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Abstract

Transformer-based pretrained language mod-001
els (PLMs) offer unmatched performance002
across the majority of natural language un-003
derstanding (NLU) tasks, including a body of004
question answering (QA) tasks. We hypoth-005
esize that improvements in QA methodology006
can also be directly exploited in dialog NLU;007
however, dialog tasks must be reformatted into008
QA tasks. In particular, we focus on modeling009
and studying slot labeling (SL), a crucial com-010
ponent of NLU for dialog, through the QA op-011
tics, aiming to improve both its performance012
and efficiency, and make it more effective and013
resilient to working with limited task data. To014
this end, we make a series of contributions:015
1) We demonstrate how QA-tuned PLMs can016
be applied to the SL task, reaching new state-017
of-the-art performance, with large gains espe-018
cially pronounced in such low-data regimes.019
2) We propose to leverage contextual informa-020
tion, required to tackle ambiguous values, sim-021
ply through natural language. 3) Efficiency022
and compactness of QA-oriented fine-tuning023
are boosted through the use of lightweight024
yet effective adapter modules. 4) Trading-off025
some of the quality of QA datasets for their026
size, we experiment with larger automatically027
generated QA datasets for QA-tuning, arriving028
at even higher performance. Finally, our anal-029
ysis suggests that our novel QA-based slot la-030
beling models, supported by the PLMs, reach a031
performance ceiling in high-data regimes, call-032
ing for more challenging and more nuanced033
benchmarks in future work.034

1 Introduction and Motivation035

Task-oriented conversational systems allow users036

to interact using natural language to solve well-037

defined tasks such as restaurant booking, hotel038

assistance, and travel information (Young, 2002;039

Raux et al., 2005; Budzianowski et al., 2018). Slot040

labeling (SL), a crucial component of these sys-041

tems, aims to fill the correct values associated with042

predefined slots from a domain ontology: e.g., a di- 043

alog system for hotel reservations is expected to fill 044

slots such as check in date and the number of guests 045

with the values extracted from a user utterance (e.g., 046

next Friday, 4). However, the manual construction 047

of such domain ontologies and corresponding anno- 048

tated examples is expensive, time-consuming, and 049

typically requires domain experts as data designers. 050

For this reason, few-shot and data-efficient SL has 051

drawn a lot of attention recently (Hou et al., 2020; 052

Henderson and Vulić, 2021; Liu et al., 2020), with 053

the aim to maximize data efficiency by learning 054

from only a handful of task-annotated examples. 055

As for the plethora of other NLP tasks (Qiu et al., 056

2020; Razumovskaia et al., 2021), these models 057

typically rely on Transformer-based pretrained lan- 058

guage models (PLMs) (Devlin et al., 2019; Liu 059

et al., 2019), coupled with SL-specific fine-tuning 060

(Henderson and Vulić, 2021). 061

In parallel, machine reading comprehension has 062

been fueled by PLM-based improvements and the 063

creation of large-scale datasets (Rajpurkar et al., 064

2018; Fisch et al., 2019), even matching human- 065

level performance in an array of challenges (Devlin 066

et al., 2019; Zhang et al., 2021). These advances 067

in question answering (QA) models have inspired 068

the ideas of reformatting conversational systems 069

as QA systems (McCann et al., 2018). Such QA- 070

reformatting step can be ‘global’ (i.e., it can be 071

applied on the full system), or it can be applied to 072

a particular NLU component, as tried quite exten- 073

sively for dialog state tracking (Gao et al., 2019, 074

2020; Zhou and Small, 2019). 075

Recently, Namazifar et al. (2021) have provided 076

preliminary evidence that NLU tasks such as intent 077

detection and slot labeling can also be posed as 078

span-based QA tasks supported by the PLMs: for 079

SL in particular, a question in natural language is 080

defined for each slot, and the answer given by the 081

fine-tuned PLM fills the slot value.1 Performance 082

1This formulation is very similar to recent work on prompt-
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gains of their QA-based NLU methods, especially083

in low-data scenarios, indicate the suitability of QA084

methodology for modeling dialog NLU.085

Inspired by this emerging line of research, in this086

paper we propose the QASL framework: Question087

Answering for Slot Labeling, which sheds new088

light on reformatting SL into QA tasks, and studies089

it extensively from multiple key aspects, while also090

aiming to align well with ‘real-world’ production-091

ready settings. We summarize these core aspects092

as follows:093

(1) The reformulation of SL into QA allows us094

to benefit from the adaptation of off-the-shelf095

PLMs and QA-oriented systems to the dialog do-096

main of interest. Are these adaptations robust097

across domains and datasets, especially for low-098

data regimes? Further, are they robust with respect099

to the chosen PLM and the QA dataset selected for100

QA-based adaptive fine-tuning (Ruder, 2021)?101

(2) To increase efficiency, current span-based SL102

models only act over the latest user input; how-103

ever, in some cases, this simplification deteriorates104

performance as the context of the conversation is105

necessary to disambiguate between overlapping106

slots (see Figure 1). How can we adapt QASL107

to the inherently contextual nature of dialog while108

maintaining efficiency?109

(3) Fully fine-tuning PLMs imposes large training110

and operational costs, particularly when special-111

ized per-slot SL models are required (Namazifar112

et al., 2021; Henderson and Vulić, 2021; Mehri and113

Eskénazi, 2021). Is it possible to build more effi-114

cient fine-tuning and adaptation approaches? Can115

such more lightweight QASL models keep up with116

the performance of full model fine-tuning?117

(4) Can high performance also be obtained with118

QASL models that leverage larger, automatically119

generated QA resources for fine-tuning? Can such120

resources be combined with smaller (but higher-121

quality) hand-crafted QA resources?122

In sum, we push further the understanding of123

key advantages and limitations of the QA-based ap-124

proach to dialog SL. The proposed QASL frame-125

work is applicable to a wide spectrum of PLMs,126

and it integrates the contextual information through127

natural language prompts added to the questions128

(Figure 1). Experiments conducted on standard129

SL benchmarks and with different QA-based re-130

sources demonstrate the usefulness and robustness131

ing task-tuned PLMs (Gao et al., 2021), see also the compre-
hensive survey on prompting PLMs (Liu et al., 2021).

Figure 1: Reformulating slot labeling as QA with con-
textual information. S, U, Q, A denote System, User,
Question and Answer (dotted lines), respectively. The
requested slot (dashed line), indicated in the previous
dialog turns, is added to all questions in the current turn.
The second example shows a case where contextual in-
formation is crucial for slot disambiguation.

of QASL, with state-of-the-art performance, and 132

most prominent gains observed in low-data sce- 133

narios. We also verify the viability of artificially 134

created QA resources for the SL task. Finally, we 135

demonstrate that slot-specific SL models can be 136

fine-tuned with less than 1% parameters of the pre- 137

trained backbone PLM, while maintaining strong 138

SL performance. 139

2 QASL: Methodology 140

Preliminaries. Following Namazifar et al. (2021), 141

we pose the SL task as a ‘pure’ question answering 142

problem. This reformulation into the QA paradigm 143

maps a list of slots S from the domain ontology 144

to a list of corresponding questions Q. For in- 145

stance, the slots date, from_location, to_location, 146

can be posed as simple natural questions as follows: 147

“What date?”, “Where from?”, “Where to?”, respec- 148

tively; see Figure 1.2 At each dialog turn, given the 149

input context C, which may comprise one or more 150

previous turns, the model is sequentially queried 151

with all pre-defined questions appended to C, and 152

returns an answer as a span extracted from the input 153

user utterance, see Figure 1 again. 154

Fine-Tuning Stages in a Nutshell. We start from 155

any standard Transformer-based (Vaswani et al., 156

2017) PLM such as BERT (Devlin et al., 2019), 157

RoBERTa (Liu et al., 2019), or ELECTRA (Clark 158

et al., 2020). Next, in Stage 1 termed QA-tuning, 159

the underlying PLM is fine-tuned with a span- 160

based QA objective using large QA datasets such as 161

SQuAD (Rajpurkar et al., 2018) or MRQA (Fisch 162

et al., 2019). The goal of Stage 1 is to adapt the 163

2The mapping between S and Q can be one-to-many.
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model to the span extraction task (Ruder, 2021)164

with (large and general-purpose) QA data, and this165

way effectively increase the model’s ability to cope166

with many different questions. Following that, in167

Stage 2 termed QASL-tuning, the model is fine-168

tuned further for a particular dialog domain. In this169

stage, the model further specializes to the small170

subset of in-domain questions that correspond to171

the slots from the domain ontology.172

2.1 QASL with Contextual Information173

In complex domains with multiple slots, values174

can often overlap, which might result in severe175

prediction ambiguities.3 The correct prediction can176

be only made given the context of the conversation.177

Moreover, natural conversations are of mixed178

initiative, where the user can provide more informa-179

tion than it was requested or unexpectedly change180

the dialog topic (Rastogi et al., 2020). Carrying181

over the contextual knowledge is a fundamental182

feature of a successful dialog system (Heck et al.,183

2020). However, a standard straightforward ap-184

proach, adopted by the current span-based SL mod-185

els (Henderson and Vulić, 2021; Namazifar et al.,186

2021) to boost simplicity and efficiency, runs in-187

ference only over the latest user utterance without188

context or reserves extra parameters for the slots189

that have been explicitly requested by the system.190

Put simply, many current approaches discard the191

potentially crucial contextual information.192

In practice, some contextual information from193

previous dialog turns can be formulated into the194

so-called requested slot (Coope et al., 2020): this195

means that the current dialog turn is additionally196

annotated with the slots requested by the system197

(Coope et al., 2020; Rastogi et al., 2020), help-198

ing slot disambiguation. We propose to provide199

that information to QASL by simply appending200

the requested slot feature (as a natural language201

prompt) to the posed question, without any archi-202

tectural modification, as illustrated in Figure 1. For203

instance, if the requested slot is present for the slot204

arrival_time, and the current question concerns the205

slot date, the final question takes the following206

form: “What dates are you looking for <s> ar-207

rival time”, where <s> is a special separator token.208

3For instance, in the domain of restaurant booking, values
for the slots time and people can both be answered with a
single number (e.g., 6) as the only information in the user
utterance, causing ambiguity. In another example, Figure 1
shows a conversation from the Buses domain in the DSTC8
dataset (Rastogi et al., 2020); here, it is impossible to distin-
guish between from_location and to_location without context.

When multiple slots are requested, they are all ap- 209

pended to the initial question, each slot separated 210

by one separator token <s>. 211

2.2 Refining QA-Tuning 212

Stage 1 of QASL QA-tuning is concerned with 213

adaptive transformations of the input PLMs to 214

(general-purpose) span extractors, before the final 215

in-task QASL-tuning. We also propose to further 216

refine Stage 1 and divide it into two sub-stages: 217

(a) Stage 1a then focuses on fine-tuning on larger 218

but noisier, automatically generated QA datasets, 219

such as PAQ (Lewis et al., 2021); (b) Stage 1b 220

continues on the output of Stage 1a, but leverages 221

smaller, manually created and thus higher-quality 222

QA datasets such as SQuAD2.0 (Rajpurkar et al., 223

2018) and/or MRQA (Fisch et al., 2019). 224

The rationale behind this refined multi-step QA- 225

tuning procedure is that the models 1) should lever- 226

age large quantities of automatically generated 227

(QA) data and a task objective aligned with the fi- 228

nal task (Henderson and Vulić, 2021), that is, large- 229

scale adaptive fine-tuning (Ruder, 2021) before 2) 230

getting ‘polished’ (i.e., further specialized towards 231

the final task) leveraging fewer high-quality data. 232

We refer to the QASL model variants which rely 233

on the refined Stage 1 procedure as QASL+. 234

2.3 Efficient QASL 235

In principle, one model could be employed to serve 236

all slots in all domains across different deploy- 237

ments. This, however, prevents the separation of 238

different data sources of data, while this is often 239

required from the perspective of data privacy. On 240

the other hand, storing separate slot-specific and 241

domain-specific models derived from heavily pa- 242

rameterized PLMs is extremely storage-inefficient, 243

and their fine-tuning can be prohibitively slow 244

(Henderson and Vulić, 2021).4 Therefore, with 245

multiple domains and slots, the model compactness 246

and fine-tuning efficiency become crucial features. 247

In order to address these requirements, we rely 248

on and experiment with three different efficiency- 249

and compactness-oriented approaches within the 250

QASL framework in Stage 2, also summarized in 251

Figure 2: 252

(1) Fine-tuning only the QASL model’s head, 253

which is responsible for predicting the start and 254

the end of the answer span. All other parameters 255

4Distilling PLMs to their smaller counterparts (Lan et al.,
2020; Sanh et al., 2019) does not resolve the issue for
production-oriented deployments.
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Figure 2: A compact illustration of different efficient
fine-tuning schemes used with QASL, and their corre-
sponding parameter subsets (see §2.3).

are kept fixed/frozen. Most QA systems based on256

PLMs contain a simple one feed-forward layer as257

the head, using ≤ 0.1% of all the parameters.258

(2) Using lightweight tunable bottleneck layers,259

that is, adapters (Houlsby et al., 2019; Pfeiffer260

et al., 2021), inserted within each Transformer261

layer of the underlying model. At fine-tuning, only262

adapter parameters are updated while all the other263

parameters of the model are kept fixed: i.e., typi-264

cally ≤ 1% of the PLM’s original parameter capac-265

ity gets updated (Pfeiffer et al., 2021).266

(3) Fine-tuning only bias parameters of the atten-267

tion layers: this approach, termed BitFit (Zaken268

et al., 2021) in practice fine-tunes less than 0.1%269

of the full parameters.270

It is worth noting that adapters and bias-only271

tuning (i.e., BitFit) have been evaluated only in full272

task-data setups in prior work. Here, our use-case273

scenario adds another layer of complexity as we274

evaluate them in few-shot scenarios of the SL task.275

3 Experimental Setup276

Underlying PLMs. We opt for a set of established277

PLMs with strong performance record on other278

NLP tasks: RoBERTa (Liu et al., 2019) (its Base279

and Large variants), and a distilled version of BERT280

– DistilBERT (Sanh et al., 2019). However, we note281

that QASL is applicable also to other PLMs.5282

QA Datasets (Stage 1). We experiment with two283

manually created QA datasets, (i) SQuAD2.0 (Ra-284

jpurkar et al., 2018), and (ii) MRQA (Fisch et al.,285

2019); and (iii) one automatically generated QA286

dataset, PAQ (Lewis et al., 2021). SQuAD2.0 was287

5For instance, we have run experiments also with ELEC-
TRA (Clark et al., 2020), but do not report its performance as
it was consistently outperformed by RoBERTa.

also used in prior work of Namazifar et al. (2021): 288

it consists of 150k QA pairs including 50k negative 289

pairs without any answer. The MRQA dataset is 290

a collection of 18 existing QA datasets, spanning 291

almost 2M QA pairs, converted to the same format 292

of SQuAD2.0. The PAQ dataset, created for open- 293

domain QA, consists of over 65M natural language 294

QA pairs. Due to hardware constraints, we ran- 295

domly sample two smaller versions from the full 296

PAQ, spanning 5M and 20M QA pairs and denoted 297

as PAQ5 and PAQ20; they are also adapted to the 298

same SQuAD2.0 format. 299

By selecting these diverse QA-data sources, we 300

validate and compare their usefulness for adaptive 301

QA fine-tuning oriented towards SL, reaching be- 302

yond SQuAD2.0 as a standard go-to dataset. We 303

also test if the sheer scale of an automatically gen- 304

erated dataset (i.e., PAQ) can compensate for its 305

lower data quality, compared to manually created 306

SQuAD and MRQA. 307

Slot Labeling Datasets: Stage 2 and Evaluation. 308

We run experiments on two standard and com- 309

monly used SL benchmarks: (i) RESTAURANTS- 310

8k (Coope et al., 2020) and DSTC8 (Rastogi et al., 311

2020), which are covered by the established Di- 312

aloGLUE benchmark (Mehri et al., 2020). 313

RESTAURANTS-8k comprises conversations 314

from a commercial restaurant booking system, and 315

covers 5 slots required for the booking task: date, 316

time, people, first name, and last name, with a total 317

of 8,198 examples over all 5 slots, see the work of 318

Coope et al. (2020) for further details. 319

DSTC8 has been introduced during the Dialog 320

System Technology Challenge (DSTC) 8 challenge, 321

and then adapted to the span extraction task by 322

Coope et al. (2020). It includes over 20k annotated 323

multi-domain, task-oriented conversations between 324

humans and a virtual assistant. These conversa- 325

tions involve interactions with services and APIs 326

spanning 4 domains (Buses, Rental Cars, Events, 327

and Homes) and 12 slots; see Rastogi et al. (2020). 328

Similar to prior work (Coope et al., 2020; Hen- 329

derson and Vulić, 2021; Mehri and Eskénazi, 2021), 330

we also do tests where we fine-tune on smaller 331

few-shot data samples of the two SL datasets, 332

while always evaluating on the same (full) test 333

set. RESTAURANTS-8k comes with 8 different 334

few-shot data samples referred to as 1/128, 1/64, 335

1/32, 1/16, 1/8, 1/4, 1/2, 1 (proportions of the 336

full dataset). Similarly, we fine-tune on 1/32, 1/16, 337
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1/8, 1/4, 1/2, 1 proportions of the full DSTC8.6338

QASL: Fine-tuning Setup and Hyperparame-339

ters. Our QASL implementation is based on the340

Transformers library (Wolf et al., 2020). Each341

PLM is equipped with a QA-head which is a feed-342

forward network with two outputs to compute span343

start logits and span end logits.344

Stage 1 is carried out on 8 V100 GPUs for 2345

epochs with 24 QA-pairs per batch per GPU, re-346

lying on the Adam optimizer (Kingma and Ba,347

2015) with a learning rate of 3e-5. We inves-348

tigate the following 8 Stage 1 (i.e., QA-tuning)349

regimes: SQuAD, MRQA, PAQ5, PAQ20 (basic350

QASL), PAQ5-SQuAD, PAQ5-MRQA, PAQ20-351

SQuAD, and PAQ20-MRQA (QASL+, see §2.2).352

The basic Stage 1 setup, unless noted otherwise, is353

QA-tuning on SQuAD.354

Stage 2 (QASL-tuning) proceeds in batches of355

size 32, again with Adam, and a learning rate 2e-5.356

All presented results are averaged over 5 different357

runs. We follow the setup from prior work (Coope358

et al., 2020; Henderson and Vulić, 2021; Mehri and359

Eskénazi, 2021), where all the hyper-parameters360

are fixed across all domains and slots. The reported361

evaluation metric is the average F1 score across all362

slots in a given task/domain.7363

Baselines. We compare QASL against three recent364

state-of-the-art SL models:8365

ConVEx (Henderson and Vulić, 2021) defines a366

novel SL-oriented pretraining objective, termed367

pairwise sentence cloze, combined with SL-tuning368

of only a subset of parameters. It shows strong369

performance particularly in few-shot scenarios.370

GenSF (Mehri and Eskénazi, 2021) adapts the pre-371

trained DialoGPT model (Zhang et al., 2020) and372

steers/constrains its generation freedom to reflect373

the particular dialog domain; at the same time it374

adapts the downstream SL task to align better with375

the architecture of the (fine-tuned) DialoGPT.376

QANLU (Namazifar et al., 2021) also reformulates377

SL as a QA task (see §2) by performing in-task fine-378

tuning of DistilBERTBase model (Sanh et al., 2019)379

which was first fine-tuned on SQuAD2.0.380

Efficient QASL in Stage 2: Setup. For QA-head-381

6The exact numbers are in Appendix A (Table 4).
7It is computed with an exact score, that is, the model has

to extract exactly the same span as the golden annotation. This
is different to a typical QA setup where partial or multiple
answers are also taken into account (Rajpurkar et al., 2018).

8For full technical details of each baseline model, we refer
the reader to their respective papers.
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Figure 3: A comparison of slot labeling models on
RESTAURANTS-8k. Stage 1 for QASL and QANLU
are run on SQuAD2.0. x-axis shows the fraction of the
training data used for SL-tuning (see §3).

only tuning, the default head in Transformers li- 382

brary (Wolf et al., 2020) is a linear layer of size 383

[E, 2] where E is the size of the output embedding 384

of the PLM. We define the QA head as a feed- 385

forward network with 2 layers, covering ≈ 1M 386

parameter. For experiments with adapters, we rely 387

on the lightweight yet effective Pfeiffer architecture 388

(Pfeiffer et al., 2021), using the reduction factor of 389

16 for all but the first and last Transformers layer, 390

where the factor of 8 was utilized.9 391

4 Results and Discussion 392

QASL versus Baselines. In the first experiment, 393

we benchmark QASL against all baseline mod- 394

els and across different levels of data availability 395

for Stage 2 SL-tuning. We assume SQuAD2.0 as 396

the underlying QA dataset for Stage 1 for all mod- 397

els (including the baseline QANLU), and do not 398

integrate contextual information here (see §2.1). 399

Figure 3 plots the results on RESTAURANTS- 400

8k,10 and reveals several findings. First, there 401

is an indication that larger models yield perfor- 402

mance gains: RoBERTaLarge is slightly stronger 403

than RoBERTaBase as the underlying model, al- 404

though RoBERTaBase also shows very competitive 405

performance across the board. While most models 406

reach very similar and very high performance in 407

the full-data regime, the difference between mod- 408

els becomes much more salient in few-shot setups. 409

The gains in favor of QASL with RoBERTa-s over 410

all baselines are the largest for the scarcest data 411

9The learning rate has been increased to 1e−3 following
prior work (Pfeiffer et al., 2021), and it also yielded better
performance in our preliminary experiments.

10The exact numbers are in Appendix A (Table 5).
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scenarios: 1/64 and 1/128.11 12412

Using Contextual information. We now investi-413

gate if the integration of contextual information414

in the form of requested slots improves SL perfor-415

mance (see §2.1). Unless noted otherwise, from416

now on we assume that QASL always integrates417

the requested slot information. The results on418

RESTAURANTS-8k for a subset of test examples419

with non-empty requested slots (i.e., 897 out of all420

3,731 test examples), are summarized in Table 1.421

The variant with requested slot information con-422

sistently yields higher F1 scores, even despite the423

fact that the test set contains only 86 examples that424

might cause ambiguity.425

The results on the 4 domains of DSTC8, pro-426

vided in Figure 4 for all test examples, show427

very similar patterns and improvements over the428

baseline SL models GenSF and ConVEx, espe-429

cially in few-shot scenarios. The gains with the430

contextual variant are less pronounced than in431

RESTAURANTS-8k as DSTC8 covers a fewer432

number of ambiguous test examples.433

Further, we observe extremely high absolute434

scores, especially in higher-data setups, which is435

the first indication that the standard SL benchmarks436

might become inadequate to distinguish between437

SL models in the future. We provide a finer-grained438

analysis of the SL benchmarks later in §5.439

Efficient Fine-Tuning in Stage 2. We now pro-440

ceed with the RoBERTaBase model as our base441

PLM in all following experiments: it achieves very442

competitive results while using ≈3 times fewer pa-443

rameters than RoBERTaLarge. Table 2 presents the444

scores obtained with the three efficient fine-tuning445

approaches (see §2.3) on RESTAURANTS-8k in446

few-shot scenarios.447

Overall, the results indicate that few-shot scenar-448

ios are quite challenging for efficient fine-tuning449

methods, typically evaluated only in full-data sce-450

narios in prior work (Zaken et al., 2021). The451

adapter-based approach is most effective by far,452

and is very competitive to full model fine-tuning,453

even outperforming it in all but the two fewest-data454

scenarios. The other two efficient approaches fall455

largely behind in all training setups. In summary,456

the results empirically validate that adapter-based457

11While we also achieve higher results than QANLU (Na-
mazifar et al., 2021), the exact comparison is not possible
since they used different data splits.

12We have also tried different question prompts but have
not observed any significant variance in the results.

Without Requested With Requested
1/128 81.7 85.8
1/64 81.0 87.9
1/32 86.7 90.7
1/16 88.7 93.8
1/8 88.9 95.7
1/4 91.0 95.0
1/2 91.5 97.0
1 92.0 98.0

Table 1: A comparison of QASL without and
with requested slot information on the subset of
RESTAURANTS-8k test examples with non-empty re-
quested slots (891 test examples).

Full QA head BitFit Adapters
1/128 84.0 0.0 25.6 81.9
1/64 85.2 20.2 27.9 85.0
1/32 89.9 28.3 32.5 91.0
1/16 91.9 33.8 52.0 92.9
1/8 92.2 40.7 51.7 93.6
1/4 94.4 52.6 70.5 95.2
1/2 95.4 57.7 88.8 96.1
1 96.1 61.8 93.6 97.0

Table 2: Average F1 scores across all slots on the entire
RESTAURANTS-8k test data with efficient fine-tuning
architectures in Stage 2 (see §2.3), and their compari-
son to Full model fine-tuning.

fine-tuning offers a viable trade-off between perfor- 458

mance and efficiency, even in low-data regimes: it 459

fine-tunes only ≈1.5M parameters, translating to 460

5MB of storage space, compared to 110M parame- 461

ters (i.e., 550 MB) needed for full fine-tuning. 462

Different Stage 1 Fine-Tuning Schemes. Note 463

that, until now, the results were based solely on 464

models QA-tuned with SQuAD2.0 in Stage 1. We 465

now test the impact of the QA resource in Stage 466

1 on the final SL performance. Table 3 presents 467

the results for the 8 Stage 1 regimes (see §3), fine- 468

tuned with QASL on 3 smallest RESTAURANTS- 469

8k training data splits in Stage 2. 470

When using only one QA dataset in Stage 1, sev- 471

eral trends emerge. First, a larger of the two man- 472

ually created datasets, MRQA, yields consistent 473

gains over SQuAD2.0, over all training data splits. 474

Using larger but automatically created PAQ5 and 475

PAQ20 is on par or even better than using SQuAD, 476

but they cannot match performance with MRQA. 477

This confirms that both QA dataset quality and 478

dataset size play an important role in the two-stage 479

adaptation of PLMs into effective slot labellers. 480

Having more PAQ data typically yields worse per- 481

formance: it seems that more noise from more 482

automatically generated QA pairs gets inserted into 483

the fine-tuning process (cf., PAQ20 versus PAQ5). 484

However, QASL tuned only with automatically 485
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Figure 4: Results on the DSTC8 dataset across 4 domains. The performance of GenSF is taken from the original
paper and is only available for two data splits: 1 (full data) and 1/4. The QASL fine-tunes RoBERTaLarge on
SQUAD2.0 in Stage 1, and uses contextual requested slot information in Stage 2.

SQuAD MRQA PAQ5 PAQ20 PAQ5-SQuAD PAQ20-SQuAD PAQ5-MRQA PAQ20-MRQA
1/128 84.0 86.31 83.62 82.57 86.09 85.19 86.31 85.47
1/64 85.2 87.59 86.45 85.64 87.95 87.11 88.40 87.65
1/32 89.9 91.50 91.14 89.97 91.46 90.92 91.13 91.08

Table 3: F1 scores over all slots on the RESTAURANTS-8k test data for different QA-tuning regimes in Stage 1.

generated data is still on par or better than tuning486

with SQuAD2.0. This proves the potential of large-487

scale (automatically obtained) QA datasets for QA-488

based slot-labeling in domains that have a small489

overlap with curated QA data such as SQuAD. The490

highest gains over SQuAD when using PAQ are ob-491

tained for two slots: first_name and last_name.492

This stems from the fact that finding the right493

person’s name is a common task with Wikipedia-494

related corpora. Finally, in two out of the three495

training data splits, the peak scores are achieved496

with the refined Stage 1 (the PAQ5-MRQA variant),497

but the gains of the more expensive PAQ5-MRQA498

regime over MRQA are mostly inconsequential.499

5 SL Data Analysis and Audit500

Detected high absolute scores in full-data setups501

for many models in our comparison (e.g., see Fig-502

ure 3, Table 2, Figure 4) suggest that the current503

SL benchmarks might not be able to distinguish504

between state-of-the-art SL models. The remain-505

ing gap to 100% performance might also be due506

to annotation errors and inconsistencies. We thus507

inspect the two SL benchmarks in more detail.508

On RESTAURANTS-8k, we found that adding509

the contextual information robustly resolves the510

issue of ambiguous one-word utterance examples. 511

We identified 86 examples where the utterance is 512

a single number, intentionally meant to test the 513

model’s capability of using the requested slot, as 514

they could refer either to time or number of people. 515

Adding requested slot information eliminates all 516

but 2 of these mistakes. Another challenging group 517

of example concerns rare names - most of the issues 518

come from mixing up first name and last name 519

since both are requested together. 520

Upon inspection of RESTAURANTS-8k’s test 521

set, we discovered several annotation issues. An- 522

alyzed models perform the worst on the time slot. 523

This is partly due to the many ways one can express 524

time, but also owning to difficulties in annotations. 525

In the test set, some time examples are in the format 526

TIME pm, while others use TIME p.m.: in simple 527

words, whether the pm postfix is annotated or not 528

is inconsistent. Another inconsistency concerns 529

preposition annotations such as on, at. In some 530

examples the prepositions are included in the an- 531

swer (e.g. is there a table free at 8 in the morning), 532

in others they are not. A similar challenge con- 533

cerns annotating ‘the’ in date answers, such as the 534

first Sunday of September instead of first Sunday of 535

September. This leads the model to select August 536

23rd instead of the day of August 23rd. Another an- 537
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notation inconsistency concerns the people slot. In538

some examples, only the concrete number is anno-539

tated, other times the noun following is annotated540

as well: 4 people vs 4.541

A similar analysis of DSTC8 is provided in Ap-542

pendix B. Given that the cutting-edge SL models543

are rewarded only if they provide the exact span544

match (see §3), it seems that they get penalized545

mostly due to the detected annotation inconsisten-546

cies and errors in training and test data. Correct-547

ing the inconsistencies would further improve their548

performance, even to the point of considering the549

current SL benchmarks ‘solved’ in their full-data550

setups. Our simple analysis thus also hints that the551

community should invest more effort into creating552

more challenging SL benchmarks in future work.553

6 Related Work554

Slot Labeling in Dialog. A variety of approaches555

have been proposed to leverage the semantic knowl-556

edge of PLMs like BERT (Devlin et al., 2019) and557

RoBERTa (Liu et al., 2019) for intent classifica-558

tion and dialog state tracking (Chen et al., 2019;559

Casanueva et al., 2020; Louvan and Magnini, 2020;560

Gao et al., 2020). The potential of the PLMs has561

also been exploited in end-to-end multi-domain sys-562

tems, offering both design simplicity and superior563

performance over modular systems (Hosseini-Asl564

et al., 2020; Peng et al., 2021).565

The SL task has also benefited from the semantic566

prowess of PLMs. One family of models employs567

universal sentence encoders (Devlin et al., 2019)568

and trains a task-specific head to extract slot value569

spans (Chao and Lane, 2019; Coope et al., 2020;570

Rastogi et al., 2020). In more recent work, Hender-571

son and Vulić (2021) define a novel SL-oriented572

pretraining objective. The proposed model, Con-573

VEx, achieved substantial improvements in the SL574

task, particularly in low-data regimes. However,575

contrary to QASL it requires training additional576

context-related features during fine-tuning. An-577

other line of work relies on reformulating slot label-578

ing as a natural language response generation task579

by adapting generative language models. Madotto580

et al. (2020b) shows that this can be done in a581

zero-shot fashion by priming with task-oriented582

context. The GenSF model (Mehri and Eskénazi,583

2021) adapts the pretrained DialoGPT model for584

the SL task through constrained generation. These585

approaches also lack contextualization and do not586

consider efficiency-oriented fine-tuning.587

The work closest to ours is QANLU (Namazi- 588

far et al., 2021), which also reformulates SL as a 589

QA task, showing performance gains in low-data 590

regimes. However, QANLU did not incorporate 591

contextual information, did not experiment with 592

different QA resources, nor allowed for efficient 593

and compact fine-tuning. 594

Efficient Methods in Dialog. Recent dialog work 595

is increasingly interested in the efficiency aspects 596

of both training and fine-tuning. Henderson and 597

Vulić (2021) achieve compactness by fine-tuning 598

only a small subset of decoding layers from the full 599

pretrained model. As mentioned, their ConVEx 600

framework is constrained by the particularities of 601

their pretraining regime and cannot be easily com- 602

bined with a wealth of different PLMs. 603

Efficient fine-tuning with easy portability can 604

be achieved by inserting small adapter modules 605

inside pretrained Transformers (Houlsby et al., 606

2019; Pfeiffer et al., 2021). Adapters make control- 607

lable response generation viable for online systems 608

by training task-specific modules per style/topic 609

(Madotto et al., 2020a). Through the adapters in- 610

jection, Wang et al. (2021); Hung et al. (2021) 611

overcome the dialog entity inconsistency while 612

achieving an advantageous computational footprint, 613

rendering adapters particularly suitable for multi- 614

domain specialization. However, QASL is the first 615

example of the successful incorporation of adapters 616

to the SL task, and also with an extra focus on the 617

most challenging low-data scenarios. 618

7 Conclusion 619

We have demonstrated that reformulating slot la- 620

beling (SL) for dialog as a question answering 621

(QA) task is a viable and effective approach to 622

the SL task. Our comprehensive evaluations over 623

two standard SL benchmarks have validated the ef- 624

fectiveness and robustness of the proposed QASL 625

approach, yielding improvements over state-of-the- 626

art SL models, especially in the most challenging, 627

few-data setups. QASL is a very versatile frame- 628

work, which can profit both from manually created 629

and automatically created QA resources, and is ap- 630

plicable to an array of pretrained language models. 631

Finally, we have shown how to efficiently fine-tune 632

effective domain-specific SL models. 633

Limitations. Our current evaluation focuses only 634

on slot labeling while earlier works show potential 635

of QA-based intent detection. We have also not 636

explored non-conversational domains. 637
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A Statistics and Full Results on853

RESTAURANTS-8k and DSTC8854

• Table 4 provides the exact number of exam-855

ples over all slots for all the training data splits856

in RESTAURANTS-8k and DSTC8.857

• Table 5 gives the exact scores related to Fig-858

ure 3 in the main paper.859

• Table 6 provides the exact scores related to860

Figure 4 in the main paper.861

B Brief Analysis of DSTC8862

Performance of QASL in the full-data scenar-863

ios already leaves little room for improvement on864

DSTC8 in future work. The most challenging slots865

are pickup date and dropoff date from the Rental866

Cars domain. As with RESTAURANTS-8k, we867

again observe that some mistakes made by the SL868

models can be attributed to ambiguous or wrong an-869

notations. For example, we find 2 examples where870

a car is rented for a single day: whether the date is871

pickup date or a dropoff date is ambiguous.872
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RESTAURANTS-8k DSTC8

Buses Events Rental Cars Homes
1/128 64 – – – –
1/64 128 – – – –
1/32 256 34 46 64 26
1/16 512 70 93 129 54
1/8 1024 141 187 258 109
1/4 2049 283 374 516 218
1/2 4099 566 749 1032 437
1 8198 1133 1498 2064 874
Test 3731 377 521 587 328

Table 4: Statistics of the data splits extracted from the RESTAURANTS-8k and DSTC8 datasets.

GenSF ConVEx QANLU RoBERTa RoBERTa-L DistilBERT
1/128 72.2 71.7 72.9 84.0 84.5 72.5
1/64 76.1 76.0 83.5 85.2 87.2 77.2
1/32 82.1 81.8 86.9 89.9 89.9 82.0
1/16 89.7 86.4 90.4 91.9 92.0 86.9
1/8 91.8 90.6 90.7 92.2 92.9 87.9
1/4 93.2 92.5 91.0 94.4 94.6 89.2
1/2 94.3 94.1 94.0 95.4 95.6 90.7
1 96.1 96.0 95.2 96.1 96.1 91.8

Table 5: Average F1 scores across all slots for the evaluation on the RESTAURANTS-8k test set.

GenSF ConVEx QASL
Buses
1/32 59.20 92.80
1/16 75.20 93.30
1/8 84.00 95.50
1/4 90.50 86.70 95.70
1/2 92.60 96.10
1 98.10 96.00 96.50

Events
1/32 54.00 76.20
1/16 66.60 89.10
1/8 82.20 92.70
1/4 91.20 87.20 95.80
1/2 87.30 97.60
1 94.70 91.70 97.80
Rental cars
1/32 50.3 83.9
1/16 60.6 87.0
1/8 77.6 95.9
1/4 93.70 87.4 95.9
1/2 91.7 96.5
1 96.90 92.0 96.3

Homes
1/32 92.0 95.4
1/16 92.3 95.0
1/8 94.8 97.9
1/4 86.70 94.5 98.1
1/2 95.6 98.7
1 93.50 98.3 99.1

Table 6: Average F1 scores on the DSTC8 single-
domain data sets.
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