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Abstract

Instrumental variables (IVs) provide a powerful strategy for identifying causal
effects in the presence of unobservable confounders. Within the nonparametric
setting (NPIV), recent methods have been based on nonlinear generalizations of
Two-Stage Least Squares and on minimax formulations derived from moment
conditions or duality. In a novel direction, we show how to formulate a functional
stochastic gradient descent algorithm to tackle NPIV regression by directly mini-
mizing the populational risk. We provide theoretical support in the form of bounds
on the excess risk, and conduct numerical experiments showcasing our method’s
superior stability and competitive performance relative to current state-of-the-art
alternatives. This algorithm enables flexible estimator choices, such as neural
networks or kernel based methods, as well as non-quadratic loss functions, which
may be suitable for structural equations beyond the setting of continuous outcomes
and additive noise. Finally, we demonstrate this flexibility of our framework by
presenting how it naturally addresses the important case of binary outcomes, which
has received far less attention by recent developments in the NPIV literature.

1 Introduction

Causal inference from observational data presents unique challenges, primarily due to the potential for
confounding variables that can affect both outcomes and variables of interest. The unconfoundedness
assumption, crucial in this context, posits that all confounding variables are observed and properly
accounted for, allowing for an unbiased estimation of causal effects. However, in many real-world
scenarios, this assumption is difficult to satisfy. When this is the case, approaches that rely on
instrumental variables (IVs) — quantities that are correlated with the variable of interest (relevance
condition), do not affect the outcome in any other way (exclusion condition) and are independent
of the unobservable confounders — offer a way to identify causal effects even when unobserved
confounders exist. As a concrete example, suppose we want to estimate the impact of years of
education on earnings. Most likely, there are unobservable factors, such as omitted ability, affecting
both the decision to study and income. In this case, changes in compulsory schooling laws could be
used as an instrument [2].
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While traditional parametric approaches to IV regression often require assumptions about the relation-
ships between variables that may not hold in practice, nonparametric IV (NPIV) models can adapt to
the intrinsic structure of the data, allowing for a more nuanced understanding of causal relationships.
For this reason, there has been a recent boost of new algorithms applied to the NPIV estimation
problem and its theoretical properties. The challenge is that NPIV estimation is an ill-posed inverse
problem [28, 8, 9], and recent methods aim to incorporate developments from predictive models, e.g.,
deep learning and kernel methods, while also accounting for the particular structure of the inverse
problem at hand.

In this work, we deviate from previous approaches to NPIV estimation which end up minimizing
empirical versions of the populational risk [28, 19, 34, 25], or trying to satisfy large collection of
empirical moment restrictions [18, 24, 6]. In our formulation, we compute an analytical functional
gradient for the actual populational risk. After formulating a consistent estimator for this gradient,
we apply stochastic gradient descent in a certain function space to recover the effect of X on the
outcome Y .

The rest of the paper is structured as follows. We conclude Section 1 with a thorough discussion of the
previous works on NPIV and our contributions. Next, we provide the basic setting for NPIV regression
in Section 2. In Section 3 we detail the associated risk minimization problem and analytically
compute its stochastic gradient. Based on these results, we introduce our method in Section 4, with
accompanying practical considerations and theoretical support. Numerical experiments are reported
on Section 5, where our algorithm is compared to state-of-the-art machine learning methods for
NPIV. Finally, in Section 6 we study the case of binary outcomes, showing how our method naturally
addresses this scenario under the current assumptions made in the literature. Proofs of all our results
are presented in Appendix A, while Appendix B contains formal comparisons with existing methods
and Appendix C provides additional implementation details.

1.1 Previous work

Many traditional approaches to IV estimation, like the Two-Stage Least Squares (2SLS) method, rely
on linear models for treatment estimation and counterfactual prediction functions (see [3, 40] for a
thorough survey of classical IV estimation). These approaches, while efficient for estimating policy
effects, depend on strong parametric assumptions. Nonparametric extensions of 2SLS then attempt
to introduce model flexibility by utilizing linear projections onto known basis or sieve functions (as
in [28, 27]) or kernel-based estimators (as in [17, 13]). However, these traditional methods face
limitations in large, high-dimensional datasets as they are sensible to the particular choice of sieve
functions and number of basis elements (see the discussion in [19]).

In order to propose a scalable method, [19] introduces DeepIV, a generalization of 2SLS which
employs neural networks in each step of the two-stage procedure. Although their algorithm is more
suitable for high dimensional data, the authors do not provide theoretical guarantees. Deep learning
estimators have also appeared within methods focused on the Generalized Method of Moments
(GMM), which leverage moment restrictions imposed by the IV to obtain an estimator. In [6], the
authors propose DeepGMM, a reformulation of the optimal weighted GMM problem as a minimax
problem. They rely on the identification assumption to demonstrate consistency results, provided
their algorithm is able to nearly solve a smooth zero-sum game.

In another direction, some methods exploit developments in the RKHS2 literature and apply them
to NPIV estimation. The KIV algorithm in [34] transforms the problem into two-stage kernel ridge
regression through a kernel mean embedding of the distribution of the endogenous covariate given the
instrument. In [25], the authors take insight from two-stage problems in stochastic programming and
propose DualIV, an algorithm which uses Fenchel duality to transform NPIV into a convex-concave
saddle point problem, for which a closed-form RKHS algorithm is presented. Inspired by the gradient
boosting literature, [4] propose an algorithm that iteratively fits base learners in a boosting fashion,
but still needs a post-processing step where the basis functions are held fixed and the weights are
optimized.

We point out that most of the cited works have some flexibility issues. While kernel based methods
impose a higher computational cost as the number of data points grows and may exhibit poor
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performance in high dimensions [35, 25], Deep Learning based algorithms can suffer from high
variance and instability if the amount of available data is small, as was seen in [25, 4].

Furthermore, in many applications of interest, ranging from consumer behavior [30] to epidemiology
[23], the outcome is binary; for a review, see [12]. In these scenarios, a straightforward application
of the quadratic loss function would result in a misspecification of the problem, potentially leading
to erroneous estimates. The above NPIV methods strongly leverage the additive structure of the
problem formulation, and proper extensions would require significant effort, a detailed discussion is
presented in Appendix B. Traditionally, a common approach for binary outcomes is using a semi-
parametric specification based on control function [20]. This allows for nonparametric estimation of
the distribution of the unobservables together with identification of the causal function’s parameters
[1, 32, 14, 11]. To the best of our knowledge, the only work that addresses fully nonparametric IV
for binary outcomes is [10], which proposes an estimation strategy based on Tikhonov regularization.

1.2 Contribution

We propose a novel algorithm for NPIV estimation, SAGD-IV, which works by minimizing the
populational risk through stochastic gradient descent in a function space. Under mild assumptions, we
provide finite sample bounds on the excess risk of our estimator. Empirically, we demonstrate through
numerical experiments that SAGD-IV achieves state-of-the-art performance and better stability.

We have the freedom to employ a variety of supervised learning algorithms to form the estimator of
the stochastic gradient, most notably kernel methods and neural networks. This means our estimator
could be tailored to specific scenarios where a particular method is more likely to perform well.
Furthermore, our algorithm is naturally able to handle non-quadratic loss functions, which allows us
to extend both our algorithm and theoretical guarantees to the binary outcomes case.

2 Problem setup and notation

Following most of the recent literature, we start by presenting the problem setup under the additive
noise assumption to demonstrate our methodological contribution. Then, in Section 6, we analyze the
important case of binary outcomes, a prototypical example of when this assumption does not hold.

Let (Ω,A,P) be the underlying probability space, and let X be a random vector of covariates taking
values in X ⊆ RdX . We assume that the response variable Y is generated according to

Y = h⋆(X) + ε, (1)

where ε ∈ L2(Ω,A,P) and satisfies E[ε] = 0. We denote by PX the distribution of the r.v. X and
assume that the structural function h⋆ belongs to L2(X ,B(X ),PX)3, which we simply denote by
L2(X). This is a Hilbert space with norm and inner product given by ∥h∥2L2(X) = E[h(X)2] and
⟨h, g⟩L2(X) = E[h(X)g(X)]. We assume that E[ε | X] ̸= 0, that is, some covariates are endogenous.
Finally, we assume the existence of a random vector Z, taking values in Z ⊆ RdZ and satisfying

1. E[ε | Z] = 0, the exclusion restriction;

2. X ⊥̸⊥ Z, i.e., Z is relevant.

This makes Z a valid instrumental variable. We define PZ and L2(Z) analogously to PX and L2(X).
We further consider the mild assumption that X and Z have a joint density denoted by pX,Z . Our
goal is to estimate h⋆ based on i.i.d. samples from the joint distribution of X,Z and Y .

As we have listed in the introduction, there are a few different approaches to estimate h⋆. We will
follow here the original one of [28], in which we take the expected value of Equation (1) conditioned
on Z to get

E[Y | Z] = E[h⋆(X) | Z]. (2)

This motivates us to define the conditional expectation operator P : L2(X)→ L2(Z) given by

P[h](z) = E[h(X) | Z = z].

3We denote by B(X ) the Borel σ-algebra in X .
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This is a bounded linear operator which satisfies ∥P∥op ≤ 1 (the operator norm) and whose adjoint
P∗ : L2(Z)→ L2(X), that is also a bounded linear operator, is given by P∗[g](x) = E[g(Z) | X =
x]. Defining r(Z) = E[Y | Z], we can then rewrite Equation (2) as

r = P[h⋆]. (3)
This is a Fredholm integral equation of the first kind [22] and, as such, poses an ill-posed linear
inverse problem.

In this context, a common assumption [13, 7, 34] made about P is compactness. We also need it
here, noting that compact operators with infinite dimensional range provide prototypical examples
of ill-posed inverse problems [8]. However, we wish to phrase this assumption in a different, albeit
equivalent [8], form:
Assumption 2.1. Let

Φ(x, z) =
pX,Z(x, z)

pX(x)pZ(z)
(4)

denote the ratio of joint over product of marginals densities for the X and Z variables, with the
convention that 0/0 = 0. We assume that this kernel has finite L2(PX ⊗ PZ) norm, that is,

∥Φ∥2L2(PX⊗PZ) =

∫
X×Z

Φ(x, z)2pX(x)pZ(z) dxdz <∞.

This is equivalent to assuming that the conditional expectation operator P : L2(X) → L2(Z) is
Hilbert-Schmidt and, hence, compact.

3 The risk and its gradient

Motivated by Equation (3), we introduce a pointwise loss function ℓ : R×R→ R and define the
associated populational risk measure4 R : L2(X)→ R as

R(h) = E[ℓ(r(Z),P[h](Z))]. (5)
The example the reader should keep in mind is the squared loss function ℓ(y, y′) = 1

2 (y − y′)2,
although, as we will see, other examples could be used depending on the particular regression setting.
Our goal is to solve the NPIV regression problem by solving

inf
h∈H
R(h),

where H is a closed, convex, bounded subset of L2(X) such that h⋆ ∈ H. We also require 0 ∈ H.
For future reference, we state these conditions:
Assumption 3.1 (Regularity ofH). The setH is a closed, convex, bounded subset of L2(X), which
contains the origin and satisfies h⋆ ∈ H.

The only part of this assumption which concerns the data generating process is h⋆ ∈ H, which
essentially means that the setH is large enough.5

ForH satisfying Assumption 3.1, we let D ≜ diamH <∞, so that ∥h∥ < D for every h ∈ H. One
possible choice for the setH is the L∞(X) ball contained in L2(X), that is

H =
{
h ∈ L2(X) : ∥h∥∞ ≤ A

}
, (6)

where A > 0 is a constant. This set is obviously convex and bounded in the L2(X) norm. It can be
shown that it is also closed, but not necessarily compact, a restriction on the search set imposed in
[28]. This can be seen by taking a ∥·∥∞–bounded orthonormal basis for L2(X), if one exists. We
denote by projH the orthogonal projection ontoH. In caseH is given by Equation (6), we have the
explicit formula6 projH[h] = (h+ ∧A)− (h− ∧A).
We now state all the assumptions needed on the pointwise loss ℓ. We denote by ∂2 a partial derivative
with respect to the second argument.

4We note that a more fitting name for this object would be projected risk measure, since we are projecting
h onto the instrument space before applying the loss function. Concerning this matter, we chose to follow the
terminology used in the current NPIV literature, which refers to this projected risk simply as “risk”.

5This part could be generalized to (h⋆+kerP)∩H ̸= ∅, so that there exists h ∈ H such that R(h) = R(h⋆),
without prejudice to any of the theoretical results.

6Here we use the notation h+ = max{h, 0}, h− = (−h)+ and a ∧ b = min{a, b}.
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Assumption 3.2 (Regularity of ℓ).

1. The function ℓ : R×R→ R is convex and C2 with respect to its second argument;

2. The function ℓ has Lipschitz first derivative with respect to the second argument, i.e., there
exists L ≥ 0 such that, for all y, y′, u, u′ ∈ R we have

|∂2ℓ(y, y′)− ∂2ℓ(u, u′)| ≤ L(|y − u|+ |y′ − u′|).

Some useful facts which follow immediately from these assumptions are presented in Appendix A.

3.1 Gradient computation

Here we divert from the previous literature and proceed to compute a functional stochastic gradient for
the riskR. A similar idea has been considered by [15] in the context of statistical inverse problems,
however, their setup assumes that the operator posing the inverse problem is known, which greatly
simplifies the analysis and cannot be directly applied to the NPIV problem. We start by providing an
analytical formula for∇R(h):
Proposition 3.3. The riskR is Fréchet differentiable and it’s gradient satisfies

∇R(h) = P∗[∂2ℓ(r(·),P[h](·))] ∈ L2(X), (7)

where P∗ : L2(Z)→ L2(X) is the adjoint of the operator P .

Both P and P∗ are unknown operators which commonly appear in NPIV estimation [8, 13], with
Nadaraya-Watson kernels [26, 39] being a classical option for estimating them. However, the fact that
they are nested in Equation (7) is undesired, and may impose extra computational costs, especially
considering that ∂2ℓ is nonlinear in the second argument for non-quadratic losses. We overcome this
difficulty by leveraging the following characterization of the gradient:

Corollary 3.4. The gradient of the populational risk satisfies

∇R(h)(x) = E[Φ(x, Z)∂2ℓ(r(Z),P[h](Z))], (8)

where Φ is defined as in Equation (4).

The benefit of our approach is that Equation (8) enables a more computationally efficient way to
estimate the gradient of the risk functional, as we explain next. From Equation (8), for a given
x ∈ X , the random variable Φ(x, Z)∂2ℓ(r(Z),P[h](Z)) is an unbiased stochastic estimator of
∇R(h)(x). Our stochastic approximate gradient is then built using estimators Φ̂, r̂ and P̂ of Φ, r
and P respectively. With this notation, given a sample Z, we consider

∇̂R(h)(x) = Φ̂(x, Z)∂2ℓ(r̂(Z), P̂[h](Z)). (9)

We have then substituted the estimation of the operator P∗ by the simpler problem of estimating
the ratio of densities Φ and computing its product with ∂2ℓ(r̂(Z), P̂[h](Z)). Moreover, density
ratio estimation is an area of active research within the machine learning community, which makes
developments in this direction immediately translatable into benefits to our method.

4 Algorithm: implementation and theory

In Algorithm 1 we present Stochastic Approximate Gradient Descent IV (SAGD–IV)7, a method for
estimating h⋆ using the approximation given by Equation (9).

7The nomenclature Stochastic Approximate Gradient Descent (SAGD) first appeared in another paper
addressing an unrelated topic, [31], where Langevin dynamics are employed to obtain approximate gradients
when samples of the underlying random variable are not available.
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Algorithm 1 SAGD–IV

Input: Samples
{
(zm)Mm=1

}
. Estimators Φ̂, r̂ and P̂ . Sequence of learning rates (αm)Mm=1. Initial

guess ĥ0 ∈ H.
Output: ĥ
for 1 ≤ m ≤M do

Set um = Φ̂(·, zm)∂2ℓ
(
r̂(zm), P̂[ĥm−1](zm)

)
Set ĥm = projH

[
ĥm−1 − αmum

]
end for
Set ĥ = 1

M

∑M
m=1 ĥm

Remark 4.1. We note the fact that the internal loop of Algorithm 1 only needs samples from the
instrumental variable Z to unfold.

For our theoretical analysis, all we require of the estimators of Φ, r and P is the following:

Assumption 4.2 (Properties of Φ̂, r̂ and P̂).

1. Φ̂, r̂ and P̂ are computed using a datasetD, composed ofN samples of the triplet (X,Z, Y ),
which are independent from the Z samples used in Algorithm 1.

2. r̂ ∈ L2(Z) a.s.;

3. P̂ : L2(X)→ L2(Z) is a bounded linear operator a.s.

4. ∥Φ̂∥∞ ≜ ess sup
(x,z)∈X×Z

|Φ̂(x, z)| <∞. This implies, in particular, ∥Φ̂∥L2(PX⊗PZ) <∞.

4.1 On computing P̂, Φ̂ and r̂

Algorithm 1 is purposefully agnostic to how the estimators P̂, Φ̂ and r̂ are obtained, in order to
provide the user with sufficient modeling flexibility. In what follows, we will explain the options we
considered for accomplishing these tasks in the experiments section. A more detailed description is
given in Appendix C.

Estimating Φ is a interesting problem in itself as it is a ratio of densities, and it has drawn significant
attention from the Machine Learning community. Here, we consider kernel and neural network
methods, regarded as the state of the art. On the other hand, not many options are available to compute
P̂ , which means estimating all possible regression of functions of X over Z. Here, we chose to use
kernel mean embeddings, as was developed [34]. Finally, estimating r is the simplest procedure in
our method as it is a regression of Y over Z. Similarly to Φ, we also consider kernel and neural
network methods.

Based on these options, we decided to specify two variants of SAGD-IV built upon how we compute
Φ̂ and r̂: Kernel SAGD-IV uses RKHS methods for both estimators, while Deep SAGD-IV employs
neural network estimators in these two tasks. The method for computing P̂ is kernel mean embeddings
in both variants.

Under a big data scenario, the dependence of our algorithm on kernel methods to estimate the P
operator could be a limitation. However, we are able to avoid this issue for the estimation of Φ and r.
Nonetheless, since our algorithm is agnostic to the specific estimator of P , we could take advantage
of any recent developments in the literature of operator-estimation problems.

4.2 Risk bound

Since we are directly optimizing the projected populational risk measure, we are able to provide
guarantees for R(ĥ) in mean with respect to the training data z1:M = {z1, . . . ,zm}. Our main
result is the following:
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Theorem 4.3. Let ĥ0, . . . , ĥM−1 be generated according to Algorithm 1. Assume that ℓ satisfies
Assumption 3.2,H satisfies Assumption 3.1, Φ satisfies Assumption 2.1 and Φ̂, r̂, P̂ satisfy Assump-
tion 4.2. Then, if we let ĥ = 1

M

∑M
m=1 ĥm−1, the following bound holds:

Ez1:M

[
R(ĥ)−R(h⋆)

]
≤ D2

2MαM
+

ξ

M

M∑
m=1

αm + τ
√
ζ, (10)

where

ξ =
3

2
∥Φ̂∥2∞

(
C2

0 + L2∥r̂∥2L2(Z) + L2D2∥P̂∥2op
)
, ζ = ∥Φ− Φ̂∥2L2(PX⊗PZ) + ∥r − r̂∥2L2(Z) + ∥P − P̂∥2op,

τ = 2Dmax

{
3(C2

0 + L2E[Y 2] + L2D2), 2L2∥Φ̂∥2∞, 2L2D2∥Φ̂∥2∞
}
.

It is productive to analyze the RHS of the bound in Equation (10) more carefully. If we choose the
sequence (αm) to satisfy the usual assumptions

MαM →∞ and
1

M

M∑
m=1

αm → 0

as M →∞, then the first two terms in the sum vanish as M grows. The last term appears due to the
fact that we do not know Φ, r nor P , but it explicitly quantifies how the estimation errors of Φ̂, r̂ and
P̂ come together to determine the quality of the final estimator. Furthermore, it converges to zero if
the chosen estimation methods are consistent.8

Remark 4.4 (Y versus r(Z)). Since r = P[h⋆], one should compute the risk as in Equation (5),
comparing P[h](Z) with r(Z). However, most works on NPIV [28, 34, 25] compare P[h](Z)
directly with Y instead of r(Z). In Appendix E we discuss this difference and its relationship with
the estimator r̂.
Remark 4.5 (Consistency for h∗). Since the NPIV regression is an ill-posed inverse problem, consis-
tency of our algorithm is a very challenging and interesting research question, and it would require
additional assumptions. For instance, under strong convexity of the populational risk measure, it is
well known that consistency is obtained if the excess risk converges to zero. It can be shown that, for
the quadratic loss, strong convexity of the populational risk is equivalent to P having a continuous
inverse.

5 Numerical experiments

Here, we compare the performance of the two variants of SAGD-IV explained in Section 4.1, Kernel
SAGD-IV and Deep SAGD-IV, with that of five other notable algorithms for estimating h⋆ in the
context of continuous responses: KIV, DualIV, DeepGMM, DeepIV and 2SLS. Hyperparameters and
other implementation details are discussed in Appendix C.

5.1 Continuous response

To study the performance of our estimator in a continuous response setting, we used the data
generating process from [6], which we recall below:

Y = h⋆(X) + ϵ+ δ, X = Z1 + ϵ+ γ, (11)

Z = (Z1, Z2) ∼ Uniform([−3, 3]2), ϵ ∼ N (0, 1), γ, δ ∼ N (0, 0.1).

Thus, the confounding variable is ϵ and within this specification, four options for h⋆ are considered:

step : h⋆(x) = 1{x > 0}, abs : h⋆(x) = |x|,
linear : h⋆(x) = x, sin : h⋆(x) = sin(x).

8If one desires to substitute the ζ term for estimator-specific bounds, rates for ∥Φ− Φ̂∥L2(PX⊗PZ) can be
found in [36, Theorem 14.16], while bounds for ∥P − P̂∥op are present in [34, Theorem 2], [38, Theorem 5]
and [33, Proposition S5]. The term ∥r − r̂∥L2(Z) is the risk for a simple real-valued regression problem, and
various rates are available depending on the chosen regressor and the degree of smoothness assumed on r [16].
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We adjusted each estimator using 3000 random variable samples (see Remark C.1), and tested them
on 1000 samples of X . For each method and response function, we evaluated predictions over
20 realizations of the data. Log mean squared error (MSE) box plots and plots of each method’s
estimator for a randomly chosen realization of the data are displayed in Figure 1.

−1

0

1

2

3

Step

−1.5

−1.0

−0.5

0.0

0.5

Abs

Kern
el

SAGD-IV

Deep
SAGD-IV KIV

Deep
GMM

Deep
IV

TSLS

Dual IV

Kern
el

SAGD-IV

Deep
SAGD-IV KIV

Deep
GMM

Deep
IV

TSLS

Dual IV

Kern
el

SAGD-IV

Deep
SAGD-IV KIV

Deep
GMM

Deep
IV

TSLS

Dual IV

Kern
el

SAGD-IV

Deep
SAGD-IV KIV

Deep
GMM

Deep
IV

TSLS

Dual IV

−6

−4

−2

0

Linear

Kern
el

SAGD-IV

Deep
SAGD-IV KIV

Deep
GMM

Deep
IV

TSLS

Dual IV

Kern
el

SAGD-IV

Deep
SAGD-IV KIV

Deep
GMM

Deep
IV

TSLS

Dual IV

Kern
el

SAGD-IV

Deep
SAGD-IV KIV

Deep
GMM

Deep
IV

TSLS

Dual IV

Kern
el

SAGD-IV

Deep
SAGD-IV KIV

Deep
GMM

Deep
IV

TSLS

Dual IV

−1.5

−1.0

−0.5

0.0

Sin

O
u

t
of

sa
m

p
le

lo
g-

M
S

E

0

5

S
te

p

Data Kernel SAGD-IV Deep SAGD-IV KIV DeepGMM DeepIV TSLS Dual IV

0

5

A
b

s

0

10

L
in

ea
r

−5 0 5

−2.5

0.0

2.5

S
in

−5 0 5 −5 0 5 −5 0 5 −5 0 5 −5 0 5 −5 0 5 −5 0 5

Figure 1: (Left) Log MSE for each model under different response functions. (Right) Plots of each
method’s estimator in a randomly selected realization of the data. On the left column, we have Y
observations in green and the true structural function in black.

The first thing we can notice from Figure 1 is that TSLS dominates the linear scenario, as expected,
but behaves poorly in all others, showing the importance of nonlinear approaches.

On a second note, both variants of SAGD-IV performed competitively in all scenarios, with the
KIV method being a strong competitor in step and sin. However, its performance was significantly
worse for the abs response function. Additionally, it is worth noticing the competitive MSEs of
the deep learning variant of SADG-IV, which performed consistently better than the other two
neural-network-based algorithms.

Furthermore, an important observation is that, within kernel methods, Kernel SAGD-IV had the best
stability/performance tradeoff, having the smallest variance across scenarios. In contrast, DualIV
exhibited the highest variance. This can be explained by considering DualIV’s hyperparameter selec-
tion algorithm [25, Section 4]. In order to perform cross-validation to choose the best regularization
parameters, the algorithm requires another (different) regularization parameter as an input, which
must be chosen without any guidance. The authors state that it was set to a “small constant”. This can
explain the poor performance, given the importance of regularization parameters for ridge regression
algorithms. We note our method does not suffer from this problem.

6 Binary Response

Here we outline how our methodology can be applied to a scenario where the quadratic loss is not the
natural option: that of binary response models. We show that, by simply modifying the loss ℓ in the
risk definition and, consequently, in the algorithm, we are able to attack this problem as it is currently
formulated in the literature. This is in clear contrast with recent methods for NPIV estimation, which,
when applicable, would require significant effort. We discuss the limitations of current methods and
possible extensions in Appendix B.

In the binary response model we consider, the only change we need to make to the data generating
process is the following:

Y = 1 {Y ⋆ > 0} ,
where Y ⋆ = h⋆(X) + ε. That is, we observe a signal which indicates if the response variable is
greater than the threshold zero. Although simple, this type of model captures important applications
as, for instance, in economics/consumer behavior, where Y ∗ is the utility the consumer gets from
buying a product and we only observe Y , the buy/no buy decision. The function h⋆ captures the
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impact of the variable X on the consumers’ utility. As usual in the literature, h⋆ is interpretable
relative to the scale parameter of ε. Here, X,Z and ε satisfy the same assumptions as before.

In order to use one of the available NPIV regression methods in the literature, we must first identify a
suitable risk functional, of the form shown in Equation (5). Define η = h⋆(X)− E[h⋆(X) | Z] + ε,
so that E[η | Z] = 0 and

Y = 1 {E[h⋆(X) | Z] + η > 0} .
Denoting by Fη|Z the conditional distribution function of η given Z, we find

E[Y | Z] = P [E[h⋆(X) | Z] + η > 0 | Z] = 1− Fη|Z(−E[h⋆(X) | Z]).
Assume that the distribution of η given Z is always symmetric around zero, so that 1− Fη|Z(−y) =
Fη|Z(y). We then have r(Z) = Fη|Z(P[h⋆](Z)). Notice that any notion of risk for a given
h ∈ L2(X) would have to compare r(Z) and P[h](Z) through Fη|Z , which is an unknown function.
Hence, without making further assumptions, it is not clear how to setup the risk in a useful way,
which hinders current NPIV methods from tackling the problem.

As far as we know, the only assumption in the literature which allows one to be fully nonparametric
in h⋆ within the binary outcomes setting was first introduced in [10]. It posits that η is independent of
Z, and has known distribution function F . Since η = Y ⋆−E[Y ⋆ | Z], it is already uncorrelated with
any function of Z. The assumption extends this to independence, and makes available the resulting
distribution function.

Under this assumption, we conclude that r(Z) = F (P[h⋆](Z)) and, by the negative log-likelihood
of the Bernoulli distribution, a natural candidate for ℓ is

ℓ(y, y′) = BCE(y, F (y′)),

where BCE is the binary cross entropy function: BCE(p, q) = −[p log q+(1−p) log(1− q)]. Then,
the risk becomes

R(h) = E[BCE(r(Z), F (P[h](Z)))]. (12)
Whereas it is obvious that the quadratic loss satisfies Assumption 3.2, it is not clear whether the same
is true for the loss ℓ(y, y′) = BCE(y, F (y′)). Nevertheless, if F (x) = σ(x) ≜ 1/(1 + exp(−x/β)),
the c.d.f. of a logistic distribution with scale parameter β, one can verify that Assumption 3.2 holds.

6.1 Numerical Experiment

We mimicked the continuous response DGP making the necessary modifications:

Y = 1{E[h⋆(X) | Z] + η > 0}, X = Z1 + η + γ,

Z = (Z1, Z2) ∼ Uniform([−3, 3]2), η ∼ Logistic(0, β) γ ∼ N (0, 0.1).

Here, β is a scale parameter which was set to
√
0.1. For response functions, we analyzed the sin and

linear cases, since we must compute E[h⋆(X) | Z] analytically in order to generate the data. This
computation is easy for the selected scenarios, and we have

E[X | Z = z] = z1, E[sin(X) | Z = z] =
βπ · e− 0.1

2

sinh(βπ)
sin(z1)

As with the continuous response setting, we present log MSE results and samples from the resulting
estimators in Figure 2.

We can immediately see that our kernel based estimator performed remarkably well for both response
functions. The binary setup is significantly more challenging, as we are reducing the continuous
response Y to a simple binary signal. Kernel SAGD-IV obtained results which are, on average, on
par with the continuous response scenario and Deep SAGD-IV had more difficulty uncovering the
true structural function.

7 Conclusion

In this work, we proposed SAGD-IV, a flexible framework for performing nonparametric instrumental
variable regression. It is based on a novel way to tackle the NPIV problem, in which we formulate
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Figure 2: (Left) Log MSE distribution in the binary response DGP. (Right) Plots of each method’s
estimator in a randomly selected realization of the data for the binary response DGP. On the left
column, we have samples from the binary response variable Y in green and the true structural function
in black.

the minimization of the populational risk as functional stochastic gradient descent. We are then able
to naturally consider non-quadratic loss function and incorporate various regression methods under
one formulation. Under mild assumptions, we provided bounds on the excess risk of our estimator.
Furthermore, we empirically demonstrated superior stability and state-of-the-art MSEs for continuous
outcomes, as well as a promising performance for the binary regression setup.
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A Proofs

Proposition A.1. Assume that ℓ satisfies Assumption 3.2. Then:

1. Setting C0 = |∂2ℓ(0, 0)|, we have |∂2ℓ(y, y′)| ≤ C0 + L(|y|+ |y′|), for all y, y′ ∈ R;

2. The map f 7→ ∂2ℓ(r(·), f(·)) from L2(Z) to L2(Z) is well-defined and L-Lipschitz.

3. The second derivative with respect to the second argument is bounded:
∣∣∂22ℓ(y, y′)∣∣ ≤ L for

all y, y′ ∈ R.

Proof.

1. Write ∂2ℓ(y, y′) = ∂2ℓ(y, y
′)− ∂2ℓ(0, 0) + ∂2ℓ(0, 0) and apply the triangle inequality as

well as Assumption 3.2 Item 2.

2. From the previous item we know this map is well-defined. If f and g belong to L2(Z), we
have

∥∂2ℓ(r(·), f(·))− ∂2ℓ(r(·), g(·))∥2L2(Z) = E
[
|∂2ℓ(r(Z), f(Z))− ∂2ℓ(r(Z), g(Z))|2

]
≤ L2E

[
|f(Z)− g(Z)|2

]
= L2∥f − g∥2L2(Z).

3. It follows directly from Assumption 3.2 Item 2.

Proof of Proposition 3.3. We start by computing the directional derivative ofR at h in the direction
f , denoted by DR[h](f):

DR[h](f) = lim
δ→0

1

δ
[R(h+ δf)−R(f)]

= lim
δ→0

1

δ
E [ℓ(r(Z),P[h+ δf ](Z))− ℓ(r(Z),P[h](Z))]

= lim
δ→0

1

δ
E [ℓ(r(Z),P[h](Z) + δP[f ](Z))− ℓ(r(Z),P[h](Z))]

= lim
δ→0

1

δ
E

[
δ∂2ℓ(r(Z),P[h](Z)) · P[f ](Z)

+
δ2

2
∂22ℓ(r(Z),P[h+ θf ](Z)) · P[f ](Z)2

]
= E [∂2ℓ(r(Z),P[h](Z)) · P[f ](Z)]

+ lim
δ→0

E

[
δ

2
∂22ℓ(r(Z),P[h+ θf ](Z)) · P[f ](Z)2

]
= E [∂2ℓ(r(Z),P[h](Z)) · P[f ](Z)] ,

where θ ∈ (0, δ) is due to Taylor’s formula. The last step is then due to Proposition A.1 Item 3. We
can in fact expand the calculation a bit more, as follows:

DR[h](f) = E [∂2ℓ(r(Z),P[h](Z)) · P[f ](Z)]
= ⟨∂2ℓ(r(·),P[h](·)),P[f ]⟩L2(Z)

= ⟨P∗[∂2ℓ(r(Z),P[h](·))], f⟩L2(X).

This shows thatR is Gâteaux-differentiable, with Gâteaux derivative at h given by
DR[h] = P∗[∂2ℓ(r(·),P[h](·))].

By Proposition A.1 Item 2, we have that h 7→ DR[h] is a continuous mapping from L2(X) to L2(X),
which implies thatR is also Fréchet-differentiable, and both derivatives coincide [29]. Therefore,

∇R(h) = P∗[∂2ℓ(r(·),P[h](·))]. (13)
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Proof of Corollary 3.4. From Proposition 3.3 we know that

∇R(h)(x) = P∗[∂2ℓ(r(·),P[h](·))](x) = E[∂2ℓ(r(Z),P[h](Z)) | X = x]

=

∫
Z
pZ|X(z | x)∂2ℓ(r(z),P[h](z)) dz =

∫
Z

pX,Z(x, z)

pX(x)
∂2ℓ(r(z),P[h](z)) dz

=

∫
Z
pZ(z) ·

pX,Z(x, z)

pX(x)pZ(z)
∂2ℓ(r(z),P[h](z)) dz = E[Φ(x, Z)∂2ℓ(r(Z),P[h](Z))],

where we define Φ(x, z) = pX,Z(x, z)/(pX(x)pZ(z)) if pZ(z) > 0 and Φ(x, z) = 0 if pZ(z) = 0.
Notice we may assume that pX(x) > 0, since the set of x ∈ X such that this happens has probability
1, and∇R(h), being an element of L2(X), is only defined almost surely.

Before presenting the proof of Theorem 4.3, we need to prove two auxiliary lemmas. To lighten the
notation, the symbols ∥·∥ and ⟨·, ·⟩, when written without a subscript to specify which space they
refer to, will act as the norm and inner product, respectively, of L2(X).

Lemma A.2. In the procedure of Algorithm 1 we have um ∈ L2(X) for all 1 ≤ m ≤ M and,
furthermore,

Ez1:M
[∥um∥2] ≤ ρ(Φ̂, r̂, P̂),

where

ρ(Φ̂, r̂, P̂) = 3∥Φ̂∥2∞
(
C2

0 + L2∥r̂∥2L2(Z) + L2D2∥P̂∥2op
)
.

Proof. By Assumption 4.2 we have:

∥um∥2L2(X) = ∥Φ̂(·, zm)∂2ℓ
(
r̂(zm), P̂[ĥm−1](zm)

)
∥2L2(X)

= EX

[∣∣∣Φ̂(X, zm)∂2ℓ
(
r̂(zm), P̂[ĥm−1](zm)

)∣∣∣2]
≤ ∂2ℓ(r̂(zm), P̂[ĥm−1](zm))2∥Φ̂∥2∞
<∞.

Hence, um ∈ L2(X) for all m. This computation and Proposition A.1 Item 1 then imply

Ez1:M

[
∥um∥2

]
≤ 3∥Φ̂∥2∞

(
C2

0 + L2
(
∥r̂∥2L2(Z) + ∥P̂[ĥm−1]∥2L2(Z)

))
≤ 3∥Φ̂∥2∞

(
C2

0 + L2
(
∥r̂∥2L2(Z) + ∥P̂∥2op∥ĥm−1∥2

))
≤ 3∥Φ̂∥2∞

(
C2

0 + L2
(
∥r̂∥2L2(Z) +D2∥P̂∥2op

))
= 3∥Φ̂∥2∞

(
C2

0 + L2∥r̂∥2L2(Z) + L2D2∥P̂∥2op
)
≜ ρ(Φ̂, r̂, P̂).

Lemma A.3. In the procedure of Algorithm 1 we have

∥Ezm
[∇R(ĥm−1)− um]∥ ≤ κ(Φ̂)

(
∥Φ− Φ̂∥2L2(PX⊗PZ) + ∥r − r̂∥2L2(Z) + ∥P − P̂∥2op

) 1
2

,

where

κ2(Φ̂) ≜ 2max
{
3(C2

0 + L2E[Y 2] + L2D2), 2L2∥Φ̂∥2∞, 2L2D2∥Φ̂∥2∞
}
.

Proof. To ease the notation, we define

Ψm(Z) ≜ ∂2ℓ(r(Z),P[ĥm−1](Z)),

Ψ̂m(Z) ≜ ∂2ℓ(r̂(Z), P̂[ĥm−1](Z)).
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Let’s expand the definition of ∥·∥:

∥Ezm [∇R(ĥm−1)− um]∥ = EX

[
Ezm

[
∇R(ĥm−1)(X)− um(X)

]2] 1
2

= EX

[(
∇R(ĥm−1)(X)− Ezm [um(X)]

)2
] 1

2

= EX

[(
EZ [Φ(X,Z)Ψm(Z)]− Ezm [Φ̂(X, zm)Ψ̂m(zm)]

)2
] 1

2

= EX

[(
EZ [Φ(X,Z)Ψm(Z)− Φ̂(X,Z)Ψ̂m(Z)]

)2
] 1

2

,

Now we add and subtract Φ̂(X,Z)Ψm(Z), so that

EX

[(
EZ

[
Φ(X,Z)Ψm(Z)− Φ̂(X,Z)Ψ̂m(Z)

])2
] 1

2

= EX

[(
EZ

[
Ψm(Z)(Φ(X,Z)− Φ̂(X,Z)) + Φ̂(X,Z)(Ψm(Z)− Ψ̂m(Z))

])2
] 1

2

≤ EX

[(
∥Ψm∥L2(Z)∥Φ(X, ·)− Φ̂(X, ·)∥L2(Z) + ∥Φ̂(X, ·)∥L2(Z)∥Ψm − Ψ̂m∥L2(Z)

)2
] 1

2

≤
√
2EX

[
∥Ψm∥2L2(Z)∥Φ(X, ·)− Φ̂(X, ·)∥2L2(Z) + ∥Φ̂(X, ·)∥2L2(Z)∥Ψm − Ψ̂m∥2L2(Z)

] 1
2

=
√
2
(
∥Ψm∥2L2(Z)∥Φ− Φ̂∥2L2(PX⊗PZ) + ∥Φ̂∥2L2(PX⊗PZ)∥Ψm − Ψ̂m∥2L2(Z)

) 1
2

,

where
∥Φ∥2L2(PX⊗PZ) =

∫
X×Z

Φ(x, z)2p(x)p(z) dxdz

is the norm with respect to the independent coupling of the distributions of X and Z. By Proposition
A.1.1 we have

∥Ψm∥2L2(Z) = EZ

[
∂2ℓ(r(Z),P[ĥm−1](Z))

2
]

≤ EZ

[(
C0 + L

(
|r(Z)|+

∣∣∣P[ĥm−1](Z)
∣∣∣))2

]
≤ 3

(
C2

0 + L2∥r∥2L2(Z) + L2∥P[ĥm−1]∥2L2(Z)

)
≤ 3

(
C2

0 + L2E[Y 2] + L2D2
)
.

It is also clear that, by Assumption 4.2,

∥Φ̂∥2L2(PX⊗PZ) ≤ ∥Φ̂∥2∞.
Finally, by Assumption 3.2.2 we also have

∥Ψm − Ψ̂m∥2L2(Z) = EZ

[(
∂2ℓ(r(Z),P[ĥm−1](Z))− ∂2ℓ(r̂(Z), P̂[ĥm−1](Z))

)2
]

≤ 2L2
(
∥r − r̂∥2L2(Z) + ∥(P − P̂)[ĥm−1]∥2L2(Z)

)
≤ 2L2

(
∥r − r̂∥2L2(Z) +D2∥P − P̂∥2op

)
.

To combine all terms, we first define

κ2(Φ̂) ≜ 2max
{
3(C2

0 + L2E[Y 2] + L2D2), 2L2∥Φ̂∥2∞, 2L2D2∥Φ̂∥2∞
}
.

Then, it’s easy to see that

∥Ezm
[∇R(ĥm−1)− um]∥ ≤ κ(Φ̂)

(
∥Φ− Φ̂∥2L2(PX⊗PZ) + ∥r − r̂∥2L2(Z) + ∥P − P̂∥2op

) 1
2

,

as we wanted to show.
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We now have everything needed to show the

Proof of Theorem 4.3. We start by checking thatR is convex inH: if h, g ∈ H and λ ∈ [0, 1], then
R(λh+ (1− λ)g) = E[ℓ(r(Z),P[λh+ (1− λ)g](Z))]

= E[ℓ(r(Z), λP[h](Z) + (1− λ)P[g](Z))]
≤ λE[ℓ(r(Z),P[h](Z))] + (1− λ)E[ℓ(r(Z),P[g](Z))]
= λR(h) + (1− λ)R(g).

By Assumption 3.1, h⋆ ∈ H9. By the Algorithm 1 procedure, we have
1

2
∥ĥm − h⋆∥2 =

1

2

∥∥∥projH [
ĥm−1 − αmum

]
− h⋆

∥∥∥2
≤ 1

2
∥ĥm−1 − αmum − h⋆∥2

=
1

2
∥ĥm−1 − h⋆∥2 − αm⟨um, ĥm−1 − h⋆⟩+

α2
m

2
∥um∥2.

After adding and subtracting αm⟨∇R(ĥm−1), ĥm−1 − h⋆⟩, we are left with
1

2
∥ĥm−1−h⋆∥2−αm⟨um−∇R(ĥm−1), ĥm−1−h⋆⟩+

α2
m

2
∥um∥2−αm⟨∇R(ĥm−1), ĥm−1−h⋆⟩.

Applying the first order convexity inequality on the last term give us, in total,
1

2
∥ĥm − h⋆∥2 ≤

1

2
∥ĥm−1 − h⋆∥2 − αm⟨um −∇R(ĥm−1), ĥm−1 − h⋆⟩

+
α2
m

2
∥um∥2 − αm(R(ĥm−1)−R(h⋆)).

Hence, making this substitution and rearranging terms, we get

R(ĥm−1)−R(h⋆) ≤
1

2αm

(
∥ĥm−1 − h⋆∥2 − ∥ĥm − h⋆∥2

)
+
αm

2
∥um∥2 − ⟨um −∇R(ĥm−1), ĥm−1 − h⋆⟩.

Finally, summing over 1 ≤ m ≤M leads to
M∑
n=1

[
R(ĥm−1)−R(h⋆)

]
≤

M∑
m=1

1

2αm

(
∥ĥm−1 − h⋆∥2 − ∥ĥm − h⋆∥2

)
+

M∑
m=1

αm

2
∥um∥2

+

M∑
m=1

⟨∇R(ĥm−1)− um, ĥm−1 − h⋆⟩.

(14)

The next step is to take the average of both sides with respect to z1:M , taking advantage of the
independence between z1:M and D, the data used to compute Φ̂, r̂ and P̂ . Each summation in the
RHS is then bounded separately.

The first summation admits a deterministic bound. By assumption, the diameter D of H is finite.
Hence

M∑
m=1

1

2αm

(
∥ĥm−1 − h⋆∥2 − ∥ĥm − h⋆∥2

)
=

M∑
m=2

(
1

2αm
− 1

2αm−1

)
∥ĥm−1 − h⋆∥2

+
1

2α1
∥ĥ0 − h⋆∥2 −

1

2αM
∥ĥM − h⋆∥2

≤
M∑

m=2

(
1

2αm
− 1

2αm−1

)
D2 +

1

2α1
D2 =

D2

2αM
.

(15)
9We want to remind the reader that it is enough to assume that there exists h̄ ∈ (h⋆ + kerP) ∩H. By the

definition of h̄, we have R(h̄) = R(h⋆).
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The second summation can be bounded with the aid of Lemma A.2:

Ez1:M

[
M∑

m=1

αm

2
∥um∥2

]
=

1

2
Ez1:M

[
∥um∥2

] M∑
m=1

αm ≤
1

2
ρ(Φ̂, r̂, P̂)

M∑
m=1

αm. (16)

Finally, the third summation can be bounded using Lemma A.3. Let Ez−m
denote the expectation

with respect to z1, . . . ,zm−1, zm+1, . . . ,zM and notice that

Ez1:M

[
⟨∇R(ĥm−1)− um, ĥm−1 − h⋆⟩

]
= Ez−m

[
Ezm

[
⟨∇R(ĥm−1)− um, ĥm−1 − h⋆⟩

]]
= Ez−m

[
⟨Ezm

[
∇R(ĥm−1)− um

]
, ĥm−1 − h⋆⟩

]
≤ Ez−m

[
∥Ezm

[
∇R(ĥm−1)− um

]
∥∥ĥm−1 − h⋆∥

]
≤ DEz−m

[
∥Ezm

[
∇R(ĥm−1)− um

]
∥
]
.

Then, applying Lemma A.3 and setting τ ≜ Dκ we get

Ez1:M

[
⟨∇R(ĥm−1)− um, ĥm−1 − h⋆⟩

]
≤ τ(Φ̂)

(
∥Φ− Φ̂∥2L2(PX⊗PZ) + ∥r − r̂∥2L2(Z) + ∥P − P̂∥2op

) 1
2

.

(17)

All that is left to do is to apply equations (14), (15), (16) and (17) along with the inequality which
defines convexity. Let ĥ ≜ 1

M

∑M
m=1 ĥm−1 and ξ ≜ ρ/2. Then:

Ez1:M

[
R(ĥ)−R(h⋆)

]
≤ 1

M

M∑
m=1

Ez1:M

[
R(ĥm)−R(h⋆)

]
≤ D2

2MαM
+ ξ(Φ̂, r̂, P̂) 1

M

M∑
m=1

αm

+ τ(Φ̂)
(
∥Φ− Φ̂∥2L2(PX⊗PZ) + ∥r − r̂∥2L2(Z) + ∥P − P̂∥2op

) 1
2

.

B Comparison with other methods

In this section, we provide some theoretical comparisons with other notable methods for NPIV
estimation.

B.1 KIV

B.1.1 Risk bound

In our formulation, we substitute the task for estimating P∗ by that of estimating the ratio of densities
Φ. In this way, we bypass the need to evaluate an operator estimator P̂∗ in every iteration, replacing
this by evaluating Φ̂ once and multiplying it by the derivative of the loss function (cf. Algorithm 1).
Aside from the computational advantage this poses, it is interesting to investigate the differences
which arise in theoretical bounds when comparing with a method which ends up using an estimator
of P∗.

In KIV, the authors propose a first stage procedure which estimates E (P , in our notation) and, in the
second stage, they use the adjoint of this operator through the kernel mean embedding µ(z) = E∗ϕ(z)
(ϕ is the feature map, see the notation in [34]). To estimate E∗, they use the adjoint of their estimator
En

λ of E, where n is the sample size and λ is a regularization parameter.

In our Theorem 4.3, provided the learning rate has been appropriately chosen, the excess risk is upper
bounded by ∥Φ− Φ̂∥+ ∥r − r̂∥+ ∥P − P̂∥. In fact, ∥r − r̂∥ is just the risk for a simple regression
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problem, and so we will focus our analysis on the other two terms. In KIV, the excess risk is bounded
using [37, Theorem 2], according to which it is smaller than the sum of five terms. We reproduce this
bound here for a more detailed analysis:

Theorem B.1 (Proposition 32 of [34]). The excess risk of KIV’s stage 2 estimator Ĥm
ξ can be

bounded by five terms:

E(Ĥm
ξ )− E(Hρ) ≤ 5[S−1 + S0 +A(ξ) + S1 + S2], (18)

where

S−1 = ∥
√
T ◦ (T̂+ ξ)−1(ĝ − g)∥2HΩ

,

S0 = ∥
√
T ◦ (T̂+ ξ)−1 ◦ (T− T̂)Hm

ξ ∥2HΩ
,

S1 = ∥
√
T ◦ (T+ ξ)−1(g −THρ)∥2HΩ

,

S2 = ∥
√
T ◦ (T+ ξ)−1 ◦ (T −T)(Hξ −Hρ)∥2HΩ

,

A(ξ) = ∥
√
T (Hξ −Hρ)∥2HΩ

.

In our notation, E corresponds toR, Ĥm
ξ corresponds to ĥ and Hρ corresponds to h⋆. The spaceHΩ

is a RKHS which contains the solution Hρ. It is also important to recall the definition of the terms in
bold, since they depend on µn

λ(z) = (En
λ )

∗ϕ(z):

T =
1

m

m∑
i=1

Tµ(z̃i), g =
1

m

m∑
i=1

Ωµ(z̃i)ỹi

T̂ =
1

m

m∑
i=1

Tµn
λ(z̃i)

, ĝ =
1

m

m∑
i=1

Ωµn
λ(z̃i)

ỹi.

Where z̃i and ỹi are second-stage samples.We refer the reader to [34] for a detailed description of the
other mathematical objects. Here, we will argue that

S−1 + S0 is analogous to ∥Φ− Φ̂∥+ ∥P − P̂∥. (19)

The other terms in Equation (18) are controlled by optimally choosing how the regularizing parameter
ξ goes to zero. This relates to the first two terms of our bound in Equation (10) that goes to zero as
the SGD iteration increases, as long as we properly choose the learning rate. In [34, Proposition 35],
these two terms are bounded as follows:

S−1 ≤ ∥
√
T ◦ (T̂+ ξ)−1∥2L(HΩ)∥ĝ − g∥2HΩ

,

S0 ≤ ∥
√
T ◦ (T̂+ ξ)−1∥2L(HΩ)∥T̂−T∥2L(HΩ)∥Hm

ξ ∥2HΩ
.

Then, [34, Proposition 37] refers to [37, Supplements 7.1.1 and 7.1.2] to bound ∥ĝ − g∥2 and
∥T̂−T∥2. In [37], one can see that these bounds amount to10

∥ĝ − g∥2 ≤ C · 1
m

m∑
i=1

∥µn
λ(z̃i)− µ(z̃i)∥2HX

|ỹi|2

∥T̂−T∥2 ≤ D · 1
m

m∑
i=1

∥µn
λ(z̃i)− µ(z̃i)∥2HX

,

where C and D are constants. Then, KIV uses the bound on ∥µn
λ(z̃i)− µ(z̃i)∥2HX

provided in their
Corollary 1, which is based on the inequality11

∥µn
λ(z̃i)− µ(z̃i)∥2HX

≤ ∥En
λ − Eρ∥2HΓ

∥ϕ(z̃i)∥2HZ

10In [37] there is a 2h in the exponent instead of 2, which is translated to 2ι in KIV. However, this is only a
matter of assuming Holder continuity of Ω with exponent ι. If one assumes Lipschitz continuity, the exponent
becomes 2.

11Eρ = E.
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Hence, with high probability and ignoring constants, we have12

∥ĝ − g∥ ≲ ∥En
λ − Eρ∥

∥T̂−T∥ ≲ ∥En
λ − Eρ∥.

This would be an intermediate result in [34, Proposition 37].

Therefore, the estimation error ofEn
λ when compared toE impacts the risk of KIV’s estimator through

two terms. These are analogous to our two terms ∥Φ− Φ̂∥ and ∥P − P̂∥, since ∥Φ− Φ̂∥L2(PX⊗PZ)

is the Hilbert-Schmidt norm of the difference between P∗ and the integral operator induced by Φ̂ [8,
Theorem 2.42].

B.1.2 Binary outcomes

In Section 6, we show that, under the binary outcomes setting, the correct formulation of the risk is

R(h) = E[BCE(r(Z), F (P[h](Z)))].
In KIV’s notation, this would become13

E(H) = E[BCE(Y, F (Hµ(Z)))]

Substituting the populational mean by the empirical one, taking into account that we must estimate µ
and applying regularization, we get (cf. [34, Section 4.2])

Êmξ (H) =
1

m

m∑
i=1

BCE(ỹi, F (Hµ
n
λ(z̃i))) + ξ∥H∥2HΩ

.

Using the fact thatHΩ andHX are isometrically isomorphic [34, Section 4.2], we can formulate the
risk in an equivalent way, now defined onHX :

Êmξ (h) =
1

m

m∑
i=1

BCE(ỹi, F ((E
n
λh)(z̃i)) + ξ∥h∥2HX

.

Then, the KIV estimator is defined as

ĥmξ = argmin
h∈HX

Êmξ (h).

For the quadratic loss, KIV finds the solution in closed form, since this is a ridge regression problem.
However, for this new loss, no obvious closed form solution exists. Applying the Representer
Theorem, we find that the solution hmξ should satisfy

hmξ =

n∑
i=1

αiψ(xi),

for some α ∈ Rn, where ψ(xi) = K(xi, ·) is the reproducing kernel ofHX . Then, one is left with
the following optimization problem:

argmin
α∈Rn

1

m

m∑
i=1

BCE(ỹi, F (α
′w(z̃i)) + ξα′KXXα

Since (En
λh

m
ξ )(z) = α′w(z) (see the definition of w in [34, Appendix A.5.1]). An approximate

solution to this n-dimensional optimization problem must be found with numerical methods. Keep in
mind that this problem must be solved several times in order to find a good value of the regularization
parameter ξ via cross-validation, which is crucial for the performance of regularized regression
methods. In contrast, our method does not require additional work after defining the modified risk.

12We use the symbol ≲ to mean that the LHS is smaller or equal than a constant times the RHS, where the
constant does not depend on data.

13Since BCE is linear in the first argument, it does not matter if we use Y or r(Z) to define the risk.
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B.2 Dual IV

In DualIV, the risk minimization problem is reformulated into a saddle point optimization problem,
which we write in their notation:

min
f∈F

max
u∈U

Ψ(f, u),

where
Ψ(f, u) = EXY Z [f(X)u(Y,Z)]− EY Z [ℓ

⋆
Y (u(Y,Z))].

Here, F is the space which contains the solution to the NPIV estimation problem, U is the space
of the “dual function” and ℓ⋆y is the Fenchel dual of the function ℓy = ℓ(y, ·). In the binary
outcomes setting, the loss is given by ℓ(y, y′) = BCE(y, F (y′)). If F is the logistic function, i.e.
F (y′) = exp(y′)/(1 + exp(y′)), one may verify that

ℓ⋆y(u) =

{−H(u+ y), if 0 ≤ u+ y ≤ 1,

+∞, otherwise,

where H(p) = −[p log p+ (1− p) log(1− p)] is the entropy. The empirical minimax objective then
becomes

Ψ(f, u) =
1

n

n∑
i=1

f(xi)u(yi, zi) +
1

n

n∑
i=1

H(yi + u(yi, zi)),

with the constrain that 0 ≤ yi+u(yi, zi) ≤ 1 for every i. Again, in contrast with the case of quadratic
loss, when one may choose F and U to be RKHS and obtain a closed form ridge-regularized solution,
this formulation is not as tractable.

B.3 GMM

In GMM based methods for continuous outcomes, the main idea is that since E[ε | Z] = 0 and
Y = h⋆(X) + ε, we have E[Y − h⋆(X) | Z] = 0 and, hence, E[f(Z)(Y − h⋆(X))] = 0 for every
f ∈ L2(Z). If we choose a large number of functions f1, . . . , fm, we may search for h⋆ by finding a
function which minimizes

m∑
j=1

ψn(h, fj)
2 where ψn(h, fj) =

1

n

n∑
i=1

fj(Zi)(Yi − h(Xi)). (20)

This is possible because the error term ε can be written as Y − h⋆(X). Under the structural
equation Y = 1{h⋆(X) + ε > 0}, such a characterization of the error term is not available,
which already presents a difficulty. Nonetheless, as we show in Section 6, under this new equation
we have E[Y | Z] = F (P[h⋆](Z)). Therefore, moment conditions could be obtained through
E[(Y − F (P[h⋆](Z)))f(Z)] = 0 for every f ∈ L2(Z). However, this would create the need to
introduce an estimator P̂ of P . This defeats one of the main advantages of turning to GMM, which is
to avoid the first stage of two-stage methods, since errors in the first stage can have a large impact on
the resulting estimator.

C Implementation and experiment details

In this section, we give practical guidelines for implementing SAGD-IV, as well further details
regarding the baseline methods below:

• KIV: Since the original implementation was only publicly available in Matlab, to facilitate
reproducibility of our results we re-implemented this method in Python. This was done
following the guidelines presented in the paper.

• DualIV: Similarly to KIV, we rewrote the method in Python using the closed form solutions
and the hyperparameter selection procedure present in the paper.

• DeepGMM: We used the publicly available Python implementation14.
• DeepIV: We used the implementation available as part of the EconML package [5].

14https://github.com/CausalML/DeepGMM.git
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• 2SLS: We include the classic Two Stage Least Squares procedure to show the benefits of
following a nonparametric approach.

All experiments were conducted on a Apple Sillicon M1 Pro CPU. No GPUs were used.
Remark C.1 (Experiments sample size). All four baseline methods we are considering need a single
dataset (X,Z, Y ) to fit their estimator (hyperpameter validation included), whereas our method needs
one dataset of (X,Z, Y ) triplets to compute Φ̂, r̂ and r̂, and one dataset of Z samples to conduct the
SAGD loop. To make fair comparisons, we trained each method using the same total amount of
random variable samples. For example, DeepGMM might use 800 triplets (X,Z, Y ) for training
and 200 triplets for validation, whereas SAGD-IV may use 600 triplets for fitting the preliminary
estimators and then 1200 samples of Z for the SAGD loop, both totaling 3000 random variable
samples used to adjust the model.

C.1 SAGD-IV

C.1.1 On computing P̂, Φ̂ and r̂

Ratio of Densities. Density ratio estimation is a well studied problem in Machine Learning, with
[36] being a good resource for acquainting oneself with relevant algorithms. The approaches we
follow here consist on obtaining an estimator Φ̂ that minimizes the (empirical version of the) quantity
1
2∥Φ̂− Φ∥2L2(PX⊗PZ). We consider two options for Φ̂: a Reproducing Kernel Hilbert Space (RKHS)
estimator obtained through the Unconstrained Least Squares Importance Fitting (uLSIF) framework
described in [36] and also a neural network trained to minimize the same objective over its parameters.
By changing the kernel or the activation function used, we can make sure this estimator adheres to
Assumption 4.2 Item 4.

Conditional expectation operator. This is the most complex object we must estimate, since it
encompasses all possible regressions of functions of X over Z. Not many options exist for this task,
with a popular one [13, 8] being the use of Nadaraya-Watson kernels [26, 39]. We, however, chose to
employ the estimation method used as a first stage in KIV [34], which transforms the problem into
vector-valued RKHS ridge regression, due to its straightforward implementation.

Conditional mean of Y given Z. This, in contrast, is the simplest unknown in our formulation,
being the regression function of Y over Z. We again consider two options for this task: the first is to
employ the method previously discussed in order to estimate the conditional expectation operator of
Y given Z, and then apply it to the identity function. The second option is to train a general purpose
regressor, such as a neural network.

C.1.2 Hyperparameters

Since the final estimator in Algorithm 1 is an average over the whole path of estimates produced
by the SAGD loop, we can improve upon its quality by discarding the first K estimates ĥ1, . . . , ĥK ,
where K must be chosen independently from M . In this way, it is as if we started our algorithm from
ĥK+1, after a warm up period.

Regarding sample splitting, our theoretical results do not specify an optimal ratio between the M
SAGD iterations and the N samples of (X,Z, Y ) used to compute Φ̂, r̂ and P̂ . We empirically
determined that M = 2N is a good guideline to follow, and it is the ratio we employed in Section 5.
Of course, in real data scenarios this ratio might be constrained due to limited data availability.

About hyperparameters:

• The Algorithm 1 learning rate was set to be αm = 1/
√
M for 1 ≤ m ≤M ;

• The warm up time K was set to 100;

• The set H was chosen as in Equation (6), with A set to 10. During our experiments, we
found that this parameter, aside from needing to be large enough for us to have h⋆ ∈ H, did
not have any noticeable influence on the resulting estimator.

• For Kernel SAGD-IV:
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– We used Gaussian kernels, with lenghtscale parameter determined through the median
heuristic;

– The regularization parameters for the three kernel ridge regressions were chosen
through cross validation. Since these parameters are essential for actual learning to
take place, we selected the values to be tested through an iterative procedure, described
in Algorithm 2.

• For Deep SAGD-IV:

– For both networks in the roles of Φ̂ and r̂, we used two hidden dense layers of sizes 64
and 32. In the continuous response setting the activation function used was a ReLU,
while for the binary response one we used the sigmoid activation. For Φ̂, we used
dropout with rate 0.01.

– Both networks were trained with a batch size of 512, using the Adam [21] optimizer
with learning rate of 0.01, accross 1.5 · 105/N epochs. We adopted L2 regularization
in the two estimators, with regularization parameters of 3 · 10−3 for r̂ and 5 · 10−3 for
Φ̂. We also implemented early stopping in the two training procedures.

• We remind the reader that both SAGD-IV variants use kernel methods to compute P̂ .

C.2 DeepGMM

The modifications we made with respect to the original paper were the following:

• Instead of using 50% of the samples for training and 50% for validation, we adopted a train
/ validation split of 80 / 20.

• We changed the batch size from 1024 to 256. This was done because we supplied the
algorithm with 1000 training samples instead of the 2000 used in [6], and hence a batch size
of 1024 would not produce stochastic gradients.

C.3 DeepIV

We followed all the guidelines presented in the original paper for low dimensional settings.

C.4 KIV

We employed a 50/50 split between (X,Z, Y ) and (X̃, Z̃, Ỹ ) observations (see [34], Appendix
A.5.2). Regularization parameter candidates were also chosen using the selection method in Algo-
rithm 2.

Algorithm 2 Search for regularization parameter

Input: Loss function L : R→ R. List of initial values parameters = [λ1, . . . , λn]. Initial offset
ε. Number of iterations T .
Output: λ⋆
for 1 ≤ t ≤ T do
λ⋆ ← argmin {L(λ) for λ in parameters}
parameters← [λ⋆ + kε for k ∈ {−5,−4, . . . , 5}]
ε← ε/10

end for

C.5 DualIV

We followed the hyperparameter selection guidelines given in Section 4 of [25]. This means we used
a 50/50 split for train/validation samples and chose the regularization parameters from a grid search,
minimizing the squared norm of the dual function u.
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D Small data regime

This section presents a version of the experiments in Section 5.1 with half the sample size, providing
a comparison between SAGD-IV and other methods within a smaller data availability regime. Figure
3 contains the corresponding log-MSE results.

Contrasting Figures 1 and 3, we can see that the relative performances for each method mostly stay
the same. Some methods, such as Deep-IV in the abs scenario, exhibited an error distribution with
larger variance, but this is to be expected from the reduction in sample size, which makes any given
dataset realization a worse depiction of the true data distribution. These results support the conclusion
that our method’s performance is competitive with other state-of-the-art approaches in more data
availability conditions.
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Figure 3: Log-MSE results for the experiments in Section 5.1 with half the sample size.

E Alternative risk definition

Computing the risk using r(Z) or Y are equivalent under the quadratic loss, however, one might
think that considering Y instead of r(Z) in our formulation would lead to an algorithm that does
not need to estimate r(Z). Below we show that this is not the case, since the gradients of the risk
measure under both formulations are the same. This implies that we would still need to estimate r for
the algorithm.

If instead of Equation (5), we consider the risk defined as

R̃(h) = E[ℓ(Y,P[h](Z))],
then proceeding in exactly the same way as in the proof of Proposition 3.3, we would arrive at

DR̃[h](f) = E[∂2ℓ(Y,P[h](Z)) · P[f ](Z)]
As it is, this expression is not an inner product in L2(Z) since Y is not measurable with respect to Z.
However, if ∂2ℓ is linear with respect to its first argument, which is true for the quadratic and binary
cross entropy losses, we have

DR̃[h](f) = E[∂2ℓ(Y,P[h](Z)) · P[f ](Z)]
= E [E[∂2ℓ(Y,P[h](Z)) · P[f ](Z) | Z]]
= E [∂2ℓ(E[Y | Z],P[h](Z)) · P[f ](Z)]
= E [∂2ℓ(r(Z),P[h](Z)) · P[f ](Z)] ,

which is the same expression obtained before. Hence, the gradient ofR still depends on r(Z) and
the resulting method still needs to estimate this quantity.
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Nonetheless, one could still use the sample yi as an estimate of r(zi). However, this is not the best
choice, because the term ∥r̂ − r∥2L2(Z) which appears in the RHS of Equation (10) would become
E[Var[Y | Z]]. This is constant with respect to the size of the auxiliary datasetD (cf. Assumption 4.2)
and could be improved by taking r̂ to be a better regressor of Y over Z.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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of the paper (regardless of whether the code and data are provided or not)?
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well by the reviewers: Making the paper reproducible is important, regardless of
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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guidelines to submit an anonymized version of the code.
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• The answer NA means that paper does not include experiments requiring code.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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didn’t make it into the paper).

9. Code Of Ethics
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Answer: [Yes]

Justification: We have conformed with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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10. Broader Impacts
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Answer: [NA]
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• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All methods are properly cited.
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• The answer NA means that the paper does not use existing assets.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
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or other labor should be paid at least the minimum wage in the country of the data
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institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
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