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Abstract

Large Vision-Language Models (LVLMs) have001
achieved impressive performance, yet research002
has pointed out a serious issue with object hallu-003
cinations within these models. However, there004
is no clear conclusion as to which part of the005
model these hallucinations originate from. In006
this paper, we present an in-depth investigation007
into the object hallucination problem specifi-008
cally within the CLIP model, which serves as009
the backbone for many state-of-the-art vision-010
language systems. We unveil that even in isola-011
tion, the CLIP model is prone to object halluci-012
nations, suggesting that the hallucination prob-013
lem is not solely due to the interaction between014
vision and language modalities. To address this,015
we propose a counterfactual data augmentation016
method by creating negative samples with a va-017
riety of hallucination issues. We demonstrate018
that our method can effectively mitigate object019
hallucinations for CLIP model, and we show020
the the enhanced model can be employed as a021
visual encoder, effectively alleviating the object022
hallucination issue in LVLMs. 1023

1 Introduction024

Current Large Vision-Language Models (LVLMs)025

demonstrate significant potential in tasks requiring026

joint visual and linguistic perception, such as image027

captioning (Agrawal et al., 2019b), visual question028

answering (Antol et al., 2015), visual grounding029

(Yu et al., 2016), and autonomous agents (Durante030

et al., 2024; Xi et al., 2023). Despite the success of031

LVLMs, previous studies have revealed that they032

commonly suffer from hallucinations in practice,033

including object hallucinations (Li et al., 2023b;034

Leng et al., 2023; Zhou et al., 2023), spatial hallu-035

cinations (Kamath et al., 2023), attribute hallucina-036

tions (Zhang et al., 2024), etc. It is widely believed037

that hallucinations degrade model performance and038

1Our benchmark and code are publicly available
on https://anonymous.4open.science/r/clip_
hallucination-71EC.

reliability, and severely impair the user experience 039

in real-world applications (Ji et al., 2023). 040

In this work, we focus on investigating the 041

causes of the highly-concerned object hallucina- 042

tions, i.e., LVLMs generate nonexistent objects in 043

the image (Biten et al., 2022). A typical LVLM uti- 044

lizes a Large Language Model (LLM) as its cogni- 045

tive foundational model and employs a pre-trained 046

image encoder as its visual perception module 047

(mainly the CLIP encoder). Kamath et al. (2023) 048

investigated the spatial hallucination (e.g., confus- 049

ing “left of” and “right of”) in LVLMs, and they 050

found that various CLIP encoders struggle to rec- 051

ognize simple spatial relationships (achieving only 052

a 55.0% accuracy on benchmarks, whereas humans 053

are 98.8%). Inspired by their findings, we hypoth- 054

esize that the CLIP visual encoder might also be 055

one of the causes of object hallucinations. 056

Hence, we first curate the Object Hallucination 057

Detection (OHD-Caps) benchmark from subsets 058

of the COCO (Lin et al., 2014), Flickr30K (Young 059

et al., 2014), and Nocaps (as an out-of-domain 060

benchmark because it comprises unseen objects) 061

(Agrawal et al., 2019a) image caption datasets re- 062

spectively, to more strictly measure the extent of 063

object hallucinations present in CLIP encoders. We 064

randomly select 16k/1k/1.5k (train/dev/test) sam- 065

ples, with each sample containing one image, one 066

positive descriptive text, and 27 negative descrip- 067

tive texts. The negative samples are perturbations 068

of the positive sample, achieved by adding descrip- 069

tions of nonexistent objects or reducing descrip- 070

tions of existing objects. Theoretically, a CLIP 071

model without object hallucinations should accu- 072

rately assign the highest CLIP score to the positive 073

sample. However, taking the most commonly used 074

“CLIP ViT-L/14” in LVLMs as an example, it only 075

scores the highest for positive samples in 19.0% 076

of cases. Since we have observed that the CLIP 077

encoder already has a serious issue with object hal- 078

lucination, how can we mitigate it? 079
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In the contrastive pretraining of CLIP, negative080

samples come from text descriptions of other im-081

ages within the batch, which makes the distinc-082

tion between them quite straightforward. However,083

mitigating object hallucinations requires the CLIP084

encoder to be able to differentiate between sub-085

tle errors at the object level. We further fine-tune086

the CLIP model using the training set from OHD-087

Caps. By incorporating a fine-grained object-level088

contrastive loss, we greatly reduce object halluci-089

nations in the CLIP. Then employing the fine-tuned090

CLIP as the visual encoder, the object hallucina-091

tions in our retrained LVLM, LLaVA-1.5, are also092

diminished.093

In this paper, we study the object hallucinations094

of CLIP models. Our main contributions are,095

• we propose a benchmark, OHD-Caps, for evalu-096

ating object hallucinations in CLIP models.097

• we quantitatively evaluate a wide range of en-098

coders from the CLIP family and find that they099

all exhibit severe object hallucination issues.100

• we propose a fine-grained object-level contrastive101

loss to further fine-tune the CLIP model, signifi-102

cantly alleviating its object hallucination issues103

(e.g., from 28.7 to 83.2 for “CLIP ViT-B/32”) and104

concurrently reducing the hallucination problems105

of the LLaVA-1.5 (from 80.3 to 82.4 on Nocaps),106

which uses it as a visual encoder.107

2 Related Work108

2.1 Large Vision-Language Model109

Recently, inspired by the success of large language110

models (LLMs), researchers have begun to dedicate111

efforts to enhance vision language models (VLMs)112

by integrating robust LLMs, aiming to broaden113

the knowledge scope of the model and amplify its114

linguistic comprehension capabilities.115

LVLM architectures typically consist of three116

components: a visual encoder, a modality con-117

nection module, and a LLM. The visual encoder118

and LLM are typically fixed large pretrained mod-119

els, the visual encoder is usually a variant of120

the CLIP model (Radford et al., 2021), used for121

extract visual features, while the LLM, such as122

LLaMA (Touvron et al., 2023) and Vicuna (Chiang123

et al., 2023), is used to integrate image information124

and text information, and completes the predic-125

tion of the target. Research focuses on optimizing126

modality connection modules, with approaches like127

Flamingo’s (Alayrac et al., 2022) cross-attention 128

module, LLaVA’s (Liu et al., 2023b) linear layer, 129

and BLIP2’s (Li et al., 2023a) Q-former, diverse yet 130

all boosting VLM performance on various vision- 131

language tasks. 132

2.2 Hallucination in LVLMs 133

Despite the fact that LVLMs perform well in solv- 134

ing visual-language tasks, they are also plagued 135

by hallucinations. The problem of hallucinations 136

in LVLMs mainly refers to the mismatch between 137

visual input and textual output. For example, in 138

the image captioning task, hallucination refers to 139

the generation of captions that describe objects that 140

do not exist in the image. Although the halluci- 141

nation problem of LLMs has been widely stud- 142

ied in the NLP field (Ji et al., 2023), there has 143

not been enough research on mitigating the hallu- 144

cination issue in LVLMs (Liu et al., 2024). Re- 145

cent efforts to mitigate hallucination in LVLMs 146

have focused on enhancing each compoment of the 147

model. For example, (Liu et al., 2023a; Hu et al., 148

2023) constuct instruction-tuning datasets with con- 149

trastive question-answer pairs for LVLMs; (Sun 150

et al., 2023; Yu et al., 2023) employ Reinforcement 151

Learning from Human Feedback (RLHF) (Stien- 152

non et al., 2020) to enchance the connection mod- 153

ule between the modalities; (Leng et al., 2023) 154

propose a visual contrastive decoding strategy for 155

LLM decoing. Despite the wide application of the 156

CLIP model in VLMs and its in-depth study in 157

pairwise comparison context (Yüksekgönül et al., 158

2023; Hsieh et al., 2023), there has been little dis- 159

cussion on its evaluation regarding hallucinations. 160

Our research addresses this gap in the literature. 161

3 The OHD-Caps Benchmark 162

Recent studies have found that LVLMs are prone to 163

object hallucinations (Li et al., 2023b; Zhou et al., 164

2023). In response, researchers have developed 165

several datasets to assess the extent of these hallu- 166

cinations in such models (Li et al., 2023b; Wang 167

et al., 2023). However, there is a relative lack of 168

assessment work regarding the hallucinatory ef- 169

fects of the CLIP model, which is widely used as 170

a visual encoder within LVLMs. In this section, 171

we introduce the Object Hallucination Detection 172

benchmark (OHD-Caps) we create to evaluate the 173

object hallucination problem in CLIP models and 174

the pipeline for evaluations. Figure 1 shows the 175

pipeline of our benchmark creation process. 176
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SEEM

Caption: A tower stands over a bunch of 
trees with a mountain in the background.

Object prone to Hallucinations

Popular: person, wall, … 

Random: boat, bird, …

Adversarial: road, grass, ... 

Segmented Objects

mountain, tree, …

A tower stands beside a road, 
overlooking a bunch of trees with 
a mountain in the background.

A tower stands over a bunch of 
trees with a bird circling above and 
a mountain in the background.

A tower stands over a bunch of 
trees with a mountain in the 
background.

A tower towers over a bunch of 
trees with a mountain cityscape  in 
the background.

CLIP Score

18.1

18.6

18.3

20.5

Figure 1: The pipeline of our benchmark creation process. For an image, we first use SEEM (Zou et al., 2023)
to identify objects within the image and obtain illusory objects that do not exist in the picture through different
sampling strategies. Then we ask GPT to insert or delete objects in the original sentences to create negative samples.
We provide both positive and negative samples to the CLIP model to observe if the model predicts the positive
samples as having the highest score. This image is from the Nocaps dataset, and the model is CLIP ViT-B/32.

3.1 Dataset Construction177

CLIP is a versatile neural network that excels at178

image understanding and can predict text for im-179

ages in a zero-shot manner. To evaluate the CLIP180

model’s ability to handle object hallucinations in181

paired comparison scenarios, given an image with182

a correct caption, we create incorrect captions con-183

taining hallucinatory content. The purpose is to184

observe whether the model can accurately select185

the correct text without hallucinations.186

Inserting Hallucinatory Objects Previous187

work (Li et al., 2023b; Zhou et al., 2023) show that188

LVLMs are more prone to generate hallucinatory189

responses for objects that frequently appear in190

the dataset. Inspired by this, we create negative191

samples by inserting objects prone to hallucination192

into the correct captions. To collect object193

annotations, we first use SEEM (Zou et al., 2023)194

to automatically segment objects in the images.195

Three kinds of hallucinatory objects are collected:196

random objects which are sampled randomly,197

popular objects which are the top frequent objects198

in the whole dataset, and adversarial objects199

which are the top frequent objects with the200

segmented objects. Each category contains three201

objects. To create examples with varying levels of202

hallucinations, we attempt to insert one to three203

objects for each category, resulting in each type204

of hallucination containing a total of 7 (
∑3

r=1C
r
3 )205

samples.206

Given a caption text and several hallucinatory207

objects, we insert the objects into the appropriate 208

locations in the caption, which can be effectively 209

achieved by the help of GPT4. In an automatical 210

way, the caption and objects are fed to the GPT4, 211

with the prompt as follows: Given a sentence {cap- 212

tion}, generate a new sentence and includes each 213

object from the list {objects}. Make the changes 214

to the original sentence as minimal as possible. 215

Ensure that the new sentence is coherent, natural, 216

semantically smooth and free of grammatical er- 217

rors. 218

Removing existing Objects Except from insert- 219

ing hallucinatory objects, we also remove objects 220

from the captions to create negative samples. We 221

randomly select 1 or 2 segmented objects in the im- 222

age which results in 6 negative samples (
∑2

r=1C
r
3 ), 223

and ask GPT4 to remove them from the caption 224

with the prompt: Given a sentence {caption}, gen- 225

erate a new sentence and remove each object from 226

list {objects} to make the semantics of the sentence 227

different. Ensure that the new sentence is coherent, 228

natural, semantically smooth and free of grammat- 229

ical errors. To account for scenarios where the 230

identified objects are not present in the title text, 231

we ask GPT to alter elements like objects, colors, 232

and properties in the original caption: Given a sen- 233

tence {caption}, choose to modify the objects, col- 234

ors, attributes, etc., within the sentence to make 235

the semantics of the sentence different. Make the 236

changes to the original sentence as minimal as pos- 237

sible. Ensure that the new sentence is coherent, 238
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natural, semantically smooth and free of grammat-239

ical errors.240

we construct a dataset of 500 samples for each241

of the COCO (Lin et al., 2014), Flickr30K (Young242

et al., 2014), and the out of domain subset of No-243

Caps Validation datasets (Agrawal et al., 2019a),244

with 27 negative samples for each image. Specif-245

ically, the out of domain subset of NoCaps com-246

prises objects not seen in the COCO dataset, com-247

monly used to measure a model’s ability to gener-248

alize to unseen classes. The average length of the249

captions in the datasets is shown in Table 7.250

3.2 Evaluation and Analysis251

We study several models to evaluate their perfor-252

mance on our benchmark. Each image is paired253

with a correct caption and 27 negative samples, and254

models are required to calculate the similarity be-255

tween the image and the caption candidates and256

select the correct caption.257

Models We evaluate a variety of models on our258

benchmark, including CLIP (Radford et al., 2021)259

ViT-B/32 and ViT-L/14; RoBERTaCLIP (Ilharco260

et al., 2021) which is a CLIP ViT-B/32 model ini-261

tialized with RoBERTa-pretrained (Liu et al., 2019)262

weights; NegCLIP (Yüksekgönül et al., 2023), an263

improved model based on CLIP ViT-B/32, which264

enhances the understanding of relationships be-265

tween objects, attributes, and the sequence of words266

by swapping phrases; CECLIP (Zhang et al., 2023)267

which further develop enhanced negative samples268

and employ contrastive loss to enhance composi-269

tional reasoning; FLAVA (Singh et al., 2022) which270

is a single unified foundation model which can271

work across vision, language as well as vision-and-272

language multi-modal tasks; CoCa (Yu et al., 2022)273

is a pretrained model with contrastive and genera-274

tive learning objectives; XVLM (Zeng et al., 2021)275

which aligns the visual concept and textual input276

in a multi-grained manner with 14M and 16M pre-277

trained images; BLIP (Li et al., 2022) which effec-278

tively utilizes the noisy web data by bootstrapping279

the captions with 14M and 129M pretrained im-280

ages; BLIP2 (Li et al., 2023a) which bridges the281

gap between the visual and textual modalities with282

a Q-former.2283

We also evaluate the performance of the models284

after fine-tuning on downstream tasks: CoCa fine-285

tuned on COCO captioning, and XVLM 14M and286

2We use the image-text matching head for both BLIP and
BLIP2.

Model #Params OHD-Caps Benchmark

COCO Flickr30K Nocaps Avg.

CLIP ViT-B/32 151M 15.2 17.6 10.2 14.3
CLIP ViT-L/14 428M 22.4 22.6 12.0 19.0
RoBERTaCLIP 213M 1.0 1.6 1.0 1.2
NegCLIP 151M 32.8 28.0 25.0 28.6
CECLIP 151M 52.8 40.8 23.4 39.0
FLAVA 350M 28.0 28.4 16.6 24.3
CoCa 2.1B 26.0 24.4 20.0 23.5
XVLM 4M 216M 46.4 35.8 34.0 38.7
XVLM 16M 216M 41.8 19.4 21.8 27.7
BLIP 14M 583M 51.4 48.0 42.0 47.1
BLIP 129M 583M 40.8 38.0 31.2 36.7
BLIP2 3.4B 62.6 42.2 41.2 48.7

CoCa-Caption 2.1B 6.8 5.6 6.8 6.4
XVLM-Flickr30K 216M 62.6 60.4 41.6 54.9
XVLM-COCO 216M 68.2 47.6 47.6 54.5
BLIP-Flickr30K 583M 53.6 52.0 38.4 48.0
BLIP-COCO 583M 59.2 47.2 41.2 49.2

Table 1: Results of varied models on our benchmark:
models in the first section are evaluated in zero-shot,
and models in the second section have been finetuned
on some downstream task: COCO captioning, image-
text retrieval on Flickr30K or COCO.

BLIP models respectively finetuned on Flickr30K 287

retrieval and COCO retrieval. 288

Results Table 1 shows the results of the models 289

on our benchmark. From the results, we could find 290

that, 291

• First of all, the vanilla CLIP models (CLIP ViT- 292

B/32, CLIP ViT-L/14, RoBERTaCLIP) perform 293

poorly across all three datasets, indicating their 294

limited ability to recognize illusory objects in 295

images. On the other hand, NegCLIP attempts 296

to enhance the model’s understanding of text 297

by parsing and substituting phrases, but it only 298

achieves a marginal improvement compared to 299

the original CLIP model. CECLIP exhibits rela- 300

tively better performance, which is mainly due to 301

the constructed negative samples enhancing the 302

model’s comprehension of the combined seman- 303

tics of sentences. The NegCLIP and CECLIP 304

models are trained on the COCO training set 305

to distinguish between positive samples and en- 306

hanced negative samples. This might contribute 307

to CECLIP’s good performance on the COCO 308

dataset, owing in part to the model’s memory of 309

the original correct text. However, their perfor- 310

mance on the Nocaps dataset indicates that these 311

models lack the ability to effectively differentiate 312

hallucinated objects. 313

• Secondly, generative vision-language models typ- 314

ically achieve higher performance than vanilla 315

CLIP models due to their more precise alignment 316
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of image and text representations. Furthermore,317

it is generally observed that the larger the model318

parameters, the better the performance. In partic-319

ular, BLIP2, which has the highest number of pa-320

rameters, performs best across all three datasets.321

In comparison, the XVLM 4M model has rel-322

atively fewer parameters but still demonstrates323

good performance. This indicates that XVLM’s324

strategy of multi-scale alignment indeed assists325

the model in more accurately capturing the fine-326

grained details within images.327

• Furthermore, the overall trend among different328

models is consistent across the three datasets,329

with their performance typically being the low-330

est on the Nocaps dataset. Although fewer ob-331

jects are recognized on the Nocaps dataset than332

Flickr30K, the performance is the lowest there333

due to the inclusion of categories that are out-334

of-domain. The BLIP 14M model demonstrates335

the best performance on both Flickr and Nocaps,336

which indicates its strong generalization capabil-337

ities.338

• Finally, under normal circumstances, models usu-339

ally experience a improvement in performance340

after being fine-tuned on downstream tasks, with341

the CoCa model being an exception. Moreover,342

these performance enhancements can also be gen-343

eralized to other datasets.344

Analysis The inability of models to recognize345

hallucinated objects primarily stems from the data346

used and the learning methods employed. The347

vanilla CLIP model is trained with a large number348

of image-caption pairs collected from the internet,349

using a contrastive loss function for optimization.350

Those captions are often brief and noisy, and the351

model is optimized to differentiate between cor-352

rect and a multitude of incorrect image-text pairs.353

However, because the incorrect pairs are usually354

significantly different from the correct ones, the355

model can easily distinguish them. This means that356

the model does not need to learn the rich details in357

the pictures to make accurate predictions. To ad-358

dress this issue, we need to make improvements to359

the original CLIP model in terms of data utilization360

and learning methodologies.361

4 Methodology362

We first revisit the training process of vanilla CLIP363

model. Let I be the image and T be the text, the364

training objective of CLIP is to maximize the sim- 365

ilarity between the image and text pairs, and min- 366

imize the similarity between the image and text 367

pairs that are not matched. The loss function is 368

defined as: 369

Li2t = − log
exp(I · T+/τ)∑
T− exp(I · T−/τ)

,

Lt2i = − log
exp(T · I+/τ)∑
I− exp(T · I−/τ)

,

L0 =
1

2

(
Li2t + Lt2i

)
,

(1) 370

where T+ and I+ are the correct text and image, 371

and T− and I− are the incorrect text and image, 372

respectively. 373

With the addition of the negative samples Tneg 374

created as in the previous section, we can expand 375

T− as T ∗ = {T−, Tneg}. Then we could modify 376

the loss Li2t as: 377

Li2t = − log
exp(I · T+/τ)∑
T ∗ exp(I · T ∗/τ)

. (2) 378

To further enhance the model’s ability to distin- 379

guish between positive and negative samples, we 380

additionally introduce a margin loss. This is to 381

ensure that the distance between an image and its 382

corresponding correct text is smaller than the dis- 383

tance to incorrect text by a specific threshold. This 384

concept can be formulated as: 385

L1 = max(0, τ1 − I · T+ + I · T ∗), (3) 386

where τ1 is the margin threshold. 387

Additionally, we generate enhanced negative 388

samples by introducing perturbations to the orig- 389

inal positive samples. Such negative samples are 390

typically more challenging to distinguish than other 391

negative samples within the batch. To encourage 392

the model to recognize the partially correct infor- 393

mation contained in the enhanced negative samples, 394

resulting in a higher similarity to the positive sam- 395

ples compared to other negative samples within the 396

batch, we introduce a margin loss between the in- 397

batch negative samples and the enhanced negative 398

samples: 399

L2 = max(0, τ2 − I · T− + I · Tneg), (4) 400

where τ2 is the margin threshold. 401

Next, we assign different weights to the afore- 402

mentioned loss terms, allowing the model to learn 403

adaptively. Consequently, the final loss function 404

can be expressed as follows: 405

L =
1

2

(
Lt2i + Li2t

)
+ λ1L1 + λ2L2. (5) 406
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5 Experiments407

Training Datasets In order to enable the model408

to possess not only compositional understanding409

capability but also the ability to recognize illusory410

objects in images, we combine data featuring com-411

positional understanding with a dataset for hallu-412

cination recognition dataset that we create. We413

start with the COCO dataset’s training set, 3 fol-414

lowing the methods (Zhang et al., 2023), we gener-415

ate four types of negative samples for each image.416

These negative samples are designed to enhance the417

model’s recognition of relationship, attribution, ac-418

tions, and objects, respectively. To create negatives419

samples for relationship, we use Spacy (Honnibal420

and Montani, 2017) to get Parts-of-Speech (POS)421

tag and swap the positions of two noun words in422

the sentence. For the enhancement of attribution,423

actions, and objects, we randomly mask adjectives,424

verbs, or nouns in the sentences and employ the425

RoBERTa model to fill in these masked words.426

For hallucination recognition, we sample 8k im-427

ages from training set of COCO and 8k images428

from Flickr30k datasets, then generate negative429

samples for each image as in Section 3. Addition-430

ally, we randomly select ∼2k samples from the431

COCO dataset’s validation set as our dev set for432

compositional understanding (∼1k) and hallucina-433

tion recognition (∼1k).434

Training Details We utilize the CLIP ViT/32-B435

and CLIP ViT/14-L-336px implemented by Hug-436

gingface (Wolf et al., 2020) as the initial models437

and conduct fine-tuning for three epochs. The best-438

performing model is selected based on its perfor-439

mance on the validation set. The training process440

is carried out on a single A100 GPU, with batch441

sizes of 64 and 16 set for the base and large mod-442

els, respectively, and the learning rate is set at 1e-5.443

The selection of hyper-parameters is determined by444

their performance on the validation set, where λ1445

and λ2 are set as 0.3 and 0.2, τ1 and τ2 are set as 5.446

Evaluation We evaluate our fine-tuned CLIP447

models on two common Visual Language (VL)448

combination benchmarks: ARO (Yüksekgönül449

et al., 2023) and SugarCrepe (Hsieh et al., 2023),450

and the OHD-Caps benchmark we create. The451

ARO benchmark contains more than 50,000 test452

cases, is designed to systematically assess the capa-453

bilities of VLMs in comprehending various types454

3To prevent information leakage, we exclude 8k samples
that are subsequently used to create the hallucination dataset.

of relationships, attributes, and sequential informa- 455

tion through tests focused on object properties and 456

relational understanding within the Visual Genome 457

dataset (Krishna et al., 2017). The SugarCrepe 458

benchmark is an enhanced version of CREPE (Ma 459

et al., 2023) that mitigates bias issues which uses 460

large language models to generate hard negatives 461

with human validation. Both ARO and SuparCrepe 462

datasets require classifying positive and negative 463

captions for a given image, with a random success 464

probability of 50%. 465

5.1 Main Results 466

We present the results for ARO dataset and our self- 467

constructed dataset in Table 2, and SuparCrepe in 468

Table 3. From the results, we could find: 469

• Our model shows comparable performance to 470

previously state-of-the-art model (CECLIP) on 471

both datasets for compositional understanding 472

and achieves significant improvements in hallu- 473

cination recognition. The performance of the 474

CLIP models on the ARO dataset, as well as 475

the hallucination detection dataset, is relatively 476

poor and close to the performance of random 477

guessing, indicating that the model lacks a fine- 478

grained understanding of images. NegCLIP and 479

CECLIP enhance the model’s capability of un- 480

derstanding composites by constructing negative 481

samples, and also make progress on the hallu- 482

cination detection dataset, achieves a moderate 483

improvement on OHD-Caps benchmark, with 484

performance rising from 14.3% to 39.0%. Our 485

model, while being comparable in compositional 486

understanding to CECLIP, further enhances the 487

performance of hallucination detection to 83.2%. 488

• Our model also demonstrates strong general- 489

ization capabilities in hallucination recognition. 490

NegCLIP, CECLIP, and our model are all fine- 491

tuned on the training set of the COCO dataset. 492

Although they show varying degrees of perfor- 493

mance improvement in COCO-related halluci- 494

nation tests (NegCLIP at 32.8%, CECLIP at 495

52.8%), their performances are worse when fac- 496

ing unknown categories (NegCLIP at 25.0%, CE- 497

CLIP at 23.4% for Nocaps images), indicating 498

limited generalization capabilities of the mod- 499

els. In contrast, our model performs consistently 500

across three different datasets, at approximately 501

83%. This result verifies that our model can 502

effectively distinguish hallucinated objects in dif- 503
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Model ARO OHD-Caps

Relation Attribute Avg. COCO Flickr30k Nocaps Avg.

Radom Chance 50.0 50.0 50.0 3.6 3.6 3.6 3.6

CLIP ViT-B/32 59.3 62.8 61.1 15.2 17.6 10.2 14.3
NegCLIP 80.2 70.5 75.4 32.8 28.0 25.0 28.6
CECLIP 83.0 76.4 79.7 52.8 40.8 23.4 39.0
Ours w/o object 83.7 74.7 79.2 39.8 24.2 22.0 28.7
Ours 83.8 76.3 80.1 82.6 85.0 82.0 83.2

CLIP ViT-L/14-336px 62.7 62.0 62.4 26.0 27.0 16.8 23.3
Ours w/o object 85.2 76.3 80.8 50.6 35.2 23.4 36.4
Ours 84.6 76.3 80.4 89.0 88.0 81.6 86.2

Table 2: Results(%) on the ARO dataset and our OHD-Caps benchmark. The ARO dataset evaluates the model’s
accurate understanding of relationships and attributes by swapping the positions of two objects. The table is divided
into two sections, which respectively show the results obtained from fine-tuning on the CLIP ViT-B/32 and CLIP
ViT-L/14-336px configurations. ‘w/o object’ means without the data we create for object hallucination. In each
section, the best results are highlighted in bold.

Model REPLACE SWAP ADD

Object Attribute Relation Avg. Object Attribute Avg. Object Attribute Avg.

Human 100.0 99.0 97.0 98.7 99.0 100.0 99.5 99.0 99.0 99.0
Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

CLIP ViT-B/32 90.9 80.1 69.2 80.1 61.2 64.0 62.6 77.2 68.8 73.0
NegCLIP 92.7 85.9 76.5 85.0 75.5 75.4 75.5 88.8 82.8 85.8
CECLIP 93.1 88.8 79.0 87.0 72.8 77.0 74.9 92.4 93.4 92.9
Ours w/o object 92.4 88.6 75.7 85.6 77.1 77.8 77.5 82.2 84.4 83.3
Ours 94.1 89.6 80.6 88.1 76.3 77.0 76.7 89.9 85.1 87.5

CLIP ViT-L/14-336px 94.5 80.6 66.7 80.6 63.7 62.3 63.0 81.3 74.1 77.7
Ours w/o object 94.7 87.3 79.4 87.1 78.0 77.5 77.7 82.3 85.8 84.1
Ours 95.2 89.8 82.9 89.2 76.7 76.9 76.8 86.1 78.0 82.1

Table 3: Results(%) on SugarCrepe dataset. The SuparCrep dataset aims to test the model’s ability to comprehend
combinations by replacing, swapping, and augmenting concepts within the dataset.

ferent datasets and possesses the capability to504

generalize across datasets.505

• With the increase in model parameters, upgrading506

from CLIP ViT-B/32 to CLIP ViT-L/14-336px,507

the model generally performs better on datasets508

involving the compositional understanding as509

well as the recognition of hallucinations, with510

a slight enhancement in performance. The only511

exception is observed in the SuparCrepe dataset,512

where there is a decline in performance on the513

subset that involves the insertion of attributes and514

objects. We observe that even without incorporat-515

ing our constructed hallucination detection data,516

there is still a decline in performance during the517

evaluations. This could be due to an increased518

number of negative examples resulting in a re-519

duced batch size.520

5.2 Evaluation for LVLM 521

To verify the effectiveness of the enhanced CLIP 522

model compared to the original CLIP in assisting 523

large vision-language models to mitigate the issue 524

of object hallucination, we replace the CLIP ViT- 525

L/14-336px baseline model in LLaVA-1.5 with our 526

fine-tuned version. We train LLaVA (Liu et al., 527

2023b) from scratch using the hyper-parameters 528

specified in the original paper. 529

We conduct an evaluation of object hallucina- 530

tion phenomena on the expanded POPE dataset. 531

The POPE dataset is created by selecting samples 532

from the COCO validation set and constructing 533

questions about hallucinated objects of various cat- 534

egories. The format of the questions is ’Is there 535

a X in the image?’, where X refers to the name 536

of the object. The questions in the dataset are de- 537

signed such that the objects are present and absent 538
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Dataset Criterions LLaVA Ours

COCO

Accuracy (↑) 85.2 86.7
Precision (↑) 82.1 86.5

Recall (↑) 90.7 87.5
F1 Score (↑) 86.1 86.9
Yes (→50%) 55.5 50.8

Flickr30K

Accuracy (↑) 73.3 79.9
Precision (↑) 67.3 75.4

Recall (↑) 96.6 91.2
F1 Score (↑) 78.9 82.2
Yes (→50%) 73.3 61.3

Nocaps

Accuracy (↑) 77.1 81.3
Precision (↑) 71.7 79.0

Recall (↑) 91.7 86.7
F1 Score (↑) 80.3 82.4
Yes (→50%) 64.7 55.4

Table 4: Results on expanded POPE datasets. Yes de-
notes the proportion of answering “Yes” to the given
question. The best results in each block are denoted in
bold.

in equal measure, therefore the ideal ’yes’ response539

rate should be around 50%. To comprehensively540

assess the model’s performance on various datasets,541

particularly on out-of-domain datasets, we expand542

the Flickr30k and Nocaps datasets following the543

original setup. Each dataset contains 500 images,544

with 18 questions associated with each image.545

The results are shown in Table 4. It reveals that546

the LLaVA model, trained with the enhanced CLIP,547

achieves an improvement in the F1 score across548

three datasets, with the average performance in-549

creasing from 81.8 to 83.8. Apart from the Recall550

metric, our model surpasses the original LLaVA551

model in all other metrics. Compared to the orig-552

inal, it attains a better balance between accuracy553

and recall and also approaches a more ideal balance554

in the proportion of "Yes" responses. Moreover, al-555

though both models perform less impressively on556

the Flickr30k and Nocaps datasets compared to the557

COCO dataset, our model demonstrates a more sig-558

nificant advantage on these two datasets, thereby559

evidencing its superior generalization capability.560

5.3 Ablation Study561

In this subsection, we present ablation studies to562

examine the impact of our model’s different com-563

ponents. We conduct these experiments on CLIP564

Vit-B/32 model.565

Losses As demonstrated in Table 5, inclusion of566

the L0 loss alone significantly improve both the567

Model L0 L1 L2 ARO Object Avg.

CLIP 61.1 14.3 37.7
Ours ✓ 78.0 82.1 80.1

✓ ✓ 78.2 82.5 80.4
✓ ✓ 80.0 83.1 81.6
✓ ✓ ✓ 80.1 83.3 81.7

Table 5: Ablation of losses on CLIP ViT-B/32.

λ1 Values λ2 Values

0.2 0.3 0.4

0.2 81.3 81.5 81.6
0.3 81.7 81.4 81.5
0.4 81.6 81.2 81.3

Table 6: Ablation of λ1 and λ2 Values on Vit-B/32. The
results are averaged on ARO and Object Datasets.

ARO and Object metrics over the baseline. Sub- 568

sequently, iterative incorporation of L1 and L2 569

provide incremental benefits, with the full com- 570

bination yielding the highest average performance. 571

Compared to L1 loss, L2 loss has a more signifi- 572

cant effect on improving model performance. This 573

suggests that by increasing the distance between 574

constructed negative samples and other negative 575

samples in the batch, the model can achieve a more 576

refined understanding. 577

Weight of Losses Table 6 illustrates the changes 578

in model performance when different loss weights 579

are applied. The experimental results indicate that 580

the sensitivity of model performance to weight 581

changes is relatively low. The model demonstrates 582

the best performance when the values of λ1 and λ2 583

are set to 0.3 and 0.2, respectively. 584

6 Conclusion 585

Our study investigate the reasons behind object 586

hallucination in LVLMs. We construct a bench- 587

mark specifically for the evaluation of hallucina- 588

tions and find that the visual perception module 589

commonly used in current LVLMS, i.e., the CLIP 590

model, cannot effectively discriminate hallucinated 591

text. By designing negative samples and optimizing 592

the contrastive loss function, we achieve a signif- 593

icant improvement in model performance on the 594

hallucination detection dataset. Moreover, replac- 595

ing the original CLIP model with our improved 596

model can effectively alleviate the issue of object 597

hallucination in LLaVA model. 598
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7 Limitations599

Although we conduct a series of explorations, our600

research still has its limitations. Firstly, our focus601

is solely on the issue of object hallucination within602

LVLMs, and we do not extend our research to other603

types of hallucinations. Secondly, the benchmark604

we propose, comprises over 20 negative samples.605

Due to budgetary constraints, the size of this dataset606

is much smaller compared to the datasets used for607

evaluating compositional understanding, e.g. ARO608

dataset (Yüksekgönül et al., 2023). Thirdly, we609

only evaluate the visual encoders of most LVLMs,610

i.e. the CLIP models, but we do not conduct re-611

search on encoders used by some other models,612

for instance, the variant of ResNet called NFNet-613

F6 (Brock et al., 2021) used by Flamingo (Alayrac614

et al., 2022).615
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A Statistics on the Datasets 886

Dataset Size #Negative Samples #Avg Length

Train
COCO 8000 27 16.0
Flickr30K 8000 27 18.4

Dev
COCO 990 27 15.6

Test
COCO 500 27 16.3
Flickr30K 500 27 21.1
Nocaps 500 27 19.1

Table 7: Statistics of the datasets used in our benchmark.

The statistical information of the dataset is pre- 887

sented in the Table 7, which is divided into three 888

parts: training, testing, and validation. The average 889

length displayed in the table refers to the average 890

length of the negative examples in the dataset. 891

B More Examples 892

We present more examples in Figure 2. It can be ob- 893

served that our method can seamlessly integrate ob- 894

jects that are not present in the original image into 895

the text. The names of the added objects are high- 896

lighted in red. Removing objects that are present 897

in the picture can be accomplished with minimal 898

adjustments. As for the removal of objects not de- 899

picted in the image, such as the “food” mentioned 900

in the third figure, the negative samples typically 901

involve modifications to the objects, attributes, and 902

other content in the positive samples. 903
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Caption: A person on a snowboard 
weaves down a mountain slope. 

Add ‘backpack’: A person with a 
backpack on a snowboard weaves 
down a mountain slope. 

Add ‘car’: A person in a car 
weaves down a mountain slope. 

Delete ‘person’: A snowboard 
glides down the mountain slope.

Caption: A barber is trimming the 
neckline of a man on the side of the 
street.

Caption: Two cans of redbull along with 
several other energy drink supplements 
and a starbucks coffee cup. 

Add ‘sky’: A barber is trimming the 
neckline of a man under the sky on the 
side of the street.

Add ‘river’: A barber is trimming the 
neckline of a man by the side of the 
river.

Delete ‘food’: Three bottles of green 
tea along with several other herbal tea 
bags and a porcelain tea cup.

Add ‘person’: A person holding two 
cans of Redbull, along with several 
other energy drink supplements and a 
Starbucks coffee cup.

Figure 2: Examples from our benchmark OHD-Caps. The three images in the figure are from the COCO, Flickr,
and Nocaps datasets, respectively.
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