to an increased
number of negative examples resulting in a re-
duced batch size.

5.2 Evaluation for LVLM

To verify the effectiveness of the enhanced CLIP
model compared to the original CLIP in assisting
large vision-language models to mitigate the issue
of object hallucination, we replace the CLIP ViT-
L/14-336px baseline model in LLaVA-1.5 with our
fine-tuned version. We train LLaVA (Liu et al.,
2023b) from scratch using the hyper-parameters
specified in the original paper.

We conduct an evaluation of object hallucina-
tion phenomena on the expanded POPE dataset.
The POPE dataset is created by selecting samples
from the COCO validation set and constructing
questions about hallucinated objects of various cat-
egories. The format of the questions is ’Is there
a X in the image?’, where X refers to the name
of the object. The questions in the dataset are de-
signed such that the objects are present and absent



Dataset Criterions LLaVA Ours
Accuracy (1) 85.2 86.7
Precision (1) 82.1 86.5
COCO Recall (1) 90.7 87.5
F1 Score (1) 86.1 86.9
Yes (—50%) 55.5 50.8
Accuracy (1) 73.3 79.9
Precision (1) 67.3 75.4
Flickr30K  Recall (1) 96.6 91.2
F1 Score (1) 78.9 82.2
Yes (—50%) 73.3 61.3
Accuracy (1) 77.1 81.3
Precision (1) 71.7 79.0
Nocaps Recall (1) 91.7  86.7
F1 Score (1) 80.3 824
Yes (—50%) 64.7 554

Table 4: Results on expanded POPE datasets. Yes de-
notes the proportion of answering “Yes” to the given
question. The best results in each block are denoted in
bold.

in equal measure, therefore the ideal "yes’ response
rate should be around 50%. To comprehensively
assess the model’s performance on various datasets,
particularly on out-of-domain datasets, we expand
the Flickr30k and Nocaps datasets following the
original setup. Each dataset contains 500 images,
with 18 questions associated with each image.
The results are shown in Table 4. It reveals that
the LLaVA model, trained with the enhanced CLIP,
achieves an improvement in the F1 score across
three datasets, with the average performance in-
creasing from 81.8 to 83.8. Apart from the Recall
metric, our model surpasses the original LLaVA
model in all other metrics. Compared to the orig-
inal, it attains a better balance between accuracy
and recall and also approaches a more ideal balance
in the proportion of "Yes" responses. Moreover, al-
though both models perform less impressively on
the Flickr30k and Nocaps datasets compared to the
COCO dataset, our model demonstrates a more sig-
nificant advantage on these two datasets, thereby
evidencing its superior generalization capability.

5.3 Ablation Study

In this subsection, we present ablation studies to
examine the impact of our model’s different com-
ponents. We conduct these experiments on CLIP
Vit-B/32 model.

Losses As demonstrated in Table 5, inclusion of
the Ly loss alone significantly improve both the

Model Ly, L£; L2 ARO Object Avg.
CLIP 61.1 14.3 37.7
Ours v 78.0 82.1 80.1
v v 78.2 82.5 80.4
v v 80.0 83.1 81.6
v v v 801 833 81.7

Table 5: Ablation of losses on CLIP ViT-B/32.

Ao Values
02 03 04

0.2 81.3 815 81.6
0.3 81.7 814 815
0.4 81.6 812 813

A1 Values

Table 6: Ablation of Ay and A\ Values on Vit-B/32. The
results are averaged on ARO and Object Datasets.

ARO and Object metrics over the baseline. Sub-
sequently, iterative incorporation of £; and Lo
provide incremental benefits, with the full com-
bination yielding the highest average performance.
Compared to £ loss, £ loss has a more signifi-
cant effect on improving model performance. This
suggests that by increasing the distance between
constructed negative samples and other negative
samples in the batch, the model can achieve a more
refined understanding.

Weight of Losses Table 6 illustrates the changes
in model performance when different loss weights
are applied. The experimental results indicate that
the sensitivity of model performance to weight
changes is relatively low. The model demonstrates
the best performance when the values of A; and Ao
are set to 0.3 and 0.2, respectively.

6 Conclusion

Our study investigate the reasons behind object
hallucination in LVLMs. We construct a bench-
mark specifically for the evaluation of hallucina-
tions and find that the visual perception module
commonly used in current LVLMS, i.e., the CLIP
model, cannot effectively discriminate hallucinated
text. By designing negative samples and optimizing
the contrastive loss function, we achieve a signif-
icant improvement in model performance on the
hallucination detection dataset. Moreover, replac-
ing the original CLIP model with our improved
model can effectively alleviate the issue of object
hallucination in LLaVA model.



7 Limitations

Although we conduct a series of explorations, our
research still has its limitations. Firstly, our focus
is solely on the issue of object hallucination within
LVLMs, and we do not extend our research to other
types of hallucinations. Secondly, the benchmark
we propose, comprises over 20 negative samples.
Due to budgetary constraints, the size of this dataset
is much smaller compared to the datasets used for
evaluating compositional understanding, e.g. ARO
dataset (Yiiksekgoniil et al., 2023). Thirdly, we
only evaluate the visual encoders of most LVLMs,
i.e. the CLIP models, but we do not conduct re-
search on encoders used by some other models,
for instance, the variant of ResNet called NFNet-
F6 (Brock et al., 2021) used by Flamingo (Alayrac
et al., 2022).
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A Statistics on the Datasets

Dataset Size #Negative Samples #Avg Length

Train
COCO 8000 27 16.0
Flickr30K 8000 27 18.4

Dey
COCO 990 27 15.6

Test
COCO 500 27 16.3
Flickr30K 500 27 21.1
Nocaps 500 27 19.1

Table 7: Statistics of the datasets used in our benchmark.

The statistical information of the dataset is pre-
sented in the Table 7, which is divided into three
parts: training, testing, and validation. The average
length displayed in the table refers to the average
length of the negative examples in the dataset.

B More Examples

We present more examples in Figure 2. It can be ob-
served that our method can seamlessly integrate ob-
jects that are not present in the original image into
the text. The names of the added objects are high-
lighted in red. Removing objects that are present
in the picture can be accomplished with minimal
adjustments. As for the removal of objects not de-
picted in the image, such as the “food” mentioned
in the third figure, the negative samples typically
involve modifications to the objects, attributes, and
other content in the positive samples.
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Caption: A person on a snowboard Caption: A barber is trimming the Caption: Two cans of redbull along with
weaves down a mountain slope. neckline of a man on the side of the several other energy drink supplements
Add ‘backpack’: A person with a street. and a starbucks coffee cup.
backpack on a snowboard weaves Add ‘sky’: A barber is trimming the Add ‘person’: A person holding two
down a mountain slope. neckline of a man under the sky on the  cans of Redbull, along with several

side of the street. other energy drink supplements and a

Add ‘car’: A person in a car
weaves down a mountain slope. Add ‘river’: A barber is trimming the
neckline of a man by the side of the Delete ‘food’: Three bottles of green

river. tea along with several other herbal tea
bags and a porcelain tea cup.

Starbucks coffee cup.

Delete ‘person’: A snowboard
glides down the mountain slope.

Figure 2: Examples from our benchmark OHD-Caps. The three images in the figure are from the COCO, Flickr,
and Nocaps datasets, respectively.
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