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Abstract

Transformer-based pretrained language mod-
els (PLMs) offer unmatched performance
across the majority of natural language un-
derstanding (NLU) tasks, including a body of
question answering (QA) tasks. We hypoth-
esize that improvements in QA methodology
can also be directly exploited in dialog NLU;
however, dialog tasks must be reformatted into
QA tasks. In particular, we focus on modeling
and studying slot labeling (SL), a crucial com-
ponent of NLU for dialog, through the QA op-
tics, aiming to improve both its performance
and efficiency, and make it more effective and
resilient to working with limited task data. To
this end, we make a series of contributions:
1) We demonstrate how QA-tuned PLMs can
be applied to the SL task, reaching new state-
of-the-art performance, with large gains espe-
cially pronounced in such low-data regimes.
2) We propose to leverage contextual informa-
tion, required to tackle ambiguous values, sim-
ply through natural language. 3) Efficiency
and compactness of QA-oriented fine-tuning
are boosted through the use of lightweight
yet effective adapter modules. 4) Trading-off
some of the quality of QA datasets for their
size, we experiment with larger automatically
generated QA datasets for QA-tuning, arriving
at even higher performance. Finally, our anal-
ysis suggests that our novel QA-based slot la-
beling models, supported by the PLMs, reach a
performance ceiling in high-data regimes, call-
ing for more challenging and more nuanced
benchmarks in future work.

1 Introduction and Motivation

Task-oriented conversational systems allow users
to interact using natural language to solve well-
defined tasks such as restaurant booking, hotel
assistance, and travel information (Young, 2002;
Raux et al., 2005; Budzianowski et al., 2018). Slot
labeling (SL), a crucial component of these sys-
tems, aims to fill the correct values associated with

predefined slots from a domain ontology: e.g., a di-
alog system for hotel reservations is expected to fill
slots such as check in date and the number of guests
with the values extracted from a user utterance (e.g.,
next Friday, 4). However, the manual construction
of such domain ontologies and corresponding anno-
tated examples is expensive, time-consuming, and
typically requires domain experts as data designers.
For this reason, few-shot and data-efficient SL has
drawn a lot of attention recently (Hou et al., 2020;
Henderson and Vulié, 2021; Liu et al., 2020), with
the aim to maximize data efficiency by learning
from only a handful of task-annotated examples.
As for the plethora of other NLP tasks (Qiu et al.,
2020; Razumovskaia et al., 2021), these models
typically rely on Transformer-based pretrained lan-
guage models (PLMs) (Devlin et al., 2019; Liu
et al., 2019), coupled with SL-specific fine-tuning
(Henderson and Vulié, 2021).

In parallel, machine reading comprehension has
been fueled by PLM-based improvements and the
creation of large-scale datasets (Rajpurkar et al.,
2018; Fisch et al., 2019), even matching human-
level performance in an array of challenges (Devlin
et al., 2019; Zhang et al., 2021). These advances
in question answering (QA) models have inspired
the ideas of reformatting conversational systems
as QA systems (McCann et al., 2018). Such QA-
reformatting step can be ‘global’ (i.e., it can be
applied on the full system), or it can be applied to
a particular NLU component, as tried quite exten-
sively for dialog state tracking (Gao et al., 2019,
2020; Zhou and Small, 2019).

Recently, Namazifar et al. (2021) have provided
preliminary evidence that NLU tasks such as intent
detection and slot labeling can also be posed as
span-based QA tasks supported by the PLMs: for
SL in particular, a question in natural language is
defined for each slot, and the answer given by the
fine-tuned PLM fills the slot value.! Performance

!"This formulation is very similar to recent work on prompt-



gains of their QA-based NLU methods, especially
in low-data scenarios, indicate the suitability of QA
methodology for modeling dialog NLU.

Inspired by this emerging line of research, in this
paper we propose the QA SL framework: Question
Answering for Slot Labeling, which sheds new
light on reformatting SL into QA tasks, and studies
it extensively from multiple key aspects, while also
aiming to align well with ‘real-world’ production-
ready settings. We summarize these core aspects
as follows:

(1) The reformulation of SL into QA allows us
to benefit from the adaptation of off-the-shelf
PLMs and QA-oriented systems to the dialog do-
main of interest. Are these adaptations robust
across domains and datasets, especially for low-
data regimes? Further, are they robust with respect
to the chosen PLM and the QA dataset selected for
QA-based adaptive fine-tuning (Ruder, 2021)?

(2) To increase efficiency, current span-based SL
models only act over the latest user input; how-
ever, in some cases, this simplification deteriorates
performance as the context of the conversation is
necessary to disambiguate between overlapping
slots (see Figure 1). How can we adapt QASL
to the inherently contextual nature of dialog while
maintaining efficiency?

(3) Fully fine-tuning PLMs imposes large training
and operational costs, particularly when special-
ized per-slot SL models are required (Namazifar
et al., 2021; Henderson and Vuli¢, 2021; Mehri and
Eskénazi, 2021). Is it possible to build more effi-
cient fine-tuning and adaptation approaches? Can
such more lightweight QASL models keep up with
the performance of full model fine-tuning?

(4) Can high performance also be obtained with
QASL models that leverage larger, automatically
generated QA resources for fine-tuning? Can such
resources be combined with smaller (but higher-
quality) hand-crafted QA resources?

In sum, we push further the understanding of
key advantages and limitations of the QA-based ap-
proach to dialog SL. The proposed QASL frame-
work is applicable to a wide spectrum of PLMs,
and it integrates the contextual information through
natural language prompts added to the questions
(Figure 1). Experiments conducted on standard
SL benchmarks and with different QA-based re-
sources demonstrate the usefulness and robustness

ing task-tuned PLMs (Gao et al., 2021), see also the compre-
hensive survey on prompting PLMs (Liu et al., 2021).

QASL:
Slot: date Q: What date?

Slot: from_location Q: Where from? A Anahelm CA
Slot: to_location Q: Where to? A

S: From? (requested_slot: from_location?)

u: LAX

QASL: P

Slot: date Q: What date?i<s> from Iosa;tlgﬂl ______ A
Slot: from_location Q: Whe?e_fFo_Ln-_’? '<s> from_Tocation' A: *LAX
Slot: to_location Q: Where to? <s> from_location! A

___________

Figure 1: Reformulating slot labeling as QA with con-
textual information. S, U, Q, A denote System, User,
Question and Answer (dotted lines), respectively. The
requested slot (dashed line), indicated in the previous
dialog turns, is added to all questions in the current turn.
The second example shows a case where contextual in-
formation is crucial for slot disambiguation.

of QASL, with state-of-the-art performance, and
most prominent gains observed in low-data sce-
narios. We also verify the viability of artificially
created QA resources for the SL task. Finally, we
demonstrate that slot-specific S models can be
fine-tuned with less than 1% parameters of the pre-
trained backbone PLM, while maintaining strong
SL performance.

2 QASL: Methodology

Preliminaries. Following Namazifar et al. (2021),
we pose the SL task as a ‘pure’ question answering
problem. This reformulation into the QA paradigm
maps a list of slots .S from the domain ontology
to a list of corresponding questions (). For in-
stance, the slots date, from_location, to_location,
can be posed as simple natural questions as follows:
“What date?”, “Where from?”, “Where to?”, respec-
tively; see Figure 1.2 At each dialog turn, given the
input context C', which may comprise one or more
previous turns, the model is sequentially queried
with all pre-defined questions appended to C, and
returns an answer as a span extracted from the input
user utterance, see Figure 1 again.

Fine-Tuning Stages in a Nutshell. We start from
any standard Transformer-based (Vaswani et al.,
2017) PLM such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), or ELECTRA (Clark
et al., 2020). Next, in Stage 1 termed QA-tuning,
the underlying PLM is fine-tuned with a span-
based QA objective using large QA datasets such as
SQuAD (Rajpurkar et al., 2018) or MRQA (Fisch
et al., 2019). The goal of Stage 1 is to adapt the

>The mapping between S and Q can be one-to-many.



model to the span extraction task (Ruder, 2021)
with (large and general-purpose) QA data, and this
way effectively increase the model’s ability to cope
with many different questions. Following that, in
Stage 2 termed QASL-tuning, the model is fine-
tuned further for a particular dialog domain. In this
stage, the model further specializes to the small
subset of in-domain questions that correspond to
the slots from the domain ontology.

2.1 QASL with Contextual Information

In complex domains with multiple slots, values
can often overlap, which might result in severe
prediction ambiguities.? The correct prediction can
be only made given the context of the conversation.

Moreover, natural conversations are of mixed
initiative, where the user can provide more informa-
tion than it was requested or unexpectedly change
the dialog topic (Rastogi et al., 2020). Carrying
over the contextual knowledge is a fundamental
feature of a successful dialog system (Heck et al.,
2020). However, a standard straightforward ap-
proach, adopted by the current span-based SL mod-
els (Henderson and Vulié, 2021; Namazifar et al.,
2021) to boost simplicity and efficiency, runs in-
ference only over the latest user utterance without
context or reserves extra parameters for the slots
that have been explicitly requested by the system.
Put simply, many current approaches discard the
potentially crucial contextual information.

In practice, some contextual information from
previous dialog turns can be formulated into the
so-called requested slot (Coope et al., 2020): this
means that the current dialog turn is additionally
annotated with the slots requested by the system
(Coope et al., 2020; Rastogi et al., 2020), help-
ing slot disambiguation. We propose to provide
that information to QASL by simply appending
the requested slot feature (as a natural language
prompt) to the posed question, without any archi-
tectural modification, as illustrated in Figure 1. For
instance, if the requested slot is present for the slot
arrival_time, and the current question concerns the
slot date, the final question takes the following
form: “What dates are you looking for <s> ar-
rival time”, where <s> is a special separator token.

3For instance, in the domain of restaurant booking, values
for the slots time and people can both be answered with a
single number (e.g., 6) as the only information in the user
utterance, causing ambiguity. In another example, Figure 1
shows a conversation from the Buses domain in the DSTC8
dataset (Rastogi et al., 2020); here, it is impossible to distin-
guish between from_location and to_location without context.

When multiple slots are requested, they are all ap-
pended to the initial question, each slot separated
by one separator token <s>.

2.2 Refining QA-Tuning

Stage 1 of QASL QA-tuning is concerned with
adaptive transformations of the input PLMs to
(general-purpose) span extractors, before the final
in-task QASL-tuning. We also propose to further
refine Stage 1 and divide it into two sub-stages:
(a) Stage 1a then focuses on fine-tuning on larger
but noisier, automatically generated QA datasets,
such as PAQ (Lewis et al., 2021); (b) Stage 1b
continues on the output of Stage 1a, but leverages
smaller, manually created and thus higher-quality
QA datasets such as SQuAD2.0 (Rajpurkar et al.,
2018) and/or MRQA (Fisch et al., 2019).

The rationale behind this refined multi-step QA-
tuning procedure is that the models 1) should lever-
age large quantities of automatically generated
(QA) data and a task objective aligned with the fi-
nal task (Henderson and Vuli¢, 2021), that is, large-
scale adaptive fine-tuning (Ruder, 2021) before 2)
getting ‘polished’ (i.e., further specialized towards
the final task) leveraging fewer high-quality data.
We refer to the QASL model variants which rely
on the refined Stage 1 procedure as QASL+.

2.3 Efficient QASL

In principle, one model could be employed to serve
all slots in all domains across different deploy-
ments. This, however, prevents the separation of
different data sources of data, while this is often
required from the perspective of data privacy. On
the other hand, storing separate slot-specific and
domain-specific models derived from heavily pa-
rameterized PLMs is extremely storage-inefficient,
and their fine-tuning can be prohibitively slow
(Henderson and Vulié, 2021).* Therefore, with
multiple domains and slots, the model compactness
and fine-tuning efficiency become crucial features.
In order to address these requirements, we rely
on and experiment with three different efficiency-
and compactness-oriented approaches within the
QASL framework in Stage 2, also summarized in
Figure 2:

(1) Fine-tuning only the QASL model’s head,
which is responsible for predicting the start and
the end of the answer span. All other parameters

*Distilling PLMs to their smaller counterparts (Lan et al.,

2020; Sanh et al., 2019) does not resolve the issue for
production-oriented deployments.
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Figure 2: A compact illustration of different efficient
fine-tuning schemes used with QASL, and their corre-
sponding parameter subsets (see §2.3).
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are kept fixed/frozen. Most QA systems based on
PLMs contain a simple one feed-forward layer as
the head, using < 0.1% of all the parameters.

(2) Using lightweight tunable bottleneck layers,
that is, adapters (Houlsby et al., 2019; Pfeiffer
et al., 2021), inserted within each Transformer
layer of the underlying model. At fine-tuning, only
adapter parameters are updated while all the other
parameters of the model are kept fixed: i.e., typi-
cally < 1% of the PLM’s original parameter capac-
ity gets updated (Pfeiffer et al., 2021).

(3) Fine-tuning only bias parameters of the atten-
tion layers: this approach, termed BitFit (Zaken
et al., 2021) in practice fine-tunes less than 0.1%
of the full parameters.

It is worth noting that adapters and bias-only
tuning (i.e., BitFit) have been evaluated only in full
task-data setups in prior work. Here, our use-case
scenario adds another layer of complexity as we
evaluate them in few-shot scenarios of the SL task.

3 Experimental Setup

Underlying PLLMs. We opt for a set of established
PLMs with strong performance record on other
NLP tasks: RoBERTa (Liu et al., 2019) (its Base
and Large variants), and a distilled version of BERT
— DistilBERT (Sanh et al., 2019). However, we note
that QASL is applicable also to other PLMs.?

QA Datasets (Stage 1). We experiment with two
manually created QA datasets, (i) SQuAD2.0 (Ra-
jpurkar et al., 2018), and (ii)) MRQA (Fisch et al.,
2019); and (iii) one automatically generated QA
dataset, PAQ (Lewis et al., 2021). SQuAD2.0 was

>For instance, we have run experiments also with ELEC-
TRA (Clark et al., 2020), but do not report its performance as
it was consistently outperformed by RoBERTa.

also used in prior work of Namazifar et al. (2021):
it consists of 150k QA pairs including 50k negative
pairs without any answer. The MRQA dataset is
a collection of 18 existing QA datasets, spanning
almost 2M QA pairs, converted to the same format
of SQuADZ2.0. The PAQ dataset, created for open-
domain QA, consists of over 65M natural language
QA pairs. Due to hardware constraints, we ran-
domly sample two smaller versions from the full
PAQ, spanning 5M and 20M QA pairs and denoted
as PAQb5 and PAQ?20; they are also adapted to the
same SQuAD2.0 format.

By selecting these diverse QA-data sources, we
validate and compare their usefulness for adaptive
QA fine-tuning oriented towards SL, reaching be-
yond SQuAD2.0 as a standard go-to dataset. We
also test if the sheer scale of an automatically gen-
erated dataset (i.e., PAQ) can compensate for its
lower data quality, compared to manually created
SQuAD and MRQA.

Slot Labeling Datasets: Stage 2 and Evaluation.
We run experiments on two standard and com-
monly used SL benchmarks: (i) RESTAURANTS-
8k (Coope et al., 2020) and DSTCS8 (Rastogi et al.,
2020), which are covered by the established Di-
aloGLUE benchmark (Mehri et al., 2020).

RESTAURANTS-8k comprises conversations
from a commercial restaurant booking system, and
covers 5 slots required for the booking task: date,
time, people, first name, and last name, with a total
of 8,198 examples over all 5 slots, see the work of
Coope et al. (2020) for further details.

DSTCS has been introduced during the Dialog
System Technology Challenge (DSTC) 8 challenge,
and then adapted to the span extraction task by
Coope et al. (2020). It includes over 20k annotated
multi-domain, task-oriented conversations between
humans and a virtual assistant. These conversa-
tions involve interactions with services and APIs
spanning 4 domains (Buses, Rental Cars, Events,
and Homes) and 12 slots; see Rastogi et al. (2020).

Similar to prior work (Coope et al., 2020; Hen-
derson and Vuli¢, 2021; Mehri and Eskénazi, 2021),
we also do tests where we fine-tune on smaller
few-shot data samples of the two SL datasets,
while always evaluating on the same (full) test
set. RESTAURANTS-8k comes with 8 different
few-shot data samples referred to as 1/128, 1/64,
1/32,1/16, 1/8, 1/4, 1/2, 1 (proportions of the
full dataset). Similarly, we fine-tune on 1/32, 1/16,



1/8,1/4,1/2, 1 proportions of the full DSTCS.

QASL: Fine-tuning Setup and Hyperparame-
ters. Our QASL implementation is based on the
Transformers library (Wolf et al., 2020). Each
PLM is equipped with a QA-head which is a feed-
forward network with two outputs to compute span
start logits and span end logits.

Stage 1 is carried out on 8 V100 GPUs for 2
epochs with 24 QA-pairs per batch per GPU, re-
lying on the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 3e-5. We inves-
tigate the following 8 Stage 1 (i.e., QA-tuning)
regimes: SQuAD, MRQA, PAQS5, PAQ20 (basic
QASL), PAQ5-SQuAD, PAQ5-MRQA, PAQ20-
SQuAD, and PAQ20-MRQA (QASL+, see §2.2).
The basic Stage 1 setup, unless noted otherwise, is
QA-tuning on SQuAD.

Stage 2 (QASL-tuning) proceeds in batches of
size 32, again with Adam, and a learning rate 2e-5.
All presented results are averaged over 5 different
runs. We follow the setup from prior work (Coope
et al., 2020; Henderson and Vulié¢, 2021; Mehri and
Eskénazi, 2021), where all the hyper-parameters
are fixed across all domains and slots. The reported
evaluation metric is the average F1 score across all
slots in a given task/domain.”

Baselines. We compare QASL against three recent
state-of-the-art SL models:®

ConVEx (Henderson and Vuli¢, 2021) defines a
novel SL-oriented pretraining objective, termed
pairwise sentence cloze, combined with SL-tuning
of only a subset of parameters. It shows strong
performance particularly in few-shot scenarios.

GenSF (Mehri and Eskénazi, 2021) adapts the pre-
trained DialoGPT model (Zhang et al., 2020) and
steers/constrains its generation freedom to reflect
the particular dialog domain; at the same time it
adapts the downstream SL task to align better with
the architecture of the (fine-tuned) DialoGPT.

QANLU (Namazifar et al., 2021) also reformulates
SL as a QA task (see §2) by performing in-task fine-
tuning of DistilBERT g, s, model (Sanh et al., 2019)
which was first fine-tuned on SQuAD2.0.

Efficient QASL in Stage 2: Setup. For QA-head-

®The exact numbers are in Appendix A (Table 4).

"It is computed with an exact score, that is, the model has
to extract exactly the same span as the golden annotation. This
is different to a typical QA setup where partial or multiple
answers are also taken into account (Rajpurkar et al., 2018).

8For full technical details of each baseline model, we refer
the reader to their respective papers.
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Figure 3: A comparison of slot labeling models on
RESTAURANTS-8k. Stage 1 for QASL and QANLU
are run on SQuAD?2.0. x-axis shows the fraction of the
training data used for SL-tuning (see §3).

only tuning, the default head in Transformers li-
brary (Wolf et al., 2020) is a linear layer of size
[E, 2] where FE is the size of the output embedding
of the PLM. We define the QA head as a feed-
forward network with 2 layers, covering ~ 1M
parameter. For experiments with adapters, we rely
on the lightweight yet effective Pfeiffer architecture
(Pfeiffer et al., 2021), using the reduction factor of
16 for all but the first and last Transformers layer,
where the factor of 8 was utilized.”

4 Results and Discussion

QASL versus Baselines. In the first experiment,
we benchmark QASL against all baseline mod-
els and across different levels of data availability
for Stage 2 SL-tuning. We assume SQuAD2.0 as
the underlying QA dataset for Stage 1 for all mod-
els (including the baseline QANLU), and do not
integrate contextual information here (see §2.1).
Figure 3 plots the results on RESTAURANTS-
8k,!0 and reveals several findings. First, there
is an indication that larger models yield perfor-
mance gains: ROBERTay, ;¢ 1s slightly stronger
than RoBERTap,s. as the underlying model, al-
though RoBERTap,, . also shows very competitive
performance across the board. While most models
reach very similar and very high performance in
the full-data regime, the difference between mod-
els becomes much more salient in few-shot setups.
The gains in favor of QASL with RoBERTa-s over
all baselines are the largest for the scarcest data

The learning rate has been increased to le—3 following
prior work (Pfeiffer et al., 2021), and it also yielded better
performance in our preliminary experiments.

19The exact numbers are in Appendix A (Table 5).



scenarios: 1/64 and 1/128.!1 12

Using Contextual information. We now investi-
gate if the integration of contextual information
in the form of requested slots improves SL perfor-
mance (see §2.1). Unless noted otherwise, from
now on we assume that QASL always integrates
the requested slot information. The results on
RESTAURANTS-8k for a subset of test examples
with non-empty requested slots (i.e., 897 out of all
3,731 test examples), are summarized in Table 1.
The variant with requested slot information con-
sistently yields higher F scores, even despite the
fact that the test set contains only 86 examples that
might cause ambiguity.

The results on the 4 domains of DSTCS, pro-
vided in Figure 4 for all test examples, show
very similar patterns and improvements over the
baseline SLL models GenSF and ConVEX, espe-
cially in few-shot scenarios. The gains with the
contextual variant are less pronounced than in
RESTAURANTS-8k as DSTCS8 covers a fewer
number of ambiguous test examples.

Further, we observe extremely high absolute
scores, especially in higher-data setups, which is
the first indication that the standard SL benchmarks
might become inadequate to distinguish between
SL models in the future. We provide a finer-grained
analysis of the SL benchmarks later in §5.

Efficient Fine-Tuning in Stage 2. We now pro-
ceed with the RoBERTap,s model as our base
PLM in all following experiments: it achieves very
competitive results while using ~3 times fewer pa-
rameters than RoOBERTay,,;.¢c. Table 2 presents the
scores obtained with the three efficient fine-tuning
approaches (see §2.3) on RESTAURANTS-8k in
few-shot scenarios.

Overall, the results indicate that few-shot scenar-
ios are quite challenging for efficient fine-tuning
methods, typically evaluated only in full-data sce-
narios in prior work (Zaken et al., 2021). The
adapter-based approach is most effective by far,
and is very competitive to full model fine-tuning,
even outperforming it in all but the two fewest-data
scenarios. The other two efficient approaches fall
largely behind in all training setups. In summary,
the results empirically validate that adapter-based

"'While we also achieve higher results than QANLU (Na-
mazifar et al., 2021), the exact comparison is not possible
since they used different data splits.

12We have also tried different question prompts but have
not observed any significant variance in the results.

Without Requested With Requested
1/128  81.7 85.8
1/64  81.0 87.9
1732 86.7 90.7
1/16 ~ 88.7 93.8
1/8 88.9 95.7
1/4 91.0 95.0
172 91.5 97.0
1 92.0 98.0

Table 1: A comparison of QASL without and
with requested slot information on the subset of
RESTAURANTS-8k test examples with non-empty re-
quested slots (891 test examples).

Full QA head BitFit Adapters
1/128  84.0 0.0 25.6 81.9
1/64  85.2 20.2 27.9 85.0
1732 89.9 28.3 32.5 91.0
1/16 91.9 33.8 52.0 92.9
1/8 92.2 40.7 51.7 93.6
1/4 94.4 52.6 70.5 95.2
172 95.4 577 88.8 96.1
1 96.1 61.8 93.6 97.0

Table 2: Average F) scores across all slots on the entire
RESTAURANTS-8k test data with efficient fine-tuning
architectures in Stage 2 (see §2.3), and their compari-
son to Full model fine-tuning.

fine-tuning offers a viable trade-off between perfor-
mance and efficiency, even in low-data regimes: it
fine-tunes only ~1.5M parameters, translating to
S5MB of storage space, compared to 110M parame-
ters (i.e., 550 MB) needed for full fine-tuning.

Different Stage 1 Fine-Tuning Schemes. Note
that, until now, the results were based solely on
models QA-tuned with SQuAD2.0 in Stage 1. We
now test the impact of the QA resource in Stage
1 on the final SL performance. Table 3 presents
the results for the 8 Stage 1 regimes (see §3), fine-
tuned with QASL on 3 smallest RESTAURANTS-
8k training data splits in Stage 2.

When using only one QA dataset in Stage 1, sev-
eral trends emerge. First, a larger of the two man-
ually created datasets, MRQA, yields consistent
gains over SQUAD?2.0, over all training data splits.
Using larger but automatically created PAQS and
PAQ20 is on par or even better than using SQuAD,
but they cannot match performance with MRQA.
This confirms that both QA dataset quality and
dataset size play an important role in the two-stage
adaptation of PLMs into effective slot labellers.
Having more PAQ data typically yields worse per-
formance: it seems that more noise from more
automatically generated QA pairs gets inserted into
the fine-tuning process (cf., PAQ20 versus PAQS).

However, QASL tuned only with automatically
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SQUAD?2.0 in Stage 1, and uses contextual requested slot information in Stage 2.

SQuAD MRQA PAQS PAQ20 PAQS-SQuAD PAQ20-SQuAD PAQS-MRQA PAQ20-MRQA
1/128  84.0 86.31 83.62  82.57 86.09 85.19 86.31 85.47
1/64 85.2 87.59 86.45 85.64 87.95 87.11 88.40 87.65
1/32 89.9 91.50 91.14  89.97 91.46 90.92 91.13 91.08

Table 3: Fj scores over all slots on the RESTAURANTS-8Kk test data for different QA-tuning regimes in Stage 1.

generated data is still on par or better than tuning
with SQuAD2.0. This proves the potential of large-
scale (automatically obtained) QA datasets for QA-
based slot-labeling in domains that have a small
overlap with curated QA data such as SQuAD. The
highest gains over SQuAD when using PAQ are ob-
tained for two slots: first_name and last_name.
This stems from the fact that finding the right
person’s name is a common task with Wikipedia-
related corpora. Finally, in two out of the three
training data splits, the peak scores are achieved
with the refined Stage 1 (the PAQ5-MRQA variant),
but the gains of the more expensive PAQS5-MRQA
regime over MRQA are mostly inconsequential.

5 SL Data Analysis and Audit

Detected high absolute scores in full-data setups
for many models in our comparison (e.g., see Fig-
ure 3, Table 2, Figure 4) suggest that the current
SL benchmarks might not be able to distinguish
between state-of-the-art SL models. The remain-
ing gap to 100% performance might also be due
to annotation errors and inconsistencies. We thus
inspect the two SL benchmarks in more detail.

On RESTAURANTS-8k, we found that adding
the contextual information robustly resolves the

issue of ambiguous one-word utterance examples.
We identified 86 examples where the utterance is
a single number, intentionally meant to test the
model’s capability of using the requested slot, as
they could refer either to time or number of people.
Adding requested slot information eliminates all
but 2 of these mistakes. Another challenging group
of example concerns rare names - most of the issues
come from mixing up first name and last name
since both are requested together.

Upon inspection of RESTAURANTS-8k’s test
set, we discovered several annotation issues. An-
alyzed models perform the worst on the time slot.
This is partly due to the many ways one can express
time, but also owning to difficulties in annotations.
In the test set, some time examples are in the format
TIME pm, while others use TIME p.m.: in simple
words, whether the pm postfix is annotated or not
is inconsistent. Another inconsistency concerns
preposition annotations such as on, at. In some
examples the prepositions are included in the an-
swer (e.g. is there a table free at 8 in the morning),
in others they are not. A similar challenge con-
cerns annotating ‘the’ in date answers, such as the
first Sunday of September instead of first Sunday of
September. This leads the model to select August
23rd instead of the day of August 23rd. Another an-



notation inconsistency concerns the people slot. In
some examples, only the concrete number is anno-
tated, other times the noun following is annotated
as well: 4 people vs 4.

A similar analysis of DSTCS is provided in Ap-
pendix B. Given that the cutting-edge SL models
are rewarded only if they provide the exact span
match (see §3), it seems that they get penalized
mostly due to the detected annotation inconsisten-
cies and errors in training and test data. Correct-
ing the inconsistencies would further improve their
performance, even to the point of considering the
current SL benchmarks ‘solved’ in their full-data
setups. Our simple analysis thus also hints that the
community should invest more effort into creating
more challenging SL benchmarks in future work.

6 Related Work

Slot Labeling in Dialog. A variety of approaches
have been proposed to leverage the semantic knowl-
edge of PLMs like BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) for intent classifica-
tion and dialog state tracking (Chen et al., 2019;
Casanueva et al., 2020; Louvan and Magnini, 2020;
Gao et al., 2020). The potential of the PLMs has
also been exploited in end-to-end multi-domain sys-
tems, offering both design simplicity and superior
performance over modular systems (Hosseini-Asl
et al., 2020; Peng et al., 2021).

The SL task has also benefited from the semantic
prowess of PLMs. One family of models employs
universal sentence encoders (Devlin et al., 2019)
and trains a task-specific head to extract slot value
spans (Chao and Lane, 2019; Coope et al., 2020;
Rastogi et al., 2020). In more recent work, Hender-
son and Vuli¢ (2021) define a novel SL-oriented
pretraining objective. The proposed model, Con-
VEX, achieved substantial improvements in the SL.
task, particularly in low-data regimes. However,
contrary to QASL it requires training additional
context-related features during fine-tuning. An-
other line of work relies on reformulating slot label-
ing as a natural language response generation task
by adapting generative language models. Madotto
et al. (2020b) shows that this can be done in a
zero-shot fashion by priming with task-oriented
context. The GenSF model (Mehri and Eskénazi,
2021) adapts the pretrained DialoGPT model for
the SL task through constrained generation. These
approaches also lack contextualization and do not
consider efficiency-oriented fine-tuning.

The work closest to ours is QANLU (Namazi-
far et al., 2021), which also reformulates SL as a
QA task, showing performance gains in low-data
regimes. However, QANLU did not incorporate
contextual information, did not experiment with
different QA resources, nor allowed for efficient
and compact fine-tuning.

Efficient Methods in Dialog. Recent dialog work
is increasingly interested in the efficiency aspects
of both training and fine-tuning. Henderson and
Vuli¢ (2021) achieve compactness by fine-tuning
only a small subset of decoding layers from the full
pretrained model. As mentioned, their ConVEx
framework is constrained by the particularities of
their pretraining regime and cannot be easily com-
bined with a wealth of different PLMs.

Efficient fine-tuning with easy portability can
be achieved by inserting small adapter modules
inside pretrained Transformers (Houlsby et al.,
2019; Pfeiffer et al., 2021). Adapters make control-
lable response generation viable for online systems
by training task-specific modules per style/topic
(Madotto et al., 2020a). Through the adapters in-
jection, Wang et al. (2021); Hung et al. (2021)
overcome the dialog entity inconsistency while
achieving an advantageous computational footprint,
rendering adapters particularly suitable for multi-
domain specialization. However, QASL is the first
example of the successful incorporation of adapters
to the SL task, and also with an extra focus on the
most challenging low-data scenarios.

7 Conclusion

We have demonstrated that reformulating slot la-
beling (SL) for dialog as a question answering
(QA) task is a viable and effective approach to
the SL task. Our comprehensive evaluations over
two standard SL benchmarks have validated the ef-
fectiveness and robustness of the proposed QASL
approach, yielding improvements over state-of-the-
art SL models, especially in the most challenging,
few-data setups. QASL is a very versatile frame-
work, which can profit both from manually created
and automatically created QA resources, and is ap-
plicable to an array of pretrained language models.
Finally, we have shown how to efficiently fine-tune
effective domain-specific SL models.

Limitations. Our current evaluation focuses only
on slot labeling while earlier works show potential
of QA-based intent detection. We have also not
explored non-conversational domains.
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A Statistics and Full Results on
RESTAURANTS-8k and DSTCS

* Table 4 provides the exact number of exam-
ples over all slots for all the training data splits
in RESTAURANTS-8k and DSTCS.

» Table 5 gives the exact scores related to Fig-
ure 3 in the main paper.

* Table 6 provides the exact scores related to
Figure 4 in the main paper.

B Brief Analysis of DSTCS

Performance of QASL in the full-data scenar-
ios already leaves little room for improvement on
DSTCS in future work. The most challenging slots
are pickup date and dropoff date from the Rental
Cars domain. As with RESTAURANTS-8k, we
again observe that some mistakes made by the SL
models can be attributed to ambiguous or wrong an-
notations. For example, we find 2 examples where
a car is rented for a single day: whether the date is
pickup date or a dropoff date is ambiguous.

11



RESTAURANTS-8k DSTC8

Buses Events Rental Cars Homes

1/128 64 - - - -

1/64 128 - - - -

1/32 256 34 46 64 26

1/16 512 70 93 129 54

1/8 1024 141 187 258 109
1/4 2049 283 374 516 218

172 4099 566 749 1032 437

1 8198 1133 1498 2064 874
Test 3731 377 521 587 328

Table 4: Statistics of the data splits extracted from the RESTAURANTS-8k and DSTCS datasets.

GenSF ConVEx QANLU RoBERTa RoBERTa-L  DistilBERT
1/128 722 71.7 72.9 84.0 84.5 72.5
1/64  76.1 76.0 83.5 85.2 87.2 77.2
1732 82.1 81.8 86.9 89.9 89.9 82.0
1716 89.7 86.4 90.4 91.9 92.0 86.9
1/8 91.8 90.6 90.7 92.2 92.9 87.9
1/4 93.2 92.5 91.0 94.4 94.6 89.2
172 94.3 94.1 94.0 95.4 95.6 90.7
1 96.1 96.0 95.2 96.1 96.1 91.8

Table 5: Average F1 scores across all slots for the evaluation on the RESTAURANTS-8Kk test set.

GenSF ConVEx QASL

Buses

1/32 59.20 92.80
1/16 75.20 93.30
1/8 84.00 95.50
1/4 90.50 86.70 95.70
172 92.60 96.10
1 98.10 96.00 96.50
Events

1/32 54.00 76.20
1/16 66.60 89.10
1/8 82.20 92.70
1/4 91.20 87.20 95.80
172 87.30 97.60
1 94.70 91.70 97.80
Rental cars

1/32 50.3 83.9

1/16 60.6 87.0
1/8 77.6 95.9

1/4 93.70 87.4 95.9

172 91.7 96.5

1 96.90 9 96.3

Homes

1/32 92.0 954

1/16 92.3 95.0

1/8 94.8 97.9

1/4 86.70 94.5 98.1

172 95.6 98.7

1 93.50 98.3 99.1

Table 6: Average F1 scores on the DSTCS single-
domain data sets.
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