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Abstract

The development of large language models
(LLMs) has been catalyzed by advancements
in pre-training techniques. These models
have demonstrated robust reasoning capabili-
ties through manually designed prompts. In this
work, we evaluate the conversational reasoning
capabilities of the current state-of-the-art LLM
(GPT-4) on knowledge graphs (KGs). How-
ever, the performance of LLMs is constrained
due to a lack of KG environment awareness
and the difficulties in developing effective opti-
mization mechanisms for intermediary reason-
ing stages. We further introduce LLM-ARK, a
LLM grounded KG reasoning agent designed
to deliver precise and adaptable predictions on
KG paths. LLM-ARK leverages Full Textual
Environment (FTE) prompt to assimilate state
information within each reasoning step. We
reframe the challenge of multi-hop reasoning
on the KG as a sequential decision-making
task. Utilizing the Proximal Policy Optimiza-
tion (PPO) online policy gradient reinforce-
ment learning algorithm, our model is opti-
mized to learn from rich reward signals. Addi-
tionally, we conduct an evaluation of our model
and GPT-4 on the OpenDialKG dataset. The
experimental results reveal that LLaMA-2-7B-
ARK outperforms the current state-of-the-art
model by 5.28 percentage points, with a perfor-
mance rate of 36.39% on the target@1 evalua-
tion metric. Meanwhile, GPT-4 scored 14.91%,
further demonstrating the effectiveness of our
method.

1 Introduction

With significant progress in large language models
(LLMs), researchers have recognized their superior
capabilities in the field of natural language process-
ing (NLP)(Liu et al., 2023; Shakarian et al., 2023;
Lai et al., 2023). Reasoning ability stands as the
most demonstrative of Al intelligence. Recently, to
boost the performance of LLMs in reasoning tasks,
we noted various optimization strategies adopted by

researchers such as Chain of Thought (COT)(Wei
et al., 2023) and decomposing subtasks(Kazemi
et al., 2023). Currently, the reasoning method of
LLMs have received limited attention in the con-
versational KG reasoning task. This research aims
to address this gap in the field.

Knowledge Graphs composed of vertices or enti-
ties connected by edges or relations, gaining popu-
larity in knowledge-based dialogue systems for its
structured disposition. Conversational reasoning
models are able to traverse the KG based on con-
versational context to introduce diverse entities and
attributes to make replies more engaging, as well
as to improve the logic of the model to mitigate il-
lusions(Rawte et al., 2023; Dong et al., 2022). Pre-
vious work(Moon et al., 2019; Zhang et al., 2020;
Ni et al., 2022; Tuan et al., 2022) mainly relied on
supervised learning methods. To assess the capabil-
ities of current SOTA LLM: GPT-4(OpenAl, 2023),
we initially examine the proficiency of LLMs on
KG reasoning, as illustrated in Figure 1, determin-
ing their potential application in the KG domain.
Empirical studies reveal that, despite demonstrating
reasonable performance on KG tasks, indicative of
their proficiency in managing complex problems,
understanding contextual relationships, and utiliz-
ing pre-training knowledge, LLMs still present is-
sues and fall short when compared with state-of-
the-art models.

There are two main challenges applying LLM-
based agents. On the one hand, LLMs suffer from
a limited perception of variable reasoning environ-
ments. The alignment between LLMs’ knowledge
and the environment can be wrong and limit func-
tional competence due to lack of grounding(Carta
et al., 2023). If properly grounded, the model’s
structure would be both simplified and effective.
For KG reasoning tasks, as shown in Figure 1, the
agent achieved better scores when provided with
as much information about the environment as pos-
sible, such as dialog history, inference path history,
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Figure 1: Manual prompts on the OpenDialKG dataset.
Compare to GPT-4-Standard, GPT-4-Normal has more
awareness of dialog context and path history, while GPT-
4-OPA has more awareness of 2-hop exit path subgraphs
compared to the former two. The experimental results
show that the more environmental information GPT-4
perceives, the higher the knowledge graph reasoning
path@1 evaluation metric score.

and all exit paths. Although LLMs are not de-
signed to take actions, Peng et al. (2023); Carta
et al. (2023); Du et al. (2023) found that it can be
achieved good results in downstream decision mak-
ing by simply feeding full textual representations
as inputs to LLMs.

On the other hand, Yao et al. (2023) indicate that
there is a lack of systematic methods for consis-
tent model refinement. In essence, LLMs fall short
in possessing essential mechanisms for optimiz-
ing intermediary reasoning processes in multi-hop
reasoning tasks. This is mainly attributed to the
fact that manual prompt tuning is widely used in
many application scenarios. It has been observed
that LLM-based agents can easily fall into infinite
loops if state is not handled properly, and inevitably
run into prompt length problems when the trajec-
tory becomes longer. In addition, the design of
prompt is also a challenge because an entity may
have more than 100 exit edges, all of which are
formatted into prompt which is impractical in a
knowledge graph environment. LLMs often en-
counter these issues because they are not designed
or trained for action-agent applications.

We introduce LLM-ARK, an effective frame-
work that employs LLM as an Agent for
Reasoning on Knowledge Graphs. We employ
LLMs as agent and express the Large model KG in-
ference task as a reinforcement learning sequential
decision-making problem, and using a Full-Textual-
Environment prompt to aggregate multiscale inputs.
Moreover, our agent architecture does not necessi-
tate access to LLM parameters or gradient propaga-
tion through it. Instead, we adopt a policy gradient
approach where the Actor LLM functions as part
of the environment. This configuration enables the
model to learn from diverse reward signals across
varied tasks and environments. In summary, our
contributions are as follows:

* We assess the capabilities of state-of-the-art
LLM: GPT-4, on large-scale KG inference
datasets and analyze the experimental results
in detail to understand the causes of their infe-
rior performance.

* To enhance the performance of the LLM
agents, we introduce LLM-ARK. Our method
expresses the KG dialog inference prob-
lem as a reinforcement learning sequential
decision-making issue, using a Full-Textual-
Environment prompt to aggregate multiscale
inputs, dual-environment sensing on the state
and decision side and leverage LLMs to ex-
plore on KGs.

* Furthermore, we update only the parameters
of the PA-MLP that are part of the our agent
using the policy gradient method, freezing
the parameters of the LLM. This approach
enables learning from diverse reward signals
during interactions with the environment and
improves the efficiency of training.

2 Related Work
2.1 KG Reasoning on Dialog Systems

Given its structured nature, Knowledge Graphs are
becoming an increasingly popular external infor-
mation source in knowledge-based systems. Moon
et al. (2019) developed a retrieval system designed
to generate responses based on a graph reasoning
task. They employed a graph walker to navigate
the graph, propelled by the symbol transformation
conditions of the dialog context. Jung et al. (2020)
utilizing graph attention techniques to navigate the
conditional graph of a conversation within a KG di-
alogue system. The model computes an incoming



attention fow to represent entities and an outgo-
ing attention fow to select KG paths. However,
this approach cannot be extended to long KG path
prediction due to the exponential increase in com-
putational complexity. Ni et al. (2022) introduced
a hierarchical reinforcement learning KG inference
model that aggregates multiple inputs utilizing an
attention mechanism. This approach instructs the
model to reason in one step and then fine-tunes it
using a goal-directed reinforcement learning. Tuan
et al. (2022) employed a single transformer model
that walks directly over large-scale KGs, reason-
ing over fine-tunable KGs to generate responses.
Similarly, Luo et al. (2023) initially create rela-
tional paths derived from KGs as high-confidence
plans, which are later utilized to extract valid rea-
soning paths from KGs for confident reasoning.
Sun et al. (2023) leverage KGs to augment LLMs
for deep and responsible reasoning. The framework
explores and infers by identifying entities relevant
to a given question and retrieving relevant triples
from external KGs. This iterative process generates
multiple inference paths until enough information
is gathered to answer the question or maximum
depth is reached.

2.2 LLMs with Reinforcement Learning

Reinforcement learning and large models are di-
vided into two main aspects of the combination, the
first aspect further improves the ability of LLM to
understand and follow user instructions through re-
inforcement learning based methods(Ouyang et al.,
2022). Yao et al. (2023) employed a special RLHF
technique to tailor the model to human preferences,
generating beneficial, non-toxic, and safe data for
training while also training reward models to eval-
uvate LLMs. Retroformer, a significant improve-
ment over Chain of Thought (COT), is primar-
ily applied to reasoning tasks and uses a unique
RLHF method. Shinn et al. (2023) introduce a
novel framework, Reflexion, that strengthens lin-
guistic agents through linguistic feedback, rather
than updating weights. The Reflexion agent ver-
bally reflects on task feedback signals, and then
stores its reflection text in an episodic memory
buffer to make better decisions in subsequent trials.

The second aspect is to further improve the ap-
plicability of LLM on real-world tasks through a
reinforcement learning-based approach, since train-
ing a LLM public NLP task/dataset can only cover
a small portion of the real world, and reinforce-
ment learning can train LLM-based intelligences to

explore the realization of various real-world goals.
Carta et al. (2023) studied LLMs interaction with
physical environments. Using an interactive textual
environment designed to study a series of spatial
and navigational tasks and using online reinforce-
ment learning to improve its performance to solve
goals. Huang et al. (2022) consistently integrate
feedback from diverse sources into the planning
language cues of the LLM, thereby enabling it to
reason and replan to solve complex problems in
both simulated and real-world environments. Singh
et al. (2022) propose a procedural LLM hint struc-
ture that facilitates plan generation functionality
in contextual environments, robot capabilities, and
tasks.

3 Methods

3.1 Overview

As shown in Figure 2, our model has the fol-
lowing main components, FTE (Full-Textual-
Environment), LLM (Large Language Model) and
RL(Reinforcement Learning). FTE can be seen as
state manager, using a Full-Textual-Environment
prompt to aggregate multi-scale inputs, updating
and maintaining state transfers between itself and
the environment. At first LLMs obtain a richly in-
formative representation of state embeddings. To
capture the path embedding information of the KG,
we pre-train the KG on TransE(Fan et al., 2014).
Rather than directly introducing the probability dis-
tribution of the action space, our Actor feeds the
probability distribution along with the path embed-
ding, subsequently eliminating invalid paths (we
utilise "Pad’ for this adaptation process) before out-
putting a precise and legitimate action. We formu-
late the large model KG inference task within an
online reinforcement learning framework and con-
tinuously optimize the decision network based on
the collected experience in replay buffer. Finally,
we refine the adapter using the Proximal Policy
Optimization (PPO) online reinforcement learning
method. In this section, we will first describe the
method used to evaluate GPT-4, and then present
each of the modules of our model in turn.

3.2 Manual Prompt Tuning

As illustrated in Figure 1, we detail the prompt-
ing schemes, encompassing the standard prompt,
normal prompt and out path aware prompt. To
guide LLMs in performing specific dialogue tasks,
we can formulate the standard prompt and normal
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Figure 2: The overall architecture of LLM-ARK.

prompt scheme as:

p(r|D,C) (1
Given the task background D and the conversa-
tion history C, instruct the LLM to generate the
response r. More complex path aware prompt aims
to provide alternative options for LLMs to decide
what kinds of actions should be taken in the re-
sponse, instead of simply responding to the instruc-
tion. It can be formulated as:

p(a,7|D,C, A) 2

Given the task background D, conversation history
C, and a set of potential dialogue acts A, the LLM
is guided to select the most appropriate dialogue
act a €A, which then generates the response r.

3.3 LLM-ARK

Knowledge Graphs are structured knowledge net-
works composed of vertices, interpreted as entities,
associated via edges or relationships. Let £ stand
for a collection of entities and R for a collection
of relations. We represent the external KG as G =
{V,E,R}, where V and E denote the vertices and
edges of the graph, respectively. Note that V = &
and EC V x R x V. Let v denote a node and e de-
note an edge in G. Given dialog context X = and
G, we can identify an entity in the KG (e.g., an en-
tity name The Wondering Earth) and and represent
itas vg,vs € V. The goal is to select a proper edge
ey at the t-th timestamp for one-hop reasoning.
Graph attention-based models require significant
annotation effort since all potential paths must be

evaluated, which can be computationally expensive
for large Knowledge Bases (KBs) with millions
of entities. To overcome this challenge, our study
employs a policy gradient model that efficiently tra-
verses the KG to select relationships and ultimately
achieves the target, demonstrating proficiency in
multi-hop reasoning.

KG reasoning naturally reduces to a finite hori-
zon, deterministic partially observed Markov deci-
sion process that lie on a KG G. We formulate KG
reasoning as a Markov Decision Process (MDP)
described by a five-tuple (S,0, A, T, R,~):

 State. S is an infinite set of environment states,
which encode information stored in Working
Memory, including task background tb, user
query g, dialog history h, current entity v.,
path history ph, current step ¢, The normal
state is represented using a six-tuple: S =
(tb, q, h, v, ph,t).

* Observation. The complete state of the en-
vironment can be observed. Formally, the
observation function O = S.

* Action. The set of possible actions .4 from
a state S consists of all the environment in-
formation. Formally A; = {e € E: S} U
{(s, 2, s)}. This means that each state’s agent
can choose one of all output edges of the cur-
rent entity.

* Transition. Depending on the edge selected
by the agent at time step ¢, the environ-
ment is changed deterministically by up-
dating the state to the new environment.



For single turn dialogue, we update cur-
rent entity, path history and step. Formally,
the transition function : §: S x A — S is
defined by 6(S,A) = (tb,q, h,v,,ph’,t),
For multi-turn dialogue wo also need to
update user query and dialogue history.
6(S,A) = (tb,q ,h',v,,ph',t), where S =
(tb, q, h,ve, ph,t).

Reward. We have a final reward of +1 if the
current entity is the target entity v, and -1
otherwise. if S, = (tb,q ,h',v.,ph', k') is
the final state, then we have a final reward of
+1if v, = v, , else -1.

~ denote reward discounts factor are used to
compute the reward information of each inter-
mediate process when agent reaches the goal,
or the end of the maximum step .

3.3.1 Full Textual Environment

This module tracks the agent’s state that captures
all essential information in the conversation so
far. FTE is a text dictionary structure, the same
as Prompt Engineering’s normal prompt format.

3.3.2 Agent

Inference to previous work Carta et al. (2023), we
use standard RL practices by adding action heads
- a Multi-Layer Perceptron (MLP) on top of the
LLM. Thus, we can use only pretrained operations
from the LLM and leverage language modeling
heads’ prior, this method is robust to any action
space and can thus be used on any textual environ-
ment with no change. Agent has two components:
LLM and PA-MLP.

LLM We initially utilize a LLM to encode the
state S into a continuous vector s € R??. As a rule
of thumb, for BERT models the cls token is used
to represent the semantics of the whole sequence,
while standard transformers and GPT-like LL.Ms
use the embedding of the last token. We used the
model on huggingface hub as well as the code to get
the sequence vector representation!. It is defined
by:

s = lm(fte) 3)

PA-MLP Instead of just adding an MLP with a
single output for the value on top of the last layer
of the first decoder block as in the conventional
multicategorization task, to enhance the ability of
the large model to perceive the environment, we

"https://huggingface.co

further fused the hidden state after the MLP with
the Knowledge Graph exit path information, called
PA-MLP (Path Aware MLP). Recall that each pos-
sible action represents an outgoing edge e with
information about the edge relation label r; and the
target vertex/entity vy. So the embedding for each
Ay is [ry; vq), and stacking the embeddings for all
outgoing edges we get the matrix A;. The network
taking this as input is parameterized as a three-layer
feed-forward network (MLP) with tanh nonlinear-
ity, which takes the FTE representation s and the
embedding for the outgoing paths embedding and
outputs a probability distribution over the possible
actions from which a discrete action is sampled.
The dimension of the MLP output hidden state is
equal to the dimension of the path embedding. Fi-
nally, formulated as:

hy = Ay (W3 (tanh (W2 (tanh (W1 (s¢))))))

a; ~ Categorical (softmax (hy))

“)
3.3.3 Training

Optimizer Our model is optimized by utilizing
the experience accumulated by agent during KG
reasoning. More formally, for the above policy
network (7g), we want to find the parameter 6 that
maximizes the reward.

J(e) = E(es,P,eg)NDEA1 ..... Ar_1~my

5
R(S)|S1= ()], O

where we assume that there is a true underlying dis-
tribution (el, 7, e2) ~ P. To address this optimiza-
tion challenge, we adopt an online reinforcement
learning policy gradient algorithm, Proximal Pol-
icy Optimization (PPO). PPO is a family of policy
optimization methods that use multiple epochs of
stochastic gradient ascent to perform each policy
update. These methods have the stability and re-
liability of trust-region methods(Schulman et al.,
2017). For value approximation, we include a three-
layer feed-forward network with a single output for
the value, given by:

V = W3 (tanh (W3 (tanh (W1 (s1)))))  (6)

Significantly, the LLM remains frozen for both
the actor and critic modules, with only the linear
forward layer being trained.

Replay Buffer The replay buffer stores the
triplets rb = (v, s, logit, a, s,,done) of the re-
flection prompt, indicating the current entity, the
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current state, logits, the selected action, the next
state, and whether the episode has ended. The rea-
son for recording the current entity is that we need
to get all exit paths of the current entity for further
fusion 4.

4 Experiments and Results

4.1 Datasets

OpenDialKG is a publicly available parallel corpus
of conversations and Knowledge Graphs consist-
ing of 91,000 conversations, each supplemented
by paths connecting Knowledge Graph entities and
their relationships. The purpose of the corpus is
to present the implicit reasoning processes of hu-
man dialog as explicit computer operations on the
Knowledge Graph. Following previous work de-
scribed in Moon et al. (2019), we split this dataset
into a 70% training set, a 15% validation set, and a
15% test set.

4.2 Baselines

We compared our results with these baseline
models: Tri-LSTM, Seq2Seq, Seq2Path, DialKG
Walker(Young et al., 2018; Moon et al., 2019),
DiffKG, AttnFlow, AttnlIO(Jung et al., 2020) and
HiTKG(Ni et al., 2022). HiTKG is a hierarchical
transformer-based tool that uses diverse inputs to
predict KG paths. Our team chose HiTKG as a
strong baseline. To evaluate the performance of the
state-of-the-art LLMs on the KG inference task, we
designed three prompt methods: GPT4-Standard,
GPT4-Normal and GPT4-OPA. The difference be-
tween GPT4-Standard, GPT4-Normal is that GPT4-
Normal has more awareness of dialog context and
path history, while GPT4-OPA has more aware-
ness of 2-hop exit path subgraphs compared to the
former two. See appendix A.4 for full prompt.

4.3 Implement Details

The training was conducted on A40. Informed by
prior research from Jung et al. (2020); Ni et al.
(2022), we pre-trained the knowledge graph using
TransE (Fan et al., 2014) based on this GitHub
repository?. The objective was to unearth and ex-
plore entity relationships, expand the knowledge
graph for connection prediction, and enable diverse
reward function design. To facilitate reproducibil-
ity, we adopt an open-source LLM, i.e., LLaMA-2-
7B(Touvron et al., 2023b). To reduce GPU memory

Zhttps://github.com/thunlp/OpenKE

usage and increase the pace of training, all experi-
ments - excluding LLaMA-2-7B-ARK-FP32 were
carried out with BFLOAT16(Kalamkar et al., 2019)
half-precision format. Since all true paths in Open-
DialKG are at most 2 hops, we set the maximum
path length to t = 2. We included "Equal" to en-
sure that the model stops automatically after the
second hop. To ensure fairness, we randomly shuf-
fled the exit paths of the knowledge graph. We
set max patience to 5, meaning that training is ter-
minated if there is no boost for 5 rewards on the
validation set. Further information on the hyperpa-
rameters is available in the Appendix 8.

4.4 Evaluation Metrics

In line with the baselines, we utilize recall @k as
the evaluation metric for both path-level (path@k)
and target entity-level (target@k) correctness.

4.5 Comparative Experiments

For the KG reasoning task, we assessed path recall
at different K values (1, 3, 5, 10, 25) and target
entity recall at position K (1, 3, 5, 10, 25). As pre-
sented in Table 1, the result demonstrate that our
proposed model LLaMA-2-7b-ARK performs bet-
ter than all benchmarked baselines in target@1, 5,
10, 25 metrics. The performance gain is signifcant,
especially in recalls with taget@1, 10: there is a
5.28% relative improvement in target@1 and 9.59%
in target@ 10. Unfortunately, our model’s path@k
evaluation matrix socores do not outperform the
current state-of-the-art (SOTA) model HiTKG be-
cause we trained using only the target arrival re-
ward function, but we are very extensible and there
is potential for improvement. As described in this
paper, we evaluate the performance of GPT-4 in
performing dialog inference using manual prompt
constructed with different environmental informa-
tion. Therefore, we also report the performance of
GPT-4 with different prompts on the same dataset.

At the decoding stage of AttnlO, AttnFlow and
DiffKG, KG paths are predicted by scoring en-
tity paths and relation paths respectively, and then
rerank which makes it harder to achieve optimum.
While a KG triple is composed of both, our model
uses PA-MLP to aggregate all the exit path informa-
tion to improve the perception of the agent, which
is a more reasonable modeling approach.

HiTKG is state-of-the-art KG walker, which
build a multi-hierarchy attention block to aggre-
gate the multiscale information. However, different
types of input data sources are difficult to aggregate,
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path@k target@k
Model path@1 path@3 path@5 path@10 path@25 target@] target@3 target@S5 target@10 target@25
Tri-LSTM 32 14.2 22.6 36.3 56.2 - - -
Seq2Seq 3.1 18.3 29.7 44.1 60.2 - - -

DialKG Walker 13.2 26.1 353 47.9 62.2 - - - - -
Seq2Path 14.92 24.95 31.1 38.68 48.15 15.65 27.04 33.86 42.52 53.28
AttnFlow 17.37 24.84 30.68 39.48 514 18.97 36.23 45.48 58.84 71.35

AttnIO 23.72 37.53 43.57 52.17 62.86 24.98 43.78 53.49 65.48 78.79
HiTKG 25.99 38.67 49.18 59.32 71.27 31.11 46.29 55.59 71.61 86.09
T5-DiffKG - - - - - 26.80 54.33 61.75 - -
GPT-4-Standard 0.007 - - 14.91 - -
GPT-4-Normal 0.02 - - 13.30 - -
GPT-4-OPA 0.09 - - 12.19 - -
LLaMA-2-7B-ARK  16.59 27.17 34.85 47.88 62.32 36.39 53.63 65.68 80.20 89.68

Table 1: Path-level (path@k) and target-level (target@k) performance of KG path reasoning. LLM-ARK is
benchmarked against several state-of-the-art baselines models on the OpenDialKG dataset.

and how well they are aggregated directly affects
the performance of the model. We unify all the
multi-scale input sources into the prompt, and due
to the large model has a large number of instruc-
tion comprehension ability to get a rich information
encoding representation.

The GPT-4-Standard and GPT-4-Normal meth-
ods are deficient in path awareness. GPT-4-OPA
exhibit improved outcomes with the addition of
path awareness. The generation of GPT-4 paths is
entirely dependent on the background knowledge
in the dataset during the training phase, and the
GPT-4 generative model itself is not designed for
sequential decision-making tasks, and achieving
such a score has impressed us. Although we added
states to GPT-4 through prompt, this is limited by
the length of the prompt, which is fundamentally
due to the fact that GPT-4 is inherently memory-
less. Based on these factors, optimizing GPT-4
on multi-hop inference datasets of the Knowledge
Graph to further improve its performance, generat-
ing human-preferred inference paths on large-scale
Knowledge Graph datasets is still a challenge.

Considering LLMs as agents that explore a
knowledge graph to acquire experience can benefit
benefits from the positive-negative feedback opti-
mization mechanism of the Reinforcement Learn-
ing Policy Supervisor Algorithm. This method en-
hances the training of our model to perform flexible
reasoning on KGs in multi-step scenarios, outper-
forming not only GPT-4 but also smaller models.
The model’s superior performance corroborates the
effectiveness of our approach.

4.6 Analysis Experiment

As shown in Table 2, LLM-ARK was benchmarked
against multiple ablation models on the OpenDi-
alKG dataset. (1) First, to evaluate the impact of
instructions on model performance, we trained the
LLaMA-2-7B-ARK-UI model without instruction.
The results of this model are the closest to those
of LLaMA-2-7B-ARK, indicating that the pres-
ence or absence of commands has an effect on the
model’s results, but not a serious one. (2) Then, we
have implemented IEEE 754 floating-point format
(FP32) operations for our experiments. The results
show that using the BFLOAT16 tensor for training,
recall@K gives better results than FP32 without
changing the hyperparameters. (3) Next, LLaMA-
2-7B-ARK-WT that was trained by randomly ini-
tializing relation and entity embedding. The de-
crease in performance indicates that the absence
of knowledge graph representation learning has
negatively impacted the training process. (4) We
conducted the fourth ablation experiment LLaMA-
2-7B-ARK-WP and found that the performance
of our export environment-aware sub-module PA-
MLP decreases substantially if we do not consider
the exit paths. The score for path@1 is only 0.98%,
which is 15.61% lower than LLaMA-2-7B-ARK.
These ablation experiments and results demonstrate
the contribution and necessity of our subcompo-
nents to the model.

4.7 Case Study

We resort to a case study, for a clear presentation
of LLM-ARK’s path reasoning process as shown
in Table 3. Note that there are hundreds of neigh-
bor nodes connected to each entity in the external
KG. Intuitively, there could be diverse knowledge



path@k target@k
Model path@l path@3 path@5 path@10 path@25 target@] target@3 target@5 target@10 target@25
LLaMA-2-7B-ARK 16.59 2717 34.85 47.88 62.32 36.39 53.63 65.68 80.20 89.68
LLaMA-2-7B-ARK-UI 16.87 27.01 34.35 47.67 63.03 34.70 52.02 62.66 78.09 88.65
LLaMA-2-7B-ARK-FP32  14.59 24.64 32.24 45.80 61.75 34.35 52.57 62.51 79.18 88.51
LLaMA-2-7B-ARK-WT 1.10 3.44 5.71 10.47 15.42 9.45 19.46 50.94 7143 94.03
LLaMA-2-7B-ARK-WP 0.98 2.53 3.28 4.88 5.52 18.90 40.67 54.76 77.25 93.08

Table 2: Path-level (path@k) and target-level (target@k) performance of supervised KG path reasoning ( metric:
recall@k). LLM-ARK is benchmarked against several ablation models on the OpenDialKG dataset.

### Task Background:
Performing 2-hop reasoning on the knowledge graph.
### Instruction

If you don’t think it’s necessary to perform the second hop in reasoning, stop the reasoning with the "Equal’ relation.
Given the Task Background and the Environment, directly output this path in triplet format without any other content.

### Environment:
Dialog History: []
Success Path History: []

Current Entity: Gail Carson Levine

FTE Utterance: Could you recommend popular books by Gail Carson Levine?

Ground Truth Path

["Gail Carson Levine","~written_by","The Two Princesses of Bamarre"]

LLM-ARK Reasoning Path | [["Gail Carson Levine","~written_by","The Two Princesses of Bamarre"], ["The Two Princesses of Bamarre","Equal”,"The Two Princesses of Bamarre"]]

##H# Environment:

. FTE Utterance: "Ok who is in that one?"
Failed

Current Entity: "Michael McKean"

Dialog History: ["user: Can you recommend a movie like the Shooter?",
"assistant: A movie similar to Shooter is Nothing to Lose."]

Path History: [["Shooter","has_genre","Thriller"],["Thriller","~has_genre","Nothing to Lose"],["Nothing to Lose","starred_actors","Michael McKean"]]

Ground Truth Path

["Michael McKean","~starred_actors","Nothing to Lose"]

LLM-ARK Reasoning Path | [["Michael McKean","~starred_actors","Used Cars"],["Used Cars", "Equal”, "Used Cars"]]

Table 3: Successes and failures of our model when performing inference tasks on the OpenDialKG dataset.

paths as response to the user’s question. As the
success story shows, our model makes good use of
FTE information and exit path information to make
decisions, rather than making decisions based on
relationships alone, because Gail Carson Levine’s
work is not limited to The Two Princesses of Ba-
marre. As shown in the error case, our model still
reasons about wrong paths, partly due to the dataset
itself, because OpenDialKG is an open-domain
conversational knowledge graph inference dataset,
and similar contexts and the same starting entities
in the training set choose different Groud Truth
exit paths, and so it can interfere with the training
of our model. It is worth mentioning that OpenDi-
alKG is not a unique path inference; there are many
potential paths to reach the target entity. To summa-
rize, our model would have the potential for better
performance on non-open-domain conversational
knowledge graph inference datasets.

5 Conclusion

This paper evaluates the ability of current state-of-
the-art LLM-based dialog systems in handling KG
conversational reasoning tasks. To enhance LLM’s
performance on this task, we introduce LLM-ARK,
a full-text environment-aware Knowledge Graph
inference agent optimized using online reinforce-
ment learning. Empirical analysis demonstrates
that our model outperforms GPT-4 and smaller

models. The experiments also sheds light on the
model’s performance can be seriously affected by
the mismatch between the LLMs and the environ-
ment information. Our method can inspire subse-
quent researchers to pay attention to the critical role
of considering various factors during model opti-
mization in the field of LLM-based conversational
KG reasoning tasks.
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Knowledge Graph Dataset
Entity  Relation  Triplets  Train Data Test Data
100,927 1,383 1,189,192 12,345 2,646

Table 4: Detailed information about the number of
knowledge graph entity-relationship triples and the num-
ber of dataset segmentation samples after processing the
OpenDialKG dataset.

A Appendix

A.1 Data Format

We preprocessed the OpenDialKG raw data to fit
our KG inference task. There are individual errors
in the raw data, and the information of the dataset
after our screening is shown in Table 4.

A.2 Tricks

In the original paper of PPO, no implementation
details and techniques are mentioned other than the
use of GAE to compute the dominance function.
Referring to this repository?, we employ several
optimization tricks. In the actual code implementa-
tion, to encourage the diversity of paths sampled by
the strategy during training, we added an entropy
regularization term to our loss function. We used
the operation of normalization of advantage pro-
posed in the paper (Tucker et al., 2018). Learning
rate decay can enhance the smoothness in the late
training stage to some extent and improve the train-
ing effect. Here we use the linear decay of learning
rate, with the number of training steps learning
rate from the initial value of a linear decline to O.
Gradient clipping is a trick introduced to prevent
the gradient from exploding during the training
process, which also serves to stabilize the train-
ing process. Orthogonal Initialization is a neural
network initialization method proposed to prevent
problems such as gradient vanishing and gradient
explosion at the beginning of training. Referring to
the MAPPO (Yu et al., 2022), the Adam optimizer
individually sets eps=1e-5, and this particular set-
ting can improve the training performance of the
algorithm to some extent.

A.3 Limitation
A.3.1 Limitations of Inference Efficiency

Efficiency is always a significant issue when build-
ing deep learning models based on LLMs. Al-
though our research freezes the parameters of the

3https://github.com/Lizhi-sjtu/
DRL-code-pytorch


http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2022.findings-acl.33
https://doi.org/10.18653/v1/2022.findings-acl.33
https://doi.org/10.18653/v1/2022.findings-acl.33
http://arxiv.org/abs/1802.10031
http://arxiv.org/abs/1802.10031
http://arxiv.org/abs/1802.10031
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2308.02151
http://arxiv.org/abs/2308.02151
http://arxiv.org/abs/2308.02151
https://doi.org/10.1609/aaai.v32i1.11923
https://doi.org/10.1609/aaai.v32i1.11923
https://doi.org/10.1609/aaai.v32i1.11923
https://doi.org/10.1609/aaai.v32i1.11923
https://doi.org/10.1609/aaai.v32i1.11923
https://doi.org/10.18653/v1/2020.acl-main.184
https://doi.org/10.18653/v1/2020.acl-main.184
https://doi.org/10.18653/v1/2020.acl-main.184
https://doi.org/10.18653/v1/2020.acl-main.184
https://doi.org/10.18653/v1/2020.acl-main.184
https://github.com/Lizhi-sjtu/DRL-code-pytorch
https://github.com/Lizhi-sjtu/DRL-code-pytorch

LLM in the back-propagation stage and uniformly
uses the bfloat16 computational type, the huge num-
ber of parameters of the model leads to inefficient
forward propagation and large GPU memory us-
age when collecting experience and inference. As
stated in the LLaMA paper(Touvron et al., 2023a),
the efficiency of the model’s inference is more cru-
cial than its training efficiency. It is acceptable
for the training process to be slower, but the infer-
ence must be faster. Improving the inference speed
of the model while ensuring its effectiveness is a
challenge. In addition to constructing the research
model, online applications based on LLMs must
also address the efficiency issue. Conversational
reasoning models based on LLMs must be efficient
for real-time applications. The inference efficiency
is crucial for building online applications based on
LLM:s.

A.3.2 Limitations of Entity Embedding

Our research work has identified limitations in the
semantic representation of knowledge graph enti-
ties. The attributes of knowledge graph entities
should be considered during the reasoning process.
However, these attributes may be lengthy descrip-
tions that are not easily processed by our TransE
knowledge graph semantic embedding model. Fur-
thermore, while most knowledge graphs are cur-
rently represented in text form, it is equally im-
portant to consider multimodal knowledge graph
reasoning in research. By constructing a reason-
ing model based on multimodal inputs, machines
can better describe and understand the real world.
For example, the soon-to-be two-dimensionalized
Law in Three Body Death Forever says "Oh, it’s
time to go into the picture, kids, go ahead,” and
the user asks a question about this scenario, "can
you help me find some pictures related to this
galaxy?". The model may need to deduce that
the two-dimensional representation portrayed in
this book is the Milky Way galaxy, and then lo-
cate relevant images of the galaxy. Our model is
currently unable to incorporate the combination
of multi-modal, multi-attribute entities, which is a
limitation of our work in this endeavor, as well as
an area for future research efforts.

A4 GPT4 Prompts

For GPT4-OPA prompt, since max length is 2, we
need to recursively get all exit paths at the next
level of all exit paths of the current entity, most of
which are omitted due to the large number of KG
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Standard Prompt

## Task Background
Performing 2-hop reasoning on the knowledge graph.

### Instruction
If you don’t think it’s necessary to perform the second hop in reasoning, stop the reasoning with the "Equal’ relation.
Given the Task Background and the Environment, directly output this path in triplet format without any other content.

### Environment
Utterance: What do you think about the Washinton Redskins? Are you a fan?

Current Entity: Washington Redskins

### Examples

### Response

Table 5: GPT4-Standard prompt only perceived user’s
query and Current Entity.

subgraph triples of exit paths.

Normal Prompt

##t# Task Background
Performing 2-hop reasoning on the knowledge graph.

### Instruction
If you don’t think it’s necessary to perform the second hop in reasoning, stop the reasoning with the *Equal’ relation.
Given the Task Background and the Environment, directly output this path in triplet format without any other content.

### Environment

Dialog History: []

Utterance: What do you think about the Washinton Redskins? Are you a fan?
Path History: []

Current Entity: Washington Redskins

#4## Examples

### Response

Table 6: GPT4-Normal prompt has more awareness of
dialog context and path history.

OPA(Out Paths Aware) Prompt

H Task Background
Performing 2-hop reasoning on the knowledge graph.

#### Instruction

Given the Task Background and the Environment, please choose select two consecutive paths KG path from a set of Out Paths.
If you don’t think it's necessary to perform the second hop in reasoning, just select the *Equal” relation at the second hop.
Directly output these path in triplet format without any other content.

#### Environment

Dialog History: []

Utterance: What do you think about the Washinton Redskins? Are you a fan?
Path History: []

Current Entity: Washington Redskins

Out Path: ["Washington Redskins,Equal,

Washington Redski
*Washington Redskins.~Game, Mike Sellers’,
*Washington Redskins,~Runner-up,Super Bowl VIT',

"Ladell Betts,Ethnicity,African American’]

#4# Examples

#4# Response

Table 7: GPT4-OPA prompt has more awareness of 2-
hop exit KG path subgraphs.

A.5 HyperParameters



Computing Infrastructure Tesla A40 GPU

Search Strategy Beam Search
Training Efficiency 6 seconds per step
Hyperparameter Best Setting
use transe True

out path aware True

bf16 True
relation embedding size 200

entity embedding size 200

max out 50

number of explorations 8

replay buffer size 4096

mini batch size 1024
positive reward 1

negative reward -1

actor learning rate 5e-5

critic learning rate 5e-5
gamma 0.95

lamda 0.95

epsilon 0.2

K epochs 10

use advantage normalization True

use entropy coef 0.01

use learning rate decay True

use gradient clip True

use orthogonal init True

set adam eps le-5 True

use tanh True

Table 8: Additional implementation detail of LLM-
ARK.
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