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ABSTRACT

The low transferability of learned policies is one of the most critical problems
limiting the applicability of learning-based solutions to decision-making tasks. In
this paper, we present a way to align latent representations of states and actions
between different domains by optimizing an adversarial objective. We train two
models, a policy and a domain discriminator, with unpaired trajectories of proxy
tasks through behavioral cloning as well as adversarial training. After the latent
representations are aligned between domains, a domain-agnostic part of the policy
trained with any method in the source domain can be immediately transferred to
the target domain in a zero-shot manner. We empirically show that our simple ap-
proach achieves comparable performance to the latest methods in zero-shot cross-
domain transfer. We also observe that our method performs better than other ap-
proaches in transfer between domains with different complexities, whereas other
methods fail catastrophically.

1 INTRODUCTION

Humans have an astonishing ability to learn skills in a highly transferable way. Once we learn the
route from home to the station, for example, we can get to the destination using different vehicles
(e.g., walking, cycling, or driving) in different environments (e.g., on a map or in the real world)
ignoring irrelevant perturbations (e.g., weather, time, or traffic conditions). We find underlying
structural similarities between situations, perceive the world, and accumulate knowledge in our way
of abstraction. Such abstract knowledge can be readily applicable to various similar situations. This
seems easy for humans but not for autonomous agents. Agents trained in reinforcement learning
(RL) or imitation learning (IL) often have difficulties in transferring knowledge learned in a specific
situation to another. It is because the learned policies are strongly tied to the representation acquired
in a specific configuration of training, which is not generalizable even to subtle changes in an agent
or an environment.

Previous studies have attempted to address this problem with various approaches. Domain random-
ization (Tobin et al., 2017; Peng et al., 2018; Andrychowicz et al., 2020) aims to learn a policy
robust to environmental changes by having access to multiple training domains, but it cannot handle
large domain gaps out of the domain distribution assumed in training such as drastically different
observations or agent morphologies. To overcome such domain discrepancies, Gupta et al. (2017)
and Liu et al. (2018) proposed methods to learn domain-invariant state representations for imita-
tion, but these methods require paired temporally-aligned datasets across domains and, in addition,
need expensive RL steps to adapt to the target domain. More recently, Kim et al. (2020) proposed a
method to find cross-domain correspondence of states and actions from unaligned datasets through
adversarial training. This method imposes a strong assumption that there is an exact correspondence
of states and actions between different domains and learns it as direct mapping functions. The as-
sumption is sometimes problematic when such correspondence is hard to find. For example, if one
agent has no leg while another has a few legs, we cannot expect all information on how the agent
walks to be translated into another domain.

In this work, we propose a method that does not require the existence of exact correspondence
between domains. Our approach learns domain-invariant representations and a common abstract
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Figure 1: Illustration of a domain-agnostic representation space. Since semantically similar states
are close together in the latent space regardless of the original domain, we can transfer knowledge
between different domains through the latent space.

policy on them that is shared across different domains (Figure 1). Our model consists of two core
components: a policy and a domain discriminator. The policy has three blocks: a state encoder, a
common policy, and an action decoder. In the first stage, the model is optimized with an imitation
objective and an adversarial objective on a learned state representation simultaneously using an
unaligned dataset of proxy tasks. The adversarial training induces the state encoder to generate
latent state representations whose domains are indistinguishable to the domain discriminator. Such
representations do not contain domain-specific information and thus can work with the common
policy. Next, we freeze the parameters of the state encoder and action decoder and only update the
common policy in the source domain on the learned feature space to adapt the model to the target
task. In this process, as with Kim et al. (2020), we can use any learning algorithm for updating the
policy and moreover do not require an expensive RL step interacting with the environment. After
the update, combined with the fixed encoder and decoder, the learned common policy can be readily
used in either domain in a zero-shot manner.

We conduct experiments on a challenging maze environment (Fu et al., 2020) with various domain
shifts: domain shift in observation, action, dynamics, and morphology of an agent. Our experiments
show that our approach achieves comparable performance in most settings. We find that our method
is effective in the setting of cross-dynamics or cross-robot transfer, where no exact correspondence
between domains exists.

In summary, our contributions are as follows:

• We provide a novel method of cross-domain transfer with an unaligned dataset. In contrast
to the latest method that learns mappings between domains, our approach aims to acquire
a domain-invariant feature space and a common policy on it.

• Our experiments with various domain shifts show that our method achieves comparable
performance in transfer within the same agent and better performance than existing meth-
ods in cross-dynamics or cross-robot transfer by avoiding direct mapping between domains.

2 RELATED WORK

Cross-Domain Policy Transfer between MDPs Transferring a learned policy to a different en-
vironment is a long-standing challenge in policy learning. Most previous methods acquire some
cross-domain metric to optimize and train a policy for a target task using a standard RL algorithm
(Gupta et al., 2017; Liu et al., 2018; 2020; Zakka et al., 2022; Fickinger et al., 2022) or a GAIL
(Ho & Ermon, 2016)-based approach (Stadie et al., 2017; Franzmeyer et al., 2022). In particular,
Franzmeyer et al. (2022) utilize domain confusion as we do in this paper. To calculate the pseudo
reward for RL, the distance between temporally-corresponding states (Gupta et al., 2017; Liu et al.,
2018) or the distance from the goal (Zakka et al., 2022) in the latent space is often used. Some recent
approaches can perform zeros-shot cross-domain transfer as our method does, without interacting
with the environment for a target task. Kim et al. (2020); Raychaudhuri et al. (2021) learn mappings
between domains while Zhang et al. (2020) impose domain confusion on its state representation for
domain shift in observation. Our approach predicts actions without learning cross-domain mappings
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Figure 2: Common latent MDP between a source MDP and a target MDP. The latent MDP is ex-
pected to be expressive enough to reproduce the dynamics and the reward of the original MDPs.

and also can handle diverse situations including domain shift in an action space. For cross-robot
transfer, Hejna et al. (2020) train a portable high-level policy by using a subgoal position as a cross-
robot feature. Gupta et al. (2022) cover morphology distribution to generalize to unseen robots. We
intend to perform more direct policy transfer without making domain-specific assumptions.

State Abstraction for Transfer Theoretical aspects of latent state representation have been ana-
lyzed in previous studies. There exist several principled methods of state representation learning for
transfer such as bisimulation (Castro & Precup, 2010) and successor features (Barreto et al., 2017),
although we use neither of them. Recently, Gelada et al. (2019) proved that the quality of the value
function is guaranteed if the representation is sufficient to predict the reward and dynamics of the
original MDP. In a similar context, Zhang et al. (2020); Sun et al. (2022) provide performance guar-
antees in multi-task settings or cross-domain transfer without paired relationships between domains.

Unsupervised Domain Adaptation & Correspondence Learning Domain adaptation with un-
aligned datasets has been intensively studied in computer vision. CycleGAN (Zhu et al., 2017)
finds a translation function between domains by generating the corresponding instances in another
domain. Similarly to our approach, Tzeng et al. (2017) matches the feature distributions between
domains by fooling a domain discriminator and successfully transfers an image classifier across do-
mains. Besides, several studies learn domain-invariant features by optimizing an objective related
to temporal relationships of frames in videos (Sermanet et al., 2018; Dwibedi et al., 2019) or cycle-
consistency in trajectories of an agent (Zhang et al., 2021; Wang et al., 2022). Such features can be
used in the reward shaping for cross-domain imitation through RL (Zakka et al., 2022).

3 PROBLEM FORMULATION

We consider a Markov decision process (MDP): M = (S,A, R, T, γ), where S is a state space, A
is an action space, R : S × A → R is a reward function, T : S × A × S → R≥0 is a transition
function, and γ is a discount factor. The aim of this paper is to transfer knowledge of a source
MDP Mx = (Sx,Ax, Rx, Tx, γ) to a target MDP My = (Sy,Ay, Ry, Ty, γ). Here we assume that
these MDPs share a common latent structure which is also an MDP: Mz = (Sz,Az, Rz, Tz, γ).
Formally, we assume the existence of state mapping functions ϕx : Sx → Sz, ϕy : Sy → Sz and
action mapping functions ψx : Ax → Az, ψy : Ay → Az which translate states sx, sy or actions
ax, ay into shared states sz or actions az , respectively, satisfying the following relationships:

Tz(ϕx(sx), ψx(ax)) = ϕx(Tx(sx, ax)), Tz(ϕy(sy), ψy(ay)) = ϕy(Ty(sy, ay)),

Rz(ϕx(sx), ψx(ax)) = Rx(sx, ax), Rz(ϕy(sy), ψy(ay)) = Ry(sy, ay).

In short, as depicted in Figure 2, we assume that the common latent MDP is expressive enough to
reproduce the dynamics and reward structure of the source and target MDP. Our goal is to learn the
state mapping functions ϕx, ϕy and the action mapping function ψx, ψy so that any policy learned
in the common latent space πz(az|sz) : Sz × Az → R≥0 can be immediately used in either MDP
combined with the obtained mappings. In this paper, we use a deterministic policy, and thus we
sometimes denote the latent policy as πz(sz) : Sz → Az , although we can easily extend it to a
stochastic policy. We learn these mappings using state action trajectories of a set of proxy tasks
Dd,k = {τd,k,i}, where τd,k,i = {(std, atd)} is a successful trajectory of task k in domain d, and use
the learned relationships in task k′ unseen during training. The alignment of the representation is
obtained through behavioral cloning (BC) on the trajectories of proxy tasks and adversarial training
on the embeddings, which will be described in the following section.
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(a) Alignment phase

(b) Adaptation phase (c) Inference

Figure 3: Overview of the training and inference procedure of our method. (a) In the alignment
phase, we jointly train the policy and the discriminator using trajectories of proxy tasks to match the
representation between domains. (b) In the adaptation phase, we only update the common policy to
adapt to the target task in the source domain. (c) In inference, we can use the updated policy trained
in the source domain combined with the encoder and decoder already trained in the alignment phase.

4 LEARNING COMMON POLICY THROUGH REPRESENTATION MATCHING

In this work, we aim to learn state mapping functions ϕx, ϕy , and action mapping functions ψx, ψy
or equivalents, and use them to transfer the policy learned in one domain to another. Our algorithm of
cross-domain transfer consists of two steps as illustrated in Figure 3: (i) Cross-domain representation
alignment, (ii) Policy adaptation to a target task in the source domain. We call them the alignment
phase and the adaptation phase, respectively. After the adaptation phase, the learned policy of a
target task can be immediately used in the target domain without any fine-tuning, additional training
interacting with the target domain (Gupta et al., 2017; Liu et al., 2018), or a policy learning in the
mapped target domain (Raychaudhuri et al., 2021).

4.1 CROSS-DOMAIN REPRESENTATION ALIGNMENT

In the alignment phase, we aim to learn the state and action mappings and acquire a domain-invariant
feature space that can be used in either the source domain or the target domain. We represent our
policy as a simple feed-forward neural network as shown in Figure 3. It consists of three compo-
nents: a state encoder, a common policy, and an action decoder. They correspond to ϕ(s), π(sz),
and ψ−1(az), respectively. ψ−1(az) can optionally take a raw state s for the action prediction in a
domain. Note that we feed domain ID d to the encoder and the decoder instead of using two separate
networks for the domains to simplify the architecture and the training. Additionally, we feed task
ID k to the policy to deal with multiple proxy tasks simultaneously.

Even when the dataset contains trajectories from both domains performing the same tasks, sim-
ply training the policy with such a dataset does not necessarily match the representations of both
domains. Figure 4a shows the distribution of the representation of latent state sz acquired by be-
havioral cloning using expert trajectories from different domains in our experiment (Maze2D-OA).
Although we trained a single policy, the learned representations are completely separated for each
domain. We need an additional objective to obtain a better alignment.
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(a) Distribution without adversarial training (b) Distribution with adversarial training

Figure 4: Distributions of latent state representation sz with and without adversarial training. These
are visualized with t-SNE (Van der Maaten & Hinton, 2008). Here we sample corresponding states
from two domains of the Maze2D environment in our experiment and encode them into the learned
feature space. Black lines connect 20 corresponding state pairs in each figure. Without adversarial
training, the model can learn the policy for different domains on different feature spaces. The
adversarial training encourages the model to learn them on the same feature space.

If we have access to temporally-aligned trajectories (i.e. (ϕx(stx), ψx(a
t
x)) = (ϕy(s

t
y), ψy(a

t
y))), we

can directly learn corresponding representations ϕx(sx), ϕy(sy) or ψx(ax), ψy(ay) close together
as done in Gupta et al. (2017). However, we do not assume such an alignment in the dataset and
hence we instead use adversarial training to match the representations. Our purpose is to match
the corresponding latent representation of states and actions between domains. In other words, we
want the latent representations to contain domain-specific information as little as possible. It can be
expressed as mutual information minimization between domains D and latent representation Sz or
Az . Here we can skip this process on latent actions az since az is a function of latent states sz . The
objective for latent states can be formulated as follows:

min
ϕ
I(D;Sz) = min

ϕ
H(D)−H(D|Sz)

= max
ϕ

H(D|Sz). (1)

The second equation holds because we cannot control the domain distribution by the encoder. To
optimize this objective, we introduce a domain discriminator q(d|sz) as an approximation of p(d|sz)
in the objective. The training proceeds in a similar way to that of generative adversarial networks
(GAN) (Goodfellow et al., 2014). The discriminator q(d|sz) predicts which domain each given sz
came from, while the encoder ϕ tries to fool the discriminator, as indicated in (1). Combined with
the behavioral cloning objective, we have our final objective Lalign for the alignment phase:

min
ϕ,πz,ψ−1

max
q

Lalign = min
ϕ,πz,ψ−1

max
q

LBC + λLadv{
LBC = E(sd,ad,d,k)∼D

[(
ψ−1
d (πz(ϕd(sd), k))− ad

)2]
Ladv = E(sd,d)∼D [log q(d|ϕd(sd))] ,

(2)

where λ is a constant that defines the importance of the adversarial term. More detailed derivation
and interpretation can be found in Appendix A. By optimizing the adversarial objective along with
imitation, we can obtain an aligned representation as shown in Figure 4b. Intuitively, behavioral
cloning shapes the structure of the representation of each domain (Figure 4a), and the adversarial
term pulls the entire distributions close together so that they will be identical (Figure 4b). Besides,
we also employ task-level alignment by feeding task ID k to the discriminator. We observe that this
improves performance in some cases. See Appendix B.3 for the performance comparisons.

4.2 POLICY ADAPTATION

In the adaptation phase, we train our policy to successfully perform the target task which we finally
would like to solve. We assume that the latent states and the latent actions are already aligned in the
alignment phase, and also we have state and action mapping functions between the common latent
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Figure 5: Illustration of a
demonstration-conditioned policy.
This policy cannot be trained only
with data of a source domain.

(a) Maze2D (medium) (b) Maze-MR (umaze)

Figure 6: Pictures of Maze2D and Maze-MR. The red
points show the goal, which are not observable for agents.

space and each domain. Thus, our task in this phase is to train the common latent policy for the target
task. We can train it solely in the source domain using mapping functions. As described in Figure
3, the weights of the encoder and decoder are fixed during the training so that the common policy
is learned on top of the acquired aligned representations. In this phase, we can use any learning
algorithm, including reinforcement learning. In our experiments, we update the common policy
by behavioral cloning using expert trajectories in the source domain. Therefore, we minimize the
following objective in the adaptation phase.

min
πz

Ladapt = min
πz

LBC.

This adaptation phase is one of the advantages of using a common policy over a demonstration-
conditioned policy (Figure 5) used in previous studies such as Dasari & Gupta (2020). Since a
conditional policy cannot be trained with a dataset that only contains demonstrations in the source
domain, we cannot update it to adapt to the target task. This constraint requires the model to gener-
alize to demonstrations of an unseen target task in a zero-shot manner, which is difficult especially
when the target task is much more advanced than proxy tasks used in the training. We demonstrate
the effectiveness of our method from this perspective in our experiment.

5 EXPERIMENTS

In the experiment, our aim is to answer these questions: (i) Can our method align the states and ac-
tions of a source and a target domain? (ii) Can our method achieve zero-shot cross-domain transfer in
various settings? (iii) In which case is our method more effective compared to previous approaches?

5.1 ENVIRONMENTS

To evaluate the efficacy of our method, we choose the Maze environment used in the D4RL (Fu
et al., 2020) benchmark. It is a multi-task robotic locomotion environment suitable for defining
proxy tasks, and its simplicity enables us to evaluate the discrepancy of the alignment we obtain
from the ideal one. It also offers multiple agents with different morphologies, such as Point and Ant,
with which we can evaluate the performance of cross-domain transfer between significantly differ-
ent observation and action spaces. Concretely, we use four environments for our evaluation (Two of
them are shown in Figure 6). In each environment, agents explore the maze toward a specific goal.
The shape of the maze has two variations: umaze and medium. A task is defined as a 2D position of
a goal, and the dataset has expert trajectories of tasks. Note that the starting point can vary within
a task. Maze2D-O A point agent explores the maze. The observation space has four dimensions
(position and velocity for each direction), and the action space has two dimensions. The x-axis and
the y-axis are swapped in observations of the target domain. Maze2D-OA: In addition to the obser-
vation shift of Maze2D-O, actions for both directions are inverted (i.e., multiplied by −1). Maze-D
(Dynamics): In the source domain, inertia is removed and an action directly determines the velocity.
Agents in domains share the same observation, but they have different action spaces, dynamics, and
state distributions. Maze-MR (Multi-Robot): An ant agent is used as a target agent. The observa-
tion space and the action space of Ant are 29-dimensional and 8-dimensional, respectively. Transfer
between these agents is challenging since they have different morphologies and thus the observation
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Table 1: Alignment scores. The values are mean squared errors between the ground-truth states
in the source domain and the ones predicted from the corresponding target states. The results are
averaged over nine seeds with three fixed goals.

Task Ours Ours-S GAMA CCA IfO
Maze2D-O (umaze) 0.11± 0.06 1.98± 0.54 0.09± 0.04 1.99± 2.74 3.60± 1.34
Maze2D-O (medium) 0.21± 0.26 4.49± 2.49 0.08± 0.02 0.01± 0.01 4.71± 0.76
Maze2D-OA (umaze) 4.50± 1.75 1.72± 0.73 0.11± 0.03 1.99± 2.74 3.60± 1.34
Maze2D-OA (medium) 2.26± 1.89 2.88± 0.57 0.10± 0.05 0.01± 0.01 4.71± 0.76

space, action space, and dynamics vary significantly. We also measure the performance in a manip-
ulation environment and show results in Appendix B.6. For other experimental settings, including
the detail of datasets, architectures, and the training procedures, refer to Appendix C.1.

5.2 BASELINES

For our proposed methods, we used two implementations. In Ours, the decoder predicts actions
without raw states s. In Ours-S we feed s to the decoder to compensate domain-specific infor-
mation lost from latent representations. We compare our methods with the following approaches.
CCA (Hotelling, 1992) finds invertible linear transformations to the space where unaligned demon-
strations are maximally correlated. A target policy is then optimized by reinforcement learning so
that the policy can obtain observations similar to the given demonstrations of a target task in the
learned space. IfO (Gupta et al., 2017) uses dynamic time warping (DTW) (Müller, 2007) to find
temporally-corresponding pairs and get the representations of them close together using a context
translation model. A target policy is trained in a similar way as CCA using RL. GAMA (Kim et al.,
2020) is one of the closest approaches to ours. It first learns direct mappings of states and actions
between domains in an adversarial way. After that, it updates the source domain policy and then
solves the target task by translating the states to those of the source domain, applying the source
domain policy, and translating the output actions back to the target domain. The critical difference
between this approach and ours is that GAMA uses the source domain policy for the target task,
while ours uses a common policy. In addition, we do not need a dynamics model and thus the
training is simpler. Cond is a Transformer (Vaswani et al., 2017)-based demonstration-conditioned
policy depicted in Figure 5. It digests a state-action demonstration of a task to perform and the ob-
servation history of an agent, and outputs the next action to take. It only has the alignment step due
to its structure as discussed in Section 4.2. See Appendix B.5 for more comparisons and Appendix
C.4 for more details of the training and implementation.

5.3 ALIGNMENT EVALUATION

Quantitative Evaluation We evaluate the quality of the alignment in Maze2D, where we know
the ground-truth state correspondence between domains. We expect that the corresponding states
are mapped to the same latent representation. We calculate a prediction error of states in the source
domain from the corresponding states in the target domain and use it as a metric of the alignment.
Here we additionally train the state decoder ϕ−1

x (sz) to calculate the metric. Note that this metric is
advantageous to GAMA since it has a direct mapping function of states. The scores in Table 1 show
that, while Ours achieves similar scores to GAMA in Maze2D-O, our methods fail to accurately
recover the state in the other cases. It is not only because our methods do not learn direct mappings
between domains, but also because the model discards part of the information on the original state
when projected into the domain-invariant space. As long as latent states can use the same common
policy πz , it can be valid to map the corresponding states to different positions, and hence a worse
alignment score does not necessarily mean worse transfer performance. We examine how it affects
the final transfer performance in Section 5.4. Regarding the performance of CCA, it is close to the
perfect score in some settings since the observation shift is linear in Maze2D, whereas CCA fails in
other cases due to the lack of explicit temporal alignment and the variations in the starting positions.

Qualitative Evaluation We visualize the distributions of the learned latent state space using t-
SNE (Van der Maaten & Hinton, 2008). As shown in Figure 7, Ours successfully aligns most pairs in
successful cases in Maze2D-OA. In the more challenging environment, Maze-MR, the latent states
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(a) Maze2D-OA (Ours) (b) Maze-MR (Ours) (c) Maze-MR (Ours-S)

Figure 7: Comparison of distributions of latent states sz in the medium maze visualized by t-SNE
(Van der Maaten & Hinton, 2008). Similar to Figure 4, we sample corresponding states from do-
mains and encode them into the learned feature space. Black lines connect 20 corresponding state
pairs in each figure. In Maze-MR, we do not show the lines since the ideal alignment is not available.

Table 2: Success rates of target tasks. Results are averaged over nine seeds with three fixed goals.

Task Ours Ours-S GAMA CCA IfO
Maze2D-O (umaze) 0.76± 0.33 0.42± 0.41 0.63± 0.35 0.45± 0.35 0.06± 0.11
Maze2D-O (medium) 0.97± 0.07 0.54± 0.40 0.77± 0.24 0.10± 0.14 0.00± 0.01
Maze2D-OA (umaze) 0.40± 0.34 0.36± 0.36 0.77± 0.21 0.45± 0.35 0.02± 0.04
Maze2D-OA (medium) 0.61± 0.32 0.72± 0.29 0.61± 0.42 0.10± 0.14 0.03± 0.08
Maze-D (umaze) 0.26± 0.26 0.50± 0.41 0.03± 0.05 1.00± 0.00 0.13± 0.10
Maze-D (medium) 0.36± 0.29 0.72± 0.27 0.01± 0.03 0.48± 0.35 0.00± 0.01
Maze-MR (umaze) 0.20± 0.26 0.42± 0.32 0.00± 0.00 0.03± 0.07 0.00± 0.00
Maze-MR (medium) 0.39± 0.17 0.48± 0.24 0.00± 0.00 0.00± 0.00 0.00± 0.00

for the target domain (i.e. Ant) have a broader distribution than the source domain. If we supply
domain-specific state information s to the decoder in Ours-S, the alignment is significantly improved
since the encoder can focus more on domain-agnostic information for the action prediction.

5.4 CROSS-DOMAIN TRANSFER PERFORMANCE

We measure the performance of the cross-domain transfer by the success rate of a target task. We
choose a single goal for the target task and use the other goals as proxy tasks for the alignment phase.
The values are averaged over three different target tasks. Table 2 summarizes the scores of methods
that employ representation alignment in various settings. Note that CCA and IfO use RL for the
adaptation and does not perform zero-shot transfer. In Maze2D, our methods and GAMA achieve
better performance than CCA and IfO. Interestingly, our methods show comparable performance to
GAMA even though the alignment score is worse than that of GAMA. This shows that aligning the
latent representation is sufficient for transferring knowledge, instead of learning a direct mapping
between domains. In Maze-D and Maze-MR, GAMA fails to transfer the policy, while our methods
achieve a non-zero success rate consistently. Since it is difficult to find an exact correspondence
between states with different complexities, direct state mapping and action mapping in GAMA are
hard to acquire. Our methods instead reduce each MDP to the common one and thus we do not
have to learn the direct relationship between the source domain and target domain. However, the
performance of Ours is limited since the decoder cannot get sufficient domain-specific information
for domain-specific action prediction. Using raw states s directly fed to the decoder, Ours-S achieves
the better performance with the improved alignment shown in Figure 7c. Regarding the performance
drop of Ours-S in Maze2D-O, we give some explanation in Appendix B.4. We also compare our
methods to Cond in Maze2D environments. The results in Figure 8 show that Cond struggles to
adapt to the target task since the lack of the adaptation phase requires the model to perform zero-
shot generalization to unseen demonstrations of a target task. This supports our claim in Section
4.2 that adaptation through updating a domain-agnostic policy on a shared representation space is
effective for cross-domain transfer.
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Figure 8: Success rates of our methods and a con-
ditional model in Maze2D. Our models achieve
better performance consistently because it can be
trained only with source domain demonstrations.
The error bars show the standard deviations.

Figure 9: The number of proxy tasks vs
success rate in Maze2D-OA. The scores are
averaged over three runs with a fixed goal.
The error bars show the standard deviations.
More results are available in Appendix B.1.

Table 3: Success rates of Ours-S in Maze2D (medium) with various coefficients λ for the adversarial
term. Here we used a fixed single goal. The scores are averaged over three runs.

Task λ = 0 λ = 0.1 λ = 0.5 λ = 2.0 λ = 10
Maze2D-O 1.00± 0.00 0.67± 0.40 0.67± 0.40 0.07± 0.09 0.53± 0.33
Maze2D-OA 0.93± 0.09 0.93± 0.05 0.87± 0.05 0.90± 0.08 0.67± 0.34
Maze-D 0.13± 0.08 0.09± 0.09 0.72± 0.27 0.89± 0.09 0.55± 0.35
Maze-MR 0.09± 0.03 0.61± 0.24 0.48± 0.25 0.26± 0.21 0.47± 0.10

5.5 ABLATION STUDIES

Alignment Complexity We measure the transfer performance, varying two aspects of the dataset
for alignment: the number of trajectories and the number of proxy tasks. We present plots of the
number of proxy tasks for Maze2D-OA in Figure 9 and more in Appendix B.1. These plots show
that a decrease in the number of demonstrations or proxy tasks leads to a decrease in performance.

Sensitivity to λ Adversarial training is notorious for its difficulty in balancing the training of
multiple functions: the encoder and the discriminator in our case. To evaluate how sensitive our
method is to the adversarial coefficient λ, we measure the success rates of Ours-S with various
values of λ. The results are shown in Table 3. Surprisingly, in Maze2D-O and OA, the transfer is
successful without the adversarial term. In the other environments, on the other hand, adversarial
training is necessary to align the representations, and we have to choose the correct value of λ.

6 CONCLUSION

In this work, we present a novel method to learn a domain-invariant policy in a common feature
space for cross-domain policy transfer. Our experimental results show that our method achieves
comparable performance to the prior methods in environments with domain shifts on the same agent
and dynamics. Our method is especially effective for transfer between domains with different com-
plexities, where no exact correspondence exists.

The main limitation of our work is the instability of the training due to adversarial training. Intro-
ducing techniques for more stable training of GANs could enhance the performance of our method.
Alternatively, some self-supervised objectives can give more signals for the alignment and conse-
quently stabilize or replace the adversarial training. Besides, relaxing the requirements on the dataset
is a promising direction for future work. If we do not require expert actions or task ID in a dataset for
the alignment, we can utilize prevalent, less-structured datasets including videos to scale the train-
ing. We hope our work provides some suggestions to researchers who will work on the development
of a domain-free policy, an abstract policy that can be applied to any domain in a zero-shot manner.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our experimental setups and implementations in Section 5.1 and
Appendix C. These sections contain the key hyperparameters, links to the datasets, modified parts
of the existing environments, dataset size, duration of the training, and other necessary information
for reproduction. The training time does not exceed about five hours with a single GPU. We also
release our codebase and created datasets as supplementary materials.
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A DERIVATION AND INTERPRETATION OF LEARNING OBJECTIVE

Our objective in (1) is to maximize the entropy of domain prediction given a latent state
max
ϕ

H(D|Sz) = −max
ϕ

Ed∼p(D|Sz) [p(d|sz)]

= min
ϕ

Ed∼p(D|Sz) [p(d|ϕd(sd))] ,

where sd is sampled from the dataset D. Here we cannot directly evaluate p(d|sz). We introduce
the variational approximator q(d|sz), which can be seen as a domain discriminator. Then we have

min
ϕ

Ed∼p(D|Sz) [q(d|ϕ(sd)) + p(d|ϕ(sd))− q(d|ϕ(sd))]

= min
ϕ

Ed∼p(D|Sz) [q(d|ϕ(sd))] +DKL [p(d|ϕ(sd))∥q(d|ϕ(sd))]

= min
ϕ

E(sd,d)∼D [q(d|ϕ(sd))] +DKL [p(d|ϕ(sd))∥q(d|ϕ(sd))] .

In the second equation, we remove the necessity of the sampling from the posterior following the
discussion similar to Lemma 5.1 in Chen et al. (2016).

Since we would like to minimize this objective instead of maximizing it as done in the well-known
evidence lower-bound (ELBO) objective, we cannot take a lower bound by skipping the second
term. In our case, we can consider that the training of the discriminator q toward correct domain
classification is a minimization of the KL divergence. Given the sufficient quality of the approxima-
tion, the KL term should be small, so the encoder can focus on optimizing the first term, which is
our final objective in (2).

B ADDITIONAL RESULTS AND DISCUSSIONS

B.1 ADDTIONAL RESULT OF ALIGNMENT COMPLEXITY

Figure 10 and Figure 11 show the alignment complexity in Maze2D-O and Maze2D-OA with respect
to the number of demonstrations and the number of proxy tasks. As mentioned in Section 5.5, an
increase in the number of demonstrations or proxy tasks improves the performance.
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(a) The number of demonstrations vs success rate (b) The number of proxy tasks vs success rate

Figure 10: Alignment complexity in Maze2D-O. Here we used a fixed single goal. The scores are
averaged over three runs. The error bars show the standard deviations.

(a) The number of demonstrations vs success rate (b) The number of proxy tasks vs success rate

Figure 11: Alignment complexity in Maze2D-OA. The scores are averaged over three runs with a
fixed goal. The error bars show the standard deviations.
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Table 4: Success rates in Maze2D (medium) with and without behavioral cloning. Results are
averaged over nine seeds with three fixed goals.

Task BC + adversarial adversarial only
Maze2D-O (Ours) 0.97± 0.07 0.03± 0.05
Maze2D-OA (Ours) 0.61± 0.32 0.03± 0.07
Maze2D-O (Ours-S) 0.54± 0.40 0.03± 0.04
Maze2D-OA (Ours-S) 0.72± 0.29 0.00± 0.00

Table 5: Success rates of target tasks, with and without task conditioning of the discriminator.
Results are averaged over nine seeds with three fixed goals.

Task Ours-S Ours-S (w/o task) GAMA GAMA (w/o task)
Maze2D-O (umaze) 0.42± 0.41 0.46± 0.42 0.63± 0.35 0.69± 0.23
Maze2D-O (medium) 0.54± 0.40 0.27± 0.27 0.77± 0.24 0.78± 0.16
Maze2D-OA (umaze) 0.36± 0.36 0.47± 0.38 0.77± 0.21 0.38± 0.35
Maze2D-OA (medium) 0.72± 0.29 0.67± 0.24 0.61± 0.42 0.48± 0.35

B.2 SUCCESS RATES WITHOUT BEHAVIORAL CLONING

Although we align the representation through behavioral cloning and the adversarial objective
jointly, one might think that we can first align the representations with the adversarial term only
and directly learn the common policy in the learned representation space. To measure how much
behavioral cloning helps the alignment, we measure the success rates when the alignment is only
done with the adversarial term. Table 4 shows that behavioral cloning encourages the model to learn
the representation space that incorporates the closeness of states in terms of the actions to perform
in proxy tasks. The adversarial term is insufficient for the alignment because it only matches the
distributions of latent states of the source domain and the target domain. It implies that we could get
a better alignment if we impose appropriate additional constraints on the representations.

B.3 EFFECT OF TASK CONDITIONING

We employ a task-level alignment signal by feeding task ID k to the discriminator. It encourages
the model to align not only the entire latent state distributions but also the ones in every single
task. We measure the success rates of target tasks with and without task conditioning of the domain
discriminator. The results in Table 5 show that the task-level alignment improves the performance
of both our method and GAMA in some cases. Based on this result, we use task conditioning by
default in our experiments.

B.4 PERFORMANCE DROP OF OURS-S IN MAZE2D-O

As shown in Table 2, Ours-S, which takes raw states s as input of the action decoder ψ−1(az),
can sometimes show worse performance than Ours. Since the decoder can directly use domain-
specific state information s for the action prediction, the common policy can ignore and discard the
information of the latent state sz and only pass latent action that is equivalent to a task ID k. In
this case, the transfer will fail because the decoder will encounter an unknown task ID of a target
task passed from the common policy at inference time. We conjecture that Ours-S fails when it falls
into this failure mode. It can possibly be solved by controlling the amount and the content of the
information provided to the decoder from a raw state s.

B.5 ADDITIONAL BASELINE

As an additional baseline, we measure the transfer performance of XIRL (Zakka et al., 2022). XIRL
first learns a cross-domain state representation with TCC (Dwibedi et al., 2019) that captures task
progression, and utilizes it to shape the reward for performing RL in the adaptation. It thus does
not perform zero-shot transfer. The results are shown in Table 6. The results show that our methods
consistently outperform XIRL without interacting with the environment in the adaptation phase.
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Table 6: Success rates of target tasks (Ours, Ours-S, and XIRL). The results of the other methods
are shown in Table 2. The values are averaged over nine seeds with three fixed goals.

Task Ours Ours-S XIRL
Maze2D-O (umaze) 0.76± 0.33 0.42± 0.41 0.30± 0.33
Maze2D-O (medium) 0.97± 0.07 0.54± 0.40 0.03± 0.09
Maze2D-OA (umaze) 0.40± 0.34 0.36± 0.36 0.30± 0.33
Maze2D-OA (medium) 0.61± 0.32 0.72± 0.29 0.03± 0.09

Table 7: Success rates of the target task in the robotic manipulation enviroment (Ours, Ours-S, and
GAMA). The values are averaged over nine seeds with three fixed target positions.

Ours Ours-S (λ = 0.0) Ours-S (λ = 0.5) GAMA
0.00± 0.00 0.61± 0.33 0.86± 0.22 0.18± 0.27

Note that Maze2D-O is equivalent to Maze2D-OA for XIRL and we only measure the performance
in Maze2D-O since XIRL learns the state correspondence only with states.

B.6 PERFORMANCE IN MANIPULATION TASK

We additionally evaluate our methods in a robotic manipulation task in robosuite (Zhu et al., 2020)
framework (Figure 12). We use the Block Lifting task, where the robot has to pick up a block
and lift it to a certain height. A task is defined as the position of the object to lift. We set nine
initial locations on the table. We use one for the target task and the rest for proxy tasks for aligning
representations. To evaluate the transfer between different robots, we use Sawyer for the source
domain and UR5e for the target domain. Sawyer is a 7-DoF robot and UR5e is a 6-DoF robot, hence
these robots have different observation spaces and dynamics. The results in Table 7 demonstrate that
Ours-S outperforms GAMA. As in Maze-D and Maze-MR, GAMA shows suboptimal performance
since there is no good correspondence across robots with different DoFs and grippers. Ours does
not perform well in this environment either, probably because the domain-specific state input to the
decoder is highly necessary for the accurate control in this environment. Ours-S avoids these issues
and successfully performs cross-robot zero-shot transfer. We also confirm that the adversarial term
boosts the performance of our method.

(a) Sawyer (b) UR5e

Figure 12: The pictures of the robotic manipulation environments.
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C EXPERIMENT DETAILS

C.1 ENVIRONMENTS

All Maze environments used in this paper are based on D4RL (Fu et al., 2020). In Maze environ-
ments, two types of agents perform actions: Point and Ant. The Point agent has a state space of four
dimensions and an action space of two dimensions. The states consist of positions and velocities for
the x-axis and y-axis, while the actions consist of the force to be applied for each direction. The Ant
agent has a state space of 29 dimensions and an action space of eight dimensions. The states consist
of the position and velocity of the body, and the joint angles and angular velocities of the four legs.
The actions consist of the force to be applied to each joint.

In Maze-D and Maze-MR, we use an environment with different dynamics from the original envi-
ronment for the Point agent. We removed the inertia from the source domain and thus changes in
position depend only on the action at the step. In Maze-D, the task of the Point agent in the target
domain is to learn from the trajectories of an agent in the source environment that does not have in-
ertia. In Maze-MR, the task of the Ant agent is to learn from the Point agent in the environment with
the simpler dynamics. The input positions of x and y coordinates of the Point agent were reversed
from those of the Ant agent to prevent leaking information without representation alignment.

For the manipulation task, we use robosuite framework (Zhu et al., 2020). We use Sawyer for the
source domain and UR5e for the target to test cross-robot transfer (Figure 12). We choose Block
Lifting task, where the robot has to pick up a block and lift it to a certain height. A task is defined
as the position of the object to lift. We set nine initial locations on the table. We use one for the
target task and the rest for proxy tasks for aligning representations. The initial pose of the robot is
randomized. The observation space consists of the position or angular information and the velocity
of each joint and the end effector. Sawyer and UR5e have state spaces of 32 dimensions and 37
dimensions, respectively. The input positions of state elements of Sawyer were reversed for the
same reason as Maze-MR. Both robots are controlled by delta values of the 3D position of the end
effector and 1D gripper state.

C.2 DATASETS

As described in Section 3, the dataset contains state action sequences of expert demonstrations with
various goals (i.e., multiple tasks). For the Maze2D and Maze-D, we provide about 10k trajectories
of six tasks for the umaze, and about 10k trajectories of 25 tasks for the medium maze unless ex-
plicitly mentioned in the ablation study. We downloaded the expert demonstrations from http://
rail.eecs.berkeley.edu/datasets/offline_rl/maze2d/ (maze2d-umaze-sparse-
v1, maze2d-medium-sparse-v1). For Maze-MR, we provide about 10k trajectories of six tasks for
the umaze and about 5k trajectories of 25 for the medium maze. When we created expert trajecto-
ries for the AntMaze and simpler Maze2D environement without inertia in Maze-D, we used PPO
(Schulman et al., 2017) from stable-baselines3 (Raffin et al., 2021) to train agents to move only one
square up, down, left, or right. We then composed entire demonstrations by solving the maze with
BFS and giving the agent the direction of the next square. For the robotic manipulation environment,
we provided 600 trajectories for each task ID. We collected the expert demonstrations by a scripted
policy based on the object position and the gripper pose.

C.3 ARCHITECTURE AND TRANING DETAILS OF OUR METHOD

Our policy is a simple multilayer perceptron. In the experiments of Maze2D, the state encoder,
the common policy, and the decoder have three, five, and three hidden layers with 256 units and
ReLU activations. Only the last layer of the decoder has Tanh activation. The dimension of latent
representations is also 256. We optimized our objective with Adam optimizer (Kingma & Ba, 2015).
We set the learning rate to 1e-4 and the batch size to 256, and trained the model for 20 epochs. In
Maze-D, we used the same number of layers as in Maze2D, while, in Maze-MR, we used four, six,
and four hidden layers for the encoder, the policy, and the decoder, respectively. In Maze-D and
Maze-MR, we used Tanh activation for the last layer of each component, and Mish activation for
the other layers. The number of units and the dimension of the latent representation were set to 512.
We set the learning rate to 2e-4 and the batch size to 512, and trained the model for 40 epochs.
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C.4 BASELINES

For GAMA, we re-implemented the algorithm referring to the original paper and an official imple-
mentation (https://github.com/ermongroup/dail). When we found a few differences
between the paper and the implementation, we followed the description in the paper. We swept the
adversarial coefficient from 0.01 to 10, the learning rate from 1e-4 to 1e-3, and used 0.5 and 1e-4,
respectively. For CCA, we used the trajectories of the proxy tasks to learn linear state correspon-
dence mappings. We first padded trajectories to the same length and created a single sequence of
trajectories for each domain by concatenating them sorted by task ID. The order of trajecories were
randomly shuffled within a task ID. In the adaptation phase, a policy is trained by reinforcement
learning using an auxiliary reward function r(s(t)y ) defined as follows:

r(s(t)y ) = − 1

|Dx|
∑
τ∈Dx

∥g(s(t)y )− f(s(t)x,τ )∥22,

where f(sx) is a learned mapping function from the source (expert) domain to the learned latent
space, g(sy) is its counterpart for the target (agent) domain, Dx is the expert trajectories of a target
task in the source domain, s(t)y is a state of the target agent at time step t, and s(t)x,τ is a target state
in the source domain at time step t in a sampled expert trajectory τ . If the state correspondence
is learned sufficiently, r(s(t)y ) would be a reward for tracking features of expert trajectories in the
source domain. We used the Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015)
algorithm for this step and trained MLP policy for 200k environmental steps. For IfO, we trained a
context translation model which translates expert demonstrations in the source domain into the ones
in the target domain. We randomly chose pairs of demonstrations performing the same task and
trained the model to perform translation between the corresponding states found by dynamic time
warping (DTW) (Müller, 2007). In the adaptation phase, we used DDPG to train the policy in the
target domain for 200k environmental steps. As in CCA, the reward is defined to track the features
of the expert demonstrations in the source domain.

XIRL uses the domain-invariant feature acquired by TCC (Dwibedi et al., 2019) to shape the reward
for the adaptation. Given the demonstration in the source domain, the reward is calculated as follows:

r(s) = − 1

κ

∥∥∥∥∥ϕ(s)− 1

N

∑
i

ϕ(sTi
)

∥∥∥∥∥
2

,

where ϕ(s) is the state embedding, Ti is the length of demonstration i, N is the number of demon-
strations. Intuitively, it is a distance of a current state from the averaged goal in the feature space.
κ is a scale parameter and we set it to 10% of the distance of the first state from the goal state. We
tried the 1%, 10%, and 100% and chose the best one for our setting. The policy was trained with
SAC (Haarnoja et al., 2018) as in the original paper. We trained the policy for 800k environmental
steps with learning rate 3e-4. TCC was trained with the classifier-based loss, which performed best
in our expeirments. For more details, please refer to the original paper.

For the demonstration-conditioned model (Cond), we used a Transformer (Vaswani et al., 2017)-
based architecture to process sequences of observations and actions (Figure 5). We fed demonstra-
tions and observation history as they were without thining-out timesteps. The maximum sequence
length was 250 and 400 for the umaze and medium maze, respectively. The model had three encoder
layers and three decoder layers with 256 units and eight heads for each layer. The dropout rate was
set to 0.2. The activation function was ReLU and it was applied after the normalization. We set the
batch size to 32, the learning rate to 1e-3, and trained the model for 100 epochs. We confirmed that
the error of behavioral cloning was going down to the similar value observed in the training of our
method and GAMA.
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