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Abstract

The development of large language models001
(LLMs) has been catalyzed by advancements002
in pre-training techniques. These models003
have demonstrated robust reasoning capabili-004
ties through manually designed prompts. In this005
work, we evaluate the conversational reasoning006
capabilities of the current state-of-the-art LLM007
(GPT-4) on knowledge graphs (KGs). How-008
ever, the performance of LLMs is constrained009
due to a lack of KG environment awareness010
and the difficulties in developing effective opti-011
mization mechanisms for intermediary reason-012
ing stages. We further introduce LLM-ARK, a013
LLM grounded KG reasoning agent designed014
to deliver precise and adaptable predictions on015
KG paths. LLM-ARK leverages Full Textual016
Environment (FTE) prompt to assimilate state017
information within each reasoning step. We018
reframe the challenge of multi-hop reasoning019
on the KG as a sequential decision-making020
task. Utilizing the Proximal Policy Optimiza-021
tion (PPO) online policy gradient reinforce-022
ment learning algorithm, our model is opti-023
mized to learn from rich reward signals. Addi-024
tionally, we conduct an evaluation of our model025
and GPT-4 on the OpenDialKG dataset. The026
experimental results reveal that LLaMA-2-7B-027
ARK outperforms the current state-of-the-art028
model by 5.28 percentage points, with a perfor-029
mance rate of 36.39% on the target@1 evalua-030
tion metric. Meanwhile, GPT-4 scored 14.91%,031
further demonstrating the effectiveness of our032
method.033

1 Introduction034

With significant progress in large language models035

(LLMs), researchers have recognized their superior036

capabilities in the field of natural language process-037

ing (NLP)(Liu et al., 2023; Shakarian et al., 2023;038

Lai et al., 2023). Reasoning ability stands as the039

most demonstrative of AI intelligence. Recently, to040

boost the performance of LLMs in reasoning tasks,041

we noted various optimization strategies adopted by042

researchers such as Chain of Thought (COT)(Wei 043

et al., 2023) and decomposing subtasks(Kazemi 044

et al., 2023). Currently, the reasoning method of 045

LLMs have received limited attention in the con- 046

versational KG reasoning task. This research aims 047

to address this gap in the field. 048

Knowledge Graphs composed of vertices or enti- 049

ties connected by edges or relations, gaining popu- 050

larity in knowledge-based dialogue systems for its 051

structured disposition. Conversational reasoning 052

models are able to traverse the KG based on con- 053

versational context to introduce diverse entities and 054

attributes to make replies more engaging, as well 055

as to improve the logic of the model to mitigate il- 056

lusions(Rawte et al., 2023; Dong et al., 2022). Pre- 057

vious work(Moon et al., 2019; Zhang et al., 2020; 058

Ni et al., 2022; Tuan et al., 2022) mainly relied on 059

supervised learning methods. To assess the capabil- 060

ities of current SOTA LLM: GPT-4(OpenAI, 2023), 061

we initially examine the proficiency of LLMs on 062

KG reasoning, as illustrated in Figure 1, determin- 063

ing their potential application in the KG domain. 064

Empirical studies reveal that, despite demonstrating 065

reasonable performance on KG tasks, indicative of 066

their proficiency in managing complex problems, 067

understanding contextual relationships, and utiliz- 068

ing pre-training knowledge, LLMs still present is- 069

sues and fall short when compared with state-of- 070

the-art models. 071

There are two main challenges applying LLM- 072

based agents. On the one hand, LLMs suffer from 073

a limited perception of variable reasoning environ- 074

ments. The alignment between LLMs’ knowledge 075

and the environment can be wrong and limit func- 076

tional competence due to lack of grounding(Carta 077

et al., 2023). If properly grounded, the model’s 078

structure would be both simplified and effective. 079

For KG reasoning tasks, as shown in Figure 1, the 080

agent achieved better scores when provided with 081

as much information about the environment as pos- 082

sible, such as dialog history, inference path history, 083
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### Task Background 
Performing 2-hop reasoning on the knowledge graph.
### Instruction
If you don't think it's necessary to perform the second hop in reasoning, stop the reasoning 
with the 'Equal' relation.
Given the Task Background and the Environment, directly output this path in triplet format 
without any other content. 
### Environment
Dialog History: ["user: Can you recommend any movies similar to Interstellar?", "assistant: 
Inside out is a Sci Fiction movie kind of like The Wandering Earth."] (Only included in Normal 
Prompt and OPA prompt)
Utterance: "Oh I loved the The Wandering Earth movies.  I don't believe that I saw Part II 
though.  Who starred in it?"
Path History: [["Interstellar","has_genre","Sci Fiction"],["Sci Fiction","~has_genre","The 
Wandering Earth"]] (Only included in Normal Prompt and OPA prompt)
Current Entity: "The Wandering Earth"
### Response

Humen

[“The Wandering Earth, starred_actors, Wu 
Jing”, “Wu Jing, Equal, Wu Jing”]

Method Path@1
GPT-4-Standard 

Prompt 0.70

GPT-4-Normal 
Prompt 2.00

GPT-4-Standard Prompt and GPT-4-Normal Prompt

### Task Background 
Performing 2-hop reasoning on the knowledge graph.
### Instruction
Given the Task Background and the Environment, please choose select two consecutive paths KG 
path from a set of Out Paths. If you don't think it's necessary to perform the second hop in 
reasoning, just select the 'Equal' relation at the second hop.
### Environment
Dialog History: ["user: Can you recommend any movies similar to Interstellar?", "assistant: Inside 
out is a Sci Fiction movie kind of like The Wandering Earth."] 
Utterance: "Oh I loved the The Wandering Earth movies.  I don't believe that I saw Part II though.  
Who starred in it?"
Path History: [["Interstellar","has_genre","Sci Fiction"],["Sci Fiction","~has_genre","The Wandering 
Earth"]]
Current Entity: "The Wandering Earth"
Out Paths: ['The Wandering Earth,Equal,The Wandering Earth', 'The Wandering 
Earth,starred_actors,Wu Jing', 'The Wandering Earth,starred_actors,Andy Lau, 'The Wandering 
Earth,release_year,2019', 'The Wandering Earth,has_genre,Sci-Fi',..., 'Sci-Fi,~has_genre,War of 
the Worlds']
### Response

Humen

[“The Wandering Earth, starred_actors, Wu 
Jing”, “Wu Jing, Equal, Wu Jing”]

Method Path@1
GPT-4-OPA 

Prompt 9.00

Baseline 25.99

GPT-4-OPA(Out Path Aware) Prompt

Figure 1: Manual prompts on the OpenDialKG dataset.
Compare to GPT-4-Standard, GPT-4-Normal has more
awareness of dialog context and path history, while GPT-
4-OPA has more awareness of 2-hop exit path subgraphs
compared to the former two. The experimental results
show that the more environmental information GPT-4
perceives, the higher the knowledge graph reasoning
path@1 evaluation metric score.

and all exit paths. Although LLMs are not de-084

signed to take actions, Peng et al. (2023); Carta085

et al. (2023); Du et al. (2023) found that it can be086

achieved good results in downstream decision mak-087

ing by simply feeding full textual representations088

as inputs to LLMs.089

On the other hand, Yao et al. (2023) indicate that090

there is a lack of systematic methods for consis-091

tent model refinement. In essence, LLMs fall short092

in possessing essential mechanisms for optimiz-093

ing intermediary reasoning processes in multi-hop094

reasoning tasks. This is mainly attributed to the095

fact that manual prompt tuning is widely used in096

many application scenarios. It has been observed097

that LLM-based agents can easily fall into infinite098

loops if state is not handled properly, and inevitably099

run into prompt length problems when the trajec-100

tory becomes longer. In addition, the design of101

prompt is also a challenge because an entity may102

have more than 100 exit edges, all of which are103

formatted into prompt which is impractical in a104

knowledge graph environment. LLMs often en-105

counter these issues because they are not designed106

or trained for action-agent applications.107

We introduce LLM-ARK, an effective frame- 108

work that employs LLM as an Agent for 109

Reasoning on Knowledge Graphs. We employ 110

LLMs as agent and express the Large model KG in- 111

ference task as a reinforcement learning sequential 112

decision-making problem, and using a Full-Textual- 113

Environment prompt to aggregate multiscale inputs. 114

Moreover, our agent architecture does not necessi- 115

tate access to LLM parameters or gradient propaga- 116

tion through it. Instead, we adopt a policy gradient 117

approach where the Actor LLM functions as part 118

of the environment. This configuration enables the 119

model to learn from diverse reward signals across 120

varied tasks and environments. In summary, our 121

contributions are as follows: 122

• We assess the capabilities of state-of-the-art 123

LLM: GPT-4, on large-scale KG inference 124

datasets and analyze the experimental results 125

in detail to understand the causes of their infe- 126

rior performance. 127

• To enhance the performance of the LLM 128

agents, we introduce LLM-ARK. Our method 129

expresses the KG dialog inference prob- 130

lem as a reinforcement learning sequential 131

decision-making issue, using a Full-Textual- 132

Environment prompt to aggregate multiscale 133

inputs, dual-environment sensing on the state 134

and decision side and leverage LLMs to ex- 135

plore on KGs. 136

• Furthermore, we update only the parameters 137

of the PA-MLP that are part of the our agent 138

using the policy gradient method, freezing 139

the parameters of the LLM. This approach 140

enables learning from diverse reward signals 141

during interactions with the environment and 142

improves the efficiency of training. 143

2 Related Work 144

2.1 KG Reasoning on Dialog Systems 145

Given its structured nature, Knowledge Graphs are 146

becoming an increasingly popular external infor- 147

mation source in knowledge-based systems. Moon 148

et al. (2019) developed a retrieval system designed 149

to generate responses based on a graph reasoning 150

task. They employed a graph walker to navigate 151

the graph, propelled by the symbol transformation 152

conditions of the dialog context. Jung et al. (2020) 153

utilizing graph attention techniques to navigate the 154

conditional graph of a conversation within a KG di- 155

alogue system. The model computes an incoming 156
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attention fow to represent entities and an outgo-157

ing attention fow to select KG paths. However,158

this approach cannot be extended to long KG path159

prediction due to the exponential increase in com-160

putational complexity. Ni et al. (2022) introduced161

a hierarchical reinforcement learning KG inference162

model that aggregates multiple inputs utilizing an163

attention mechanism. This approach instructs the164

model to reason in one step and then fine-tunes it165

using a goal-directed reinforcement learning. Tuan166

et al. (2022) employed a single transformer model167

that walks directly over large-scale KGs, reason-168

ing over fine-tunable KGs to generate responses.169

Similarly, Luo et al. (2023) initially create rela-170

tional paths derived from KGs as high-confidence171

plans, which are later utilized to extract valid rea-172

soning paths from KGs for confident reasoning.173

Sun et al. (2023) leverage KGs to augment LLMs174

for deep and responsible reasoning. The framework175

explores and infers by identifying entities relevant176

to a given question and retrieving relevant triples177

from external KGs. This iterative process generates178

multiple inference paths until enough information179

is gathered to answer the question or maximum180

depth is reached.181

2.2 LLMs with Reinforcement Learning182

Reinforcement learning and large models are di-183

vided into two main aspects of the combination, the184

first aspect further improves the ability of LLM to185

understand and follow user instructions through re-186

inforcement learning based methods(Ouyang et al.,187

2022). Yao et al. (2023) employed a special RLHF188

technique to tailor the model to human preferences,189

generating beneficial, non-toxic, and safe data for190

training while also training reward models to eval-191

uate LLMs. Retroformer, a significant improve-192

ment over Chain of Thought (COT), is primar-193

ily applied to reasoning tasks and uses a unique194

RLHF method. Shinn et al. (2023) introduce a195

novel framework, Reflexion, that strengthens lin-196

guistic agents through linguistic feedback, rather197

than updating weights. The Reflexion agent ver-198

bally reflects on task feedback signals, and then199

stores its reflection text in an episodic memory200

buffer to make better decisions in subsequent trials.201

The second aspect is to further improve the ap-202

plicability of LLM on real-world tasks through a203

reinforcement learning-based approach, since train-204

ing a LLM public NLP task/dataset can only cover205

a small portion of the real world, and reinforce-206

ment learning can train LLM-based intelligences to207

explore the realization of various real-world goals. 208

Carta et al. (2023) studied LLMs interaction with 209

physical environments. Using an interactive textual 210

environment designed to study a series of spatial 211

and navigational tasks and using online reinforce- 212

ment learning to improve its performance to solve 213

goals. Huang et al. (2022) consistently integrate 214

feedback from diverse sources into the planning 215

language cues of the LLM, thereby enabling it to 216

reason and replan to solve complex problems in 217

both simulated and real-world environments. Singh 218

et al. (2022) propose a procedural LLM hint struc- 219

ture that facilitates plan generation functionality 220

in contextual environments, robot capabilities, and 221

tasks. 222

3 Methods 223

3.1 Overview 224

As shown in Figure 2, our model has the fol- 225

lowing main components, FTE (Full-Textual- 226

Environment), LLM (Large Language Model) and 227

RL(Reinforcement Learning). FTE can be seen as 228

state manager, using a Full-Textual-Environment 229

prompt to aggregate multi-scale inputs, updating 230

and maintaining state transfers between itself and 231

the environment. At first LLMs obtain a richly in- 232

formative representation of state embeddings. To 233

capture the path embedding information of the KG, 234

we pre-train the KG on TransE(Fan et al., 2014). 235

Rather than directly introducing the probability dis- 236

tribution of the action space, our Actor feeds the 237

probability distribution along with the path embed- 238

ding, subsequently eliminating invalid paths (we 239

utilise ’Pad’ for this adaptation process) before out- 240

putting a precise and legitimate action. We formu- 241

late the large model KG inference task within an 242

online reinforcement learning framework and con- 243

tinuously optimize the decision network based on 244

the collected experience in replay buffer. Finally, 245

we refine the adapter using the Proximal Policy 246

Optimization (PPO) online reinforcement learning 247

method. In this section, we will first describe the 248

method used to evaluate GPT-4, and then present 249

each of the modules of our model in turn. 250

3.2 Manual Prompt Tuning 251

As illustrated in Figure 1, we detail the prompt- 252

ing schemes, encompassing the standard prompt, 253

normal prompt and out path aware prompt. To 254

guide LLMs in performing specific dialogue tasks, 255

we can formulate the standard prompt and normal 256
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### Instruction
Performing one-hop reasoning on the 
knowledge graph....

### Environment:
Dialog History: []
Utterance: Could you recommend a 
movie similar to Kill Bill?
Path History: []
Current Entity: Kill Bill
Current Step: 1

FTE

KG Fusion

Feed Forward

Softmax

KG relation entity

Linear

LLMs

One Token Embedding

Actor State Critic Value 

Next Action:
Next Relation:
Next Entity:

...

P(A1,A2,A3...An | FTR, Path Embedding)

Path Embedding

TransE Agent

update

Reward

Replay Buffer

PPO
Kill Bill

Online RL

Figure 2: The overall architecture of LLM-ARK.

prompt scheme as:257

p(r|D,C) (1)258

Given the task background D and the conversa-259

tion history C, instruct the LLM to generate the260

response r. More complex path aware prompt aims261

to provide alternative options for LLMs to decide262

what kinds of actions should be taken in the re-263

sponse, instead of simply responding to the instruc-264

tion. It can be formulated as:265

p(a, r|D,C,A) (2)266

Given the task background D, conversation history267

C, and a set of potential dialogue acts A, the LLM268

is guided to select the most appropriate dialogue269

act a ∈A, which then generates the response r.270

3.3 LLM-ARK271

Knowledge Graphs are structured knowledge net-272

works composed of vertices, interpreted as entities,273

associated via edges or relationships. Let E stand274

for a collection of entities and R for a collection275

of relations. We represent the external KG as G =276

{V,E,R}, where V and E denote the vertices and277

edges of the graph, respectively. Note that V = E278

and E ⊆ V ×R× V. Let v denote a node and e de-279

note an edge in G. Given dialog context X = and280

G, we can identify an entity in the KG (e.g., an en-281

tity name The Wondering Earth) and and represent282

it as vs, vs ∈ V . The goal is to select a proper edge283

et at the t-th timestamp for one-hop reasoning.284

Graph attention-based models require significant285

annotation effort since all potential paths must be286

evaluated, which can be computationally expensive 287

for large Knowledge Bases (KBs) with millions 288

of entities. To overcome this challenge, our study 289

employs a policy gradient model that efficiently tra- 290

verses the KG to select relationships and ultimately 291

achieves the target, demonstrating proficiency in 292

multi-hop reasoning. 293

KG reasoning naturally reduces to a finite hori- 294

zon, deterministic partially observed Markov deci- 295

sion process that lie on a KG G. We formulate KG 296

reasoning as a Markov Decision Process (MDP) 297

described by a five-tuple (S,O,A, T,R, γ): 298

• State. S is an infinite set of environment states, 299

which encode information stored in Working 300

Memory, including task background tb, user 301

query q, dialog history h, current entity vc, 302

path history ph, current step t, The normal 303

state is represented using a six-tuple: S = 304

(tb, q, h, vc, ph, t). 305

• Observation. The complete state of the en- 306

vironment can be observed. Formally, the 307

observation function O = S. 308

• Action. The set of possible actions A from 309

a state S consists of all the environment in- 310

formation. Formally As = {e ∈ E : S} ∪ 311

{(s,∅, s)}. This means that each state’s agent 312

can choose one of all output edges of the cur- 313

rent entity. 314

• Transition. Depending on the edge selected 315

by the agent at time step t, the environ- 316

ment is changed deterministically by up- 317

dating the state to the new environment. 318
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For single turn dialogue, we update cur-319

rent entity, path history and step. Formally,320

the transition function : δ : S ×A → S is321

defined by δ(S,A) = (tb, q, h, v
′
c, ph

′
, t

′
),322

For multi-turn dialogue wo also need to323

update user query and dialogue history.324

δ(S,A) = (tb, q
′
, h

′
, v

′
c, ph

′
, t

′
), where S =325

(tb, q, h, vc, ph, t).326

• Reward. We have a final reward of +1 if the327

current entity is the target entity vg and -1328

otherwise. if St = (tb, q
′
, h

′
, v

′
c, ph

′
, k

′
) is329

the final state, then we have a final reward of330

+1 if v
′
c = vg , else -1.331

• γ denote reward discounts factor are used to332

compute the reward information of each inter-333

mediate process when agent reaches the goal,334

or the end of the maximum step t.335

3.3.1 Full Textual Environment336

This module tracks the agent’s state that captures337

all essential information in the conversation so338

far. FTE is a text dictionary structure, the same339

as Prompt Engineering’s normal prompt format.340

3.3.2 Agent341

Inference to previous work Carta et al. (2023), we342

use standard RL practices by adding action heads343

- a Multi-Layer Perceptron (MLP) on top of the344

LLM. Thus, we can use only pretrained operations345

from the LLM and leverage language modeling346

heads’ prior, this method is robust to any action347

space and can thus be used on any textual environ-348

ment with no change. Agent has two components:349

LLM and PA-MLP.350

LLM We initially utilize a LLM to encode the351

state S into a continuous vector s ∈ R2d. As a rule352

of thumb, for BERT models the cls token is used353

to represent the semantics of the whole sequence,354

while standard transformers and GPT-like LLMs355

use the embedding of the last token. We used the356

model on huggingface hub as well as the code to get357

the sequence vector representation1. It is defined358

by:359

s = llm(fte) (3)360

PA-MLP Instead of just adding an MLP with a361

single output for the value on top of the last layer362

of the first decoder block as in the conventional363

multicategorization task, to enhance the ability of364

the large model to perceive the environment, we365

1https://huggingface.co

further fused the hidden state after the MLP with 366

the Knowledge Graph exit path information, called 367

PA-MLP (Path Aware MLP). Recall that each pos- 368

sible action represents an outgoing edge e with 369

information about the edge relation label rl and the 370

target vertex/entity vd. So the embedding for each 371

At is [rl; vd], and stacking the embeddings for all 372

outgoing edges we get the matrix At. The network 373

taking this as input is parameterized as a three-layer 374

feed-forward network (MLP) with tanh nonlinear- 375

ity, which takes the FTE representation s and the 376

embedding for the outgoing paths embedding and 377

outputs a probability distribution over the possible 378

actions from which a discrete action is sampled. 379

The dimension of the MLP output hidden state is 380

equal to the dimension of the path embedding. Fi- 381

nally, formulated as: 382

ht = At (W3 (tanh (W2 (tanh (W1 (st))))))

at ∼ Categorical (softmax (ht))
(4) 383

3.3.3 Training 384

Optimizer Our model is optimized by utilizing 385

the experience accumulated by agent during KG 386

reasoning. More formally, for the above policy 387

network (πθ), we want to find the parameter θ that 388

maximizes the reward. 389

J(θ) = E(es,P,eg)∼DEA1,...,AT−1∼πθ

[R (St) | S1 = (s1)] ,
(5) 390

where we assume that there is a true underlying dis- 391

tribution (e1, r, e2) ∼ P . To address this optimiza- 392

tion challenge, we adopt an online reinforcement 393

learning policy gradient algorithm, Proximal Pol- 394

icy Optimization (PPO). PPO is a family of policy 395

optimization methods that use multiple epochs of 396

stochastic gradient ascent to perform each policy 397

update. These methods have the stability and re- 398

liability of trust-region methods(Schulman et al., 399

2017). For value approximation, we include a three- 400

layer feed-forward network with a single output for 401

the value, given by: 402

V = W3 (tanh (W2 (tanh (W1 (st))))) (6) 403

Significantly, the LLM remains frozen for both 404

the actor and critic modules, with only the linear 405

forward layer being trained. 406

Replay Buffer The replay buffer stores the 407

triplets rb = (vc, s, logit, a, s
′
, done) of the re- 408

flection prompt, indicating the current entity, the 409
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current state, logits, the selected action, the next410

state, and whether the episode has ended. The rea-411

son for recording the current entity is that we need412

to get all exit paths of the current entity for further413

fusion 4.414

4 Experiments and Results415

4.1 Datasets416

OpenDialKG is a publicly available parallel corpus417

of conversations and Knowledge Graphs consist-418

ing of 91,000 conversations, each supplemented419

by paths connecting Knowledge Graph entities and420

their relationships. The purpose of the corpus is421

to present the implicit reasoning processes of hu-422

man dialog as explicit computer operations on the423

Knowledge Graph. Following previous work de-424

scribed in Moon et al. (2019), we split this dataset425

into a 70% training set, a 15% validation set, and a426

15% test set.427

4.2 Baselines428

We compared our results with these baseline429

models: Tri-LSTM, Seq2Seq, Seq2Path, DialKG430

Walker(Young et al., 2018; Moon et al., 2019),431

DiffKG, AttnFlow, AttnIO(Jung et al., 2020) and432

HiTKG(Ni et al., 2022). HiTKG is a hierarchical433

transformer-based tool that uses diverse inputs to434

predict KG paths. Our team chose HiTKG as a435

strong baseline. To evaluate the performance of the436

state-of-the-art LLMs on the KG inference task, we437

designed three prompt methods: GPT4-Standard,438

GPT4-Normal and GPT4-OPA. The difference be-439

tween GPT4-Standard, GPT4-Normal is that GPT4-440

Normal has more awareness of dialog context and441

path history, while GPT4-OPA has more aware-442

ness of 2-hop exit path subgraphs compared to the443

former two. See appendix A.4 for full prompt.444

4.3 Implement Details445

The training was conducted on A40. Informed by446

prior research from Jung et al. (2020); Ni et al.447

(2022), we pre-trained the knowledge graph using448

TransE (Fan et al., 2014) based on this GitHub449

repository2. The objective was to unearth and ex-450

plore entity relationships, expand the knowledge451

graph for connection prediction, and enable diverse452

reward function design. To facilitate reproducibil-453

ity, we adopt an open-source LLM, i.e., LLaMA-2-454

7B(Touvron et al., 2023b). To reduce GPU memory455

2https://github.com/thunlp/OpenKE

usage and increase the pace of training, all experi- 456

ments - excluding LLaMA-2-7B-ARK-FP32 were 457

carried out with BFLOAT16(Kalamkar et al., 2019) 458

half-precision format. Since all true paths in Open- 459

DialKG are at most 2 hops, we set the maximum 460

path length to t = 2. We included "Equal" to en- 461

sure that the model stops automatically after the 462

second hop. To ensure fairness, we randomly shuf- 463

fled the exit paths of the knowledge graph. We 464

set max patience to 5, meaning that training is ter- 465

minated if there is no boost for 5 rewards on the 466

validation set. Further information on the hyperpa- 467

rameters is available in the Appendix 8. 468

4.4 Evaluation Metrics 469

In line with the baselines, we utilize recall@k as 470

the evaluation metric for both path-level (path@k) 471

and target entity-level (target@k) correctness. 472

4.5 Comparative Experiments 473

For the KG reasoning task, we assessed path recall 474

at different K values (1, 3, 5, 10, 25) and target 475

entity recall at position K (1, 3, 5, 10, 25). As pre- 476

sented in Table 1, the result demonstrate that our 477

proposed model LLaMA-2-7b-ARK performs bet- 478

ter than all benchmarked baselines in target@1, 5, 479

10, 25 metrics. The performance gain is signifcant, 480

especially in recalls with taget@1, 10: there is a 481

5.28% relative improvement in target@1 and 9.59% 482

in target@10. Unfortunately, our model’s path@k 483

evaluation matrix socores do not outperform the 484

current state-of-the-art (SOTA) model HiTKG be- 485

cause we trained using only the target arrival re- 486

ward function, but we are very extensible and there 487

is potential for improvement. As described in this 488

paper, we evaluate the performance of GPT-4 in 489

performing dialog inference using manual prompt 490

constructed with different environmental informa- 491

tion. Therefore, we also report the performance of 492

GPT-4 with different prompts on the same dataset. 493

At the decoding stage of AttnIO, AttnFlow and 494

DiffKG, KG paths are predicted by scoring en- 495

tity paths and relation paths respectively, and then 496

rerank which makes it harder to achieve optimum. 497

While a KG triple is composed of both, our model 498

uses PA-MLP to aggregate all the exit path informa- 499

tion to improve the perception of the agent, which 500

is a more reasonable modeling approach. 501

HiTKG is state-of-the-art KG walker, which 502

build a multi-hierarchy attention block to aggre- 503

gate the multiscale information. However, different 504

types of input data sources are difficult to aggregate, 505
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Model
path@k target@k

path@1 path@3 path@5 path@10 path@25 target@1 target@3 target@5 target@10 target@25

Tri-LSTM 3.2 14.2 22.6 36.3 56.2 - - - - -
Seq2Seq 3.1 18.3 29.7 44.1 60.2 - - - - -

DialKG Walker 13.2 26.1 35.3 47.9 62.2 - - - - -
Seq2Path 14.92 24.95 31.1 38.68 48.15 15.65 27.04 33.86 42.52 53.28
AttnFlow 17.37 24.84 30.68 39.48 51.4 18.97 36.23 45.48 58.84 71.35
AttnIO 23.72 37.53 43.57 52.17 62.86 24.98 43.78 53.49 65.48 78.79
HiTKG 25.99 38.67 49.18 59.32 71.27 31.11 46.29 55.59 71.61 86.09

T5-DiffKG - - - - - 26.80 54.33 61.75 - -
GPT-4-Standard 0.007 - - - - 14.91 - - - -
GPT-4-Normal 0.02 - - - - 13.30 - - - -

GPT-4-OPA 0.09 - - - - 12.19 - - - -

LLaMA-2-7B-ARK 16.59 27.17 34.85 47.88 62.32 36.39 53.63 65.68 80.20 89.68

Table 1: Path-level (path@k) and target-level (target@k) performance of KG path reasoning. LLM-ARK is
benchmarked against several state-of-the-art baselines models on the OpenDialKG dataset.

and how well they are aggregated directly affects506

the performance of the model. We unify all the507

multi-scale input sources into the prompt, and due508

to the large model has a large number of instruc-509

tion comprehension ability to get a rich information510

encoding representation.511

The GPT-4-Standard and GPT-4-Normal meth-512

ods are deficient in path awareness. GPT-4-OPA513

exhibit improved outcomes with the addition of514

path awareness. The generation of GPT-4 paths is515

entirely dependent on the background knowledge516

in the dataset during the training phase, and the517

GPT-4 generative model itself is not designed for518

sequential decision-making tasks, and achieving519

such a score has impressed us. Although we added520

states to GPT-4 through prompt, this is limited by521

the length of the prompt, which is fundamentally522

due to the fact that GPT-4 is inherently memory-523

less. Based on these factors, optimizing GPT-4524

on multi-hop inference datasets of the Knowledge525

Graph to further improve its performance, generat-526

ing human-preferred inference paths on large-scale527

Knowledge Graph datasets is still a challenge.528

Considering LLMs as agents that explore a529

knowledge graph to acquire experience can benefit530

benefits from the positive-negative feedback opti-531

mization mechanism of the Reinforcement Learn-532

ing Policy Supervisor Algorithm. This method en-533

hances the training of our model to perform flexible534

reasoning on KGs in multi-step scenarios, outper-535

forming not only GPT-4 but also smaller models.536

The model’s superior performance corroborates the537

effectiveness of our approach.538

4.6 Analysis Experiment 539

As shown in Table 2, LLM-ARK was benchmarked 540

against multiple ablation models on the OpenDi- 541

alKG dataset. (1) First, to evaluate the impact of 542

instructions on model performance, we trained the 543

LLaMA-2-7B-ARK-UI model without instruction. 544

The results of this model are the closest to those 545

of LLaMA-2-7B-ARK, indicating that the pres- 546

ence or absence of commands has an effect on the 547

model’s results, but not a serious one. (2) Then, we 548

have implemented IEEE 754 floating-point format 549

(FP32) operations for our experiments. The results 550

show that using the BFLOAT16 tensor for training, 551

recall@K gives better results than FP32 without 552

changing the hyperparameters. (3) Next, LLaMA- 553

2-7B-ARK-WT that was trained by randomly ini- 554

tializing relation and entity embedding. The de- 555

crease in performance indicates that the absence 556

of knowledge graph representation learning has 557

negatively impacted the training process. (4) We 558

conducted the fourth ablation experiment LLaMA- 559

2-7B-ARK-WP and found that the performance 560

of our export environment-aware sub-module PA- 561

MLP decreases substantially if we do not consider 562

the exit paths. The score for path@1 is only 0.98%, 563

which is 15.61% lower than LLaMA-2-7B-ARK. 564

These ablation experiments and results demonstrate 565

the contribution and necessity of our subcompo- 566

nents to the model. 567

4.7 Case Study 568

We resort to a case study, for a clear presentation 569

of LLM-ARK’s path reasoning process as shown 570

in Table 3. Note that there are hundreds of neigh- 571

bor nodes connected to each entity in the external 572

KG. Intuitively, there could be diverse knowledge 573
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Model
path@k target@k

path@1 path@3 path@5 path@10 path@25 target@1 target@3 target@5 target@10 target@25

LLaMA-2-7B-ARK 16.59 27.17 34.85 47.88 62.32 36.39 53.63 65.68 80.20 89.68
LLaMA-2-7B-ARK-UI 16.87 27.01 34.35 47.67 63.03 34.70 52.02 62.66 78.09 88.65

LLaMA-2-7B-ARK-FP32 14.59 24.64 32.24 45.80 61.75 34.35 52.57 62.51 79.18 88.51
LLaMA-2-7B-ARK-WT 1.10 3.44 5.71 10.47 15.42 9.45 19.46 50.94 71.43 94.03
LLaMA-2-7B-ARK-WP 0.98 2.53 3.28 4.88 5.52 18.90 40.67 54.76 77.25 93.08

Table 2: Path-level (path@k) and target-level (target@k) performance of supervised KG path reasoning ( metric:
recall@k). LLM-ARK is benchmarked against several ablation models on the OpenDialKG dataset.

### Task Background:
Performing 2-hop reasoning on the knowledge graph.
### Instruction
If you don’t think it’s necessary to perform the second hop in reasoning, stop the reasoning with the ’Equal’ relation.
Given the Task Background and the Environment, directly output this path in triplet format without any other content.

Success
FTE

### Environment:
Dialog History: []
Utterance: Could you recommend popular books by Gail Carson Levine?
Path History: []
Current Entity: Gail Carson Levine

Ground Truth Path ["Gail Carson Levine","∼written_by","The Two Princesses of Bamarre"]
LLM-ARK Reasoning Path [["Gail Carson Levine","∼written_by","The Two Princesses of Bamarre"], ["The Two Princesses of Bamarre","Equal","The Two Princesses of Bamarre"]]

Failed
FTE

### Environment:
Dialog History: ["user: Can you recommend a movie like the Shooter?",
"assistant: A movie similar to Shooter is Nothing to Lose."]
Utterance: "Ok who is in that one?"
Path History: [["Shooter","has_genre","Thriller"],["Thriller","∼has_genre","Nothing to Lose"],["Nothing to Lose","starred_actors","Michael McKean"]]
Current Entity: "Michael McKean"

Ground Truth Path ["Michael McKean","∼starred_actors","Nothing to Lose"]
LLM-ARK Reasoning Path [["Michael McKean","∼starred_actors","Used Cars"],["Used Cars", "Equal", "Used Cars"]]

Table 3: Successes and failures of our model when performing inference tasks on the OpenDialKG dataset.

paths as response to the user’s question. As the574

success story shows, our model makes good use of575

FTE information and exit path information to make576

decisions, rather than making decisions based on577

relationships alone, because Gail Carson Levine’s578

work is not limited to The Two Princesses of Ba-579

marre. As shown in the error case, our model still580

reasons about wrong paths, partly due to the dataset581

itself, because OpenDialKG is an open-domain582

conversational knowledge graph inference dataset,583

and similar contexts and the same starting entities584

in the training set choose different Groud Truth585

exit paths, and so it can interfere with the training586

of our model. It is worth mentioning that OpenDi-587

alKG is not a unique path inference; there are many588

potential paths to reach the target entity. To summa-589

rize, our model would have the potential for better590

performance on non-open-domain conversational591

knowledge graph inference datasets.592

5 Conclusion593

This paper evaluates the ability of current state-of-594

the-art LLM-based dialog systems in handling KG595

conversational reasoning tasks. To enhance LLM’s596

performance on this task, we introduce LLM-ARK,597

a full-text environment-aware Knowledge Graph598

inference agent optimized using online reinforce-599

ment learning. Empirical analysis demonstrates600

that our model outperforms GPT-4 and smaller601

models. The experiments also sheds light on the 602

model’s performance can be seriously affected by 603

the mismatch between the LLMs and the environ- 604

ment information. Our method can inspire subse- 605

quent researchers to pay attention to the critical role 606

of considering various factors during model opti- 607

mization in the field of LLM-based conversational 608

KG reasoning tasks. 609
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Knowledge Graph Dataset
Entity Relation Triplets Train Data Test Data

100,927 1,383 1,189,192 12,345 2,646

Table 4: Detailed information about the number of
knowledge graph entity-relationship triples and the num-
ber of dataset segmentation samples after processing the
OpenDialKG dataset.

A Appendix 798

A.1 Data Format 799

We preprocessed the OpenDialKG raw data to fit 800

our KG inference task. There are individual errors 801

in the raw data, and the information of the dataset 802

after our screening is shown in Table 4. 803

A.2 Tricks 804

In the original paper of PPO, no implementation 805

details and techniques are mentioned other than the 806

use of GAE to compute the dominance function. 807

Referring to this repository3, we employ several 808

optimization tricks. In the actual code implementa- 809

tion, to encourage the diversity of paths sampled by 810

the strategy during training, we added an entropy 811

regularization term to our loss function. We used 812

the operation of normalization of advantage pro- 813

posed in the paper (Tucker et al., 2018). Learning 814

rate decay can enhance the smoothness in the late 815

training stage to some extent and improve the train- 816

ing effect. Here we use the linear decay of learning 817

rate, with the number of training steps learning 818

rate from the initial value of a linear decline to 0. 819

Gradient clipping is a trick introduced to prevent 820

the gradient from exploding during the training 821

process, which also serves to stabilize the train- 822

ing process. Orthogonal Initialization is a neural 823

network initialization method proposed to prevent 824

problems such as gradient vanishing and gradient 825

explosion at the beginning of training. Referring to 826

the MAPPO (Yu et al., 2022), the Adam optimizer 827

individually sets eps=1e-5, and this particular set- 828

ting can improve the training performance of the 829

algorithm to some extent. 830

A.3 Limitation 831

A.3.1 Limitations of Inference Efficiency 832

Efficiency is always a significant issue when build- 833

ing deep learning models based on LLMs. Al- 834

though our research freezes the parameters of the 835

3https://github.com/Lizhi-sjtu/
DRL-code-pytorch
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LLM in the back-propagation stage and uniformly836

uses the bfloat16 computational type, the huge num-837

ber of parameters of the model leads to inefficient838

forward propagation and large GPU memory us-839

age when collecting experience and inference. As840

stated in the LLaMA paper(Touvron et al., 2023a),841

the efficiency of the model’s inference is more cru-842

cial than its training efficiency. It is acceptable843

for the training process to be slower, but the infer-844

ence must be faster. Improving the inference speed845

of the model while ensuring its effectiveness is a846

challenge. In addition to constructing the research847

model, online applications based on LLMs must848

also address the efficiency issue. Conversational849

reasoning models based on LLMs must be efficient850

for real-time applications. The inference efficiency851

is crucial for building online applications based on852

LLMs.853

A.3.2 Limitations of Entity Embedding854

Our research work has identified limitations in the855

semantic representation of knowledge graph enti-856

ties. The attributes of knowledge graph entities857

should be considered during the reasoning process.858

However, these attributes may be lengthy descrip-859

tions that are not easily processed by our TransE860

knowledge graph semantic embedding model. Fur-861

thermore, while most knowledge graphs are cur-862

rently represented in text form, it is equally im-863

portant to consider multimodal knowledge graph864

reasoning in research. By constructing a reason-865

ing model based on multimodal inputs, machines866

can better describe and understand the real world.867

For example, the soon-to-be two-dimensionalized868

Law in Three Body Death Forever says "Oh, it’s869

time to go into the picture, kids, go ahead," and870

the user asks a question about this scenario, "can871

you help me find some pictures related to this872

galaxy?". The model may need to deduce that873

the two-dimensional representation portrayed in874

this book is the Milky Way galaxy, and then lo-875

cate relevant images of the galaxy. Our model is876

currently unable to incorporate the combination877

of multi-modal, multi-attribute entities, which is a878

limitation of our work in this endeavor, as well as879

an area for future research efforts.880

A.4 GPT4 Prompts881

For GPT4-OPA prompt, since max length is 2, we882

need to recursively get all exit paths at the next883

level of all exit paths of the current entity, most of884

which are omitted due to the large number of KG885

Standard Prompt
### Task Background
Performing 2-hop reasoning on the knowledge graph.

### Instruction
If you don’t think it’s necessary to perform the second hop in reasoning, stop the reasoning with the ’Equal’ relation.
Given the Task Background and the Environment, directly output this path in triplet format without any other content.

### Environment
Utterance: What do you think about the Washinton Redskins? Are you a fan?
Current Entity: Washington Redskins

### Examples
·
·
·

### Response

Table 5: GPT4-Standard prompt only perceived user’s
query and Current Entity.

subgraph triples of exit paths. 886

Normal Prompt
### Task Background
Performing 2-hop reasoning on the knowledge graph.

### Instruction
If you don’t think it’s necessary to perform the second hop in reasoning, stop the reasoning with the ’Equal’ relation.
Given the Task Background and the Environment, directly output this path in triplet format without any other content.

### Environment
Dialog History: []
Utterance: What do you think about the Washinton Redskins? Are you a fan?
Path History: []
Current Entity: Washington Redskins

### Examples
·
·
·

### Response

Table 6: GPT4-Normal prompt has more awareness of
dialog context and path history.

OPA(Out Paths Aware) Prompt
### Task Background
Performing 2-hop reasoning on the knowledge graph.

### Instruction
Given the Task Background and the Environment, please choose select two consecutive paths KG path from a set of Out Paths.
If you don’t think it’s necessary to perform the second hop in reasoning, just select the ’Equal’ relation at the second hop.
Directly output these path in triplet format without any other content.

### Environment
Dialog History: []
Utterance: What do you think about the Washinton Redskins? Are you a fan?
Path History: []
Current Entity: Washington Redskins
Out Path: [’Washington Redskins,Equal,
Washington Redskins’,
’Washington Redskins,∼Game,Mike Sellers’,
’Washington Redskins,∼Runner-up,Super Bowl VII’,
·
·
·
’Ladell Betts,Ethnicity,African American’]

### Examples
·
·
·

### Response

Table 7: GPT4-OPA prompt has more awareness of 2-
hop exit KG path subgraphs.

A.5 HyperParameters 887
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Computing Infrastructure Tesla A40 GPU
Search Strategy Beam Search
Training Efficiency 6 seconds per step

Hyperparameter Best Setting
use transe True
out path aware True
bf16 True
relation embedding size 200
entity embedding size 200
max out 50
number of explorations 8
replay buffer size 4096
mini batch size 1024
positive reward 1
negative reward -1
actor learning rate 5e-5
critic learning rate 5e-5
gamma 0.95
lamda 0.95
epsilon 0.2
K epochs 10
use advantage normalization True
use entropy coef 0.01
use learning rate decay True
use gradient clip True
use orthogonal init True
set adam eps 1e-5 True
use tanh True

Table 8: Additional implementation detail of LLM-
ARK.
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