
Learning and Recognizing Human Behaviour with Relational Decision Trees

Sitanskiy Stanislav,1 Laura Sebastia, 1 Eva Onaindia 1

1 Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València, Valencia, Spain
stasiig@inf.upv.es, {lsebastia, onaindia}@dsic.upv.es

Abstract

The recognition of activities performed by humans is crucial
in human-robot interaction. However, assuming humans al-
ways follow rational behaviour in executing activities may
not be accurate since individual preferences influence their
decision-making. This paper proposes a method for learning
human behaviour that involves capturing how humans select
actions to solve problems. This behaviour is represented by a
Relational Decision Tree. We define two sets of features that
can be automatically extracted from the planning domain. A
behaviour library is created and used to identify the behaviour
followed by a person when executing a plan in a new situa-
tion. This approach allows to anticipate the person’s needs
and act accordingly. The method was tested in three different
domains, showing its validity.

Introduction
Behaviour recognition is commonly defined as the process
of identifying and categorizing activities based on observa-
tions captured by video or sensor-based systems. Most of the
research in this field is oriented towards recognizing the ac-
tivity a person is doing, which has become increasingly pop-
ular in smart homes (Chua, Marsland, and Guesgen 2011;
Guesgen and Marsland 2016; Degardin and Proença 2021).
As a result, research focuses on using image processing and
machine learning techniques to convert low-level informa-
tion into understandable activities or actions (Bouchabou
et al. 2021).

In this paper, human behaviour is interpreted as a set of
habits that define a person’s pattern of action in a given situ-
ation, which is influenced by their personal preferences. The
problem input is a set of sequences of activities (plans) per-
formed by a person as well as the specification of the domain
in which the activity is taking place, and the objective is to
discover patterns of relationships between the actions of the
plans. For example, a person delivering packages in a three-
story building may start at the third floor and go down, or
go from the ground floor to the top; the delivery person may
use the elevator or climb the stairs, visit the offices of a story
in a particular order, etc. Ultimately, the goal is to uncover
the structure of an individual’s behaviour from their actions’

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

demonstrations, with the aim of anticipating their needs and
taking appropriate measures.

In the context of Automated Planning, the task of be-
haviour recognition has been formulated as a goal/plan
recognition problem and addressed from different perspec-
tives (Ramı́rez and Geffner 2009; Mirsky, Keren, and Geib
2021). While plan recognition is the task of identifying what
the agent is doing from observations of its acting, we focus
instead on how the agent is acting, that is, on the behaviour
or strategy the actor displays when solving a task. Imagine,
for instance, a robot navigating a grid for reaching a particu-
lar position. The robot may follow the least costly (optimal)
path to reach the goal. This is the common assumption in
plan recognition, that the observed agent is a perfectly ra-
tional agent that behaves optimally (Meneguzzi and Pereira
2021). The robot, however, may be non-fully rational (Mas-
ters and Sardiña 2019), and follow a non-optimal path, say
a zigzagging route, or it may visit the corners of the grid in
its route toward the goal. Thus, deciphering an agent’s be-
haviour when solving a task is about inferring the agent’s
preferences regarding the history of observed actions (Mas-
ters and Sardiña 2021).

This paper aims to learn the behaviour of an agent, ei-
ther a robot or a human, from a set of plans reflecting their
doing for achieving a goal, that is, how the agent solves
similar planning problems. We focus on high-level actions
rather than on low-level activity recognition as well as on
problems/domains where multiple solution plans exist for a
problem, and the agent has a preference for some plans over
others. Specifically, given a planning model that includes the
set of possible actions, various problems specified by their
initial state and the desired goals, and the solution plans of
the agent to solve these problems in the form of state-action
pairs, we aim to learn the strategy or behaviour of the agent
to achieve the tasks’ goals. The learned behaviour is defined
as a policy, specifically as a set of rules that determine which
action to take in a state that satisfies certain conditions.

Our proposal builds on a Relational Decision Tree (RDT),
also known as a Logical Decision Tree, to learn and repre-
sent the behaviour. Unlike classification trees such as ID3 or
CART where a learning example is a collection of attribute-
value representations, and queries of intermediate nodes are
of the form v ≤ x, where v is a variable that denotes a prop-
erty of the sample and x ∈ R is the value of such prop-

erty, in RDT examples and queries are described as a con-
junction of logical facts. We use the Top-down Induction of
Logical Decision Trees (TILDE) (Blockeel and De Raedt
1998; Blockeel et al. 1999), which is a first-order logical
decision tree learner. The learning algorithm of TILDE is
biased according to a specification of syntactic restrictions
called language bias. Background knowledge can also be in-
corporated to facilitate the deduction of new information,
thus enhancing the reasoning process. In our approach, the
language bias and the background knowledge are automati-
cally extracted from the PDDL specification of the planning
domain. Our findings demonstrate that these two elements
offer valuable insights into constructing a more precise de-
piction of the targeted behaviour. Another advantage of us-
ing RDTs is that far fewer samples are needed compared to
classification trees.

As a second objective, we will create a library with the
behaviours learned from the plans followed by the agents
when solving various planning tasks. Then, we will design
a classification algorithm to identify the closest behaviour
in the library for a given incomplete sample of an agent’s
plan execution. Ultimately, the purpose is to check the accu-
racy of the behaviour patterns of the library to unequivocally
identify the behaviour of an agent from a partially-observed
execution of its plan.

This paper is organized as follows. The next section
presents some related work, and section Problem defini-
tion defines identification problems, sections Learning be-
haviours and Behaviour identification detail the steps of
the behaviour learning and identification processes, respec-
tively. Then, section Experiments shows the experiments
performed to assess the validity of our approach and their
results. We finish with some conclusions and future work.

Related work
The formulation of our human behaviour recognition prob-
lem falls close to Imitation Learning (IL), a paradigm
that aims to mimic human behaviour without the need for
explicit reward functions as it happens in Reinforcement
Learning. The key components of IL are the demonstrations,
typically given in the form of state-action pairs, and a spec-
ification of the environment. The task consists in learning a
mapping between the observations (states) and the actions
taken by the agent (Hussein et al. 2017). Most works on IL
approach the learning problem using neural-based methods,
requiring a significant number of samples and resulting in
models that do not generalize well on new instances of the
task (Duan et al. 2017). Our proposal, however, relies on the
use of a symbolic method such as an RDT, which requires far
few samples, it is able to better capture the mapping between
states and actions, and, more importantly, the decisions are
easily interpretable by humans.

Our learning human behaviour problem is closely related
to a certain extent with the well-known goal/plan recog-
nition problem in Automated Planning (Sukthankar et al.
2014) in the sense that both problems reason about the goals
and execution process of an intelligent agent from plan ob-
servations, that is, from observations of its sequence of ac-
tivities. Techniques to plan recognition encompass library-

based methods whose objective is to recognize the plan an
agent is executing from a plan library (Mirsky, Keren, and
Geib 2021) and library-free approaches such as the ’plan
recognition as planning’ scheme, where the task of recog-
nizing the goals and plans of the agent is translated into a
plan generation problem (Ramı́rez and Geffner 2009).

While plan recognition seeks the plan that best fits an in-
complete plan observation, our problem puts the emphasis
on how the agent acts, on uncovering the relationships be-
tween the observed activities of the agent. The main differ-
ence lies in that plan recognition aims to infer the plan for a
given (partial) plan observation while behaviour recognition
requires multiple observation sequences so as to extract the
common relationships that point at a common behaviour. Put
differently, we may observe an agent zigzagging toward the
goal in one sequence of activities, but we will not be able to
deduce this is the agent’s behaviour unless we observe the
same zigzagging behaviour in other demonstrations. A be-
haviour is therefore interpreted as a set of general rules or an
abstract policy that determines what operation must be done
under particular state conditions to comply with the given
behaviour. Some approaches address this task with classi-
fication trees using samples where the states are abstractly
represented by means of a set of features (Sitanskiy, Sebas-
tia, and Onaindia 2021). In contrast, generalized planning
aims to infer the action to apply in any state of a planning
domain, and it is typically expressed as a policy, an algorith-
mic program, or as a logical specification (Srivastava, Im-
merman, and Zilberstein 2011; Celorrio, Aguas, and Jonsson
2019; Fitzpatrick et al. 2021).

In this paper, we use TILDE, a first-order logical deci-
sion tree learner which has also been used for guiding con-
trol in forward-state planning problems modeled as a rela-
tional classification task (De la Rosa et al. 2011). This task
captures the preferred action to select in a planning context,
which is defined by the set of helpful actions of the current
state, the remaining goals to achieve, and the static predi-
cates of the planning task. The learned action policy is used
to guide the search and the authors show that this approach
solves larger problems than state-of-the-art planners in some
domains (De la Rosa et al. 2011). However, the policy per-
forms poorly in other domains because the context is not
able to represent concepts that are necessary to discriminate
between good and bad actions. For this reason, a bagging
approach for learning ensembles of RDTs that yields, on av-
erage, plans of better quality is introduced in (de la Rosa and
Fuentetaja 2017).

Problem definition
We assume that the input to our behaviour recognition prob-
lem is a set of sequences of activities (plans) performed by
a person, as well as the specification of the domain in which
the activity is taking place. We define the structure of these
elements:

Definition 1 A planning domain is represented by a pair
D =

〈
P,Θ

〉
, where P is the set of predicates and Θ is

the set of operators of the domain. A predicate pi ∈ P is
defined as pi = (name(pi) arg(pi)) where the first ele-

(define (domain trolley-robot)
(:requirements :strips :typing)
(:types package - object place - object)
(:predicates
(at ?obj - package ?loc - place)
(in ?pkg - package)
(at-robot ?loc - place))

(:action LOAD
:parameters (?pkg - package

?loc - place)
:precondition (and (at-robot ?loc)

(at ?pkg ?loc))
:effect (and (not (at ?pkg ?loc))

(in ?pkg)))
(:action UNLOAD

:parameters (?pkg - package
?loc - place)

:precondition (and (at-robot ?loc)
(in ?pkg))

:effect (and (not (in ?pkg))
(at ?pkg ?loc)))

(:action MOVE
:parameters (?loc-from - place

?loc-to - place)
:precondition (and (at-robot ?loc-from))
:effect (and (not (at-robot ?loc-from))

(at-robot ?loc-to)))
)

Figure 1: PDDL description of the TrolleyRobot domain

ment is the predicate name and the second element is the
list of arguments. A planning task is represented by a triple
P =

〈
D, I,G

〉
, in which I is the initial state, and G is the

goal state. We denote by F and A the set of facts and ac-
tions, respectively, that can be instantiated from I; that is,
F and A define the search space of the planning task P . A
solution to a planning task P is a plan π that reaches G from
I by following a sequence of transitions defined in A.

As an illustrating example, we focus on a simplified ver-
sion of a transport domain, named TrolleyRobot, that pic-
tures a robot responsible for delivering a set of packages.
There is a single robot that carries a trolley to put the
packages in. This domain is defined by three predicates, {
at, at-robot, in }, which denote where a package
is, where the robot is and that a package is inside the trolley,
respectively; additionally, the domain has three operators, {
load, unload and move }, that describe the conditions
and effects for loading a package inside the trolley, unload-
ing a package from the trolley and moving the robot between
two locations. Figure 1 shows the details of this domain.

An agent is a human or any software agent with capabili-
ties to plan. Different agents can have different strategies or
behaviours for solving a planning task; even the same agent
can exhibit different behaviours depending on the context.
For example, in the TrolleyRobot domain, a behaviour that
an agent can stick with is to deliver the packages one by
one (we will refer to this behaviour as ByOne).

Definition 2 A behaviour β is a set of rules of the form
β = {(ρ1, θ1), . . . , (ρr, θr)}, where a rule (ρi, θi) indicates

that operator θi should be executed in a state that satisfies
the set of conditions ρi in order to follow the behaviour β.

The conditions ρi express different constraints to be sat-
isfied in a state. For example, in the TrolleyRobot domain,
two possible conditions are: the robot is at the same loca-
tion as a package, or the number of packages in the trolley is
zero. Extending the work in (Sitanskiy, Sebastiá, and Onain-
dia 2020), where some behaviour models are created paying
attention only to the operator executed at each situation, our
rules determine which operator and with which parameters
should be executed under which conditions. For instance,
in the ByOne behaviour, we can find a rule like this: ({the
robot is at the same location l as a package p and the number
of packages in the trolley is zero}, load(l, p)).

Definition 3 A corpus for a behaviour β is a pair Ξβ =〈
D,Q

〉
, where D is the planning domain that defines the en-

vironment of the agent and Q = {(P1, π1), . . . , (Pn, πn)},
where Pi is a planning task, and πi is the solution plan exe-
cuted by the agent for solving Pi.

A corpus implicitly reflects the strategy followed by the
agent for solving the set of planning tasks in Q. We are in-
terested in extracting the patterns that make this behaviour
explicit, which is formalized in Definition 2.

Definition 4 Given a corpus Ξβ =
〈
D,Q

〉
, the behaviour

learning (BL) problem consists in generating a set of rules
β = {(ρ1, θ1), . . . , (ρr, θr)} such that these rules encapsu-
late the behaviour followed by the agent when solving the
tasks Pi with plans πi of Q.

Definition 5 A behaviour library ΓD for a planning do-
main D is a set of all the behaviours β that have been
learned for D.

For example, we can also learn another behaviour in the
TrolleyRobot domain, the LoadAll behaviour, which consists
of loading all the packages onto the robot before starting
to unload them. In this case, both ByOne and LoadAll be-
haviours will compose ΓTrolleyRobot.

Definition 6 Given a planning domain D and a behaviour
library ΓD, a behaviour identification (BI) problem is a
tuple

〈
D,ΓD,O

〉
such that O = [o1, . . . , ok] is a sequence

of observations, where oi is a pair (ϕi, ai) composed of a
state ϕi and the observed action ai ∈ A executed in ϕi. The
solution of a BI problem is the behaviour β ∈ ΓD that better
matches with the observation sequence O.

Learning behaviours
This section details our approach for solving the behaviour
learning problem from a corpus Ξβ =

〈
D,Q

〉
. The output

of the BL problem is a set of rules β that encapsulate the
behaviour represented in Ξβ . We use a Relational Decision
Tree to learn and generate these rules. The whole BL process
is depicted in Figure 2. The main steps are the following:

1. Feature extraction. A rule indicates the operator that
must be executed in a state that satisfies the conditions
in ρi (Def. 2). These conditions can be expressed in dif-
ferent ways. In this work, we will define and experiment

Figure 2: Learning process

with two sets of features to represent states. The first set
is built directly from the predicates defined in the plan-
ning domain D. The second is a more sophisticated fea-
ture set aimed to capture relationships between the facts
of a state and the goal of the problem.

2. Samples encoding. A sample is a pair ⟨si, αi⟩ where si
is a state and αi ∈ A is the action executed by the agent
in si. Samples for learning the RDT of a behaviour β
are extracted from the corpus Ξβ , specifically from the
plans in Q. Furthermore, the state si of a sample ⟨si, αi⟩
is encoded with the features obtained in the previous step.

3. Construction of a decision tree. We train a RDT for
each Ξβ with samples ⟨si, αi⟩. As already mentioned,
given that we are using a logical representation of each
state, we can use inductive reasoning to uncover the con-
ditions under which a particular action is executed. This
way, we will train a decision tree based on inductive
learning, which induces an RDT. The RDT is then used
to obtain the action (operator and parameters) to apply in
a new encoded state. Subsequently, the RDT will be used
to test how well a behaviour is recognized as the number
of correct actions returned for a set of states.

Feature definition
We present the two sets of features that will be used to char-
acterize a state of a planning problem. Our aim is to extract
features automatically from the planning domain without
any human intervention. First, we define two types of basic
predicates:

1. Precondition basic predicates: they are simply formed
with the predicates P that appear in the preconditions of
the actions.

2. Effect basic predicates: they are generated from the add
effects of the actions in A. We add a suffix goal to
these predicates to denote that they can appear in G.

For example, given the load action, the corre-
sponding precondition basic predicates are {(at-robot

?l), (at ?p ?l)} and the effect basic predicate is
{(in goal ?p)}.

We will denote as Fb the first set of features composed
of the precondition and effect basic predicates. The second
set, denoted as Fc, comprises combined predicates. The idea
is to represent the state more compactly, linking predicates
that are needed for the execution of an action or that are
obtained as a result of the action execution. The features
in Fc are built by combining two or more predicates that
produce a new (more compact) predicate representing the
combined concept. For example, from the combination of
predicates (at-robot ?l) and (at ?p ?l), the new
combined predicate (same-location-as-robot ?p
?l) expresses that the robot is at the same location as a
package. Our hypothesis is that this compact representation
will facilitate identifying patterns from the plans.

In the context of logic programming, a combined predi-
cate can be obtained from the application of rules. For ex-
ample, the previous predicate could be obtained by applying
the following rule:

(same-location-as-robot ?p ?l) :-
(at-robot ?l), (at ?p ?l)

The set Fc comprises the basic predicates as well as the
combined predicates that are automatically built by means
of the following two types of rules:

1. Precondition rules: Let ASθ = 2pre(θ) be the power set
of the preconditions of the operator θ ∈ Θ, that is, the
set that comprises all the subsets that can be formed with
the preconditions of each operator in Θ. The precondition
rules are obtained by combining two or more predicates
of each set in ASθ. That is, a new rule is built for each
set S ∈ {ASθ : |S| ≥ 2}:

bi :- S where arg(bi) =
⋃

∀pj∈S

arg(pj) (1)

Assuming the set {p1, p2, . . . , pn} ∈ S, these predi-
cates are combined in the body of the rule (∀pj ∈ S),
name(bi) is the name of the new predicate, and arg(bi)
is the parameters of the new predicate, which is the union
of the parameters of predicates {p1, p2, . . . , pn}.

2. Combined rules: Given an operator θ, a combined rule
is created from the combination of a predicate bi obtained
from a precondition rule (built from the preconditions of
θ) and an effect basic predicate p that appears in the add
effects of the operator θ. Specifically, given bi and p, a
combined rule is built as follows:

ci :- bi, p where arg(ci) = arg(bi) ∪ arg(p) (2)

These rules try to capture the relationship between all the
predicates in the preconditions of each action and the rela-
tionship of these predicates with the effects of the action.

Let’s take the load operator of the TrolleyRobot domain
(see Figure 1), which has two preconditions ((at-robot
?l) and (at ?p ?l)) and one add effect ((in ?p)), to
show some examples of how the precondition and combined
rules can be built:

ASL = { ∅, {(at-robot ?l)}, {(at ?pkg ?l)},
{(at-robot ?l), (at ?p ?l)} }

Taking only those sets with a cardinality of 2 or higher,
the following predicate rule is obtained, according to Eq. 1:

(at_at-robot ?p ?l) :-
(at ?p ?l),(at-robot ?l)

This new predicate at at-robot and the add effect
are then used to build the next combined rule, according to
Equation 2:

(at_at-robot_in_goal ?p ?l) :-
(at_at-robot ?p ?l),(in_goal ?p)

States encoding
In order to apply inductive learning, the states traversed
when executing the observed plans are used as input sam-
ples for the decision tree learner, according to Figure 2. This
section will explain the steps needed to prepare these sam-
ples depending on which set of features we are using.

The inputs to the TILDE algorithm are several files that,
broadly speaking, include the knowledge base (set of ex-
amples), the language bias and the background knowledge.
Each example has a class label and a set of facts, which
encodes properties and relations that occur in the example.
The language bias specifies restrictions in the values of ar-
guments of the learning examples. Also, some background
knowledge may be provided, which allows deducing addi-
tional facts from those in the examples.

The first step is extending the precondition basic predi-
cates with two extra arguments: St (state) that links the lit-
erals belonging to the same example, and Pr (problem) that
links the samples belonging to the same problem. For exam-
ple, predicate (at ?p ?l) becomes at(St,Pr,P,L).
The effect basic predicates are extended only with the Pr
argument because they may denote the problem goal and do
not change for each specific state.

The knowledge base contains the learning examples.
Each example is described by a heading that denotes
the task name, the state identifier, the problem identi-
fier and the known class, which in our case, denotes
the operator to be executed in that state. For example,
trolleyrobot(1,1, move) indicates that this is the
first example in the first problem, and the corresponding op-
erator is move. Then, a set of extended facts (that is, instan-
tiated extended predicates as outlined above) describe the
state in which the operator would be applied. Figure 3 shows
the samples for one problem in the TrolleyRobot domain. As
can be observed, the facts in each example correspond to
the instantiation of the precondition basic predicates. Once
a goal is achieved, we change the precondition basic pred-
icates with the corresponding effect basic predicates, as in
example 4 in Figure 3. The final state reached after execut-
ing the whole plan is also included; in this case, as no action
will be executed in this state, we use the class ok.

The language bias specifies restrictions in the values of
arguments of the learning examples. In our case, it is au-
tomatically extracted from the definition of the features ex-
plained in the previous section and consists of the type and

Figure 3: Some samples for learning the by-one behaviour

access mode of all the features. For example, we can find the
following specifications for the basic predicates:

type(at_goal(problem,package,place)).
rmode(at_goal(+Pr,+Package,+Place)).
type(at(state,problem,package,place)).
rmode(at(+St,+Pr,+-Package,+-Place)).

In this case, predicate at comes directly from the precon-
dition basic predicates, and predicate at goal comes from
the effect basic predicates. If we are using Fc, additional
predicates are described in the language bias. In the follow-
ing snippet, predicate at at-robot comes from the pre-
condition rules, and predicate in at goal comes from the
combined rules.
type(in_at_goal(state,problem,package,place)).
rmode(in_at_goal(+St,+Pr,+-Package,+-Place)).
type(at_at-robot(state,problem,package,place)).
rmode(at_at-robot(+St,+Pr,+-Package,+-Place)).

The background knowledge contains the (automatically
derived) rules that can be used to generate the combined
predicates from the precondition and effect basic predicates.
For example:
at_at-robot(St,Pr,X,Y):-at(St,Pr,X,Y),

at-robot(St,Pr,Y).

in_at_goal(St,Pr,X,Y):-in(St,Pr,X),
at_goal(Pr,X,Y).

at-robot_in_at_goal(St,Pr,X,Y):-
at-robot(St,Pr,Y), in(St,Pr,X),
at_goal(Pr,X,Y).

This way, the combined features will be automatically
generated using the basic predicates in each example. It is
important to remark that this knowledge is only provided
when we are using the set of features Fc

Additionally, for each problem, the set of facts in G
are also included as background knowledge. For example,
at goal(3,obj21,pos1).

Construction of the relational decision tree
The language bias file also includes a statement
that indicates the task to solve. For example,
(predict(logtruck(+St,+Pr,-action)) spec-
ifies that the task is to predict the action of a given state
(+St) and problem (+Pr). Additionally, it is necessary to
list which classes can be predicted; for instance, in this case:
classes([load, unload, move, ok]), which
correspond to the operators in the domain plus the class ok
to indicate that the goal has been reached.

With all the information in the knowledge base, language
bias and background knowledge files, TILDE builds a rela-
tional decision tree that represents a set of disjoint rules of
action selection that compose the learned behaviour β. The
internal nodes of the tree contain the set of conditions under
which the decision can be made. The leaf nodes contain the
corresponding class.

Figure 4 shows the decision tree learned for the By-
One behaviour of the TrolleyRobot domain using the set
of features Fc. Regarding this tree, the first branch states
(at-robot in at goal(A,B,-D,-E) that when the
robot is at the same location E as the goal location of a pack-
age D that it is carrying, then the operator to be executed
is unload; this was the operator selected in ten over ten
examples of the knowledge base. The second branch says
that if a package F is at the same location G as the robot
(at at-robot(A,B,-F,-G)), but it is already carrying
another package H (in at goal(A,B,-H,-I)), then the
robot has to move to a different location and not to load
package F, because only one package can be carried at the
same time; this operator was selected five over five exam-
ples. However, if no package is inside the trolley, then the
operator to execute is load (selected ten over ten exam-
ples). The remaining conditions result in the move operator
or indicate that the goal has been reached. The accuracy of
this tree is 1.

Figure 5 shows the RDT learned for the ByOne behaviour
with Fb. In this case, the tree is simpler, but it is not able to
return the operator unload in any leaf. In fact, the first leaf
move is learned with 20 examples, but 10 examples corre-
spond to the unload class. This indicates that the RDT is
not capable of distinguishing in which situations should use
one operator or another. The accuracy of this tree is 0.75.

Finally, Figure 6 shows the RDT learned for the Load-
All behaviour with Fc. This behaviour consists in col-
lecting all the packages before starting to deliver them.
In this case, we can observe that, unlike with By-
One behaviour, when there is a package in the same
location of the robot (at at-robot(A,B,-D,-E)),
the selected operator is always load. Moreover, if
the robot is at the location where a package must be
delivered (at-robot in at goal(A,B,-F,-G)) but
there is still a package that has not been picked up
(at(A,B,-H,-I)), then the selected operator is move;
that is, the package F is not delivered because package H
has to be picked up first. Otherwise, package H is delivered.
In this case, we can observe that this leaf is supported by
17 unload examples and 1 move example. The remaining
conditions result in the move operator or indicate that the
goal has been reached. The accuracy of this RDT is 0.98.

Behaviour identification
This section details how to use the RDT to solve the be-
haviour identification problem. Given a behaviour library
ΓD for domain D and a sequence of observations O, the
goal is to find the behaviour β∗ that better matches these
observations. Then, β∗ is defined as follows:

β∗ = arg max
βi∈ΓD

prob(βi,O)

Function prob(βi,O) computes the probability that the
RDT of βi matches the observations in O:

prob(βi,O) =
|{ϕj : comp(θj , θjRDT),∀(ϕj , θj) ∈ O}|

|O|
Function comp(θj , θjRDT) returns whether the action θj

is compatible with θjRDT , which is the action predicted by
the RDT βi when state ϕj is provided as a sample. To ob-
tain this prediction, it is necessary first to encode the state ϕj

into sj as explained previously. Then, the encoded state sj is
given to the RDT, which returns the selected class, i.e. the
operator to apply in sj. Additionally, the RDT returns a list
of instantiated parameters that match the conditions in the
RDT that lead to the corresponding leaf. These parameters,
however, may not match directly with the parameters in θj .
For example, if θj = move(pos2, pos1) and θjRDT =
move(obj4, pos2, obj2, pos1), we can deduce
that both actions are compatible even though the parameters
do not match one-to-one.

We evaluate the compatibility between both sets of pa-
rameters as follows. Let θj = a(p1, . . . , pn) be the action
in the plan and θjRDT = aRDT (q1, . . . , qm) be the action
predicted by the RDT. Algorithm 1 returns whether θj and
θjRDT are compatible. The first condition establishes that
both operators must match and the set match will contain
the parameters of both actions. Thus, in the example, we
find two parameters in θjRDT that match the arguments of
θj : match = {pos1, pos2}. If match is empty, the actions
are not compatible. The sets remθj and remθjRDT

contain
the parameters of the action and the predicted action that
did not match in the previous step. If there is a parame-
ter pi ∈ remθj so that there exists qk ∈ remθjRDT

and
type(pi) = type(qk), then both actions are not compatible
because, in this case, the types match, but the values do not.
However, if there is not such a parameter qk then the actions
are compatible. For example, if θjRDT = move(obj4,
pos2), match = {pos2}; therefore, remθj = {pos1}
and remθjRDT = {obj4}; type(pos1) ̸= type(obj4)
and, consequently, both actions are compatible. If θjRDT =
move(pos4, pos2), then the actions would be not com-
patible.

The function prob(βi,O) returns the hitting rate of βi

with respect to the observations in O. Therefore, β∗ is the
RDT with the highest hitting rate. If two (or more) RDTs
return the same hitting rate, we assume that the behaviour is
not correctly identified as it is not possible to unequivocally
distinguish it among the collection of behaviours.

Experiments
This section describes the experiments we performed to an-
alyze the validity of our approach. We aim to check to which
extent the RDTs can identify specific behaviours. To do so,
we first need to create the corpus Ξβ , for each behaviour
β that will be part of the behaviour library ΓD for domain
D. To this end, we used synthetic data for experimentation,
meaning that the corpus for each behaviour is artificially
generated. As stated in Def. 3, a corpus is a list of plan-
ning tasks along with the solution plan of the agent for each

trolleyrobot(-A,-B,-C)
at-robot_in_at_goal(A,B,-D,-E) ?
+--yes: [unload] 10.0 [[load:0.0,unload:10.0,move:0.0,ok:0.0]]
+--no: at_at-robot(A,B,-F,-G) ?

+--yes: in_at_goal(A,B,-H,-I) ?
| +--yes: [move] 5.0 [[load:0.0,unload:0.0,move:5.0,ok:0.0]]
| +--no: [load] 10.0 [[load:10.0,unload:0.0,move:0.0,ok:0.0]]
+--no: at(A,B,-J,-K) ?

+--yes: [move] 9.0 [[load:0.0,unload:0.0,move:9.0,ok:0.0]]
+--no: in_at_goal(A,B,-L,-M) ?

+--yes: [move] 3.0 [[load:0.0,unload:0.0,move:3.0,ok:0.0]]
+--no: [ok] 3.0 [[load:0.0,unload:0.0,move:0.0,ok:3.0]]

Figure 4: RDT obtained for the ByOne behaviour with Fc

trolleyrobot(-A,-B,-C)
in(A,B,-D) ?
+--yes: [move] 20.0 [[load:0.0,unload:10.0,move:10.0,ok:0.0]]
+--no: at(A,B,-E,-F) ?

+--yes: att(A,B,F) ?
| +--yes: [load] 10.0 [[load:10.0,unload:0.0,move:0.0,ok:0.0]]
| +--no: [move] 7.0 [[load:0.0,unload:0.0,move:7.0,ok:0.0]]
+--no: [ok] 3.0 [[load:0.0,unload:0.0,move:0.0,ok:3.0]]

Figure 5: RDT obtained for the ByOne behaviour with Fb

Algorithm 1: compatible(θj , θjRDT)

1: if a ̸= aRDT then
2: return false
3: end if
4: match = {pi/pi ∈ {p1, . . . , pn}∧ qk ∈ {q1, . . . , qm} :

pi = qk}
5: if match == ∅ then
6: return false
7: end if
8: remθj = {p1, . . . , pn} −match
9: remθjRDT

= {q1, . . . , qm} −match
10: for all pi ∈ remθj do
11: if ∃qk ∈ remθjRDT

∧ type(pi) = type(qk) then
12: return false
13: end if
14: end for
15: return true

task. In order to generate the corpus for a new behaviour
in a basic domain D, we handcrafted an alternative domain
Di from D that represents that behaviour βi. Then, for each
Di, we executed several planning tasks obtaining the corre-
sponding corpus Ξi for such behaviour. We used the LAMA
planner (Richter and Westphal 2010) for solving the prob-
lems. Therefore, behaviour βi associated with the domain D
is exhibited in the corresponding corpus Ξi.

To learn a RDT from a corpus Ξi, the samples are ob-
tained as explained in Section States encoding and are used
as input to the RDT algorithm. Finally, we used a different
set of samples to perform the behaviour identification. For
each domain, two types of experiments were performed: (1)
Action prediction, which focuses on measuring the accuracy

of the function comp for the specific behaviours defined for
a domain and (2) Behaviour identification, which checks the
performance of the behaviour identification process.

Behaviours description
The TrolleyRobot domain is about moving packages be-
tween locations within a city with a single robot truck as
our focus is on simulating the behaviour of a single acting
agent. We define two behaviours for this domain:

1. Behaviour ByOne: it consists of transporting packages
to their destinations one at a time.

2. Behaviour LoadAll: it consists of loading all the pack-
ages onto the robot before starting to unload them.

The Kitchen domain is dedicated to solving the problem
of making tea using the available resources: water, cups, ket-
tle, and tea bags. To solve the task, the agent boils water us-
ing a kettle and prepares the tea using a tea bag, a clean cup,
and boiled water. The problem may involve preparing sev-
eral cups of tea. In this domain, we defined two behaviours:

1. Behaviour ByOne consists in collecting resources re-
quired to prepare one cup of tea, repeating the process
for a new cup of tea and so on.

2. Behaviour TakeFirst consists in collecting all the needed
resources before starting the making-tea process for all
the required cups

We also work with the classical Blocksworld domain
(Bacchus 2001). Aside from the behaviour comprised in the
original domain, we define two more behaviours:

1. Behaviour UnstackAll does not allow the robot hand to
stack a block onto another block before all existing stacks
have been disassembled. The robot hand first unstacks all

trolleyrobot(-A,-B,-C)
at_at-robot(A,B,-D,-E) ?
+--yes: [load] 17.0 [[load:17.0,unload:0.0,move:0.0,ok:0.0]]
+--no: at-robot_in_at_goal(A,B,-F,-G) ?

+--yes: at(A,B,-H,-I) ?
| +--yes: [move] 3.0 [[load:0.0,unload:0.0,move:3.0,ok:0.0]]
| +--no: [unload] 18.0 [[load:0.0,unload:17.0,move:1.0,ok:0.0]]
+--no: in_at_goal(A,B,-J,-K) ?

+--yes: [move] 16.0 [[load:0.0,unload:0.0,move:16.0,ok:0.0]]
+--no: at(A,B,-L,-M) ?

+--yes: [move] 1.0 [[load:0.0,unload:0.0,move:1.0,ok:0.0]]
+--no: [ok] 5.0 [[load:0.0,unload:0.0,move:0.0,ok:5.0]]

Figure 6: RDT obtained for the load all behaviour

Domain Training Testing Behaviour Fb acc Fc acc
Trolley 5 pr. 85 probs. ByOne 0.75 1
Robot 2-5 pck. 5-21 pck. LoadAll 0.42 0.98
Kitchen 4 pr. 43 probs. ByOne 0.66 0.97

1-3 cups 2-5 cups TakeFirst 0.81 1.0
Blocks 4 pr. 43 probs. UnstackAll 0.9 0.99
world 3-11 blc 3-94 blc LimitedTable 0.76 0.89

Table 1: Experiment settings

the blocks, placing them on the table, and then stacks the
blocks to get the target configuration.

2. Behaviour LimitedTable forces the robot to build a tow-
ers, limiting space on the table by only 2 additional
empty slots.

Results
This section presents the results from our experiments. Ta-
ble 1 shows the number and characteristics of the samples
for training and testing the RDTs and the obtained accuracy
when training with features Fb and Fc. In all cases, the accu-
racy of the RDT-Fc is higher than RDT-Fb, which indicates
that the combined features capture better the interactions be-
tween the state facts.

To analyze the results of the action prediction and the ac-
curacy of Algorithm 1, we take an observation (ϕj , θj) and
obtain the corresponding θjRDT using the RDF βi. We dis-
tinguish between two levels of predictions: operator predic-
tion, where a hit is counted when the action name of θj coin-
cides with the action name of θjRDT and params prediction,
where a hit is counted when function comb(θj , θjRDT) re-
turns true. We can observe in Table 2 that the accuracy of
RDT-Fc is higher in all cases than the accuracy of RDT-
Fb, saved for the params prediction of the behaviour Lim-
itedTable of the Blocksworld domain. This behaviour is
more complex than others because it does not impose an or-
dering in the action execution, but a preference for not using
more space than necessary on the table. Following the anal-
ysis of this result, we discovered that the RDT-Fb gives a
slightly higher accuracy because its rules are less restrictive
regarding the parameter selection than rules in the RDT-Fc.
These rules perform well on problem sizes similar to train-

Domain Behaviour Fx Operator Params.
pred. pred.

Trolley ByOne Fb 0.718 0.605
Robot Fc 0.968 0.936

LoadAll Fb 0.381 0.000
Fc 0.999 0.999

Kitchen ByOne Fb 0.284 0.181
Fc 0.958 0.543

TakeFirst Fb 0.780 0.540
Fc 0.976 0.889

Blocks UnstackAll Fb 0.964 0.661
World Fc 0.972 0.964

LimitedTable Fb 0.792 0.623
Fc 0.855 0.541

Table 2: Accuracy in action prediction for Fb and Fc

ing data, but with the growing difficulty of the problems, it
starts to affect negatively the RDT-Fc accuracy.

Our second experiment is to analyze the behaviour iden-
tification process using RDTs-Fc. Table 3 shows the results
obtained for each behaviour. We can observe that, in gen-
eral, the process correctly recognizes almost all observation
sequences. It is important to remark that the RDTs were
trained with few small problems (see Table 1), but tested
with much larger problems, which indicates that the RDTs
generalize well the behaviours. However, for the ByOne
behaviour in the kitchen domain and the LimitedTable be-
haviour in the blocksworld domain, the performance is re-
ally poor. This is a consequence of the low performance in
the action precondition accuracy (see Table 2), which im-
pacts the quality of the behaviour recognition results.

Conclusions
In this paper, we have presented a method for identifying
different behaviours of an agent when solving a planning
problem. Our approach defines two sets of features that are
automatically extracted from the planning domain. Both sets
describe a state using logical facts and are used to learn a Re-
lational Decision Tree. Our experiments show that, for most
of the domains and behaviours, and using the combined set
of features, we can predict the action to be executed in a

Domain Behaviour Operator Params.
pred. pred.

TrolleyRobot ByOne 1,000 1,000
LoadAll 1,000 1,000

Kitchen ByOne 1,000 0,049
TakeFirst 1,000 1,000

Blocksworld UnstackAll 0,860 0,930
LimitedTable 0,907 0,116

Table 3: Behaviour recognition accuracy

given state with an accuracy higher than 90%, and we can
perfectly identify the behaviour in 4 out of 6 behaviours.
However, we have detected some problems regarding the
parameters prediction in two behaviours, that need a deeper
analysis.

An advantage of our approach is that there is no need
for many samples to train the RDTs and reach good per-
formance. Moreover, training a new behaviour only requires
providing the knowledge base as the language bias and the
background knowledge are general for a given domain and
independent of the behaviour.

As for future work, we will study augmenting the set of
combined features, trying to include features that reflect neg-
ative situations in the state, for example, there is not any
package inside the truck. Additionally, we will perform ex-
periments with new domains and behaviours, to analyze the
generality of this approach.

Acknowledgments
This work is partially supported by the Spanish Ministry of
Science and Innovation project PID2021-127647NB-C22,
the FPI grant PRE2018-083896 and the EU ICT-48 2020
project TAILOR (No. 952215).

References
Bacchus, F. 2001. AIPS 2000 planning competition: The
fifth international conference on artificial intelligence plan-
ning and scheduling systems. AI magazine, 22(3): 47–47.
Blockeel, H.; and De Raedt, L. 1998. Top-down induction
of first-order logical decision trees. Artificial intelligence,
101(1-2): 285–297.
Blockeel, H.; De Raedt, L.; Jacobs, N.; and Demoen, B.
1999. Scaling up inductive logic programming by learning
from interpretations. Data Mining and Knowledge Discov-
ery, 3: 59–93.
Bouchabou, D.; Nguyen, S. M.; Lohr, C.; Leduc, B.; and
Kanellos, I. 2021. A Survey of Human Activity Recognition
in Smart Homes Based on IoT Sensors Algorithms: Tax-
onomies, Challenges, and Opportunities with Deep Learn-
ing. Sensors, 21(18): 6037.
Celorrio, S. J.; Aguas, J. S.; and Jonsson, A. 2019. A review
of generalized planning. Knowl. Eng. Rev., 34.
Chua, S.; Marsland, S.; and Guesgen, H. W. 2011. Be-
haviour Recognition in Smart Homes. In Walsh, T., ed.,
IJCAI 2011, 2788–2789. IJCAI/AAAI.

de la Rosa, T.; and Fuentetaja, R. 2017. Bagging strategies
for learning planning policies. Annals of Mathematics and
Artificial Intelligence, 79: 291–305.
De la Rosa, T.; Jiménez, S.; Fuentetaja, R.; and Borrajo, D.
2011. Scaling up heuristic planning with relational decision
trees. Journal of Artificial Intelligence Research, 40: 767–
813.
Degardin, B.; and Proença, H. 2021. Human Behavior Anal-
ysis: A Survey on Action Recognition. Applied Sciences,
11(18): 8324.
Duan, Y.; Andrychowicz, M.; Stadie, B.; Jonathan Ho, O.;
Schneider, J.; Sutskever, I.; Abbeel, P.; and Zaremba, W.
2017. One-Shot Imitation Learning. In Advances in Neu-
ral Information Processing Systems, volume 30.
Fitzpatrick, G.; Lipovetzky, N.; Papasimeon, M.; Ramı́rez,
M.; and Vered, M. 2021. Behaviour Recognition with Kin-
odynamic Planning Over Continuous Domains. Frontiers
Artif. Intell., 4: 717003.
Guesgen, H. W.; and Marsland, S. 2016. Using Contextual
Information for Recognising Human Behaviour. Int. J. Am-
bient Comput. Intell., 7(1): 27–44.
Hussein, A.; Gaber, M. M.; Elyan, E.; and Jayne, C. 2017.
Imitation Learning: A Survey of Learning Methods. ACM
Comput. Surv., 50(2).
Masters, P.; and Sardiña, S. 2019. Goal Recognition for Ra-
tional and Irrational Agents. In Elkind, E.; Veloso, M.; Ag-
mon, N.; and Taylor, M. E., eds., AAMAS 2019, 440–448.
International Foundation for Autonomous Agents and Mul-
tiagent Systems.
Masters, P.; and Sardiña, S. 2021. Expecting the unexpected:
Goal recognition for rational and irrational agents. Artif.
Intell., 297: 103490.
Meneguzzi, F.; and Pereira, R. F. 2021. A Survey on Goal
Recognition as Planning. In Zhou, Z., ed., IJCAI 2021,
4524–4532. ijcai.org.
Mirsky, R.; Keren, S.; and Geib, C. 2021. Introduction to
Symbolic Plan and Goal Recognition, volume 16 of Synthe-
sis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan & Claypool Publishers.
Ramı́rez, M.; and Geffner, H. 2009. Plan Recognition as
Planning. In Boutilier, C., ed., IJCAI 2009, 1778–1783.
Richter, S.; and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research, 39: 127–177.
Sitanskiy, S.; Sebastiá, L.; and Onaindia, E. 2020. Agent
behaviour recognition using text analysis. In ICAPS 2020
Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS).
Sitanskiy, S.; Sebastia, L.; and Onaindia, E. 2021. Learn-
ing Behaviour Based On Automated Feature Extraction. In
IJCAI 2021 Workshop on Generalization in Planning.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artif. Intell., 175(2): 615–647.
Sukthankar, G.; Geib, C.; Bui, H. H.; Pynadath, D. V.; and
Goldman, R. P., eds. 2014. Plan, Activity, and Intent Recog-
nition: Theory and Practice. Morgan Kaufmann.

