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Quentin Barthélemy Q.BARTHELEMY@FOXSTREAM.FR
Foxstream, Vaulx-en-Velin, France

Julián Tachella JULIAN.TACHELLA@ENS-LYON.FR

Laboratoire de Physique, ENS de Lyon (LPENSL)

Abstract
The design of convolutional neural architectures that are exactly equivariant to continuous transla-
tions is an active field of research. It promises to benefit scientific computing, notably by making
existing imaging systems more physically accurate. Most efforts focus on the design of downsam-
pling/pooling layers, upsampling layers and activation functions, but little attention is dedicated to
normalization layers. In this work, we present a novel theoretical framework for understanding the
equivariance of normalization layers to discrete shifts and continuous translations. We also deter-
mine necessary and sufficient conditions for normalization layers to be equivariant in terms of the
dimensions they operate on. Using real feature maps from ResNet-18 and ImageNet, we test those
theoretical results empirically and find that they are consistent with our predictions1.

1. Introduction

Convolutional neural networks have long been thought to be equivariant to translations thanks to the
use of convolutional layers. It is now understood that regular layers used in most convolutional net-
works are prone to aliasing and that this aliasing breaks the equivariance to translations (Azulay and
Weiss, 2019; Zhang, 2019; Zou et al., 2020). This is especially the case of downsampling/pooling
layers, upsampling layers and activation functions.

The first attempts at fixing the problem came in the form of layers featuring anti-aliasing filters,
this is the case of blur pooling (Zhang, 2019; Zou et al., 2020; Michaeli et al., 2023), of filtered
activation functions, including filtered ReLU (Karras et al., 2021) which is less prone to aliasing than
the traditional ReLU, and filtered polynomial activation functions (Michaeli et al., 2023) which are
perfectly free of aliasing. Other works have focused on the design of networks equivariant to discrete
translations (known as shifts) using adaptive downsampling and upsampling layers (Chaman and
Dokmanić, 2021a,b; Kim et al., 2023), possibly with learnable parameters (Rojas-Gomez et al.,
2022; Saha and Gokhale, 2024). While these approaches guarantee perfect equivariance to shifts,
they do not cover full equivariance to continuous translations.

Contrary to the other layers, little has been said on the translation-equivariance of normalization
layers. Most works use standard batch normalization layers that are by far the most popular normal-
ization layers in convolutional neural networks (Chaman and Dokmanić, 2021a,b), but little is said
about their equivariance. In their recent work, Michaeli et al. (2023) adapt the modern ConvNext

1. The code for our experiments is available at https://github.com/jscanvic/normalization-layers
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architecture (Liu et al., 2022) to make it equivariant. In particular, they claim that the normaliza-
tion layers used in the original architecture are not equivariant to translations, and they propose an
equivariant alternative.

In this work, we shed light on what makes certain normalization layers equivariant to shifts and
translations. Using a new theoretical framework that covers the most common normalization layers,
we show that dividing by the standard deviation and applying an affine transform are the two steps
that might cause a loss of equivariance. On the other hand, subtracting the mean poses no problem.
We validate our theoretical results empirically using real feature maps obtained from a network
pre-trained on ImageNet (Deng et al., 2009).

Layer Centering Scaling Affine Equivariance

BatchNorm (Ioffe and Szegedy, 2015) B, H , W B, H , W C Translation
InstanceNorm (Ulyanov et al., 2017) H , W H , W None Translation
LayerNorm-CHW (Ba et al., 2016) C, H , W C, H , W C, H , W Neither
LayerNorm-C (Liu et al., 2022) C C C Shift
LayerNorm-AF (Michaeli et al., 2023) C C, H , W C Translation

Table 1: Equivariance of normalization layers. Normalization layers consist in three steps: a
centering step, a scaling step, and a learned affine step. Depending on the layer, the steps
are performed on different dimensions (batch B, channels C, height H and width W ). We
show theoretically and empirically in Sections 4 and 5 that equivariance to discrete shifts
requires the affine step not to operate on the spatial dimensions H,W , and for equivariance
to continuous translations, that the scaling step operates at least on the spatial dimensions.

Our contributions are the following:

• We propose a new theoretical framework for understanding the equivariance of normalization
layers to shifts and translations.

• We present necessary and sufficient conditions for a normalization layer to be equivariant to
discrete shifts, and to continuous translations.

• We validate our theoretical results by measuring and comparing the equivariance of five nor-
malization layers using real feature maps.

2. Related work

Alias-free layer norm Michaeli et al. (2023) adapt the ConvNext architecture (Liu et al., 2022)
to make it equivariant to continuous translations, and propose an alternative translation-equivariant
normalization layer. Indeed, they claim that the original normalization layer, channel-wise layer
normalization, is not equivariant to translations due to aliasing in the scaling step. In order to
alleviate this problem, they change the dimensions the standard deviation is computed on from just
the channel dimension to the channel and spatial dimensions. In this work, we prove that their claim
is correct and that their solution is valid by showing that their proposed layer is indeed equivariant
to translations, while the original one is only equivariant to shifts.
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Steerable layers Many works focus on adapting convolutional layers to larger classes of equivari-
ance (Cohen and Welling, 2016a,b). Indeed, while convolutional layers are equivariant to discrete
shifts and even to continuous translations, they are not equivariant to other transformations like ro-
tations and flips. Using parameter-sharing schemes (Ravanbakhsh et al., 2017), they attain perfect
equivariance to discrete transformations, e.g., 90° rotations, but they do not generally attain perfect
equivariance to continuous transformations, e.g., to continuous translations and rotations at once,
due to fundamental limitations related to aliasing and sampling theory (Weiler and Cesa, 2021). In
this work, we focus on the (non-linear) normalization layers and on their equivariance to shifts and
translations, and whether they are equivariant to other transformations goes beyond this scope.

3. Background

Normalization layers in convolutional neural networks take in feature maps x ∈ RN and compute a
normalized feature map fθ(x) ∈ RN . Here N = B×C×H ×W , where B denotes the batch size,
C the number of channels, and H and W the height and width of the feature map. The variable
θ ∈ Rp denotes the learnable parameters of the layer. In this section, we introduce the mathematical
background behind equivariance to shifts and translations, and the relation between equivariance to
continuous translations and aliasing.

Shifts and translations In many applications, circular translations are used to move the content
of feature maps around without loosing information at the boundary (Zhang, 2019; Michaeli et al.,
2023). Usually, the displacement is assumed to span a whole number of pixels in both directions,
e.g., 2 px down and 3 px to the right, and in that case, the (discrete) translation is referred to as a
shift. The discrete shift operator Tg can be understood as a simple permutation of the pixels and it
is defined as

(Tg x)bhcw = xb,c,(h−h′)H ,(w−w′)W , (1)

where g = (h′, w′) ∈ Z2 is the displacement vector. The notations (·)H , and (·)W denote the
remainder of an integer modulo H and W , respectively, and they are what makes the shift operator
circular. The indices b = 0, . . . , B− 1, c = 0, . . . , C− 1, h = 0, . . . ,H − 1 and w = 0, . . . ,W − 1
each correspond to one of the four dimensions in a batch of feature maps.

Discrete shifts are sometimes insufficient and finer sub-pixel translations need to be considered,
notably when studying texture sticking in certain generative models (Karras et al., 2021). In that
case, discrete feature maps are generally assumed to be the sampling of a latent continuous feature
map, similarly to how discrete pictures are sampled from incoming continuous images hitting the
camera sensor. Even though there is generally a loss of information during sampling, Shannon’s
sampling theorem (Vetterli et al., 2014) guarantees that the low-frequency information is preserved
as long as proper anti-aliasing is done during sampling, and that the corresponding bandlimited
continuous signal can be recovered using sinc interpolation.

Guided by this underlying assumption, continuous translation is generally defined as the succes-
sion of three steps: i) interpolation into a continuous image, ii) continuous translation of the contin-
uous image, and iii) sampling of the translated image back to the original grid (Karras et al., 2021;
Michaeli et al., 2023). For sinc interpolation, it amounts to first applying the discrete Fourier trans-
form (DFT2), the right phase shift, and then the inverse discrete Fourier transform (IDFT2) (Vetterli
et al., 2014)

(Tg x)bchw = IDFT2

(
e
−i2π

(
hh′
H

+ww′
W

)
DFT2(xbchw)

)
, (2)
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where g = (h′, w′) ∈ R2 is a displacement vector that might not span a whole number of pixels in
both directions.

Even though it might not be obvious from the formula, continuous translations coincide with
discrete shifts for whole pixel displacements, a fact known as the shift theorem (Vetterli et al., 2014).

Equivariance Equivariant functions are functions whose output is translated accordingly with its
input when it is translated. The layer fθ : RN → RN is equivariant to shifts G = Z2, or translations
G = R2, if it satisfies

fθ(Tgx) = Tgfθ(x), ∀θ ∈ Rp, ∀g ∈ G, ∀x ∈ RN , (3)

We emphasize that the equivariance needs to be satisfied not only for all inputs x and displacements
g, but also for all sets of parameters θ. We also refer to this property as architectural equivariance,
as opposed to learned equivariance (Gruver et al., 2024).

Aliasing Equivariance to translations can only be satisfied if equivariance to shifts is satisfied in
the first place. This is because discrete shifts are a special case of continuous translations. Of course,
this is generally not a sufficient condition and aliasing is key to determine when shift-equivariant
functions are equivariant to translations.

The same way discrete feature maps can be understood as continuous feature maps through
sinc interpolation, functions operating on discrete feature maps can also be understood as functions
operating on continuous feature maps. The idea is that given a function operating on discrete feature
maps, it is possible map an input continuous feature map to an output feature map by: i) first
sampling the input to obtain a discrete feature map, ii) then applying the discrete function, and iii)
to interpolate the resulting discrete feature map back to get the output continuous feature map.

Karras et al. (2021) give multiple examples of discrete shift-equivariant functions that are as-
sociated to continuous translation-equivariant functions. For instance, convolutions and point-wise
activation functions like ReLU. They also show that the only possible cause of a lack of translation-
equivariance for the discrete function is if the continuous function introduces energy above the
Nyquist frequency. In that case, the energy folds back into the lower frequencies in the discrete
case (aliasing), causing a loss of translation-equivariance. This is notably what happens for ReLU,
which is not equivariant to continuous translations.

4. Analysis of normalization layers

Normalization layers have been introduced to improve the training dynamics of deep neural net-
works (Ioffe and Szegedy, 2015). They generally consist in three steps:

1. A centering step
x 7→ x− E[x] (4)

2. A scaling step
x 7→ x√

Var(x)
(5)

3. A learned affine transform with parameters θ = [γ;β]

x 7→ γ ⊙ x+ β (6)
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where ⊙ is the Hadamard product. We do the analysis for feature maps with a non-vanishing
variance, and we leave out the tiny ε that is generally added to the variance in practice to avoid
divisions by zero.

The differences in the different normalization layers lie in the dimensions (B, C, H and/or W )
on which the statistics are computed for centering and scaling, and in the dimensions on which the
affine transform operates, if an affine transform is present.

In this work, we focus on five normalization layers, four standard ones and one designed to
be equivariant: batch normalization (BatchNorm) (Ioffe and Szegedy, 2015), instance normaliza-
tion (InstanceNorm) (Ulyanov et al., 2017), layer normalization on the whole feature map (LayerNorm-
CHW) (Ba et al., 2016; Wu and He, 2018), layer normalization on the channels (LayerNorm-C) (Liu
et al., 2022), and alias-free layer normalization (LayerNorm-AF) (Michaeli et al., 2023). Their re-
spective definitions are summarized in Table 1 and are presented in more details below.

Except for LayerNorm-AF, all other normalization layers perform centering and scaling on the
same dimensions. For BatchNorm, they are the batch and spatial dimensions (B,H,W ), for In-
stanceNorm, they are the spatial dimensions (H,W ), for LayerNorm-C, it is the channel dimension
(C), and for LayerNorm-CHW, it is the channel and spatial dimensions (C,H,W ). On the other
hand, LayerNorm-AF performs its centering step on the channel dimension (C), and its scaling step
on the channel and spatial dimensions (C,H,W ). In terms of affine step, InstanceNorm has none,
BatchNorm, LayerNorm-C and LayerNorm-AF have one that operates on the channel dimension
(C), and LayerNorm-CHW has one that operates on the channel and spatial dimensions (C,H,W ).

In order to understand what causes a loss of equivariance in a function comprised of multiple
independent steps, it is customary to study the equivariance of each step separately. Indeed, the com-
position of multiple functions is equivariant as long as each function is itself equivariant (Michaeli
et al., 2023). We apply this reasoning here to determine necessary and sufficient conditions for the
equivariance of normalization layers to shifts and translations.

Discrete shifts act as pixel permutations as mentioned in Section 3, and shifting input feature
maps results in statistics shifted accordingly. The shifted feature maps are subtracted and divided
entry-wise by the shifted statistics, resulting in an overall shifted output before the affine step. At
this point, either there is no affine step and the whole normalization layer is equivariant to shifts,
or there is one and its equivariance is the equivariance of the layer. Unlike in the scaling step,
which also consists in an entry-wise multiplication/division, only one of the two factors is ever
shifted. Indeed, the standardized feature map shifts along with shifts in the input, but the learned
affine matrix is fixed. In this regard, the affine step is equivariant if, and only if, it scales every pixel
similarly no matter its position in the image plane. Said otherwise, if, and only if, it does not operate
in the spatial dimensions. Theorem 1 follows directly and is proven in more details in Appendix B.

Theorem 1 A normalization layer is equivariant to discrete shifts if, and only if, its affine step
does not operate on the spatial dimensions, or if has no affine step altogether.

In general, it can be difficult to determine if a discrete function is equivariant to continuous
translations or not. Fortunately, there are cases for which it is significantly easier, and the present
case is one of them. As explained in Section 3, equivariance to translations is only satisfied if
equivariance to shifts is satisfied as well. As a result, it follows from Theorem 1 that a normalization
layer is equivariant to translations only if its affine step does not operate on the spatial dimensions,
or if it has no affine step altogether. We assume that this condition is verified in the remainder of
this section. Moreover, discrete functions that are equivariant to shifts, and that are also associated
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to a translation-equivariant continuous function, are themselves equivariant to translations if, and
only if, they do not cause aliasing, or an increase in bandwidth past the Nyquist frequency in the
continuous domain. Using this characterization, we determine a necessary and sufficient condition
for normalization layers to be equivariant to translations.

The arguments that we use to prove, under the right condition, the shift-equivariance of the cen-
tering, scaling and affine steps in normalization layers in the discrete seeting also prove that they are
translation-equivariant in the continuous setting. Continuous translations operate as a permutation
of pixels in continuous images, the same way discrete shifts operate as a permutation of pixels in
discrete images. Normalization layers are thus equivariant to translations in the continuous setting,
and they are also equivariant to translations in the discrete setting if, and only if, it does not increase
the bandwidth of bandlimited feature maps in the continuous case.

Normalization layers consist entirely in entry-wise additions and multiplications, which trans-
form, in the Fourier domain, into entry-wise additions and spatial convolutions (Vetterli et al., 2014).
Entry-wise addition does not increase the bandwidth of bandlimited feature maps, but convolution
with spatially varying kernels does: the resulting bandwidth being the sum of the bandwidths of the
two convoluted images (Vetterli et al., 2014). In the case of normalization layers, the only entry-
wise multiplication of the input signal by a spatially varying kernel is in the scaling step, and only
if the standard deviation is not computed at least on the spatial dimensions. Theorem 2 follows
directly and is proven in more details in Appendix B.

Theorem 2 A normalization layer is equivariant to continuous translations if, and only if, it is
equivariant to shifts, and the standard deviation is computed at least on the spatial dimensions.

A direct corollary of Theorems 1 and 2 is that the dimensions on which the centering statis-
tics are computed are irrelevant to the overall equivariance of the normalization layer to shifts and
translations.

Our new theoretical results highlight the importance of the choice of normalization layer when
designing equivariant neural architectures. In particular, they predict that the layer normalization
used in the ConvNext architecture (Liu et al., 2022) is equivariant to shifts, but not to translations,
hindering the equivariance of the whole architecture. Batch normalization, on the other hand, is per-
fectly equivariant to both shifts and translations. In Section 5, we further show that those theoretical
predictions hold empirically as well.

5. Experiments

In order to measure and compare the equivariance of the five different normalization layers men-
tioned in Table 1, we define and compute the average equivariance error of each layer. We measure
the equivariance of the normalization layers as the error corresponding to Eq. (3):

e = E
x,γ,β,g

[
d(fγ,β(Tg x), Tg fγ,β(x))

]
(7)

where d(·, ·) is the cosine distance, defined in Eq. (8). We compute the equivariance error for two
different transform distributions, resulting in two distinct equivariance errors: eT for translations,
and eS for shifts. For translations, the displacement parameter g is sampled uniformly from [0, H)×
[0,W ), and for shifts it is uniformly sampled and from {0, . . . ,H − 1} × {0, . . . ,W − 1}. The
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cosine distance is a standard metric for comparing two feature maps (Zhang, 2019), and it is defined
as:

d(x, y) = 1− 1

BHW

B−1∑
b=0

H−1∑
h=0

W−1∑
w=0

∑C−1
c=0 xbchwybchw∑C−1

c=0 |xbchw|2
∑C−1

c=0 |ybchw|2
. (8)

For the learnable parameters, we use the combination of two distributions i) default initializa-
tion, i.e., γ = 1 and β = 0, and ii) Gaussian initialization with mean 0 and standard deviation 1 to
simulate learned parameters. BatchNorm behaves differently in training mode and eval mode so we
randomize its mode as well, and we also do a separate experiment with fixed mode to see if there
is a significant difference. The results of this separate experiment are listed in Table 3. The other
norms behave the same in both modes and we leave them in evaluation mode.

The feature maps are sampled from real feature maps obtained using the 50,000 validation
images of ImageNet (Deng et al., 2009) and a pre-trained ResNet-18 (He et al., 2015). They are
obtained by feeding in batches of 1024 images to the network, and gathering the feature maps
passed as input to each of the 20 batch normalization layers in the network, resulting in about 1,000
(batched) feature maps.

Shifts Translations
Layer

BatchNorm 9.23e-09 ± 2.86e-12 1.28e-06 ± 1.70e-09
InstanceNorm 9.58e-09 ± 5.29e-12 7.13e-06 ± 1.86e-08
LayerNorm-CHW 4.97e-01 ± 3.54e-04 4.97e-01 ± 3.53e-04
LayerNorm-C 4.66e-09 ± 7.05e-12 2.44e-03 ± 2.66e-06
LayerNorm-AF 9.17e-09 ± 4.08e-12 8.08e-07 ± 2.59e-09

Table 2: Equivariance error of normalization layers. The equivariance error of each layer is
computed using feature maps obtained from ResNet-18 and ImageNet. The metric is
the cosine distance between feature maps transformed before, and after the normalization
layer. It is lower for more equivariant layers. The results are consistent with the theoretical
predictions shown in Table 1. In bold, values lower than 10−4. Values: avg ± s.e.

In Table 2, there are two clusters of layers for equivariance to shifts: those with an error in
the range from 10−10 to 10−9, namely BatchNorm, InstanceNorm, LayerNorm-C and LayerNorm-
AF; and the remaining one higher in the range from 10−2 to 10−1, namely LayerNorm-CHW. In
terms of equivariance to translations, there are three clusters, those in the range from 10−8 to 10−6,
namely BatchNorm, InstanceNorm and LayerNorm-AF, one with a larger error in the range from
10−4 to 10−3, namely LayerNorm-C, and one with the largest error in the range from 10−2 to 10−1,
namely LayerNorm-CHW. The results suggest that BatchNorm and LayerNorm-AF are equivariant
to shifts and translations, that InstanceNorm and LayerNorm-C are equivariant to shifts but not to
translations, and that LayerNorm-CHW is equivariant to neither.

The results are consistent with our theoretical predictions as LayerNorm-CHW is the only one
with a large shift-equivariance error, as BatchNorm, InstanceNorm and LayerNorm-AF have a low
translation-equivariance error, and as LayerNorm-CHW and LayerNorm-C have a high translation-
equivariance error. We believe that the difference between LayerNorm-C and LayerNorm-CHW
can be understood as showing that the affine step hinders equivariance significantly more than the
scaling step.
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Batch normalization operates in two different modes: training mode, and evaluation mode.
Table 3 shows the equivariance error to shifts and translations for both modes. For shift-equivariance
and translation-equivariance in evaluation mode, the equivariance error is in the order of 10−9, and
for translation-equivariance in training mode, it is in the order of 10−6. All four values are fairly low,
which is coherent with our theoretical predictions, but is is not entirely clear why one of the values
is higher than the others. In comparison to the results in Table 2, the lowest value is more consistent
with the other normalization layers, which might indicate that most of the equivariance error is due
to the non-linear normalization, as opposed to the linear normalization done using running statistics.

Additionally, we confirm the role of aliasing in the equivariance to translations in Appendix A.

Shifts Translations
Normalization mode

Training 9.51e-09 ± 3.79e-12 2.55e-06 ± 3.15e-09
Evaluation 8.95e-09 ± 4.26e-12 9.69e-09 ± 3.46e-12

Table 3: Equivariance error for the two modes of batch normalization. Batch normalization
behaves differently in training and evaluation modes. In the experiments, we randomize
the mode and measure the equivariance error for each mode. The results are consistent with
the theoretical predictions as shown by low equivariance error for shifts and translations.
In bold, values lower than 10−4. Values: avg ± s.e.

6. Conclusion

In this work, we study the equivariance of normalization layers to shifts and translations. Our
new theoretical framework highlights that the dimensions the affine step operates on, and the way
the standard deviation is computed are the two factors determining whether a normalization layer
is equivariant or not to shifts and/or translations. More precisely, we prove that shift-equivariant
normalization layers are those with an affine step that does not operate on the spatial dimensions,
or with no affine step altogether, and that translation-equivariant further requires that the standard
deviation be computed at least on the spatial dimensions. We test our theoretical predicitions empir-
ically by measuring and comparing the equivariance error to shifts and translations of five common
normalization layers, and obtain results that are consistent with the predictions.

The choice of a normalization layer affects not only the equivariance of the overall neural ar-
chitecture, but also its performance first and foremost. In this work, we focus on the equivariance
properties of normalization layers, and while equivariance and performance tend to be correlated in
well-designed architectures, we emphasize that empirical validation of the performance is crucial to
the selection of a normalization layer. Studying the relation between equivariance and performance
in normalization layers is an exciting research direction, and we leave it for future work.

Vision transformers are an important family of neural architectures used for computer vision.
Yet, their equivariance to continuous translations remains to be studied and more groundwork is
needed before the equivariance of their normalization layers can be studied specifically. Until then,
it is unclear whether our theoretical results will generalize to them, or if they will remain valid only
for convolutional architectures. We believe that this would also constitute an interesting research
question for future work.
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Figure 1: Detection of aliasing in normalization layers. In Section 4, we explain that the layers
that are equivariant to discrete shifts are also equivariant to translations if, and only if,
they are not prone to aliasing. Here, we show the radial power spectral density of the
normalized feature maps obtained from ×2 upsampled inputs with no energy in the band
(
√
2
4 , 12). Energy in this band indicates aliasing due to an increased frequency bandwidth.

Appendix A. Additional experiments

In Section 4, we show theoretically that certain normalization layers that are equivariant to discrete
shifts are prone to aliasing and thus not equivariant to continuous translations, and in Section 5, we
show empirically that the normalization layers that are predicted to be equivariant to translations
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have a low equivariance error to translations, and that those that are predicted to not be equivariant
to translations have a high equivariance error to translations. In this section, we show empirically
that aliasing is indeed what distinguishes layers that are simply equivariant to shifts from those that
are also equivariant to translations.

Aliasing is the spectral folding of high-frequency information into the lower frequency range
caused, in the case of normalization layers, by an increase of the actual signal bandwidth without
a proper increase in sampling rate. We propose to detect it using the tools from spectral analysis.
More precisely, we consider the same feature maps we used in Section 5 and we upsample them by
a factor of 2 using an ideal sinc low-pass filter to get rid of the higher frequencies while still leaving
room for them. Then, we apply each of the 4 normalization layers that are equivariant to shifts,
namely BatchNorm, InstanceNorm, LayerNorm-C and LayerNorm-AF. Presence of energy above
the cut-off frequency of the sinc filter indicates that the layer increases the effective bandwidth of
its input, and thus that it is prone to aliasing.

We compute the radial power spectral density (PSD) (Ruzanski and Chandrasekar, 2011) over
all of the normalized feature maps for each layer and see if there is energy in the aliasing frequency
band ranging from

√
2
4 to 1

2 . Figure 1 shows that most of the layers have barely any energy in the
aliasing band, with a power spectral density of about 10−12 in that range, and that the remaining
one does have some energy, with a power spectral density of about 10−2. Moreover, the layers
without energy in the aliasing band are exactly those predicted to be equivariant to translations and
with a low empirical equivariance error to translations. Overall, the results are consistent with our
theoretical and empirical results.

Appendix B. Proofs

We make a few simplifications to make the proof easier to follow. Instead of considering 2-
dimensional feature maps, we consider 1-dimension feature maps, and instead of considering feature
maps with separate batch and channel dimensions, we consider a single batch/channel dimension.
We believe that the proof lays most of the groundwork to prove the general case as the two spatial
dimensions can be treated similarly, and the batch and channel dimensions as well.

Formally, normalization layers are functions fγ,β : RK×D → RK×D, where K ≥ 1 is the
number of spatial dimensions and D ≥ 1 is the number of batch and channel dimensions, and
where (γ, β) ∈ Θ ⊆ RK×D × RK×D represent the learned affine transform parameters. The set Θ
represents the set of admissible affine transforms corresponding to a given normalization layer. For
instance, normalization layers without an affine transform are modelled as

Θ0 = {(1K×D,0K×D)} (9)

where 1K×D is the K ×D matrix of ones and 0K×D is the K ×D matrix of zeros, which forces
the affine transform to be the identity. Affine transforms restrained to batch/channel dimensions are
modelled as

ΘD = { (γ, β) ∈ RK×D × RK×D, γkd = γk′d, βkd = βk′d, ∀k, k′, d} (10)

and those restricted to spatial dimensions are modelled as

ΘK = { (γ, β) ∈ RK×D × RK×D, γkd = γkd′ , βkd = βkd′ , ∀k, d, d′}, (11)

11



SCANVIC BARTHÉLEMY TACHELLA

that is, as matrices with equal rows or columns.
Instead of considering all eight cases for centering and scaling on no/one/two dimensions each,

we focus on the two most important cases: centering and scaling on the batch/channel dimension,
or on the spatial dimension. Taking into account those simplifications, normalization layers are
expressed as

fγ,β(x) = γ ⊙ x− E[x]√
E[|x− E[x]|2]

+ β, x ∈ RK×D, (12)

where the expectation is computed over the batch/channel dimension

Ed[xkd] :=
1

D

D−1∑
d′=0

xkd′ , x ∈ RK×D, (13)

or over the spatial dimension

Ek[xkd] :=
1

K

K−1∑
k′=0

xk′d, x ∈ RK×D. (14)

In this setting, the translation operation is one-dimensional and is defined as

Tgxkd = IDFT1

(
e−i2π kg

K (DFT1(xkd))
)
, x ∈ RK×D, (15)

where g ∈ R is the displacement, and DFT1 and IDFT1 are the 1-dimensional discrete Fourier
transform and its inverse, respectively. As a diagonal operator in the Fourier basis, it is also a
convolutional operator

Tgxkd = φg,k ∗ xk,d =

K−1∑
k′=0

xdk′φg,(k−k′)K (16)

where ∗ denotes spatial 1-dimensional convolution, and whose kernel is expressed as

φg,k =

{
1
K

sin(π(g−k))
sin(π(g−k)/K)e

−iπ(g−k)(1− 1
K ), if g ∈ R \ Z

δkg if g ∈ Z,
(17)

where δkg is the Kronecker symbol.

B.1. Preliminaries

The averaging operation is linear in all cases, and Tg is a linear operator for all g ∈ R, so

Tgx− E[Tgx] = Tgx− TgE[x] = Tg(x− E[x]), g ∈ R. (18)

That is, centering never causes a lack of equivariance to translations (or shifts). This property is
particularly important and we use it extensively through the rest of the proof.

12
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B.2. Proof of Theorem 1

For convenience, we restate the theorem:

Theorem 1 A normalization layer is equivariant to discrete shifts if, and only if, its affine step does
not operate on the spatial dimensions, or if has no affine step altogether.

We prove the theorem in two steps: i) we show that if the affine step operates on the spatial
dimension, then the normalization layer is not equivariant to shifts, and ii) we show that if there is
no affine step or if the affine step does not operate on the spatial dimension, then the normalization
layer is equivariant to shifts.

Non-equivariance to shifts Let’s assume that the affine step operates on the spatial dimensions,
i.e., that ΘK ⊆ Θ. Let γkd = δk0, and β = 0K×D, since γ and β do not vary along the batch/channel
dimension D, (γ, β) ∈ ΘD ⊆ Θ and it is an admissible set of parameters for the normalization layer.

Let g ∈ Z \ {0} and xkd ∈ RK×D be any feature map with normalization

ykd =
xkd − E[xkd]√

E[|xkd − E[xkd]|2]
(19)

having no entry equal to zero

ykd ̸= 0,∀k = 0, . . . ,K − 1,∀d = 0, . . . , D − 1. (20)

Note that this can be achieved by letting xkd take its values in { −1, 1} with at least one occurrence
of the two numbers on each row. Indeed, in that case, the mean takes values in (−1, 1), and the
centered feature map has no entry equal to zero. And since scaling cannot introduce any new zero,
the normalized feature map has no entry equal to zero either.

fγ,β(Tgxkd)− Tgfγ,β(xkd) = γkd ⊙
Tgxkd − E[Tgxkd]√

E[|Tgxkd − E[Tgxkd]|2]
+ βkd (21)

− Tg

(
γkd ⊙

xkd − E[xkd]√
E[|xkd − E[xkd]|2]

+ βkd

)
(22)

= γkd ⊙ Tg

(
xkd − E[xkd]√

E[|xkd − E[xkd]|2]

)
(23)

− Tg

(
γkd ⊙

xkd − E[xkd]√
E[|xkd − E[xkd]|2]

)
(24)

= γkd ⊙ Tg

(
xkd − E[xkd]√

E[|xkd − E[xkd]|2]

)
(25)

− (Tgγkd)⊙ Tg

(
xkd − E[xkd]√

E[|xkd − E[xkd]|2]

)
︸ ︷︷ ︸

ykd

(26)

= δk0ykd − δkgykd (27)

13
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=


y0d if k = 0,

−ygd if k = g

0 otherwise.

(28)

Since ykd has no entry equal to zero, the equivariance error has non-zero entries and thus the
normalization layer is not equivariant to shifts.

Equivariance to shifts Let’s assume that there is no affine step, or that it does not operate on
the spatial dimensions, i.e., that Θ ⊆ ΘD. Let (γ, β) ∈ Θ, g ∈ Z, and xkd ∈ RK×D. Since
(γ, β) ∈ ΘD, we have

Tgγkd = γkd, Tgβkd = βkd. (29)

fγ,β(Tgxkd) = γkd ⊙
Tgxkd − E[Tgxkd]√

E[|Tgxkd − E[Tgxkd]|2]
+ βkd (30)

= γkd ⊙ Tg

(
xkd − E[xkd]√

E[|xkd − E[xkd]|2]

)
+ βkd (31)

= (Tgγkd)⊙ Tg

(
xkd − E[xkd]√

E[|xkd − E[xkd]|2]

)
+ (Tgβkd) (32)

= Tg

(
γkd ⊙

xkd − E[xkd]√
E[|xkd − E[xkd]|2]

+ βkd

)
(33)

= Tgfγ,β(xkd). (34)

Since this is true for all γ, β, g, and x, the normalization layer is equivariant to shifts.

B.3. Proof of Theorem 2

Again, we restate the theorem:

Theorem 2 A normalization layer is equivariant to continuous translations if, and only if, it is
equivariant to shifts, and the standard deviation is computed at least on the spatial dimensions.

Recall that shift-equivariance is the same as translation-equivariance except restrained to whole
pixel displacements. This makes shift-equivariance a necessary condition for translation-equivariance.
It suffices to show that a shift-equivariant layer is also translation-equivariant if, and only if, the
standard deviation is computed on the spatial dimensions.

We prove that in two steps: i) we show that if the standard deviation is not computed on spatial
dimensions, then the normalization layer is not equivariant to translations, and ii) we show that if the
standard deviation is computed on the spatial dimensions, then the normalization layer is equivariant
to translations.

In this section, we assume that the normalization layer is equivariant to shifts, or equivalently,
according to Theorem 1, that there is no affine step or that it operates on the batch/channel dimen-
sions Θ ⊆ ΘD.
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Non-equivariance to translations Let’s assume that the scaling is done over the batch/channels
dimension

E[xkd] = Ed[xkd] :=
1

D

D−1∑
d′=0

xkd′ . (35)

We let xkd = δ0kud where δ is the Kronecker delta and ud ∈ RD is any vector with mean zero and
variance one. We also let g ∈ R \ Z and γ = 1K×D and β = 0K×D. We compute:

fγ,β(Tgxkd)− Tgfγ,β(xkd) = γkd ⊙
Tgxkd − E[Tgxkd]√

E[|Tgxkd − E[Tgxkd]|2]
+ βkd (36)

− Tg

(
γkd ⊙

xkd − E[xkd]√
E[|xkd − E[xkd]|2]

+ βkd

)
(37)

=
Tgxkd − TgE[xkd]√

E[|Tgxkd − TgE[xkd]|2]
− Tg

(
xkd√

E[|xkd|2]

)
(38)

=
Tgxkd√

E[|Tgxkd|2]
− Tg

(
xkd√

E[|xkd|2]

)
(39)

= (φgk ∗ xkd)⊙ Ed[(φgk ∗ xkd)2]−1/2 (40)

− φgk ∗
(
xkd ⊙ Ed[x

2
kd]

−1/2
)

(41)

= (φgk ∗ δ0kud)⊙ Ed[(φgk ∗ δ0kud)2]−1/2 (42)

− φgk ∗
(
δ0kud ⊙ Ed[δ0ku

2
d]
−1/2

)
(43)

= φgkud ⊙ |φgk|−1Ed[u
2
d]
−1/2 (44)

− φgk ∗
(
δ0kud ⊙ δ0kEd[u

2
d]
−1/2

)
(45)

= φgkud ⊙ |φgk|−1 − φgk ∗ (δ0kud ⊙ δ0k) (46)

= φgkud ⊙ |φgk|−1 − φgk ∗ ud (47)

= φgk

(
1

|φgk|
− 1

)
ud. (48)

(49)

By definition, ud ̸= 0 and, according to Eq. (17), |φgk| is not in {0, 1} for all k, as g ∈ R \Z, so the
equivariance error is non-zero. The normalization layer is not equivariant to translations.

Equivariance to translations Let’s assume that the scaling is done over the spatial dimensions

E[xkd] = Ek[xkd] :=
1

K

K−1∑
k′=0

xk′d. (50)

Let (γ, β) ∈ Θ, x ∈ RK×D be any signal, g ∈ R. Since Θ ⊆ ΘD, we have

Tgγkd = γkd, Tgβkd = βkd. (51)

15



SCANVIC BARTHÉLEMY TACHELLA

We first show that Tg is unitary

Ek[(Tgxkd)
2] = E[x2kd]. (52)

Indeed, since the DFT is unitary (Vetterli et al., 2014), we have

Ek[(Tgxkd)
2] =

1

K

K−1∑
k=0

(Tgxkd)
2 (53)

=
1

K

K−1∑
k=0

DFT1(Tgxkd)
2 (54)

=
1

K

K−1∑
k=0

|e−i2π kg
K DFT1(xkd)|2 (55)

=
1

K

K−1∑
k=0

|DFT1(xkd)|2 (56)

=
1

K

K−1∑
k=0

x2kd (57)

= E[x2kd]. (58)

Now, we compute

fγ,β(Tgxkd)− Tgfγ,β(xkd) = γkd ⊙
Tgxkd − E[Tgxkd]√

E[|Tgxkd − E[Tgxkd]|2]
+ βkd (59)

− Tg

(
γkd ⊙

xkd − E[xkd]√
E[|xkd − E[xkd]|2]

+ βkd

)
(60)

= γkd ⊙
Tgxkd − TgE[xkd]√

E[|Tgxkd − TgE[xkd]|2]
(61)

− Tgγkd ⊙ Tg

(
xkd − E[xkd]√

E[|xkd − E[xkd]|2]

)
+ βkd − Tgβkd (62)

= γkd ⊙
Tg(xkd − E[xkd])√

E[|Tg(xkd − E[xkd])|2]
(63)

− γkd ⊙ Tg

(
xkd − E[xkd]√

E[|xkd − E[xkd]|2]

)
(64)

= γkd ⊙

(
Tg(xkd − E[xkd])√
E[|xkd − E[xkd]|2]

− Tg

(
xkd − E[xkd]√

E[|xkd|2]

))
(65)

= γkd ⊙

((
φgk ∗k (xkd − E[xkd])

)
⊙d Ek[|xkd − E[xkd]|2]−1/2

(66)
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− φgk ∗
(
(xkd − E[xkd])⊙d Ek[|xkd − E[xkd]|2]−1/2

))
(67)

= 0 (68)

where ∗k emphasizes convolution on the k dimension, and ⊙d emphasizes Hadamard product on
the d dimension. The equivariance error is zero, and thus the normalization layer is equivariant to
translations.
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