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ABSTRACT

Machine Learning models have shown susceptibility to various privacy attacks,
with model inversion (MI) attacks posing a significant threat. Current defense
techniques are mostly model-centric, involving modifying model training or in-
ference. However, these approaches require model trainers’ cooperation, are com-
putationally expensive, and often result in a significant privacy-utility tradeoff. To
address these limitations, we propose a novel data-centric approach to mitigate MI
attacks. Compared to traditional model-centric techniques, our approach offers the
unique advantage of enabling each individual user to control their data’s privacy
risk. Specifically, we introduce several privacy-focused data augmentations that
modify the private data uploaded to the model trainer. These augmentations shape
the resulting model’s loss landscape, making it challenging for attackers to gener-
ate private target samples. Additionally, we provide theoretical analysis to explain
why such augmentations can reduce the risk of model inversion. We evaluate our
approach against state-of-the-art MI attacks and demonstrate its effectiveness and
robustness across various model architectures and datasets. Specifically, in stan-
dard face recognition benchmarks, we reduce face reconstruction success rates to
≤ 5%, while maintaining high utility with only a 2% classification accuracy drop,
significantly surpassing state-of-the-art model-centric defenses. This is the first
study to propose a data-centric approach for mitigating model inversion attacks,
showing promising potential for decentralized privacy protection.

1 INTRODUCTION

Owing to computational advancements and the availability of large-scale global datasets, Machine
Learning (ML) has undergone significant growth in recent years, showing promise across diverse
fields. However, ML models trained on sensitive data risk leaking private information (Fredrikson
et al., 2014; Shokri et al., 2017). While some data contributors may disregard data privacy, others,
known as “privacy actives,” place high importance on it, taking active measures including chang-
ing service providers (Cisco, 2022). Legislation such as the GDPR (Magdziarczyk, 2019) and the
California Consumer Privacy Act (Pardau, 2018) also advocate for individual data control.

Existing defenses primarily adopt a model-centric approach, altering model training (Abadi et al.,
2016; Wang et al., 2021; Yang et al., 2020) or inference procedures (Jia et al., 2019). Common
techniques include differentially private stochastic gradient descent (DP-SGD) (Abadi et al., 2016),
which involves clipping and noising the gradients during training. These approaches often result
in performance degradation and increased computation time. Moreover, they require users to trust
the model trainer (e.g., the data-harvesting companies) to ensure privacy, limiting user control over
their privacy risks. More critically, they often present a binary stance on privacy protection, offer-
ing protection to all users or none, overlooking the nuanced needs of individual users. Real-world
surveys Cisco (2022); Review (2020); Bongiovanni et al. (2020) reveal that only a small portion of
users (i.e., 32%) are privacy actives, but the binary nature of existing solutions implies a significant
compromise in utility for the sake of protecting the privacy of a minority. This motivates our ex-
ploration into data-centric defenses: strategies that individuals can use to mitigate privacy attacks
by modifying their data before uploading it to the central model trainer. This empowers individuals
to control their privacy risks in a decentralized manner. The randomized response (Warner, 1965),
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a long-standing strategy in social sciences, serves as an example, although it encounters challenges
with high-dimensional data common in modern ML tasks.

In this paper, we focus on model inversion (MI) attacks to investigate the feasibility of effective
data-centric defense. MI attacks, which reconstruct training data from a trained model, are well-
researched and have been successful in both white-box and black-box scenarios (Fredrikson et al.,
2014; Zhang et al., 2020b; Chen et al., 2021; Kahla et al., 2022; Struppek et al., 2022; An et al.,
2022). Compared to other common privacy attacks such as membership inference attacks (Shokri
et al., 2017; Nasr et al., 2019) (which infers whether certain data is used for training) and property
inference attacks (Ganju et al., 2018; Melis et al., 2019; Song & Raghunathan, 2020) (which infers
whether a dataset has certain global properties), MI attacks recover much more fine-grained infor-
mation such as training images, posing a significant threat to user privacy. This work develops the
first data-centric defense for MI attacks, making the following contributions:

1 MI Defense via Privacy-Focused Augmentations. We propose privacy-focused data augmen-
tations that can be injected by individual data contributors to mitigate their MI risks. Unlike tradi-
tional augmentations like cropping, rotation, and flipping that aim to improve model generalization,
our augmentations are specifically tailored to thwart MI attacks. We present several ideas for de-
signing such augmentations, with a central theme of shaping the loss landscape in ways that mislead
MI attacks to recover irrelevant samples. This central theme distinguishes our ideas from the early
simple randomized response, wherein the design of the noise injected into the data does not consider
its impact on model behaviors. Also, in contrast to existing MI defenses, our proposed approach,
named DCD, requires no access to the victim model or training data from other contributors.

2 Theoretical Analysis for Privacy-Focused Augmentations. We provide theoretical justifica-
tion for DCD, demonstrating that: 1) the proposed augmentations reshape the loss landscape near
the target and inject irrelevant samples; 2) these treatments cause existing MI attacks relying on
gradient-based optimization to converge to the irrelevant samples rather than the target samples.

3 Evaluation. We evaluate DCD against various state-of-the-art MI attacks and demonstrate
the robustness of DCD across different datasets, model architectures, and attack strategies. DCD
outperforms the baselines by achieving a significantly improved privacy-utility tradeoff.

Figure 1: Data-Centric Defense vs Model-Centric Defense.

2 BACKGROUND AND RELATED WORK

Model Inversion Attacks. In an MI attack, an adversary aims to reconstruct representative training
samples for any target class of a victim model given access to the model. For example, in the context
of face recognition, the adversary seeks to reconstruct face images of a specific target identity. To
recover training data from a given model fθ for any target class y, the key idea of MI is to find an
input that minimizes the prediction loss of y: xsyn ∈ argminx L(fθ(x), y).

However, solving this optimization over the high-dimensional space without any constraints gen-
erates noise-like features that lack semantic information and give unsatisfactory model inversion
performance. Recently, GMI (Zhang et al., 2020b) proposed to optimize over the latent space of a
pre-trained GAN instead: xsyn = G(z∗), z∗ ∈ argminz L(fθ(G(z)), y) −D(G(z)), where G and
D represent the generator and the discriminator of the GAN, respectively. Chen et al. (2021); An
et al. (2022); Struppek et al. (2022) follow the idea of using GAN and further improve the quality of
reconstructed images with different techniques, e.g., knowledge distillation from the target model;
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latent space disentanglement via a StyleGAN (Karras et al., 2019; 2020a), etc. These works show
that the samples synthesized by the GAN-based MI technique above can maintain high visual sim-
ilarity to the original training data of fθ. The backbone of existing MI attacks involves solving an
optimization objective, containing the prediction loss of the target class, i.e., L(fθ(G(z)), y), and
other quality-enhancing loss terms, via gradient descent. To recover multiple images, one could run
gradient descent multiple times, each of which uses a randomly selected initialization value.

Defense Techniques. Existing defenses against MI involve altering the training process or model ar-
chitectures. Differential privacy (DP) was deployed to defend MI in Fredrikson et al. (2014); Zhang
et al. (2020b), which empirically show that DP can mitigate MI attacks only when the injected noise
is large enough and as a side effect, the model suffers significant performance degradation. Wang
et al. (2021) studied the theoretical basis of the inefficacy of DP in defending MI and introduced
information bottleneck-based learning objectives to decrease the correlation between model out-
puts and training data. While improved over DP, it still suffers a significant privacy-utility tradeoff.
Peng et al. (2022) proposed to minimize the dependency between the latent space and input while
maximizing the dependency between the latent space and model outputs, enhancing utility. This,
however, also requires modifications to model architectures. It’s worth noting that all these defenses
lack user control, relying on model trainers and imposing unnecessary utility sacrifices for privacy,
especially when only a minority prioritize data privacy. In comparison, our approach involves only
modification to data, which can be achieved by individual users who want to protect their privacy.
Also, as we will show later, our defense effectively preserves the model’s utility.

Connection between Data Augmentation and Privacy. The impact of augmentations on privacy
risks has been studied recently in the context of membership inference attacks (Kaya & Dumitras,
2021; Tramèr et al., 2022; Chen et al., 2022). These attacks aim to determine if specific data samples
were part of a model’s training data. Kaya & Dumitras (2021) studied common data augmentations
used for improving model generalization (e.g., random cropping and Gaussian augmentation) and
empirically identified which ones mitigate or amplify membership inference risks. Tramèr et al.
(2022); Chen et al. (2022) proposed augmenting the training set with mislabeled target samples to
increase the risk. Our work focuses on model inversion, in which the impact of augmentations on
privacy risks has not been explored. In addition to the difference in scope, our work distinguishes
itself from existing research by going beyond the traditional collection of augmentations designed
to improve model generalizability. Instead, we propose novel augmentations designed specifically
to improve privacy, and such a design is grounded on an understanding of the influence of augmen-
tations on the loss landscape of the victim model.

3 METHODOLOGY

Figure 2: Illustration of curvature-
controlled augmentations and the result-
ing loss landscape.

Notation and Setup. Let fθ denote a target victim clas-
sifier, which maps an input feature x ∈ X to a label
y ∈ Y , and Y = {y1, . . . , yk}. Denote the raw, unpro-
tected training set by D = {(xij , yi) : i = 1, . . . , k, j =
1, . . . ,mi}, where xij represents the j-th samples in class
i and mi is the total number of samples in class i. Take
face recognition, a canonical application considered in
the MI attack literature, as an example. Each yi rep-
resents a different identity or user, and xij represents
face images corresponding to identity yi. Our goal is to
protect training samples with the labels indexed by Stgt
from model inversion attacks. This set will be referred
to as the target label set. The raw training samples cor-
responding to the target label set can be represented as
Dtgt-raw = {(xij , yi) : i ∈ Stgt, j = 1, ...,mi}.

3.1 PRIVACY-FOCUSED DATA AUGMENTATIONS

Our approach introduces surrogate classes into the train-
ing set, designing augmentations to misdirect MI attacks toward recovering surrogate-class samples
instead of target-class samples. We explain this process using a specific target class (ytgt ∈ {yi : i ∈
Stgt}) for protection. When multiple target classes need protection (i.e., |Stgt| > 1), one can easily
apply the following process to each target class index in Stgt.
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Surrogate Injection. The process begins with identifying an “irrelevant” surrogate class (ysrg /∈
Y) for the target class (ytgt), the reconstruction of which does not divulge sensitive information
about the original target class. For example, in face recognition, a different public identity could
serve as the surrogate class. We then gather samples from this surrogate class (x1

j , j = 1, . . . ,m,
x1
j ∼ P (X|ysrg)), relabel them as the target class, creating a mixed set of actual target and surrogate

class samples labeled as the target class. The resulting augmented samples are denoted as D1
ytgt

=

{(x1
j , ytgt) : j = 1, ...,m}.

The model trained directly on this mixture identifies both surrogate and target samples as the tar-
get class. Hence, an MI attack would generate a mix of target-class and surrogate-class samples.
Detailed results are provided in Table 2. While this mix can obfuscate the adversary about the true
attributes of the target class, our goal is to minimize the possibility of reconstructing the target class,
thereby preventing the adversary from confidently determining the true attributes associated with the
target class. The question now is how to induce MI attacks to preferentially generate samples from
the surrogate class over the target class.

Loss-Controlled Modification. MI attacks essentially resolve optimization problems, seeking
samples that result in the lowest loss when predicted as the target class. To counteract this, our
first strategy modifies training data to slightly elevate the classification loss on the target compared
to the surrogate, increasing the likelihood of detecting surrogate samples during MI optimization
while reducing the chance for target samples. We accomplish this by randomly mislabeling a small
fraction (denoted by π1) of target samples, thereby increasing their loss, while leaving the surrogate
samples’ labels unaltered. The adjusted target samples are as follows:

D0
ytgt = {(x0

j , y
′
j) : j = 1, ..., ⌈mπ1⌉} ∪ {(x0

j , ytgt) : j = ⌈mπ1⌉+ 1, ...,m}, (1)

where x0
j ∼ P (X|ytgt) and y′

j ∼ Uniform(Y \ ytgt).

Curvature-Controlled Injection. While loss-controlled modification consistently improves over
direct surrogate injection, achieving nearly zero attack success rate, it can degrade model accuracy
by 5% (details in Table 2). Leveraging the insight from non-convex optimization theory (Bertsekas,
1997), our second strategy manipulates the loss landscape’s curvature, promoting a flatter curva-
ture around surrogate samples and a steeper one near target samples. This approach biases the MI
optimization towards reconstructing surrogate samples.

For surrogate samples, we employ Gaussian augmentations in their neighborhood, maintaining the
same label, i.e., D2

ytgt
= (x1

j + µj , ytgt) : j = 1, . . . ,m, where µj ∼ N (0, ϵ21). This creates a flat
loss landscape around surrogate samples. For target samples, we apply Gaussian augmentations but
mislabel a portion of the augmented samples, denoted by π2. The resulting augmented samples are:

D3
ytgt = {(x0

j + µ′
j , ỹj) : j = 1, . . . , ⌈mπ2⌉} ∪ {(x0

j + µ′
j , ytgt) : j = ⌈mπ2⌉+ 1, . . . ,m}, (2)

where µ′
j ∼ N (0, ϵ22) and ỹj ∼ Uniform(Ȳ) where Ȳ ⊂ {Y \ ytgt} is some arbitrary subset. The

trained model fθ(·), which tends to memorize training samples, will yield different label predictions
for target samples and their close neighbors. This results in a large variation in l(fθ(·), ytgt) in the
target samples’ neighborhood (see Figure 2).

We refer to the complete injection process as DCD. The pseudocode is provided in Algorithm 1.1

Choosing Hyperparameters. In our experiments, we fix the noise magnitude for augmenting sur-
rogate samples at ϵ1 = 8/255, while varying the noise magnitude for augmenting target samples,
ϵ2. A smaller ϵ2 leads to a sharper loss landscape around target samples, allowing control of the cur-
vature relative to surrogate samples. Further details and sensitivity analysis of defense performance
to ϵ2, π1, and π2 are presented in Section 4.3.

1Note that the injection increases the number of samples in the target class(es) by a factor of 4. While
this could potentially signal malicious intent to remove privacy-focused augmentations, we assume the model
trainer’s honesty in this paper and leave concealing injected samples for future exploration. It’s worth noting
that real-world datasets (e.g., GTSRB (Stallkamp et al., 2011) used in our experiments) naturally have varying
sample sizes across classes, which already poses challenges for intentional removal based solely on size.
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3.2 THEORETICAL ANALYSIS OF CURVATURE-CONTROLLED INJECTION

While it is relatively straightforward to see the impact of surrogate injection and loss control (i.e.,
injecting new minima and increasing the loss at the sensitive minima), understanding how curva-
ture control manipulates the minima that gradient-based methods converge to is more nuanced. We
demonstrate in this section of the paper that the proposed curvature control operations reshape the
loss landscape around the target and surrogate samples. Leveraging the powerful Capture Theorem,
we show that these treatments alter the convergence behavior of gradient-based optimization meth-
ods, redirecting them from the target samples to the surrogate samples. We establish conditions for
the effectiveness of these techniques and provide a principled framework for their implementation.

Curvature-Controlled Injection serves an implicit regularization on the eigenvalues of Hessian.
Consider neural networks constructed using continuous, piecewise affine activations (e.g., ReLU,
leaky ReLU), we show that the correctly labeled Gaussian augmentations near surrogate samples
will reduce the principal eigenvalue σmax(Hε) of a Monte-Carlo approximation of ε-Hessian of loss
(defined in (LeJeune et al., 2019)) near the surrogate (Lemma 1). Conversely, mislabeled Gaussian
augmentations near target samples increase the principal eigenvalue near the target (Lemma 2).
Lemma 1. Consider surrogate samples D1

ytgt
= {(x1

j , ytgt) : j = 1, ...,m} and the corresponding
augmented set D2

ytgt
= {(x1

j + µj , ytgt) : j = 1, ...,m}. Then, compared to the loss function L
of the model trained without noise augmentation D2

ytgt
, the noise augmentation reduces the largest

eigenvalue of a Monte-Carlo approximation of the Hessian matrix Hε near the surrogate samples
D1

ytgt
for the loss function of the model trained with D3

ytgt
.

Lemma 2. Consider target samples with a mislabeling ratio π1 given as D0
ytgt

defined in Eq. equa-
tion 1 and the corresponding augmented set with mislabeling D3

ytgt
defined in Eq. equation 2. Then,

compared to the loss function L of the model trained without noise augmentation with mislabel-
ing on D3

ytgt
, the noise augmentation with mislabeling in D3

ytgt
increases the largest eigenvalue of

a Monte-Carlo approximation of the Hessian matrix Hε near the target samples D0
ytgt

for the loss
function of the model trained with the noise-augmented set with mislabeling D3

ytgt
.

We defer formal lemma statements and proofs to Appendix B. Proof for Lemma 1 is a straightfor-
ward extension of that for Theorem 1 in LeJeune et al. (2019). Proof for Lemma 2 introduces a
novel technique showing that minimizing the loss on noise-augmented samples with uniform mis-
labeling is ultimately equivalent to maximizing the loss on noise-augmented samples with correct
labels, potentially of interest to the community studying the regularization effect of augmentations.

Gradient-based optimization prefers flatter minima. Let’s now delve into how the previously
outlined operations can influence the trajectory of gradient-based optimization. Specifically, they
increase the likelihood of convergence towards surrogate samples while reducing for target samples.
Capture Theorem (Bertsekas, 1997) states that the optimization trajectory tends to be attracted to-
wards local optima once within sufficiently close proximity, given that the optimizer can converge.
We’ll outline the conditions that allow or prevent convergence of the gradient-based optimizer. Fol-
lowing that, we’ll demonstrate how our loss-shaping operations directly impact these conditions,
thereby theoretically guiding the optimization trajectory to favor convergence at surrogate samples.
The subsequent theorem provides a formal explanation for the termination of gradient-based non-
linear optimization when using a constant stepsize—a method extensively utilized in current MI
attacks (Zhang et al., 2020b; Struppek et al., 2022; Chen et al., 2021). While our analysis isn’t
limited to constant stepsizes, we’ll postpone the discussion on variable stepsizes to the Appendix.
Theorem 1 (Convergence of gradient method (Bertsekas, 1997)). Let {xk} be a sequence gen-
erated by a gradient method xk+1 = xk + αkdk, where {dk} is gradient related. Assume that the
gradient of f is L-Lipschitz, and that for all k we have dk ̸= 0 and

ϵ ≤ αk ≤ (2− ϵ)ᾱk, where ᾱk =
|∇f(xk)′dk|
L∥dk∥2

and ϵ ∈ (0, 1] is a fixed scalar. Then every limit point of {xk} is a stationary point of f .
Remark 1 (Lipschitz of loss gradients directly affects convergence at local optima). Theorem 1
asserts that a gradient-based optimizer converges to a local optimum if the stepsize lies within a
certain range. This range’s upper limit is inversely proportional to the Lipschitz constant of the loss
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gradient in the area, and convergence will fail if the stepsize exceeds this range. In essence, local
optima with larger Lipschitz constants require smaller step sizes for convergence, while those with
smaller Lipschitz constants can accommodate a broader range of stepsizes.
Remark 2 (Reshaping convergence through noise-augmentation and mislabeling). The Lips-
chitz constant of the loss gradient in a region equals the largest eigenvalue of the loss Hessian,
σmax(H). Increasing σmax(H) in a local optimum’s capture region (as in Lemma 1) rejects con-
vergence for optimizers with non-minimal stepsizes. Conversely, decreasing σmax(H) (as in Lemma
2) accommodates a wider range of stepsizes. However, excessively small stepsizes may be practi-
cally infeasible due to inevitable noises from gradient partial estimation and round-off/quantization
errors. Also, for nonconvex loss functions typical in neural networks, optimization with extremely
small stepsizes is generally impractical and results in poor performance. Thus, the proposed loss
landscape shaping essentially lowers the likelihood of convergence at target samples for gradient-
based optimizers, steering the optimization trajectory toward surrogate samples.
Remark 3 (Elevating loss with mislabeling strengthens effects). Finally, augmenting noise and
mislabeling samples near target samples to elevate loss creates barriers on the loss landscape.
These barriers prevent gradient-based optimizers from entering the capture region of target samples,
especially those with smaller stepsizes. The optimizer’s trajectory is diverted early to avoid loss
increase before reaching the barrier’s ridge, which contradicts the requirement for smaller stepsizes.
Consequently, it becomes less likely for gradient-based optimizers to reach and converge at the
target samples’ capture region.

4 EXPERIMENTS

We aim to answer several key questions and provide a comprehensive understanding of the strengths
and weaknesses of DCD: 1) How does DCD compare to existing MI defenses in terms of model
utility and robustness to various MI attacks? 2) Does DCD work well across datasets and model
architectures? 3) How to choose hyperparameters for DCD? 4) How to choose surrogate samples?

4.1 SETUP

Attack Algorithms. We assess the effectiveness of our defense against four MI attacks in white-
box setting: GMI (Zhang et al., 2020b), PPA (Struppek et al., 2022), MIRROR-W (An et al., 2022)
and PLG-MI (Yuan et al., 2023). GMI is the most classic MI attack in the literature, while PPA,
MIRROR-W, and PLG-MI represent the most recent ones achieving state-of-the-art attack perfor-
mance. For completeness, we also evaluate our defense against the most recent black-box attack,
MIRROR-B, though it has been shown less potent than the white-box counterpart. We utilize open-
sourced implementations of these attacks and faithfully replicate their settings.

Datasets and Models. We demonstrate the efficacy of DCD across multiple tasks and datasets com-
monly employed in previous studies on MI attacks (Zhang et al., 2020b; Struppek et al., 2022; An
et al., 2022; Chen et al., 2021): (1) Traffic Sign Recognition (GTSRB (Stallkamp et al., 2011)); (2)
Face Recognition (CelebA (Liu et al., 2015), FaceScrub (Ng & Winkler, 2014)); and (3) Dog Classi-
fication (St.Dogs (Khosla et al., 2011)). We evaluate our defense on various target models with dif-
ferent architectures including VGG-16(Simonyan & Zisserman, 2014), ResNeSt-101(Zhang et al.,
2020a), ResNet-152(He et al., 2016), ResNext-101(Xie et al., 2017), and DenseNet-169(Huang
et al., 2017). Following the setup in the original attack algorithms, we use GANs pre-trained on
public datasets from domains similar to the private datasets used to train target models. For a de-
tailed description of each experiment’s setting, please refer to Appendix C.

Baselines. We compare DCD with DP-SGD (Abadi et al., 2016), MID (Wang et al., 2021) and
BiDO (Peng et al., 2022). To ensure consistent evaluation, we utilized their open-source implemen-
tations (Wang, 2021; Peng, 2022). We carefully select the privacy parameters by testing various
configurations of each baseline, where detailed information is available in Appendix C.4.

Evaluation Protocol. We evaluate our defense mechanism from both utility and privacy aspects. In
terms of utility, we measure the classification accuracy of the target model on the entire clean test
set (ACC-all) and the target test set (ACC-tar). For privacy, we evaluate the attack accuracy (Att.
ACC), which corresponds to the classification accuracy of an evaluation model on inverted samples.
Evaluation models are trained using different architectures from the target models following Zhang
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et al. (2020b); Chen et al. (2021); Struppek et al. (2022). For the GMI attack, we generate 500
samples for each target class and average the results across 5 target classes. For PPA and MIRROR
attacks, we generate 50 samples for each target, averaging over 10 targets for PPA and 8 targets for
MIRROR. For PLG-MI, we generate 50 samples for each target, averaging over 300 targets. The
target classes are randomly selected.

Implementation of DCD. In the experiments, we fixed ϵ1 = 8/255, ϵ2 = 0.003, and π2 = 1. We
use π1 = 0.2 for GMI, MIRROR, and PLG-MI, π1 = 0.3 for PPA. Regarding surrogate selection,
for the datasets GTSRB, FaceScrub, and St.Dogs, we randomly selected surrogate classes from
within each dataset. The target models are then trained on the remaining classes. For CelebA, the
target models are trained on the top 1,000 identities based on the sample quantity, with surrogates
randomly selected from the remaining. For VGGFace2, since it is no longer available publicly, we
are only able to collect 8 classes for training the target model, with a surrogate randomly chosen from
CelebA protecting all. The guideline for automated surrogate selection is provided in Section 4.3,
with the code provided in the supplementary materials.

4.2 RESULTS

Figure 3: Visual comparison of MI recovered face
samples with different defenses. Each row shows
reconstructions of the same identity under differ-
ent defenses, with true images on the left and our
surrogate injection on the right.

Comparison with Model-Centric Baselines.
We compare DCD with the previous state-of-
the-art defenses on various MI attacks, datasets,
and model architectures. To better understand
the performance when using different surro-
gates, the results of DCD in Table 1 are av-
eraged over three runs, each with different ran-
domly auto-selected surrogates. As shown in
the table, DCD outperforms the baselines in
both utility and privacy metrics. The unpro-
tected models exhibit alarmingly high attack
accuracy, with GMI at 76%, PPA at 90%, and
MIRROR at 100%. In contrast, DCD signif-
icantly reduces the attack accuracy to 0% for
GMI, MIRROR, and PLG-MI attacks, and to
1.55% for PPA. Figure 3 and 5 show that DCD
successfully fools MI into generating samples resembling the surrogate ones. A notable advantage
of DCD is its ability to balance privacy and utility well. Unlike model-centric baselines, which
exhibit a substantial drop in classification accuracy, our method ensures high classification accuracy,
with a decrease of less than 3% on the face datasets CelebA and VGGFace2. We further provide a
sensitive analysis of the number of protected classes to protect in Appendix D.

Table 1: Defense performance comparison against various MI attacks. Results are given in %; ↑
and ↓ respectively symbolize that higher and lower scores give better defense performance. Note
that for MIRROR, all classes are target classes, and the classification accuracy is demoted as ACC.
Additionally, DCD results are averaged over three runs with varying surrogate selection.

GMI PPA MIRROR-W MIRROR-B PLG-MI
TSRD→GTSRB FFHQ→CelebA FFHQ→VGGFace2 FFHQ→VGGFace2 FFHQ→CelebA

ACC-all↑ ACC-tar↑ Att. ACC↓ ACC-all↑ ACC-tar↑ Att. ACC↓ ACC ↑ Att. ACC↓ ACC↑ Att. ACC↓ ACC-all↑ ACC-tar↑ Att. ACC↓
No Protection 98.34 99.20 76.13 88.42 84.37 90.40 99.99 100.0 99.99 100.0 88.02 88.99 89.40

DP 54.30 31.24 12.80 39.61 6.67 14.33 56.25 54.69 56.25 50.00 24.47 25.56 64.09
MID 67.70 55.37 54.53 69.54 53.33 52.33 41.34 100.00 41.34 12.50 74.77 73.56 87.12

BIDO 87.02 72.62 54.40 74.92 50.00 19.33 83.66 89.06 83.66 87.50 75.33 75.40 4.03
DCD 96.21 93.25 0.00 87.67 80.41 1.55 96.88 0.00 96.88 0.00 77.90 74.86 0.00

Generalization to Different Datasets and Model Architectures. We further evaluate the perfor-
mance of DCD on different datasets, focusing on one of the most advanced MI attacks, PPA (Strup-
pek et al., 2022). Our evaluation considers three datasets: CelebA, FaceScrub, and St.Dogs; and
we employ StyleGAN2 that have been pre-trained on public datasets with different distributional
shifts (Karras et al., 2020b). Consistent with the previous findings, Table 9 shows that DCD achieves
an impressive privacy-utility tradeoff, effectively reducing the attack accuracy to <5% on all datasets
while causing a minimal impact on the model accuracy of the target class. The accuracy remains
high for all datasets with only a slight drop that < 1%. In Appendix D, we provide a comprehensive
evaluation of DCD’s performance on different model architectures. We show that as a data-centric
defense, DCD does not require access to training procedures or the choice of model architectures. It
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effectively protects privacy by focusing on the data itself, ensuring that sensitive information remains
secure and independent of specific modeling decisions.

4.3 ANALYSIS AND ABLATIONS

We proposed a couple of ideas in Section 3 to improve our defense performance, including 1) surro-
gate injection (Surr-Inj), 2) loss control (L-Ctrl), and 3) curvature control (C-Ctrl). We now present
a comprehensive analysis of each choice point of our approach.

Ablation Study on Each Design Idea. We have shown that the combination of all these ideas
can lead to significant defense performance improvement over model-centric baselines. Here, we
conduct an ablation study to investigate the improvement introduced by each individual idea and
the hyperparameters. Table 2 presents the results of protecting a target class in the GTSRB dataset
against GMI attacks. We observe that solely injecting surrogate samples in the training set does
not effectively mitigate the risk of MI attacks. However, when combined with either loss control
or curvature control, the attack accuracy decreases to approximately 10%. By employing all three
techniques together, we reduce attack accuracy to 0.

Table 2: Ablation Study of ideas in DCD. π1 only involved in L-Ctrl and π2 only involved in C-Ctrl.
No Protection Surr-Inj Surr-Inj&L-Ctrl Surr-Inj&C-Ctrl Surr-Inj&L-Ctrl&C-Ctrl

Mislabel Ratio π1 - - 0.1 0.2 0.5 - - - - 0.1 0.2 0.2

Mislabel Ratio π2 - - - - - 0.1 0.2 0.5 1 0.5 0.5 1

ACC-all ↑ 98.58 98.46 98.14 97.98 97.89 98.50 98.62 97.87 97.86 98.39 97.97 97.96

ACC-tar ↑ 99.25 100.00 98.45 97.97 95.15 99.42 99.71 98.55 98.51 98.99 97.94 97.38

Att. ACC ↓ 79.20 29.60 12.60 9.80 0.60 21.80 19.80 11.80 10.60 0.30 0.00 0.00

Sensitive Analysis on Noise Magnitude of Target Samples. In addition to analyzing the mislabel
ratio for loss control and curvature control in Table 2, we conduct a supplementary experiment to
investigate the influence of different noise magnitudes on target samples ϵ2. It is important to note
that, throughout this paper, we maintain a fixed noise magnitude of ϵ1 = 8/255 for all experiments.
By selecting ϵ2 values that are smaller than ϵ1, we can further enhance the control strength and
create sharper curvature in the target samples. As expected, the results in Table 3 demonstrate that
DCD achieves comparable and satisfactory performance when using ϵ2 < 8/255, with the best
performance observed at ϵ2 = 0.003. On the other hand, for ϵ2 > 8/255, the strength of curvature
control weakens, resulting in a lower defense performance (i.e.,Att.ACC around 30%).

Table 3: Sensitive analysis on the noise magnitude of target samples ϵ2. Experiments are conducted
on GTSRB with GMI attack. Injected samples use a magnitude of 8/255. Note that mislabel ratios
are set to be π1 = 0, π2 = 0.5 to amplify the effect brought by ϵ2.

Gaussian Noise Magnitude ϵ2

0.001 0.003 0.005 0.01 8/255 0.1 0.3
ACC-all↑ 97.75 97.21 98.16 97.458 98.12 97.32 97.32
ACC-tar↑ 99.13 98.99 95.57 99.71 99.13 99.86 99.57
Att. ACC↓ 2.60 0.40 2.00 2.20 5.80 26.20 35.40

How to Choose Surrogate Samples? We investigate the impact of using different surrogate samples
and provide a guideline to choose them properly. Specifically, we found that there are two desiderata
for conducting a more successful defense:

A. Less similarity between surrogate and target samples. We observe that using surrogate samples
that differ significantly from the target can enhance defense performance. This is because such
injection would result in the recovery of images that appear very different from the target images.
For instance, when targeting a male with black hair, we collect images from a female with blonde
hair as our surrogate. For an in-depth investigation, we conduct an experiment on a face recognition
model trained on 1,000 identities with the most number of samples from the CelebA dataset. We
focus on attributes like gender and hair color which are predominantly identifiable, and randomly
select four target identities with varying combinations of gender and hair color attributes. For each
target, we choose two surrogate identities from the remaining dataset outside the 1,000 training

8



Under review as a conference paper at ICLR 2024

classes: one is a full mismatch (marked as ‘−−’) with distinct gender and hair color, and the other
is a full match (marked as ‘++’) sharing the target’s gender and hair color.

As shown in Table 4, a full match (‘++’) can reduce the attack accuracy to <10% for three out
of the four target identities. However, one identity (female with black hair) exhibits a relatively
high attack accuracy of 47.99%. This discrepancy may be attributed to the higher vulnerability of
this particular target to MI attacks, as it has a significantly high attack accuracy of 100% without
any protection. Since a full-match surrogate shares identical attributes with the target, the risk of
potential recovery of sensitive attributes still exists. In contrast, a full mismatch(‘−−’) successfully
reduces the attack accuracy of all target identities to <10%, with three identities achieving a perfect
defense (0% attack accuracy), aligning with our expectations.

Table 4: DCD’s defense performance with full mismatch and full match surrogate samples.
Attribute Defense Performance

Gender Hair Color ACC Att. ACC ACC(−−) Att. ACC(−−) ACC(++) Att. ACC(++)

Male Black 83.33 96.77 81.67 0.00 100.00 5.99

Female Black 100.00 100.00 100.00 4.99 100.00 47.99

Female Blonde 85.71 92.00 81.14 0.00 85.71 7.99

Male Blonde 75.00 100.00 69.00 0.00 75.00 0.00

B. Small but non-zero diversity among surrogate samples within the same class. Selecting surrogate
samples from public celebrities is one of the most convenient ways to collect surrogates which a
large number of diverse samples are available online, and it is important to understand the impact
of quality and diversity of surrogate samples on the defense performance. We focus on four target
classes with an initial high attack accuracy of 100% without protection, and evaluate in three scenar-
ios where the same amount of surrogates are collected: 1) No-Dup: each surrogate image is unique;
2) Dup-5: 5 diverse surrogate images are collected for each target and duplicated; 3) Dup-1: a single
image is collected for each target and duplicated. The sample in Dup-1 scenario is selected from
the five collected samples in the Dup-5 scenario, with one being of high quality (Dup-1-High) and
another of low quality (Dup-1-Low) based on visual factors such as occlusion of the face by hair or
other elements that may impact the overall image quality.

Table 5 demonstrates that all three scenarios maintain high utility. In terms of privacy, No-Dup
yields an attack accuracy of 4.5% on these vulnerable targets. By using less diverse surrogate sam-
ples (Dup-5), the defense performance is further improved, resulting in an attack accuracy of 0.8%.
We also observe that the presence of diversity among surrogate samples is crucial, as purely du-
plicated surrogate samples lead to a relatively higher attack accuracy. Besides, using high-quality
surrogate samples leads to lower attack accuracy compared with low-quality ones. One possible
explanation is that the target model fails to learn well about the low-quality surrogate samples with
partial occlusion, thereby weakening the effectiveness of our proposed loss control mechanism.

Table 5: Impact of diversity and quality of surrogate samples within the same class.
No Protection Dup-1-Low Dup-1-High Dup-5 No-Dup

ACC-all↑ 86.95 86.92 86.24 86.97 86.57
ACC-tar↑ 100.00 96.47 97.13 97.52 97.15
Att. ACC↓ 100.00 22.50 18.00 0.80 4.50

5 CONCLUSION

Our paper introduces the first user-empowered, data-centric defense mechanism, DCD, for mitigat-
ing data privacy risks. Supported by theoretical analysis and extensive evaluations, DCD effectively
counters model inversion attacks and surpasses model-centric baselines in utility and privacy. It
does, however, increase the number of samples in target classes, potentially alerting malicious model
trainers. Future work aims to obscure these injected samples to address this concern.

9
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6 ETHICAL STATEMENT

The introduction of surrogate samples into the target class means these surrogates will be classified
as belonging to the target class, posing a potential security risk. It is also crucial to note that this
risk is confined strictly to the user represented by the target class. That is, while surrogate identities
introduced can bypass the face recognition system and gain access, they can only do so for that
specific target class. Moreover, the selection of these surrogates rests entirely in the hands of the
user represented by the target class. Given that publicizing their surrogate samples would endanger
their own security, a logical user would not be motivated to disclose this information. As a result, we
believe the likelihood of an adversary discerning and exploiting a user’s specific surrogate samples
remains minimal in practice; therefore, the associated security risk is also minimal.

We also note that irrespective of the protective measures in place and the specific defense strategy
employed, MI attack techniques can pose inherent security risks. Malicious attackers can exploit ex-
isting MI attack techniques to recover samples identified as the target class. When used maliciously,
these samples could potentially provide unauthorized access related to that target class, especially if
the model serves such functions. However, samples recovered through MI might be readily detected
by the operator of the targeted machine learning system. For instance, MI attacks mostly rely on
pre-trained GANs to generate samples; such samples typically exhibit certain high-frequency arti-
facts not found in natural samples, as detailed in Frank et al. (2020). Such MI-generated samples
could potentially be detected through straightforward frequency analysis. Addressing the broader
security implications of general MI attacks goes beyond the purview of this paper, and we aim to
explore this in-depth in future research.
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Florian Tramèr, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski, Sanghyun Hong,
and Nicholas Carlini. Truth serum: Poisoning machine learning models to reveal their secrets. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
pp. 2779–2792, 2022. 3

Jiachen T. Wang. Open-source implementation of “Improving Robustness to Model Inversion At-
tacks via Mutual Information Regularization”, 2021. URL https://github.com/NVlabs/
stylegan2-ada-pytorch. 6

Tianhao Wang, Yuheng Zhang, and Ruoxi Jia. Improving robustness to model inversion attacks via
mutual information regularization. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 11666–11673, 2021. 1, 3, 6

Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer bias.
Journal of the American Statistical Association, 60(309):63–69, 1965. 1

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017. 6

Ziqi Yang, Bin Shao, Bohan Xuan, Ee-Chien Chang, and Fan Zhang. Defending model inversion
and membership inference attacks via prediction purification. arXiv preprint arXiv:2005.03915,
2020. 1

12

https://github.com/AlanPeng0897/Defend_MI
https://github.com/AlanPeng0897/Defend_MI
https://hbr.org/2020/01/do-you-care-about-privacy-as-much-as-your-customers-do
https://hbr.org/2020/01/do-you-care-about-privacy-as-much-as-your-customers-do
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/NVlabs/stylegan2-ada-pytorch


Under review as a conference paper at ICLR 2024

Xiaojian Yuan, Kejiang Chen, Jie Zhang, Weiming Zhang, Nenghai Yu, and Yang Zhang. Pseudo
label-guided model inversion attack via conditional generative adversarial network. arXiv preprint
arXiv:2302.09814, 2023. 6, 18

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He,
Jonas Mueller, R. Manmatha, Mu Li, and Alexander Smola. Resnest: Split-attention networks,
2020a. 6

Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The secret re-
vealer: Generative model-inversion attacks against deep neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 253–261, 2020b. 2, 3, 5,
6, 18

13



Under review as a conference paper at ICLR 2024

A PSEUDO-CODE

Algorithm 1: Algorithm of DCD.
Input : Entire label set Y , target label set Stgt, raw training samples corresponding to the

target label set Dtgt-raw, mislabel ratio π1 and π2, noise magnitude ϵ1 and ϵ2.
1 Denote samples from class yi as {(xij , yi) : j = 1, . . . ,mi}, where mi is the number of

samples of this class.
2 for i ∈ Stgt do
3 Find a surrogate class not present in Y and gather the same number of samples as class yi.

Relabel the gathered samples as class yi: D1
i = {(x1

ij , yi) : j = 1, ...,mi}.
4 Mislabel a small portion of raw target training samples with a ratio π1 using a random

wrong label y′ ∼ Uniform(Y \ yi) to these samples:
D0

i = {(x0
ij , y

′
j) : j = 1, ..., ⌈miπ1⌉} ∪ {(x0

ij , yi) : j = ⌈miπ1⌉+ 1, ...,mi}.
5 Augment surrogate samples with Gaussian noise: D2

i = {(x1
ij + µj , yi) : j = 1, . . . ,mi},

where µj ∼ N (0, ϵ21).
6 Augment target samples with Gaussian noise, and mislabel a portion of augmentations with

ratio π2 using random wrong label ỹ:
D3

i = {(x0
ij + µ′

j , ỹj) : j = 1, . . . , ⌈miπ2⌉} ∪ {(x0
ij + µ′

j , yi) : j = ⌈miπ2⌉+1, . . . ,mi},
where µ′

j ∼ N (0, ϵ22).
7 end
8 return {D0

i ∪D1
i ∪D2

i ∪D3
i : i ∈ Stgt}

B PROOFS

B.1 FORMAL STATEMENT OF LEMMA 1 AND PROOF

Lemma 1 (formal). Consider a deep network constructed using continuous, piecewise affine activa-
tions (e.g., ReLU) as defined in (LeJeune et al., 2019). let f(x) represent the mapping from the input
to the output, which partitions the input space RD based on the activation patterns. Within such a
vector quantization (VQ) region of the network, f is simply an affine mapping that can be written
as a continuous, piecewise affine operator f(x) = A[x]x + b[x]. Assume the loss function L is
L-Lipschitz. Consider surrogate samples D1

ytgt
= {(x1

j , ytgt) : j = 1, ...,m} and the corresponding
augmented set D2

ytgt
= {(x1

j + µj , ytgt) : j = 1, ...,m}. Then, the loss on the augmented samples
Laug can be bounded by

Laug ≤ Lsur+L ·
[
∥x1

j∥ · ∥A[x1
j + ϵ1 · µj ]−A[x1

j ]∥2 +∥b[x1
j +ϵ1 ·µj ]−b[x1

j ]∥2+δ · ∥A[x1
j +ϵ1 ·µj ]∥2

where Lsur denotes the loss on surrogate samples, and ∥A[x1
j +ϵ1 ·µj ]−A[x1

j ]∥2 is a Monte Carlo
approximation to the spectral norm of ε-approximation of Hessian of the loss function Hε near the
surrogate samples D1

ytgt
, which bounds its largest eigenvalue as 1

ϵ1
∥A[x1

j + ϵ1 · µj ] − A[x1
j ]∥2 =

σmax(Hε)

Proof. As defined in (LeJeune et al., 2019), let f(x) represent the mapping from the input to the
output of a deep network constructed using continuous, piecewise affine activations (e.g., ReLU),
which partitions the input space RD based on the activation patterns. Within such a vector quantiza-
tion (VQ) region of the network, f is simply an affine mapping that can be written as a continuous,
piecewise affine operator

f(x) = A[x]x+ b[x]
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Then, consider the model loss L on a sample (x1
j + ϵ1 ·µj , y) from the noise-augmented set D2

y , we
have

L[f(x1
j + ϵ1 · µj), y] =L[A[x1

j + ϵ1 · µj ](x
1
j + ϵ1 · µj) + b[x1

j + ϵ1 · µj ], y]

=L[A[x1
j ]x

1
j + b[x1

j ]x
1
j + (A[x1

j + ϵ1 · µj ]−A[x1
j ])x

1
j

+ b[x1
j + ϵ1 · µj ]− b[x1

j ] +A[x1
j + ϵ1 · µj ]ϵ1 · µj , y]

=L[A[x1
j ]x

1
j + b[x1

j ]x
1
j , y] +

[
(A[x1

j + ϵ1 · µj ]−A[x1
j ])x

1
j

+b[x1
j + ϵ1 · µj ]− b[x1

j ] +A[x1
j + ϵ1 · µj ]ϵ1 · µj

]T ∇fL[f(x1
j ), y]

+ h.o.t.

where the last equation performs a Taylor expansion. Assume the loss function L is L-Lipschitz in
this region. For some scalar δ > 0 that ∥ϵ1 · µj∥ ≤ δ holds with high probability, we have

L[f(x1
j + ϵ1 · µj), y] ≈L[A[x1

j ]x
1
j + b[x1

j ]x
1
j , y] +

[
(A[x1

j + ϵ1 · µj ]−A[x1
j ])x

1
j

+b[x1
j + ϵ1 · µj ]− b[x1

j ] +A[x1
j + ϵ1 · µj ]ϵ1 · µj

]T ∇fL[f(x1
j ), y]

≤L[f(x1
j ), y] + L ·

[
∥x1

j∥ · ∥A[x1
j + ϵ1 · µj ]−A[x1

j ]∥2
+ ∥b[x1

j + ϵ1 · µj ]− b[x1
j ]∥2 + δ · ∥A[x1

j + ϵ1 · µj ]∥2 ]

(3)

where ∥ · ∥2 denotes the spectral norm, which is equal to the largest eigenvalue ∥ · ∥2 = σmax(·).
Using the notions from (LeJeune et al., 2019), we extend the definition of Hessian for neural network
models with piecewise affine activations (e.g., ReLU). Let ε > 0, for x where the loss function x is
differentiable and an arbitrary unit vector u, we define ε-approximation of Hessian as

Hε[u] :=
1

ε
(A[x+ εu]−A[x]) (4)

which is consistent with the finite element definition of the Hessian and recovers the Hessian as ε →
0. Thus, ∥A[x1

j+ϵ1·µj ]−A[x1
j ]∥2 in Eq. equation 3 is a Monte Carlo approximation ((LeJeune et al.,

2019)) to the spectral norm of ε-approximation of Hessian of the loss function Hε → ∇2
fL(·, ·)

near the surrogate samples D1
ytgt

, which bounds its largest eigenvalue as 1
ϵ1
∥A[x1

j + ϵ1 · µj ] −
A[x1

j ]∥2 = σmax(Hε). Minimizing the loss on samples (x1
j + ϵ1 · µj , y) from the noise-augmented

set D2
ytgt

reduces the upper bound on the largest eigenvalue of a Monte-Carlo approximation to the
ε-approximation of Hessian Hε of the loss function σmax(Hε) near the surrogate samples D1

ytgt
.

Q.E.D.

B.2 FORMAL STATEMENT OF LEMMA 2 AND PROOF

Lemma 2 (formal). Consider a deep network constructed using continuous, piecewise affine acti-
vations (e.g., ReLU) as defined in (LeJeune et al., 2019). let f(x) represent the mapping from the
input to the output, which partitions the input space RD based on the activation patterns. Within
such a vector quantization (VQ) region of the network, f is simply an affine mapping that can be
written as a continuous, piecewise affine operator f(x) = A[x]x+ b[x]. Assume the loss function
L is L-Lipschitz. Consider target samples with a mislabeling ratio π1 given as D0

ytgt
defined in Eq.

equation 1 and the corresponding augmented set with mislabeling D3
ytgt

defined in Eq. equation 2.
Then, the expected loss on the augmented samples Laug can be bounded by

Ey′∼Uniform{Ȳ⊂{Y\y}}Laug ≥ − 1

k − 1
· log

(
1− gy[f(x

0
j + ϵ2 · µj)]

)
where g(·) denotes the Softmax function in the classification loss defined as gy[f(x0

j + ϵ2 · µj)] =
exp[fy(x

0
j+ϵ2·µj)]∑

yk∈Y exp[fyk (x
0
j+ϵ2·µj)]

with the loss on target samples L[f(x0
j + ϵ2 · µj), y] = − log gy[f(x

0
j +

ϵ2 · µj)] bounded in Lemma 1 and k = |Ȳ|.

Proof. Consider the model loss L on a sample from the noise-augmented set with uniform misla-
beling D3

ytgt
= {(x0

j + ϵ2 · µj , y
′) : j = 1, ...,m1} ∪ {(x0

j + ϵ2 · µj , y) : j = m1 + 1, ...,m}, we
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have

Ey′∼Uniform{Ȳ⊂{Y\y}}L[f(x0
j + ϵ2 · µj), y

′] =
1

k − 1

∑
yi∈{Y\y}

L[f(x0
j + ϵ2 · µj), yi] (5)

where we define k = |Ȳ| as the total number of wrong labels in Ȳ . Consider typical cross-
entropy classification loss with Softmax given as Foundation (Retrieved May 13, 2023, from
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html)

L[f(x0
j + ϵ2 · µj), y] = − log

exp[fy(x
0
j + ϵ2 · µj)]∑

yk∈Y exp[fyk
(x0

j + ϵ2 · µj)]

for noise-augmented samples with correct labels and

L[f(x0
j + ϵ2 · µj), y

′] = − log
exp[fy′(x0

j + ϵ2 · µj)]∑
yk∈Y exp[fyk

(x0
j + ϵ2 · µj)]

for noise-augmented samples with uniform mislabeling. Let g(·) denote the Softmax function in the
classification loss–that is

gy[f(x
0
j+ϵ2·µj)] =

exp[fy(x
0
j + ϵ2 · µj)]∑

yk∈Y exp[fyk (x
0
j + ϵ2 · µj)]

, gy′ [f(x0
j+ϵ2·µj)] =

exp[fy′(x0
j + ϵ2 · µj)]∑

yk∈Y exp[fyk (x
0
j + ϵ2 · µj)]

where gy[f(x
0
j + ϵ2 · µj)] and gy′ [f(x0

j + ϵ2 · µj)] denotes the Softmax function of classification
loss for noise-augmented samples with correct labels and with uniform mislabeling, respectively.
Naturally, we have gy[f(x

0
j + ϵ2 · µj)] +

∑
yi∈Ȳ gyi

[f(x0
j + ϵ2 · µj)] = 1.

Then, for Eq. equation 5, we have

Ey′∼Uniform{Y\y}L[f(x0
j + ϵ2 · µj), y

′] =
1

k − 1

∑
yi∈Ȳ

− log gyi [f(x
0
j + ϵ2 · µj)]

=− 1

k − 1
· log

∏
yi∈Ȳ

gyi
[f(x0

j + ϵ2 · µj)]

≥− 1

k − 1
· log

∑
yi∈Ȳ

gyi
[f(x0

j + ϵ2 · µj)]

=− 1

k − 1
· log

(
1− gy[f(x

0
j + ϵ2 · µj)]

)
≥ 0

(6)

where the inequality is based on the AM–GM inequality (Hirschhorn, 2007). Eq. equation 6 states
that minimizing the loss on noise-augmented samples with uniform mislabeling will minimize the
upper bounds on the negation of log

(
1− gy[f(x

0
j + ϵ2 · µj)]

)
, which is equivalent to maximizing

the lower bounds on log
(
1− gy[f(x

0
j + ϵ2 · µj)]

)
. This equals to maximizing the quantity 1 −

gy[f(x
0
j + ϵ2 · µj)], which is equal to minimizing gy[f(x

0
j + ϵ2 · µj)]. Given that the loss on noise-

augmented samples with correct labels is given as L[f(x0
j + ϵ2 ·µj), y] = − log gy[f(x

0
j + ϵ2 ·µj)],

this means minimizing the loss on noise-augmented samples with uniform mislabeling is ultimately
equivalent to maximizing the loss on noise-augmented samples with correct labels.

Note that Lemma 1 has shown that the model loss on noise-augmented samples with correct labels
upper bounds the Monte-Carlo approximation to the spectral norm of ε-approximation of Hessian
Hε of loss function, which upper bounds the largest eigenvalue of Monte-Carlo approximation to
the ε-approximation of Hessian σmax(H) near the target samples D0

ytgt
. Thus, minimizing the loss

on samples from the noise-augmented set with uniform mislabeling D3
ytgt

= {(x0
j + ϵ2 · µj , y

′) :

j = 1, ...,m1} ∪ {(x0
j + ϵ2 · µj , y) : j = m1 + 1, ...,m}, equivalent to maximizing the loss

on samples with the same noise-augmentation but correct labels, increases the upper bound on the
largest eigenvalue of a Monte-Carlo approximation to the ε-approximation of Hessian Hε of loss
function near the target samples D0

ytgt
.

Q.E.D.
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B.3 OTHER THEOREMS

Theorem 2 (Capture Theorem (restated, (Bertsekas, 1997))). Let f be continuously differentiable
and let {xk} be a sequence satisfying f(xk+1) ≤ f(xk) for all k and generated by a gradient
method xk+1 = xk +αkdk, which is convergent in the sense that every limit point of sequences that
it generates is a stationary point of f . Assume that there exist scalars s > 0 and c > 0 such that for
all k there holds

αk ≤ s, ∥dk∥ ≤ c∥∇f(xk)∥

Let x∗ be a local optimum of f , which is the only stationary point of f within some open set. Then
there exists an open set S containing x∗ such that if xk̄ ∈ S for some k̄ ≥ 0, then xk ∈ S for all
k ≥ k̄ and {xk} → x∗. Furthermore, given any scalar ϵ̄ > 0, the set S can be chosen so that
∥x− x∗∥ < ϵ̄ for all x ∈ S

Proof. See (Bertsekas, 1997).

Theorem 3 (Convergence of gradient method – constant stepsize (restated, (Bertsekas, 1997))).
Let {xk} be a sequence generated by a gradient method xk+1 = xk+αkdk, where {dk} is gradient
related. Assume that the gradient of f is L-Lipschitz, and that for all k we have dk ̸= 0 and

ϵ ≤ αk ≤ (2− ϵ)ᾱk,

where

ᾱk =
|∇f(xk)′dk|
L∥dk∥2

,

and ϵ ∈ (0, 1] is a fixed scalar. Then every limit point of {xk} is a stationary point of f .

Proof. See (Bertsekas, 1997).

C EXPERIMENTAL DETAILS

In this section, we discuss the details of our experimental setup for code reproducibility.

C.1 HARDWARE AND SOFTWARE DETAILS

We implemented DCD to defend against the existing MI Attacks for multiple models and datasets in
Python 3.9.12 using PyTorch version 1.12.1. The experiments were carried out on one server having
eight NVIDIA RTX A6000 GPUs with CUDA 12.1.

C.2 DATASETS

CelebA A large-scale dataset consisting of 202,599 images of 10,177 different celebrities of the
size 178x218. We further crop the images by a face factor of 0.65 2 and resize the images to 224x224.
We are using the 1000 most frequent celebrity faces (identities with the most number of samples)
as a part of our dataset which constitutes of 27,034 training samples and 3,004 test samples. The
dataset is available at https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

FaceScrub The FaceScrub is also a large-scale face dataset comprising 106,863 face images be-
longing to 530 celebrities (265 male and 265 female) with each celebrity having roughly 200 images.
We mapped the images such that the integers 0-264 belong to male celebrities and 265-529 repre-
sent female celebrities. We follow the settings in PPA (Struppek et al., 2022) to use 34,090 training
images and 3,788 test images. The dataset is available at http://vintage.winklerbros.
net/facescrub.html.

2https://github.com/LynnHo/HD-CelebA-Cropper
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VGGFace2 The VGGFace2 is a large-scale face recognition dataset, in which images are down-
loaded from Google Image Search and have large variations in pose, age, illumination, ethnicity and
profession. Since the dataset link is no longer active on the official website 3, we are only able to
collect 1984 training images and 416 test images belonging to 8 different classes.

Stanford Dogs The Stanford Dogs is a dog classification dataset having 120 dog breeds rep-
resented in 18,522 training and 2,058 test samples, summing up to a total of 20,580 images.
The images vary in their sizes, styles, and content with a few images also containing multi-
ple dog breeds. The dataset is available at http://vision.stanford.edu/aditya86/
ImageNetDogs/.

GTSRB GTSRB or German Traffic Sign Recognition Benchmark is a traffic signal recognition
dataset having 35,288 training images and 12,630 test images all belonging to 43 distinct classes.
The images are resized to 32x32. The dataset is available at https://benchmark.ini.rub.
de/.

Flickr-Faces-HQ (FFHQ) FFHQ is a highly diverse and high-quality dataset (better than CelebA
and FaceScrub) with 70,000 face images of resolution 1024x1024. The dataset is available at
https://github.com/NVlabs/ffhq-dataset.

MetFaces A 1,336-strong image dataset having varied artistic versions of human faces. The
dataset is however biased and contains a limited representation of people with darker skins. The
dataset is available at https://github.com/NVlabs/metfaces-dataset.

Animal Faces-HQ (AFHQ) The dataset contains 512x512 sized 16,130 images of wildlife ani-
mals, cats, and dogs. Since the dataset is used for the evaluation of Stanford Dogs, we select only the
images of dogs. The dataset is available at https://github.com/clovaai/stargan-v2.

TSRD It is a collection of 58 categories including 6164 traffic sign images. The training and
test images are split into 4170 images and 1994 images respectively. The dataset is available at
https://opendatalab.com/TSRD.

C.3 ATTACK IMPLEMENTATION DETAILS

We discuss various attacks and the methodologies to evaluate DCD. In our experiments, We assess
the effectiveness of our defense against four MI attacks in white-box setting: GMI4 (Zhang et al.,
2020b), PPA5 (Struppek et al., 2022), MIRROR-W6 (An et al., 2022), and PLG-MI7 (Yuan et al.,
2023). GMI is the most classic MI attack method in the literature, while PPA, MIRROR-W, and
PLG-MI represent the most recent ones achieving state-of-the-art attack performance.

For completeness, we also evaluate our defense against the most recent black-box attacks, MIRROR-
B and BREP-MI 8Kahla et al. (2022), though they have been shown less potent than the white-box
counterpart.

We utilize open-sourced implementations of these attacks and faithfully replicate their settings in
our experiments.

C.4 BASELINE IMPLEMENTATION DETAILS

This section provides the implementation details of the two baselines used to compare DCD with.
DP-SGD involves adding noise to the gradient and gradient clipping. The hyperparameters include

3https://www.robots.ox.ac.uk/˜vgg/data/vgg_face2/
4https://github.com/SCccc21/Knowledge-Enriched-DMI
5https://github.com/LukasStruppek/Plug-and-Play-Attacks/tree/master
6https://github.com/njuaplusplus/mirror
7https://github.com/LetheSec/PLG-MI-Attack
8https://github.com/m-kahla/Label-Only-Model-Inversion-Attacks-via-Boundary-Repulsion/

tree/main

18

http://vision.stanford.edu/aditya86/ImageNetDogs/
http://vision.stanford.edu/aditya86/ImageNetDogs/
https://benchmark.ini.rub.de/
https://benchmark.ini.rub.de/
https://github.com/NVlabs/ffhq-dataset
https://github.com/NVlabs/metfaces-dataset
https://github.com/clovaai/stargan-v2
https://opendatalab.com/TSRD
https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
https://github.com/SCccc21/Knowledge-Enriched-DMI
https://github.com/LukasStruppek/Plug-and-Play-Attacks/tree/master
https://github.com/njuaplusplus/mirror
https://github.com/LetheSec/PLG-MI-Attack
https://github.com/m-kahla/Label-Only-Model-Inversion-Attacks-via-Boundary-Repulsion/tree/main
https://github.com/m-kahla/Label-Only-Model-Inversion-Attacks-via-Boundary-Repulsion/tree/main


Under review as a conference paper at ICLR 2024

Table 6: Overview of the attack methods, datasets, and models on which DCD is evaluated. Note
that for BREP-MI and PLG-MI, the GAN is trained on a subset of data from CelebA, which is
disjoint from the private part.

Attack Method Task Private Dataset Public Dataset Pre-trained GAN Model

GMI Traffic Sign Recognition GTSRB TSRD WGAN VGG-16

PPA
Face Recognition

CelebA
FFHQ StyleGAN29 ResNeSt-101, ResNet-152,

ResNext-101, DenseNet-169
MetFaces ResNeSt-101

FaceScrub
FFHQ

StyleGAN2
ResNeSt-101

MetFaces ResNeSt-101

Dog Classification St.Dogs AFHQ StyleGAN2 ResNeSt-101

MIRROR-W Face Recognition CelebA-partial256 VGGFace2 StyleGAN 10 VGG-16

MIRROR-B Face Recognition CelebA-partial256 VGGFace2 StyleGAN VGG-16

PLG-MI Face Recognition CelebA CelebA WGAN 11 VGG-16

BREP-MI Face Recognition CelebA CelebA WGAN face.evoLVe, IR-152

the probability upper bound, denoted as δ, which represents the likelihood of the model failing
to provide privacy guarantees (roughly 1

size of the dataset ), and the noise multiplier, denoted as σ,
which is adjusted to achieve the desired privacy budget ϵ. The learning rate and batch size remain
fixed at the values used for normal model training, while the threshold for gradient clipping is set to
a constant value of 1.

The goal of MID is to restrict the information conveyed by the model’s prediction about the input. To
achieve this, MID introduces a hyperparameter denoted as β, which represents the weight assigned
to the information loss that reduces the correlation between the output logit and the input. Detailed
information is provided in Table 7.

BiDO proposes two additional loss terms: one to minimize the dependency between input data and
hidden representations, while the other to maximize the dependency between hidden representations
and model outputs. The two loss terms are controled by hyperparameters λx and λy respectively.
Intuitively, larger λx results in lower dependency between input data and hidden representations,
which helps prevent privacy leakage; and larger λy results in higher dependency between hidden
and model outputs, which helps preserve model utility. We follow the guideline from the paper to
choose λx and λy that maximize privacy while minimizing utility loss.

Table 7: Privacy Parameters in DP-SGD, MID and BIDO.

Attack Method MID DP BIDO

β σ δ C λx λy

GMI 0.2 1.0 1e− 4 1.0 1.0 0.7
PPA 0.07 0.1 4e− 5 1.0 0.05 0.1

MIRROR 0.003 2.0 5e− 4 1.0 4.0 20.0
PLG-MI 0.02 0.01 4e− 5 1.0 0.1 2.0

D ADDITIONAL EVALUATION RESULTS

Generalization to Different Model Architectures. Furthermore, we thoroughly evaluate the
performance of DCD across a range of popular model architectures, including ResNest, ResNet,
ResNext, and DenseNet. The results, as shown in Table 8, highlight the robustness of our method
across different choices of architectures used during model training. Notably, DCD consistently
reduces the attack accuracy to 0% across all models, even when the initial attack accuracy is as high
as 96%. As a data-centric defense, DCD does not require access to training procedures or the choice
of model architectures. It effectively protects privacy by focusing on the data itself, ensuring that
sensitive information remains secure, independent of specific modeling decisions.
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Table 8: DCD’s defense performance against PPA on CelebA with different model architectures.
ACC-all↑ ACC-tar↑ Att. ACC↓ ACC-all↑ ACC-tar↑ Att. ACC↓

ResNeSt-101 ResNet-152
No Protection 88.42 84.37 90.40 84.82 80.00 76.67

DCD 88.05 81.88 1.00 85.33 86.67 4.00

DenseNet-169 ResNext-101
No Protection 84.85 60.00 73.67 85.89 73.33 84.67

DCD 84.32 60.00 3.00 87.16 60.00 2.00

Generalization to Different Datasets. We evaluate the performance of DCD using the latest
model inversion attack, PPA, across multiple datasets. Table 9 demonstrates the effectiveness of
DCD across different datasets, including popular face datasets such as CelebA and FaceScrub, as
well as the Stanford Dogs dataset. Additionally, for each face dataset, we evaluate two GANs that
have been pretrained on distinct public datasets, representing varying attack strengths. Notably,
the GAN pretrained on FFHQ, which is closer to the distribution of CelebA compared to MetFaces,
achieves a higher attack accuracy of 90% on the CelebA-trained model without any protection. How-
ever, our method successfully reduces the attack accuracy to 1%, highlighting its efficacy against
attacks with varying strengths.

Table 9: DCD’s defense performance against PPA on different datasets. The top row gives the
dataset for training target models, and the second row gives the public dataset on which GAN is
trained.

CelebA FaceScrub St.Dogs

ACC-all↑ ACC-tar↑ FFHQ MetFaces ACC-all↑ ACC-tar↑ FFHQ MetFaces ACC-all↑ ACC-tar↑ FFHQ

Att.ACC↓ Att.ACC↓ Att.ACC↓ Att.ACC↓ Att.ACC↓

No Protection 88.42 84.37 90.40 59.33 95.78 97.50 82.40 53.20 74.15 82.27 99.60
DCD 88.05 81.88 1.00 0.02 94.93 90.37 1.20 4.20 74.12 85.71 0.00

Performance of DCD on Other Black-box MI attacks. We extend the evaluation of DCD to
include a recent black-box MI attack called BREP-MI Kahla et al. (2022). The evaluation involves
two distinct model architectures applied to the CelebA dataset, face.evolve and IR152. We randomly
select 6 targets, and for each target, we use BREP-MI to generate 5 samples. The results presented
in Table 10 demonstrate that DCD achieving a remarkable reduction in attack accuracy to 0 for both
the IR152 and face.evolve models.

Table 10: DCD’s defense performance against a recent black-box MI attack, BREP-MI.
FaceNet64 IR152

ACC-all↑ ACC-tar↑ Att.ACC↓ ACC-all↑ ACC-tar↑ Att.ACC↓

No Protection 86.78 93.33 83.33 89.05 81.87 66.67
DCD 85.72 85.86 0.00 92.31 86.67 0.00

Sensitive Analysis of DCD on Different Number of Protected Targets. While baseline ap-
proaches provide binary privacy protection—either complete or none—our real-world motivation
drives us to assess defense performance in scenarios where only a minority is deeply concerned
about privacy. As demonstrated in the main paper, DCD offers significant advantages over model-
centric baselines under such setting. We then conduct a sensitivity analysis to further explore DCD’s
capabilities in protecting a large portion of target classes.

Specifically, the target classifiers are trained on 1,000 identities from CelebA with the most number
of samples. Surrogates samples are randomly selected from the remaining identities. We vary the
number of targets for protection (i.e., 10, 500, 1000) and evaluated the defense performance of all
methods against the GMI attack, a standard MI attack.

As depicted in Figure 4, DCD consistently achieved the lowest attack accuracy and demonstrated a
significant advantage in preserving model utilities, even when protecting 500 of the target identities.
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Figure 4: Defense performance against GMI on CelebA dataset. Ours-L denotes the use of DCD
with a larger model (i.e., ResNet-152), whereas Ours, MID, BiDO, and DP are trained with VGG-
16. The attack results are averaged over three runs, each with randomly selected protected targets.

In contrast, model-centric baselines exhibited higher variance in attack accuracy when protecting
different targets. In the case of safeguarding all of the training targets, DCD’s accuracy was only
slightly lower than the most advanced model-centric defense method, BiDO. This marginal differ-
ence could potentially be addressed by adopting a larger model capacity - indicated as Ours-L in
Figure 4, which represents our method with a larger model (i.e., IR-152). This leads to the high-
est accuracy compared to all other baselines, with the attack accuracy remaining consistently low,
below 1%. Implementing a larger model is also a practical option when using DCD. In practical
terms, service providers adopting our strategy can judiciously select models, gravitating towards
larger architectures that exhibit heightened resilience to the label noise introduced by our defense.
Notably, with the amplification in model size, DP, MID and BiDO suffer a larger privacy-utility
tradeoff. Consequently, they lack the leverage to utilize increased model dimensions for attenuating
this tradeoff, a feat achievable by our data-centric methods.
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Figure 5: Visual comparison of PPA recovered samples recovered from a face recognition model
trained on CelebA with different defenses. The first column displays true images for target iden-
tities. The second to fourth columns show baseline results obtained when the target model lacks
protection, protected by DP and MID techniques, respectively. The fifth and final columns present
reconstructions under our protection, along with corresponding injected samples. Our method suc-
cessfully misleads PPA to generate samples that resemble the injected samples.
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