

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MiST: UNDERSTANDING THE ROLE OF MID-STAGE SCIENTIFIC TRAINING IN DEVELOPING CHEMICAL REASONING MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models acquire reasoning capabilities when fine-tuned in an online setting with simple rule-based rewards. Recent studies, however, indicate that success in this regard is conditioned on the latent solvability of tasks in the base LLM: RL can only amplify answers to which the base model already assigns non-negligible probabilities. This work investigates the emergence of chemical reasoning capabilities and what these prerequisites mean for chemistry. We identify two necessary conditions for RL-based chemical reasoning: 1) Symbolic competence, and 2) Latent domain knowledge. We propose MiST: a set of mid-stage training techniques to satisfy these, including data-mixing with SMILES-aware pre-processing and continued pre-training on a rich data mixture of 2.9B tokens. These steps raise the latent-solvability score on 3B and 7B models by 2x, and enable RL to lift top-1 accuracy from 10.9 to 63.9% on reaction name prediction, and from 40.6 to 67.4% on Conditional Material Generation. Similar results are observed for other challenging chemical tasks, while producing faithful reasoning traces. Our results define clear prerequisites for chemical reasoning training and highlight the broader role of mid-stage pre-training in unlocking reasoning capabilities.

1 INTRODUCTION

Reasoning tasks in chemistry are fundamental yet notoriously challenging, requiring models to integrate multiple layers of chemical knowledge and logical deduction (Coley et al., 2019; Alampara et al., 2024). While traditional chemoinformatics approaches rely primarily on supervised architectures optimized for specific tasks, they lack generalization and human-like reasoning capacities, instead often performing as highly specialized pattern recognition systems (Schwaller et al., 2019; Mirza et al., 2024a). Recently, reinforcement learning (RL) driven frameworks (Guo et al., 2025b; Narayanan et al., 2025; Zhao et al., 2025; Wang et al., 2025a) have shown promising advances in generating sophisticated emergent reasoning capabilities without explicit step-level supervision, achieving remarkable results across general-purpose domains like math and coding. Nevertheless, independent follow-ups have shown that such capabilities do not simply appear, but emerge instead as amplified patterns already existing in the base model’s output distribution —even if with low likelihoods (Guo et al., 2023; Flam-Shepherd & Aspuru-Guzik, 2023). Consequently, whether RL succeeds on a new domain depends crucially on the latent solvability of the tasks for that specific base model.

Chemistry presents a severe stress test for this premise. Unlike arithmetic or programming, chemical problems combine highly specialized symbol systems (Weininger, 1988) (e.g. SMILES, IUPAC) with domain-specific physical constraints (valence, stereochemistry). Off-the-shelf LLMs typically fail to generate syntactically valid SMILES, let alone perform any tasks involving SMILES manipulation and generation (Bran et al., 2025). Empirically, we find that direct application of RL methods to such models fails: the reward signal vanishes because the correct answer never appears in the candidate set, except for the simpler examples.

These observations raise a fundamental question: What pre-training prerequisites must an LLM satisfy so that RL can reliably unlock chemical reasoning? In this paper, we answer that question by 1) proposing quantitative diagnostics that measure a model’s latent solvability for chemical tasks, 2)

054 systematically creating and ablating two proposed domain-specific prerequisites, and 3) showing that
 055 RL and other reasoning post-training techniques succeed if those diagnostics cross certain thresholds.
 056

057 We propose symbolic competence and latent chemical knowledge as two necessary prerequisites for
 058 reasoning in chemistry. The former requires that models must be able to read and generate syntac-
 059 tically valid chemical strings, like SMILES, IUPAC names, or CIF files. The second requirement
 060 means that answers must exist in the long-tail of the model’s prior distribution, so that these can be
 061 exploited by the RL training. We demonstrate, through a diagnostic benchmark for latent solvability,
 062 that improving on these requisites boosts model post-RL performance by up to 29%, yielding highly
 063 capable chemical reasoning models.
 064

065 We perform a range of ablations and generalization tests on RL performance across an array of
 066 tasks, and show that removing any single prerequisite collapses RL gains, confirming their necessity.
 067 Our findings provide a framework to inform how reasoning-oriented RL methods for LLMs will
 068 perform when applied to complex scientific domains. It serves effectively as a predictive and selective
 069 framework to optimize against, before any expensive RL is performed.
 070

084 Figure 1: Multi-stage pipeline for training a chemical-reasoning language model. Step1 (*MiST*, 3.9 B
 085 tokens) Continued Pretraining exposes a general-purpose base model to a chemistry-centric corpus
 086 that interleaves plain text with compound & synthesis information. A subsequent 1 B-token supervised
 087 fine-tuning phase teaches three formats: (i) symbol-level molecular or material understanding, (ii)
 088 structure-aware question & answers, and (iii) chemical chain-of-thought (CoT). In Step2 the MiST
 089 backbone is further specialized with either RLSF (reinforcement learning from scientific feedback) or
 090 rSFT (reasoning-style supervised fine-tuning). A pool of candidate answers (o_1, \dots, o_n) generated
 091 by the MiST model is scored by a task-specific reward model (r_1, \dots, r_n); a group-computation
 092 module aggregates these signals to update the policy, iteratively refining the model into a *Chemical*
 093 *Reasoning Model*.
 094

095 2 RELATED WORK

096 **Post-training methods for reasoning** The standard recipe for aligning LLMs augments supervised
 097 fine-tuning (SFT) with reinforcement learning from human or synthetic feedback (RLHF/RLAIF) (Lee
 098 et al., 2024). While RLHF reliably improves helpfulness and stylistic alignment, it is often insufficient
 099 for multi-step reasoning. Subsequent work therefore introduced chain-of-thought distillation (Wei
 100 et al., 2022; Li et al., 2023), and tree search with self-consistency (Xie et al., 2024b). A recent,
 101 influential result by Guo et al. (2025b) showed that *rule-based* rewards can unlock strong mathematical
 102 and coding skills, provided that the base model already allocates non-negligible probability mass to
 103 correct answers. Independent analyses confirmed that RL mainly acts as an *amplifier*: it can only
 104 surface solutions that lie somewhere in the base distribution (Yue et al., 2025). For weaker bases, SFT
 105 on traces generated by a larger model often outperforms RL (Guo et al., 2025b). Our work adopts
 106 this "RL as amplifier" view and asks what pre-training conditions make chemical problems *latently*
 107 *solvable* so that RL can succeed.

108 **Chemical language modeling** Language models have been adapted and used for a range of
 109 chemical tasks (Caldas Ramos et al., 2025). These models typically operate on linearized molecular
 110 strings, such as SMILES (Weininger, 1988), SELFIES (Krenn et al., 2020), or IUPAC names. Masked
 111 pre-training approaches (ChemBERTa (Chithrananda et al., 2020), MolBERT (Fabian et al., 2020))
 112 learn molecular fingerprints that are useful for QSAR, whereas the Molecular Transformer family
 113 targets forward and retrosynthesis prediction (Schwaller et al., 2019; 2020). More recently, LLMs
 114 have been adapted and applied for tackling chemical tasks (Frey et al., 2023; Zhang et al., 2024;
 115 Jablonka et al., 2024; Xie et al., 2023b); extending general LLMs for molecule generation, property
 116 prediction, and Q&A. Other works have adapted LLMs for use as chemistry agents, integrating
 117 robotic labs and other tools (Bran et al., 2023; Boiko et al., 2023), hypothesis generation (Yang et al.,
 118 2025), and more recently, workflows have been designed for molecular design and synthesis planning
 119 (Wang et al., 2024a; Bran et al., 2025).

120 **Mid-stage domain adaptation** Continuing pre-training on an in-domain corpus—often called
 121 *domain-adaptive pre-training* (DAPT) or *continued pre-training* (CPT)—has become the dominant
 122 recipe for turning a general LLM into a domain specialist. Early successes such as BioMegatron
 123 for biomedicine (Shin et al., 2020), Legal-BERT (Chalkidis et al., 2020), and Code-Llama for
 124 programming (Rozière et al., 2023) demonstrated sizable gains with only a few billion extra tokens.
 125 A recent wave of work scales the idea to scientific domains: (1) AdaptLLM (Cheng et al., 2023)
 126 shows that a 7B parameters model, after just 10–15B of financial tokens, rivals BloombergGPT
 127 (50B parameters) on in-domain QA; (2) Tag-LLM (Shen et al., 2024) and Efficient-CPT (Xie et al.,
 128 2024a) report similar jumps while using parameter-efficient adapters; (3) SciLitLLM (Li et al.,
 129 2024b) uses a 12.7B token corpus of textbooks and full-text papers and beats much larger baselines
 130 on scientific-literature understanding; (4) domain-specific studies in materials science (Lu et al.,
 131 2025), radiation oncology (Holmes et al., 2023), Japanese finance (Hirano & Imajo, 2024), and
 132 cybersecurity (Bayer et al., 2024) confirm that CPT injects *latent* domain knowledge that survives
 133 further instruction tuning. However, two caveats emerge: CPT can erode zero-shot prompting ability
 134 if done naively (Cheng et al., 2023), and very small models (< 2B parameters) often fail to develop
 135 new capabilities even after extensive CPT (Lu et al., 2025; Hsieh, 2025). Crucially, none of these
 136 works evaluate whether the adapted model becomes *latent solvable* for multi-step reasoning tasks
 137 that reinforcement learning could later amplify.

138 The chemical domain remains comparatively under-explored. ChemBERTa-2 (Maziarka et al., 2023)
 139 continues a BERT-style encoder on ~1B SMILES tokens and improves fingerprint-style QSAR,
 140 while ChemLLM (Zhang et al., 2024) , DARWIN-Chem (Xie et al., 2023a), and SciDFM (Sun et al.,
 141 2024) incorporate reaction patents or literature but still operate in a single-shot, pattern-recognition
 142 regime.

144 **LLM capability diagnostics** Benchmark accuracy and perplexity offer only coarse snapshots
 145 of a model; they ignore the richer signal contained in the full conditional probability distribution.
 146 Holistic evaluation suites such as HELM (Liang et al., 2022) and LiveBench (White et al., 2024) log
 147 likelihoods but still aggregate them into single numbers. Probability-based *intrinsic* probes provide
 148 finer insight. BLiMP minimal pairs measure grammatical preference gaps (Meister & Cotterell, 2021),
 149 an idea later reused to analyze in-context learning brittleness (Zhao et al., 2024) and out-of-domain
 150 (OOD) intent detection (Wang et al., 2024b). For factual QA, calibration studies show that token-level
 151 probabilities reveal when models "know what they know" (Jiang et al., 2021; Kadavath et al., 2022).
 152 Distributional uncertainty metrics now underpin OOD detection (Liu et al., 2024a), self-correction
 153 pipelines (Liu et al., 2024b), and medical-reasoning assessment (Li et al., 2024a). Pezeshkpour
 154 (2023) and Wang et al. (2024c) formalize diagnostics as distribution-matching problems using KL
 155 divergence or Wasserstein distance, while (Ye et al., 2024) links dispersion measures to downstream
 156 robustness.

157 3 PRELIMINARIES

158 We formalize the notions used throughout the paper and introduce the metrics that constitute our
 159 diagnostic suite.

162 3.1 PREREQUISITE 1: SYMBOLIC COMPETENCE
163

164 To assess the symbolic competence of models, we compute the likelihood of generating a given
165 sequence, in our case, a set of SMILES strings. We use a dataset of 10,000 molecules obtained from
166 PubChem (Kim et al., 2025), and use the following definitions to compute a symbolic competence
167 score.

168 **Token log-likelihood extraction** Given a model p_θ and a SMILES string $s = (t_1, \dots, t_L)$.

169 At position i we compute the log-likelihood $r_{i,p_\theta}(s)$ of
170 ground-truth token s_i within p_θ 's next-token distribution
171 $r_{i,p_\theta}(s) := p_\theta(t_i | t_1 \dots t_{i-1})$. The mean of the whole string
172 is taken as in eq. 1.

$$r_{p_\theta}(s) = \frac{1}{L} \sum_{i=1}^L r_{i,p_\theta}(s) \quad (1)$$

173 **Symbolic competence score** We define the symbolic competence score (SCS) on the assumption
174 that a symbolically competent model should assign better likelihoods to chemically correct strings
175 than to corrupted or invalid ones. We therefore measure the separation in the distributions of mean
176 ranks between valid (canonical) SMILES and corrupted ones (eq. 2).

177 where σ_1 and σ_2 are each set's standard deviations,
178 and σ_{pool} is the pooled standard deviation
179 of the two sets. SCS is the Cohen's d effect
180 size, where higher values indicate a cleaner sep-
181 aration and therefore stronger symbolic compe-
182 tence. A score of 0 means the model cannot dis-
183 tinguish canonical from corrupted strings, while
184 SCS ≈ 2 corresponds to $> 95\%$ separation. \mathcal{C} is
185 a SMILES canonicalization operator, while ρ is a SMILES corruption operator that randomly deletes
186 grammar characters with some probability (here chosen to be 0.2 —see Section 5.1), effectively yield-
187 ing invalid but similar SMILES. For the Conditional Material Generation task, instead of corrupting
188 and calculating the SCS on SMILES, the calculations are performed on compositions, which specify
189 their elements and space group in the format: A B A B <sgX>, where A and B are elements, and X
190 represents the space group number.

$$SCS := \frac{\bar{r}(\rho(m)) - \bar{r}(\mathcal{C}(m))}{\sigma_{pool}}, \quad (2)$$

$$\sigma_{pool} = \sqrt{\frac{(n_1 - 1)\sigma_1^2 + (n_2 - 1)\sigma_2^2}{n_1 + n_2 - 2}} \quad (3)$$

193 3.2 PREREQUISITE 2: LATENT CHEMICAL KNOWLEDGE
194

195 As has recently been shown, the role of RL in training reasoning LLMs seems to be that of an
196 amplifier, i.e., correct answers already exist in the base model's prior distribution with non-negligible
197 probability.

198 With this in mind, we aim to assess the latent chemical knowledge of a given base model. As a
199 proxy to this, we adopt the same strategy as that we use with the symbolic data, by measuring the
200 Chemical-Competence Score (CCS), defined as the difference in the distributions of mean ranks
201 between factually correct chemical statements and wrong ones. Given a list of chemical statements,
202 such as the SMolInstruct Molecule Description subset (Yu et al., 2024b), we generate corrupted data
203 by randomly swapping one sentence from each original statement with that from another randomly
204 chosen statement in the pool.

206 3.3 POST-TRAINING METHODS
207

208 Large-scale pre-training furnishes the *prerequisites* discussed in Section 3.1–3.2. We now describe the
209 two post-training methods that we use throughout this work to bake-in and amplify these capabilities.

210 **Supervised fine-tuning on reasoning traces** (Guo et al., 2025a) showed that small base models
211 can be trained with SFT on reasoning traces, resulting in small reasoning models that mimic the
212 behavior demonstrated in the SFT training data, even if such data does not directly target the specific
213 downstream task the models are evaluated on. The reason is that SFT transfers the response style and
214 not only the task-specific capabilities, thus serving as an *amplifier* of latent knowledge. Following
215 this, some reasoning traces were distilled from DeepSeek-R1 and used to perform SFT on our

216 pretrained models. We generated $\sim 600,000$ solutions for two canonical tasks: IUPAC \rightarrow SMILES
217 and SMILES \rightarrow IUPAC, based on PubChem compounds.
218

219 **Reinforcement learning with verifiable rewards** Following recent works (Wang et al., 2025b),
220 we adopt Reinforcement Learning with Verifiable Rewards (RLVR) as a post-training method for our
221 models. In this context, models are trained online with rule-based rewards that depend entirely on the
222 final outcome. The goal of this type of training, as exemplified in previous works (Wang et al., 2025b)
223 is to encourage the model to achieve good results on the training tasks, while developing intermediate
224 strategies to achieve this, that might involve reasoning.
225

226 We designed and used different types of reward functions for our GRPO experiments: (1) formatting
227 rewards to ensure separation between the model reasoning and answer, (2) accuracy rewards to verify
228 the correctness of the model answer, (3) helper rewards to penalize the model if the completions
229 are ill-formed (such as very short completions, repetitive behaviors etc.). For the accuracy rewards,
230 we employed different approaches to compare the answer and the solution, such as exact matches,
231 Tanimoto similarity between SMILES, or Levenshtein, see Appendix D.2.1.
232

233 **Downstream reasoning tasks** To train and evaluate the reasoning capabilities of our models, we
234 implemented a suite of challenging tasks relevant to chemistry. The tasks have been selected with
235 the following criteria in mind: (1) Difficulty: the task must be challenging enough to be unsolvable
236 by base models alone, (2) Reasoning-suitable: tasks must be suitable for reasoning, i.e. solving an
237 instance of the task would require more System-2 thinking from human experts than System-1, and (3)
238 Dataset availability: Datasets must be readily available such that, upon adaptation, an input-outcome
239 dataset can be built that is representative of the task. The final list of tasks is listed in Table 2, and
240 implementation details are provided in the Appendix B.
241

242 4 MIST: MID-STAGE SCIENTIFIC TRAINING

243 The purpose of this mid-stage training is to enhance the model’s ability to generate valid SMILES,
244 accurately follow chemistry-focused instructions, and strengthen its general chemical knowledge. We
245 do this by continuing pretraining (next token prediction objective) on chemical and SMILES-related
246 data, and then by performing SFT to improve instruction-following and increase the context window
247 length.
248

249 4.1 DATASETS

250 To construct the pretraining data, we used the data mixture as described in Table 1, obtained and
251 processed as described in Appendix E. All the data underwent the same preprocessing pipeline to
252 interleave SMILES with text whenever a molecule name appeared (e.g. IUPAC, common name, short
253 form, etc), similar to (Taylor et al., 2022). We additionally generated a synthetic dataset using RDkit
254 (RDKit, online) extracted properties of molecules (like QED, TPSA, etc) and filled it in a template.
255 Furthermore, we include a "replay" dataset aiming to preserve the model’s natural language abilities
256 while furthering it’s learning about chemical knowledge. We chose the Qwen2.5-3B base model to
257 perform the pretraining for 3 epochs.
258

259 For SFT, as shown in Table 1 we used question-answering (QA) training examples derived from
260 SmolInstruct (Yu et al., 2024a), specifically employing only the SMILES \leftrightarrow IUPAC and molecule
261 captioning subsets. We also collect examples from MPtrj dataset (Deng et al., 2023). Additionally, we
262 incorporated MMLU and chain-of-thought (CoT) reasoning traces from DeepSeek-R1, which were
263 preprocessed to maintain coherence with our pretraining data. In this phase, we also expanded the
264 model’s context window from 4,096 to 8,192 tokens to accommodate longer reasoning sequences.
265 The pretrained model underwent SFT for approximately 8 epochs, continuing until the previously
266 observed loss spikes were fully mitigated.
267

270

271

Table 1: MiST training data recipe. CP = continued pretraining; SFT = supervised fine-tuning.

272

273

Stage	Dataset Source	Tokens / Samples	Percent (%)
CP	ChemRxiv + S2ORC	1.2B	41.38
	FineWeb (chemistry-filtered)	1.4B	48.28
	PubChem synthetic (600k compounds)	220M	7.59
	CommonCrawl Replay	80M	2.75
Total (CP)		~2.9B	100
SFT	DeepSeek reaction traces	~7K samples	0.22
	DeepSeek relaxation traces	~2K samples	
	MPtrj dataset	~20K samples	0.65
	SmolInstruct	>3M samples	98
	MMLU	Train ~350; Chemistry ~300	
	CoT Chain	~27K samples	0.88
Total (SFT)		~1B	100

277

285

286

5 RESULTS

288

289

290

291

292

293

294

295

296

297

298

299

As an initial downstream test of our pipeline’s performance, we use ChemBench (Mirza et al., 2024b) to evaluate the general chemistry knowledge of LLMs; the results are shown in Table 2. This evaluation is a first check to ensure our pipeline consistently improves performance on an important public benchmark for chemistry, before we begin studying the downstream effects of MiST on RL training. The results show an overall +10% improvement in performance bringing it up to 45% which, better than GPT-3.5-Turbo and Llama-3.1-8B-Instruct Mirza et al. (2024a), models at least 2x larger than our resulting 3B model. The role of MiST is particularly important in Organic, Inorganic, and General Chemistry, with improvements of up to 6-7% over the Qwen+SFT baseline, and more than 11% over the base (instruction-tuned) model, suggesting benefits of both post-training stages on model’s chemical performance. These results serve already as diagnostic measures of success of a given mid-training methodology, and serve as a basis to select models for the following stage of RLVR, with the goal of enhancing reasoning and problem-solving capabilities.

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

We then proceed to evaluate model’s capacity of learning in an online setting from verifiable rewards through RLVR. As explained in Section B, we implement a number of chemical tasks that are suitable for reasoning, and for which verifiable rewards can be defined (see Appendix B). Several models were trained on this setting and, in the following, we evaluate task performance as a function of the base model used. We employ two different inference techniques to generate the results reported here, namely using System-1 (direct answer) and System-2 (employing reasoning) thinking, as defined by (McGlynn, 2014). We do this by appending the tags “<answer>” or “<reasoning>” respectively upon

generation, which induces models into either type of thinking. The results shown in Table 2 show the performances of our models across the multiple tasks defined in Section B, along with the diagnostic metrics defined in Section 3.1.

321

322

323

The results reveal the large effect that the MiST proposed here has on symbolic competence, as demonstrated by the SCS column. Clearly pretrained models like Qwen2.5-3B lack the symbolic abilities needed to complete tasks requiring SMILES understanding and writing. However, this is overcome with MiST. Furthermore, the results show that RL generally improves the performance of

Figure 2: ChemBench sub-domain Accuracy (%). Results obtained based on Qwen-2.5-3B

Sub-domain	Models		
	Qwen Inst	+SFT	+MiST (ours)
Organic	44.99	46.15	50.12
Inorganic	46.70	51.08	57.60
Tox/Safety	21.33	26.52	26.37
Material Sci	35.84	42.50	48.75
General	33.56	38.25	44.30
Preference	45.40	50.00	52.10
Analytical	25.00	34.20	40.70
Technical	42.11	44.74	50.00
Physical	20.60	35.10	38.78
Total	35.06	40.95	45.41

324
 325 **Table 2: Effect of MiST and each post-training stage on downstream reasoning tasks.** SCS
 326 = symbolic-competence score, CCS = chemical-competence score; both are unitless effect-size
 327 measures ranging from 0 (no separation) to 2 (near-perfect separation); higher is better, see Section
 328 3.1. I2S = IUPAC→SMILES translation, RxP = forward reaction prediction, RxN = reaction-naming,
 329 CMG = conditional material generation. For the three downstream tasks we report top-1 accuracy.
 330 The value outside the parentheses is obtained with a "direct answer" (system-1) prompt. Values inside
 331 parentheses are the accuracy when "reasoning" (system-2 chain-of-thought) prompting is induced.
 332

333	Model	Metrics		Reasoning tasks			
		334 SCS ↑	335 CCS ↑	336 I2S ↑	337 RxP ↑	338 RxN ↑	339 CMG ↑
334	Qwen-2.5 3B	0.955	0.352	0.0	0.0	10.33 (10.9)	40.6 (0.5)
		+CP	1.561	0.404	1.0	0.0	11.1 (10.3)
		+SFT	1.650	0.707	52.7	5.2 (13.6)	15.1 (17.5)
		+RL(I2S)	1.535	0.695	52.0	3.2 (12.2)	13.3 (17.2)
		+RL(RxP)	1.880	0.782	49.9	6.6 (17.4)	14.5 (16.9)
		+RL(RxN)	1.650	0.698	48.9	5.8 (9.0)	28.5 (46.8)
		+RL(CMG)	0.119	1.737	50.4	0.0 (7.8)	13.1 (18.2)
341	Qwen-2.5 7B	0.97	0.406	0.0	0.0 (0.2)	10.7 (12.1)	40.8 (36.3)
		+CP	1.67	0.445	0.2	0.8 (0.4)	14.8 (14.7)
		+SFT	1.74	0.775	65.7	13.2 (25.2)	13.8 (30.1)
		+RL (I2S)	1.67	0.766	65.2	12.6 (25.2)	22.7 (31.4)
		+RL (RxP)	1.71	0.770	65.2	15.6 (29.8)	11.7 (31.2)
		+RL (RxN)	1.73	0.731	61.7	13.2 (12.6)	26.4 (63.9)
		MiST Ablations (7B)					
347	no MiST + RL (RxP)	1.03	0.408	0.0	0.0 (0.0)	9.97 (12.1)	— (—)
		Baselines					
348	ChemLLM-7B	1.18	—	0.5	2.04 (—)	18.7 (—)	— (—)

350
 351
 352 LLMs on specific chemical tasks, and this effect is remarkably stronger on tasks requiring SMILES
 353 synthesis, like *Reaction Prediction* or *Iupac 2 SMILES*.
 354

355 One important observation from these results is that activating reasoning on RL-trained LLMs
 356 generally yields better results; however in certain cases this trend reverses, as is the case of *Iupac 2*
 357 *SMILES*. In this task, we measure better performance when reasoning is not activated, however the
 358 gap is smaller for the RL-trained models. We attribute this to the ability already being present *and*
 359 amplified in the LLM after SFT, which during RL training hinders learning of different task-solving
 360 patterns as models already perform well at that stage. Further research should go into this direction.
 361 Similar effects are observed across model scales (3B and 7B), indicating that these results can further
 362 generalize to larger model sizes to yield much improved chemical reasoning models.
 363

364 Previous works have built models for similar tasks Zhang et al. (2024); Narayanan et al. (2025); Xia
 365 et al. (2025). In Table 2, we compare against a baseline of similar size, ChemLLM, a model trained
 366 starting from InternLM2-Base-7B Cai et al. (2024). Our results show that, on the tasks evaluated,
 367 ChemLLM is outperformed by our RL-tuned 3B models. The advantage is especially striking in the
 368 tasks of reaction naming and reaction prediction. This contrasts with the results presented in
 369 the original publication, reporting over 88% 5-shot accuracy on retrosynthesis which could not be
 370 reproduced.
 371

372 5.1 FORMULATION OF SCS

373 The Semantic Competence Score (SCS) as defined in 2 depends critically on **a**. a suitable dataset,
 374 and **b**. a corruption rate. As discussed, the dataset has been selected on the basis of what constitutes a
 375 suitable dataset for the tasks at hand. For the organic chemistry tasks (RxP, RxN, etc) we have selected
 376 a dataset of molecules in SMILES format, which represents a distribution of fully semantically correct
 377 instances. The corruption rate is then an artifact used to degrade that distribution into one of non-
 378 semantically-valid instances.
 379

378 The SCS is computed on the basis of a model being able to distinguish between the two distributions,
 379 as measured by Cohen's d effect size (eq. 2). In this work the corruption rate has been determined
 380 empirically aiming to balance enough resolution power (high enough corruption), without making it
 381 too obvious a task with an entirely random distribution. Figure 3 shows this for both Qwen-3B and
 382 7B variants, across different MiST and RL treatments and measured on different corrupt rates. As
 383 can be seen, at $cr=0.2$ models are already able to distinguish suitably between distributions, and there
 384 is a clear gap between base models and models treated with MiST. As cr increases, the gap remains
 385 but it tends to decrease, especially in the case of Qwen-7B, indicating that at too high corruption
 386 rates, even small base models can correctly distinguish corrupt from non-corrupt smiles. At too low
 387 cr (0.1), the gap is also smaller.

388 389 5.2 SCS AS A PREDICTIVE FRAMEWORK

390 A main claim of this paper is that it is
 391 important to develop diagnostic met-
 392 metrics to help prognosticate the per-
 393 formance of models before RL is applied,
 394 similar to the role of scaling laws
 395 in pre-training Kaplan et al. (2020).
 396 Here we show that pre-RL SCS is ef-
 397 fective for this. As shown in Figure
 398 4, pre-RL SCS reliably predicts post-
 399 RL success of models. It is observed
 400 that, on the tasks evaluated, low pre-
 401 RL SCS predictably yields incapable
 402 models, while high SCS leads to better
 403 models, especially when the models
 404 are trained with RL on the tasks being
 405 evaluated. We find strong correlations
 406 between pre-RL SCS and post-RL per-
 407 formance, namely $\rho = 0.64$ for reaction
 408 prediction and $\rho = 0.60$ for IUPAC
 409 translation across both 3B and 7B
 410 models. This provides a quantitative
 411 empirical framework to support future
 412 model development: SCS > 1.5 is
 413 a necessary threshold for RL to unlock
 414 reasoning.

415 Figure 3: Selection of SCS values.

416 Figure 4: **Post-RL task performance vs. pre-RL SCS(0.2)**. Markers indicate model size (circles =
 417 3B, squares = 7B) and system type (filled = S1, stars = S2). Reference markers: 'x' = base Qwen, '+' =
 418 MiST+FT. Red markers with '*' indicate the model trained specifically on that task. Colors: darker
 419 = 3B, brighter = 7B (magma palette).

420 As case-study, we use SCS to retrospec-
 421 tively select the best base model to train
 422 ether0, the first chemical reasoning model
 423 Narayanan et al. (2025). We selected a
 424 range of open-source base LLMs across a
 425 variety of providers and sizes between 14B
 426 and 70B, and measured SCS. The results
 427 in Table 5 show that Mistral-24B would
 428 be the best option, followed by Gemma-2-
 429 27B, while the rest of models, even some
 430 beyond 70B in size, fall below the 1.5 SCS

431 Figure 5: SCS across larger base LLMs.

Model	SCS
Qwen-2.5-14B Qwen et al. (2025)	1.161
Qwen-2.5-32B Qwen et al. (2025)	1.238
Qwen-2.5-72B Qwen et al. (2025)	1.094
Llama3-70B Grattafiori et al. (2024)	1.481
Gemma-2-27B Team et al. (2024)	2.097
Mistral-24B Mistral AI Team (2025)	2.324
ether0 (Mistral-24B)	1.597

432 limit established previously. Within a similar size range, and despite its much better scores at
 433 most public benchmarks Mistral AI Team (2025), Qwen-2.5-32B is predicted to be a much worse
 434 base model for RL in chemistry tasks. These results match the base model selection from ether0
 435 Narayanan et al. (2025), that effectively used Mistral-24B as a base, further increasing confidence on
 436 the predictive power of measures of this type.

438 6 DISCUSSION

440 This paper set out to answer a concrete, practical question: What conditions must a general-purpose
 441 LLM satisfy so that light-weight, rule-based post-training methods (SFT + RLVR) can unlock reliable
 442 chemical reasoning? We conducted a series of experiments using the Qwen2.5-3B and 7B models as
 443 bases. Our results suggest that a key requisite, Symbolic Competence on the base models (pre-RL),
 444 can predict post-RL success. We demonstrate this result by proposing Mid-stage Scientific Training
 445 (MiST), which we show 1. increases SCS on base models, and 2. predictably produces models
 446 that, under the same RL training, outperform non-MiST baselines. We take a step further and
 447 retrospectively analyze base model choices behind recent releases of reasoning models. We find that,
 448 out of the most relevant open-source base models between 14B and 70B, Mistral-24B stands out as
 449 the one with the highest SCS, which retrospectively matches the choice for ether0.

450 Furthermore, as already indicated in other recent reports, RL remains an amplifier of already existing
 451 behaviors and knowledge in base LLMs. However more importantly for the case of chemistry, and
 452 other scientific fields that make heavy use of domain-specific terminology and symbolic systems,
 453 symbolic competence remains the true bottleneck, at least for small-scale LLMs. As our results
 454 demonstrate on SMILES-heavy tasks, like *Reaction Prediction* or *IUPAC to SMILES*, base models
 455 barely perform on these tasks, with results nearing 0% accuracy. SFT only boosts the Reaction
 456 Prediction results to 5.10%, however MiST is necessary to boost accuracies to 25.2% when reasoning
 457 is activated, also shows the improvements in the material science knowledge that not specifically
 458 trained (in CMG task), indicating a strong role of MiST in enabling the solution of scientific tasks.

459 Our findings generalize beyond chemistry. Any scientific field that (1) relies on specialized symbol
 460 systems and (2) has access to verifiable rewards can likely benefit from the same two-stage recipe:
 461 (1) ensure symbol mastery via targeted MiST, (2) apply RLVR or other post-training techniques to
 462 amplify latent solutions. With this we show that, small, compute-efficient models can already reach
 463 useful competence if those prerequisites are met. MiST demonstrates that carefully crafted, mid-stage
 464 scientific training is a powerful lever for unlocking reasoning in specialized domains. Rather than
 465 chasing ever larger parameter counts, we advocate investing in domain-specific data pipelines and
 466 intrinsic diagnostics—ingredients that, as chemistry shows, can turn an otherwise myopic LLM into
 467 a competent scientific assistant.

468 7 LIMITATIONS

470 While MiST demonstrates that targeted mid-stage pre-training can unlock chemical reasoning in
 471 a 3B-parameter model, several caveats remain. First, the SCS criterion works especially well in
 472 domains and tasks where the outcome validity is verifiable and easily corruptible, as is the case with
 473 chemistry and SMILES notation. We find such complications in the case of CMG, where CIF files
 474 are less-trivially corruptible, leading to worsened predictive power. Using a 100% valid notation, as
 475 is the case of SELFIES Krenn et al. (2022) for molecule generation tasks, can also compromise the
 476 value of SCS-like measures. Similar metrics can however be devised for biological sequential data,
 477 mathematical notation, etc. Second, the RLVR rewards we use focus on syntactic agreement with
 478 ground truth (e.g. exact SMILES or high Tanimoto similarity) and thus do not discourage chemically
 479 implausible or unsafe outputs, leaving open the possibility of reward hacking. Third, our evaluation
 480 suite—reaction prediction, IUPAC to SMILES translation, and conditional material generation,
 481 cover a narrow slice of chemistry; tasks that hinge on stereochemistry, kinetics, spectroscopy, or
 482 three-dimensional conformations remain unexplored. Finally, our pre-training corpus is dominated
 483 by small-molecule, organic literature and patents, potentially biasing the model against inorganic,
 484 macromolecular, or bio-chemical domains. Addressing these limitations will be critical before SCS
 485 can be routinely used as a diagnostic metrics in other domains, and for MiST-style models to be relied
 upon as general scientific reasoning models.

486 REFERENCES
487

488 Nawaf Alampara, Mara Schilling-Wilhelmi, Martiño Ríos-García, Indrajeet Mandal, Pranav
489 Khetarpal, Hargun Singh Grover, NM Krishnan, and Kevin Maik Jablonka. Probing the lim-
490 itations of multimodal language models for chemistry and materials research. *arXiv preprint*
491 *arXiv:2411.16955*, 2024.

492 Markus Bayer, Philip D Kuehn, Ramin Shafehaz, and Christian A Reuter. CySecBERT: A domain-
493 adapted language model for the cybersecurity domain. *ACM Transactions on Privacy and Security*,
494 2024.

495 Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic. Nougat: Neural optical under-
496 standing for academic documents, 2023. URL <https://arxiv.org/abs/2308.13418>.

497 Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
498 with large language models. *Nature*, 624(7992):570–578, 2023.

499 Andrés M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D. White, and Philippe
500 Schwaller. Augmenting large language models with chemistry tools. *Nature Machine Intel-
501 ligence*, 6:525 – 535, 2023. URL [https://api.semanticscholar.org/CorpusID:
502 258059792](https://api.semanticscholar.org/CorpusID:258059792).

503 Andres M Bran, Theo A Neukomm, Daniel P Armstrong, Zlatko Jončev, and Philippe Schwaller.
504 Chemical reasoning in llms unlocks steerable synthesis planning and reaction mechanism eluci-
505 dation, 2025. URL <https://arxiv.org/abs/2503.08537>.

506 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
507 Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
508 Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
509 Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
510 Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
511 Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
512 Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan
513 Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu
514 Wang, Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong
515 Xiong, Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan
516 Ying, Jia Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie
517 Zhang, Shuo Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue
518 Zhang, Hui Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo,
519 Yicheng Zou, Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2 technical report, 2024. URL
520 <https://arxiv.org/abs/2403.17297>.

521 Mayk Caldas Ramos, Christopher J. Collison, and Andrew D. White. A review of large language
522 models and autonomous agents in chemistry. *Chemical Science*, 16(6):2514–2572, 2025. doi: 10.
523 1039/D4SC03921A. URL [https://pubs.rsc.org/en/content/articlelanding/
524 2025/sc/d4sc03921a](https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc03921a). Publisher: Royal Society of Chemistry.

525 Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion Androutsopoulos. LEGAL-BERT: The Muppets straight out of law school. In *Proceedings of the Conference on
526 Empirical Methods in Natural Language Processing (EMNLP)*, 2020.

527 Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large language models via reading
528 comprehension. *arXiv preprint arXiv:2309.09117*, 2023.

529 Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: Large-
530 scale self-supervised pretraining for molecular property prediction. *Preprint at
531 https://arxiv.org/abs/2010.09885*, 2020.

532 Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola, William H. Green, and Klavs F. Jensen.
533 Prediction of Organic Reaction Outcomes Using Machine Learning. *ACS Central Science*, 3
534 (5):434–443, May 2017. ISSN 2374-7943. doi: 10.1021/acscentsci.7b00064. URL <https://doi.org/10.1021/acscentsci.7b00064>. Publisher: American Chemical Society.

540 Connor W Coley, Wengong Jin, Luke Rogers, Timothy F Jamison, Tommi S Jaakkola, William H
 541 Green, Regina Barzilay, and Klavs F Jensen. A graph-convolutional neural network model for the
 542 prediction of chemical reactivity. *Chem. Sci.*, 10:370–377, 2019.

543

544 Daniel W. Davies, Keith T. Butler, Adam J. Jackson, Andrew Morris, Jarvist M. Frost, Jonathan M.
 545 Skelton, and Aron Walsh. Computational screening of all stoichiometric inorganic materials.
 546 *Chem.*, 1(4):617–627, 2016. ISSN 2451-9294. doi: <https://doi.org/10.1016/j.chempr.2016.09.010>. URL <https://www.sciencedirect.com/science/article/pii/S2451929416301553>.

547

548

549 Bowen Deng. Materials Project Trajectory (MPtrj) Dataset. *arXiv preprint arXiv:2302.14231*, 7
 550 2023. doi: 10.6084/m9.figshare.23713842.v2. URL https://figshare.com/articles/dataset/Materials_Project_Trajectory_MPtrj_Dataset/23713842.

551

552 Bowen Deng, Peichen Zhong, KyuJung Jun, Janosh Riebesell, Kevin Han, Christopher J Bartel, and
 553 Gerbrand Ceder. Chgnet as a pretrained universal neural network potential for charge-informed
 554 atomistic modelling. *Nature Machine Intelligence*, 5(9):1031–1041, 2023.

555

556 Benedek Fabian, Thomas Edlich, H’el’ena Gaspar, Marwin H. S. Segler, Joshua Meyers, Marco
 557 Fiscato, and Mohamed Ahmed. Molecular representation learning with language models
 558 and domain-relevant auxiliary tasks. *ArXiv*, abs/2011.13230, 2020. URL <https://api.semanticscholar.org/CorpusID:227209142>.

559

560 Daniel Flam-Shepherd and Alán Aspuru-Guzik. Language models can generate molecules, materials,
 561 and protein binding sites directly in three dimensions as xyz, cif, and pdb files, 2023.

562

563 Nathan C Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael G’omez-Bombarelli, Connor W. Coley, and Vijay Gadepally. Neural scaling of deep chemical models. *Nature Machine Intelligence*, 5:1297 – 1305, 2023. URL <https://api.semanticscholar.org/CorpusID:262152780>.

564

565

566 Alex M Ganose and Anubhav Jain. Robocrystallographer: automated crystal structure text descriptions and analysis. *MRS Communications*, 9(3):874–881, 2019.

567

568

569 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Janya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narges Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,

594 Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
 595 Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
 596 Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
 597 Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
 598 Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
 599 Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
 600 Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
 601 Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
 602 Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
 603 Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
 604 Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
 605 Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
 606 Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
 607 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei
 608 Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
 609 Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
 610 Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
 611 Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
 612 Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
 613 Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
 614 Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
 615 Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
 616 Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
 617 Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
 618 Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 619 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 620 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
 621 Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
 622 Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
 623 Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
 624 Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
 625 Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
 626 Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
 627 Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
 628 Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
 629 Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
 630 Veeraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
 631 Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
 632 Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madiam Khabsa, Manav Avalani, Manish
 633 Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
 634 Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
 635 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
 636 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
 637 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
 638 Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
 639 Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
 640 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
 641 Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
 642 Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
 643 Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
 644 Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
 645 Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
 646 Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
 647 Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
 Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
 Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
 Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
 Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
 Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,

648 Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz,
 649 Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
 650 Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
 651 Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
 652 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
 653 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

654

655 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 656 Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
 657 Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei
 658 Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai,
 659 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
 660 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian
 661 Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen,
 662 Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
 663 Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 664 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 665 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 666 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 667 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
 668 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
 669 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
 670 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
 671 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
 672 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
 673 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
 674 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
 675 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
 676 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
 677 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
 678 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
 679 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 680 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 681 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
 682 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025a.
 683 URL <https://arxiv.org/abs/2501.12948>.

684 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 685 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 686 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025b.

687 Taicheng Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh Chawla, Olaf Wiest, Xiangliang
 688 Zhang, et al. What can large language models do in chemistry? a comprehensive benchmark on
 689 eight tasks. *Advances in Neural Information Processing Systems*, 36:59662–59688, 2023.

690 Masanori Hirano and Kentaro Imajo. Construction of domain-specified japanese large language
 691 model for finance through continual pre-training. In *16th IIAI International Congress on Advanced
 692 Applied Informatics (IIAI-AAI)*, 2024.

693 Jason Holmes, Zhengliang Liu, Lian Zhang, Yuzhen Ding, Terence T. Sio, Lisa A. McGee, Jonathan B.
 694 Ashman, et al. Evaluating large language models on a highly-specialized topic, radiation oncology
 695 physics. *Frontiers in Oncology*, 2023.

696 Sheng-Kai Hsieh. Continual pre-training is (not) what you need in domain adaption. *arXiv preprint
 697 arXiv:2501.01234*, 2025.

698 Kevin Maik Jablonka, Philippe Schwaller, Andres Ortega-Guerrero, and Berend Smit. Leveraging
 699 large language models for predictive chemistry. *Nat. Mac. Intell.*, 6:161–169, 2024. URL
 700 <https://api.semanticscholar.org/CorpusID:267538205>.

702 T. Jesper Jacobsson, Adam Hultqvist, Alberto García-Fernández, Aman Anand, Amran Al-Ashouri,
 703 Anders Hagfeldt, Andrea Crovetto, Antonio Abate, Antonio Gaetano Ricciardulli, Anuja Vi-
 704 jayan, Ashish Kulkarni, Assaf Y. Anderson, Barbara Primera Darwich, Bowen Yang, Bren-
 705 dan L. Coles, Carlo A. R. Perini, Carolin Rehermann, Daniel Ramirez, David Fairen-Jimenez,
 706 Diego Di Girolamo, Donglin Jia, Elena Avila, Emilio J. Juarez-Perez, Fanny Baumann, Flo-
 707 rian Mathies, G. S. Anaya González, Gerrit Boschloo, Giuseppe Nasti, Gopinath Paramasivam,
 708 Guillermo Martínez-Denegri, Hampus Näsström, Hannes Michaels, Hans Köbler, Hua Wu, Ia-
 709 copo Benesperi, M. Ibrahim Dar, Ilknur Bayrak Pehlivan, Isaac E. Gould, Jacob N. Vagott,
 710 Janardan Dagar, Jeff Kettle, Jie Yang, Jinzhao Li, Joel A. Smith, Jorge Pascual, Jose J. Jerónimo-
 711 Rendón, Juan Felipe Montoya, Juan-Pablo Correa-Baena, Junming Qiu, Junxin Wang, Kári
 712 Sveinbjörnsson, Katrin Hirselandt, Krishnan Dey, Kyle Frohna, Lena Mathies, Luigi A. Castri-
 713 ota, Mahmoud. H. Aldamasy, Manuel Vasquez-Montoya, Marco A. Ruiz-Preciado, Marion A.
 714 Flatken, Mark V. Khenkin, Max Grischeck, Mayank Kedia, Michael Saliba, Miguel Anaya, Misha
 715 Veldhoen, Neha Arora, Oleksandra Shargaieva, Oliver Maus, Onkar S. Game, Ori Yudilevich,
 716 Paul Fassl, Qisen Zhou, Rafael Betancur, Rahim Munir, Rahul Patidar, Samuel D. Stranks,
 717 Shahidul Alam, Shaoni Kar, Thomas Unold, Tobias Abzieher, Tomas Edvinsson, Tudur Wyn
 718 David, Ulrich W. Paetzold, Waqas Zia, Weifei Fu, Weiwei Zuo, Vincent R. F. Schröder, Wolf-
 719 gang Tress, Xiaoliang Zhang, Yu-Hsien Chiang, Zafar Iqbal, Zhiqiang Xie, and Eva Unger.
 720 An open-access database and analysis tool for perovskite solar cells based on the fair data
 721 principles. *Nature Energy*, 7:107–115, 2022. doi: 10.1038/s41560-021-00941-3. URL
<https://doi.org/10.1038/s41560-021-00941-3>.

722 Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
 723 Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson.
 724 Commentary: The materials project: A materials genome approach to accelerating materials
 725 innovation. *APL Materials*, 1(1):011002, 07 2013. ISSN 2166-532X. doi: 10.1063/1.4812323.
 726 URL <https://doi.org/10.1063/1.4812323>.

727 Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham Neubig. How can we know when language
 728 models know? on the calibration of language models for question answering. In *Proceedings of the*
 729 *2021 Conference on Empirical Methods in Natural Language Processing*, pp. 4661–4673, 2021.

730 Saurav Kadavath, Tom Conerly, Amanda Askell, Yuntao Bai, Deep Ganguli, Danny Hernandez,
 731 Nicholas Schiefer, et al. Language models (mostly) know what they know. *arXiv preprint*
 732 *arXiv:2207.05221*, 2022.

733 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 734 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 735 *arXiv preprint arXiv:2001.08361*, 2020.

736 Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A
 737 Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, and Evan E Bolton. PubChem
 738 2025 update. *Nucleic Acids Research*, 53(D1):D1516–D1525, January 2025. ISSN 1362-4962.
 739 doi: 10.1093/nar/gkae1059. URL <https://doi.org/10.1093/nar/gkae1059>.

740 Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
 741 Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation. *Mach.
 742 Learn.: Sci. Technol.*, 1:045024, 2020.

743 Mario Krenn, Qianxiang Ai, Senja Barthel, Nessa Carson, Angelo Frei, Nathan C. Frey, Pascal
 744 Friederich, Théophile Gaudin, Alberto Alexander Gayle, Kevin Maik Jablonka, Rafael F. Lameiro,
 745 Dominik Lemm, Alston Lo, Seyed Mohamad Moosavi, José Manuel Nápoles-Duarte, AkshatKu-
 746 mar Nigam, Robert Pollice, Kohulan Rajan, Ulrich Schatzschneider, Philippe Schwaller, Marta
 747 Skreta, Berend Smit, Felix Strieth-Kalthoff, Chong Sun, Gary Tom, Guido Falk von Rudorff,
 748 Andrew Wang, Andrew D. White, Adamo Young, Rose Yu, and Alán Aspuru-Guzik. Selfies
 749 and the future of molecular string representations. *Patterns*, 3(10):100588, October 2022. ISSN
 750 2666-3899. doi: 10.1016/j.patter.2022.100588. URL <http://dx.doi.org/10.1016/j.patter.2022.100588>.

751 Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
 752 Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. RLAIF vs. RLHF:
 753

756 Scaling Reinforcement Learning from Human Feedback with AI Feedback, September 2024. URL
 757 <http://arxiv.org/abs/2309.00267>. arXiv:2309.00267 [cs].
 758

759 Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Symbolic
 760 chain-of-thought distillation: Small models can also “think” step-by-step. In *Annual Meeting of the*
 761 *Association for Computational Linguistics*, 2023. URL <https://api.semanticscholar.org/CorpusID:259251773>.
 762

763 Shuyue Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan S. Ilgen, Emma Pierson, Pang Wei
 764 Koh, and Yulia Tsvetkov. Mediq: Question-asking llms and a benchmark for reliable interactive
 765 clinical reasoning. In *Neural Information Processing Systems*, 2024a. URL <https://api.semanticscholar.org/CorpusID:270219405>.
 766

767 Sihang Li, Jian Huang, Jiaxi Zhuang, Yaorui Shi, Xiaochen Cai, Mingjun Xu, Xiang Wang, Linfeng
 768 Zhang, and Guolin Ke. SciLitLLM: How to adapt LLMs for scientific literature understanding.
 769 *arXiv preprint arXiv:2408.04567*, 2024b.
 770

771 Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
 772 Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, et al. Holistic
 773 evaluation of language models. *arXiv preprint arXiv:2211.09110*, 2022.
 774

775 Bo Liu, Liming Zhan, Zexin Lu, Yujie Feng, Lei Xue, and Xiao-Ming Wu. How good are llms at
 776 out-of-distribution detection?, 2024a. URL <https://arxiv.org/abs/2308.10261>.
 777

778 Dancheng Liu, Amir Nassereldine, Ziming Yang, Chenhui Xu, Yuting Hu, Jiajie Li, Utkarsh Kumar,
 779 Changjae Lee, and Jinjun Xiong. Large language models have intrinsic self-correction ability.
 780 *ArXiv*, abs/2406.15673, 2024b. URL <https://api.semanticscholar.org/CorpusID:270703467>.
 781

782 Daniel M. Lowe, Peter T. Corbett, Peter Murray-Rust, and Robert C. Glen. Chemical name to
 783 structure: Opsin, an open source solution. *J. Chem. Inf. Model.*, 51(3):739–753, 2011. doi:
 784 10.1021/ci100384d.
 785

786 Wei Lu, Rachel K. Luu, and Markus J. Buehler. Fine-tuning large language models for domain
 787 adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities.
 788 *npj Computational Materials*, 2025.
 789

790 Łukasz Maziarka, Krzysztof Rataj, Tomasz Danel, Piotr Warchał, and Stanisław Jastrzębski.
 791 ChemBERTa-2: Large-scale self-supervised pre-training for molecules. *arXiv preprint arXiv:2309.12948*, 2023.
 792

793 N. F. McGlynn. Thinking fast and slow. *Australian veterinary journal*, 92 12:N21, 2014. URL
 794 <https://api.semanticscholar.org/CorpusID:36031679>.
 795

796 Corina Meister and Ryan Cotterell. Language model evaluation beyond perplexity. *arXiv preprint arXiv:2106.04638*, 2021.
 797

798 Norman Meuschke, Apurva Jagdale, Timo Spinde, Jelena Mitrović, and Bela Gipp. *A Benchmark of PDF Information Extraction Tools Using a Multi-task and Multi-domain Evaluation Framework for Academic Documents*, pp. 383–405. Springer Nature Switzerland, 2023. ISBN 9783031280320. doi: 10.1007/978-3-031-28032-0_31. URL http://dx.doi.org/10.1007/978-3-031-28032-0_31.
 799

800 Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Martíño Ríos-García, Benedict Emoekabu,
 801 Aswanth Krishnan, Tanya Gupta, Mara Schilling-Wilhelmi, Macjonathan Okereke, Anagha Aneesh,
 802 et al. Are large language models superhuman chemists? *arXiv preprint arXiv:2404.01475*, 2024a.
 803

804 Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Martíño Ríos-García, Benedict Emoekabu,
 805 Aswanth Krishnan, Tanya Gupta, Mara Schilling-Wilhelmi, Macjonathan Okereke, Anagha Aneesh,
 806 Amir Mohammad Elahi, Mehrdad Asgari, Juliane Eberhardt, Hani M. Elbeheiry, María Victoria
 807 Gil, Maximilian Greiner, Caroline T. Holick, Christina Glaubitz, Tim Hoffmann, Abdelrahman
 808 Ibrahim, Lea C. Klepsch, Yannik Köster, Fabian Alexander Kreth, Jakob Meyer, Santiago Miret,
 809 Jan Matthias Peschel, Michael Ringleb, Nicole Roesner, Johanna Schreiber, Ulrich S. Schubert,

810 Leanne M. Stafast, Dinga Wonanke, Michael Pieler, Philippe Schwaller, and Kevin Maik Jablonka.
 811 Are large language models superhuman chemists?, November 2024b. URL <http://arxiv.org/abs/2404.01475> [cs].
 812

813 Mistral AI Team. Mistral small 3: Apache 2.0, 81% mmlu, 150 tokens/s. <https://mistral.ai/news/mistral-small-3>, January 2025. Accessed: YYYY-MM-DD.
 814

815 Siddharth M. Narayanan, James D. Braza, Ryan-Rhys Griffiths, Albert Bou, Geemi Wellawatte,
 816 Mayk Caldas Ramos, Ludovico Mitchener, Samuel G. Rodrigues, and Andrew D. White. Training
 817 a scientific reasoning model for chemistry, 2025. URL <https://arxiv.org/abs/2506.17238>.
 818

819 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 820 Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb Datasets: Decanting the Web for
 821 the Finest Text Data at Scale, October 2024. URL <http://arxiv.org/abs/2406.17557>.
 822 arXiv:2406.17557.

823 Pouya Pezeshkpour. Measuring and modifying factual knowledge in large language models. In
 824 *Proceedings of the 22nd International Conference on Machine Learning and Applications*, pp.
 825 992–999, 2023.
 826

827 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 828 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 829 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 830 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 831 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 832 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 833 <https://arxiv.org/abs/2412.15115>.
 834

835 RDKit, online. RDKit: Open-source cheminformatics. <http://www.rdkit.org>, 2023.
 836

837 Baptiste Rozière, Guillaume Lample, Gautier Izacard, Jean Simón, Alexis Palmer, Shuyin Ruan,
 838 Myle Ott Nguyen, Nathan Scales, et al. Code Llama: Open foundation models for code. Technical
 839 report, Meta AI, 2023.

840 Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter, Costas
 841 Bekas, and Alpha A Lee. Molecular transformer: a model for uncertainty-calibrated chemical
 842 reaction prediction. *ACS Cent. Sci.*, 5(9):1572–1583, 2019.

843 Philippe Schwaller, Riccardo Petraglia, Valerio Zullo, Vishnu H Nair, Rico Andreas Haeuselmann,
 844 Riccardo Pisoni, Costas Bekas, Anna Iuliano, and Teodoro Laino. Predicting retrosynthetic
 845 pathways using transformer-based models and a hyper-graph exploration strategy. *Chem. Sci.*, 11:
 846 3316–3325, 2020.

847 Junhong Shen, Neil Tenenholtz, James Hall, David Alvarez-Melis, and Nicoló Fusi. Tag-LLM:
 848 Repurposing general-purpose LLMs for specialized domains. *arXiv preprint arXiv:2402.07927*,
 849 2024.

850 Jeongwoo Shin, Chunting Wang, Zhixuan Yu, Manling Ho, Jeremy R. Smith, Chris Pugh, Hannaneh
 851 Hajishirzi, Mari Ostendorf, Ali Farhadi, and Wen-tau Yih. Biomegatron: Larger biomedical
 852 domain language model. *arXiv preprint arXiv:2010.09889*, 2020.

853 Liangtai Sun, Danyu Luo, Da Ma, Zihan Zhao, Zhe-Wei Shen, Su Zhu, Lu Chen, Xin Chen, and
 854 Kai Yu. SciDFM: A large language model with mixture-of-experts for science. *arXiv preprint
 855 arXiv:2409.01234*, 2024.

856 Matthew C. Swain and Jacqueline M. Cole. Chemdataextractor: A toolkit for automated extraction
 857 of chemical information from the scientific literature. *Journal of Chemical Information and
 858 Modeling*, 56(10):1894–1904, 2016. doi: 10.1021/acs.jcim.6b00207. URL <https://doi.org/10.1021/acs.jcim.6b00207>. PMID: 27669338.

859 Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
 860 Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science,
 861 2022. URL <https://arxiv.org/abs/2211.09085>.

864 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
 865 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
 866 Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
 867 Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
 868 Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
 869 Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
 870 Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia
 871 Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris
 872 Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
 873 Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric
 874 Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary
 875 Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra,
 876 Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
 877 Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
 878 van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,
 879 Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
 880 Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
 881 Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
 882 Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
 883 Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
 884 Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
 885 Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
 886 Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep
 887 Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh
 888 Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien
 889 M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan
 890 Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kociský, Tulsee Doshi,
 891 Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei,
 892 Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei,
 893 Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins,
 894 Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav
 895 Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 896 Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi,
 897 and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
 898 <https://arxiv.org/abs/2408.00118>.

899 Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Strieth-Kalthoff,
 900 Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, et al. Efficient evolutionary search over
 901 chemical space with large language models. *arXiv preprint arXiv:2406.16976*, 2024a.

902 Pei Wang, Keqing He, Yeqie Wang, Xiaoshuai Song, Yutao Mou, Jingang Wang, Yunsen Xian,
 903 Xunliang Cai, and Weiran Xu. Beyond the known: Investigating llms performance on out-of-
 904 domain intent detection. In *International Conference on Language Resources and Evaluation*,
 905 2024b. URL <https://api.semanticscholar.org/CorpusID:268032564>.

906 Weida Wang, Benteng Chen, Di Zhang, Wanhai Liu, Shuchen Pu, Ben Gao, Jin Zeng, Xiaoyong
 907 Wei, Tianshu Yu, Shuzhou Sun, Tianfan Fu, Wanli Ouyang, Lei Bai, Jiatong Li, Zifu Wang,
 908 Yuqiang Li, and Shufei Zhang. Chem-r: Learning to reason as a chemist, 2025a. URL <https://arxiv.org/abs/2510.16880>.

909 Weixuan Wang, Barry Haddow, Alexandra Birch, and Wei Peng. Assessing the reliability of large
 910 language model knowledge. In *Proceedings of the 2024 Conference of the North American Chapter*
 911 of the *Association for Computational Linguistics*, pp. 1234–1249, 2024c.

912 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
 913 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
 914 Shen. Reinforcement Learning for Reasoning in Large Language Models with One Training
 915 Example, April 2025b. URL <http://arxiv.org/abs/2504.20571>. arXiv:2504.20571
 916 [cs].

918 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
919 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
920 *neural information processing systems*, 35:24824–24837, 2022.

921

922 David Weininger. SMILES, a chemical language and information system. 1. introduction to method-
923 ology and encoding rules. *J. Chem. Inf. Comput. Sci.*, 28:31–36, 1988.

924

925 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
926 Ziv, Neel Jain, Khalid Saifullah, Siddhartha Naidu, et al. Livebench: A challenging, contamination-
927 free benchmark for large language models. *arXiv preprint arXiv:2403.12345*, 2024.

928

929 Yingce Xia, Peiran Jin, Shufang Xie, Liang He, Chuan Cao, Renqian Luo, Guoqing Liu, Yue
930 Wang, Zequn Liu, Yuan-Jyue Chen, Zekun Guo, Yeqi Bai, Pan Deng, Yaosen Min, Ziheng Lu,
931 Hongxia Hao, Han Yang, Jielan Li, Chang Liu, Jia Zhang, Jianwei Zhu, Ran Bi, Kehan Wu, Wei
932 Zhang, Kaiyuan Gao, Qizhi Pei, Qian Wang, Xixian Liu, Yanting Li, Houtian Zhu, Yeqing Lu,
933 Mingqian Ma, Zun Wang, Tian Xie, Krzysztof Maziarz, Marwin Segler, Zhao Yang, Zilong Chen,
934 Yu Shi, Shuxin Zheng, Lijun Wu, Chen Hu, Peggy Dai, Tie-Yan Liu, Haiguang Liu, and Tao Qin.
935 Nature language model: Deciphering the language of nature for scientific discovery, 2025. URL
936 <https://arxiv.org/abs/2502.07527>.

937

938 Tong Xie, Yuwei Wan, Wei Huang, Zhenyu Yin, Yixuan Liu, Shaozhou Wang, Qingyuan Linghu,
939 Chunyu Kit, Clara Grazian, Wenjie Zhang, and Bram Hoex. Darwin series: Domain specific large
940 language models for natural science. *arXiv preprint arXiv:2308.09913*, 2023a.

941

942 Tong Xie, Yuwei Wan, Wei Huang, Zhenyu Yin, Yixuan Liu, Shaozhou Wang, Qingyuan Linghu,
943 Chunyu Kit, Clara Grazian, Wenjie Zhang, Imran Razzak, and Bram Hoex. Darwin series:
944 Domain specific large language models for natural science. *ArXiv*, abs/2308.13565, 2023b. URL
945 <https://api.semanticscholar.org/CorpusID:274142505>.

946

947 Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. Efficient continual pre-training for building domain
948 specific large language models. In *Findings of the Association for Computational Linguistics*
949 (*ACL*), 2024a.

950

951 Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi,
952 and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
953 *ArXiv*, abs/2405.00451, 2024b. URL <https://api.semanticscholar.org/CorpusID:269484186>.

954

955 Zonglin Yang, Wanhai Liu, Ben Gao, Tong Xie, Yuqiang Li, Wanli Ouyang, Soujanya Poria, Erik
956 Cambria, and Dongzhan Zhou. Moose-chem: Large language models for rediscovering unseen
957 chemistry scientific hypotheses, 2025. URL <https://arxiv.org/abs/2410.07076>.

958

959 Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue Wang, Derek F. Wong, Emine Yilmaz, Shuming
960 Shi, and Zhaopeng Tu. Benchmarking large language models via uncertainty quantification. *arXiv*
961 *preprint arXiv:2401.12321*, 2024.

962

963 Botao Yu, Frazier N. Baker, Ziqi Chen, Xia Ning, and Huan Sun. Llasmol: Advancing large language
964 models for chemistry with a large-scale, comprehensive, high-quality instruction tuning dataset,
965 2024a. URL <https://arxiv.org/abs/2402.09391>.

966

967 Botao Yu, Frazier N. Baker, Ziqi Chen, Xia Ning, and Huan Sun. Llasmol: Advancing large language
968 models for chemistry with a large-scale, comprehensive, high-quality instruction tuning dataset.
969 *arXiv preprint arXiv:2402.09391*, 2024b.

970

971 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang.
972 Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?,
973 2025. URL <https://arxiv.org/abs/2504.13837>.

974

975 Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang,
976 Xiangyu Yue, Wanli Ouyang, Dongzhan Zhou, Shufei Zhang, Mao Su, Han-Sen Zhong, and
977 Yuqiang Li. Chemllm: A chemical large language model, 2024. URL <https://arxiv.org/abs/2402.06852>.

972 Siyan Zhao, Tung Nguyen, and Aditya Grover. Probing the decision boundaries of in-context learning
973 in large language models. *arXiv preprint arXiv:2406.01234*, 2024.
974

975 Zihan Zhao, Bo Chen, Ziping Wan, Lu Chen, Xuanze Lin, Shiyang Yu, Situo Zhang, Da Ma, Zichen
976 Zhu, Danyang Zhang, Huayang Wang, Zhongyang Dai, Liyang Wen, Xin Chen, and Kai Yu.
977 Chemdfm-r: An chemical reasoner llm enhanced with atomized chemical knowledge, 2025. URL
978 <https://arxiv.org/abs/2507.21990>.

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **A APPENDIX**
10271028 **B CHEMICAL TASKS**
10291030 This section compiles all of the chemical tasks we have implemented for training models with RLVR,
1031 including details of the dataset compilation, rewards used, along with additional experimental results
1032 not shown in the main manuscript. The details for each task are specified with a table containing a
1033 summary of the rewards used, short explanations of what the input and expected outputs are, and
1034 finally, some sample outputs from the trained models. Following the table, we report additional
1035 experimental results, implementation details, and other task-specific details.
10361037 **B.1 REACTION PREDICTION (RXP)**
10381039 **Task: Reaction prediction**

1042 Dataset Source	1042 USPTO-480K (Coley et al., 2019)
1043 Input	1043 Reason and predict the correct product in 1044 SMILES notation from the following reaction: 1045 <chem>CCN(CC)CC.COC1CCC(O)CC1.C1C(Cl)C1.C1CCCl.O.O=C(Cl)c1cccc1.</chem>
1046 Target Molecule	1046 <chem>COc1ccc(OC(=O)c2cccc2)cc1</chem>
1047 Output	1047 <think> The reaction involves the acylation of a phenolic hydroxyl group using benzoyl chloride <chem>O=C(Cl)c1cccc1</chem> in the presence of triethylamine <chem>CCN(CC)CC</chem> as a base. Here's the step-by-step mechanism: ... 1048 1. Reactants Identification**: ... 1049 2. Mechanism**: ... 1050 3. Product**: ... 1051 Final Answer**: The product SMILES is 1052 <chem>COc1ccc(OC(=O)c2cccc2)cc1</chem> representing the acetylation 1053 of the phenolic oxygen [O] in 4-methoxyphenol <chem>COc1ccc(O)cc1</chem> 1054 by benzoyl chloride <chem>O=C(Cl)c1cccc1</chem> , facilitated by triethylamine 1055 <chem>CCN(CC)CC</chem> . </think> 1056 <answer> <chem>COc1ccc(OC(=O)c2cccc2)cc1</chem> </answer> 1057
1058 Answer	1058 <chem>COc1ccc(OC(=O)c2cccc2)cc1</chem> ✓

1060 **Table 3: Example of reaction prediction task.**
10611062 The reaction prediction task requires the model to reason and predict the correct product molecule
1063 given a list of reactants and reagents (Table 3). Solving this task usually requires expert chemists
1064 to think about the reactivity of the reactants involved, and propose and evaluate different reaction
1065 mechanism hypotheses. These serve as arguments and causal explanations that support the decisions.
10661067 The dataset for the RLVR training of this task was derived from the USPTO-480K (Coley et al.,
1068 2019) after removing the samples used in the SFT phase. 50K reactions were randomly chosen for
1069 the training set, and 500 reactions for the test set.1070 Given a model output o , from which a final answer a can be extracted, the reward function is the sum
1071 of format correctness ($R_{\text{format}} : o \mapsto [-1, 1]$, see Appendix D) and accuracy of the predicted product
1072 ($R_{\text{acc}} : a \mapsto \{-1, -0.5, 1\}$). The accuracy reward is determined by an exact match check against the
1073 ground truth:

1074
$$R_{\text{acc}}(a) = \begin{cases} -1, & \text{if } \text{Ans} \text{ cannot be captured from Output or is not a valid SMILES.} \\ -0.5, & \text{if } \text{Ans} \text{ refers to a molecule different than the ground truth.} \\ +1, & \text{if } \text{Ans} \text{ corresponds to the ground truth molecule.} \end{cases}$$

1075
1076
1077

1078 Figure 6 illustrates the evolution of the accuracy reward throughout training. The base Qwen2.5-3B
1079 model plateaus early at a reward below the -0.5 threshold, indicating that while it frequently generates

Figure 6: Accuracy reward evolution.

syntactically valid SMILES strings, it fails to predict the correct product molecules. In contrast, both fine-tuned variants (Qwen2.5-3B+SFT and Qwen2.5-3B+MiST+SFT) maintain accuracy rewards above -0.5 in the majority of the training process. The SFT-only model shows a sharp increase in reward during the first 8,000 training samples, reflecting rapid format alignment. This is followed by a more gradual rise, suggesting improved chemical reasoning over time. Notably, the model pretrained with MiST before SFT follows a similar trajectory but consistently achieves a higher reward ceiling. This highlights the effectiveness of MiST and SFT in enhancing the model’s learning capability during RLVF.

1134 B.2 IUPAC TO SMILES (I2S)
1135
11361137 Table 4: Example of IUPAC→SMILES conversion.
11381139 **Task: IUPAC to SMILES Conversion**
1140

1141	Dataset Source	PubChem (CID 2,000,001 to 3,000,000) (Kim et al., 2025)
1142	Input	Question: You are an expert in Cheminformatics, who is very familiar with Simplified Molecular Input Line Entry System (SMILES) notation, and here's a task for you: Given a molecule with the IUPAC name as below, please provide the corresponding SMILES notation. Here is the IUPAC name: "4-(azepan-1-ylsulfonyl) -N-(pyridin-3-ylmethylideneamino) benzamide".
1143	Target Molecule	<chem>O=C(NN=CC1=CC=CN=C1)C1=CC=C(S(=O)(=O)N2CCCCC2)C=C1</chem>
1144	Output	<think> The SMILES representation of 4-(azepan-1-ylsulfonyl) -N-(pyridin-3-ylmethylideneamino) benzamide is <chem>O=C(NN=CC1=CC=CN=C1)C1=CC=C(S(=O)(=O)N2CCCCC2)C=C1</chem> ...</think>
1145	Answer	<answer> <chem>O=C(NN=CC1=CC=CN=C1)C1=CC=C(S(=O)(=O)N2CCCCC2)C=C1</chem> </answer> ✓

1146 The IUPAC-to-SMILES conversion task presented requires the model to translate a systematic
1147 chemical name into its corresponding SMILES string notation. We source our examples from the
1148 USPTO-480K dataset and prompt the model with a clear generative instruction “Given this IUPAC
1149 name, please provide the corresponding SMILES notation.” The ground truth is established by the Tani-
1150 moto similarity score. The model’s chain-of-thought reasoning is captured inside <think>...</think>
1151 tags and the final SMILES inside <answer>...</answer>. This setup tests the model’s ability to parse
1152 complex nomenclature and generate SMILES structural representations.

1153 For GRPO reward pipeline, we use accuracy reward function that only considers the final ‘<answer>’
1154 SMILES s_{ans} . After converting both the reference s^* and prediction s_{ans} to Morgan fingerprints, it
1155 computes the raw Tanimoto similarity τ and then applies a piecewise linear scaling:

$$r_{\text{tf}}(\tau) = \begin{cases} +1.0, & \tau = 1.0, \\ \tau - 0.3, & 0.3 \leq \tau < 1.0, \\ -0.5, & \tau < 0.3. \end{cases}$$

1156 A perfect match yields $r_{\text{tf}} = 1.0$, moderate similarity is rewarded proportionally above -0.5 , and
1157 very poor matches incur a negative penalty.

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189

B.3 REACTION NAMING

1190
1191**Task: Reaction Naming (RxN)**1192
1193

Dataset Source

USPTO Reaction 1M; (Coley et al., 2017)

1194

Input

What is the name of this chemical reaction? The reagents are CC(C)(C)[Si](C)(C)Cl and Nc1ccc(-c2cccc(O)c2)c2c1C(=O)NC2 and the product CC(C)(C)[Si](C)(C)Oc1cc(cc(-c2ccc(N)c3c2NC3=O)c1). Choose ONLY from the following options and write your response choice inside <answer>...</answer>: "Acylation", "Aromatic Heterocycle Formation", "C-C Coupling", "Deprotection", "Functional Group Addition", "Functional Group Interconversion", "Heteroatom Alkylation and Arylation", "Miscellaneous", "Protection", "Reduction". Do not provide final answer different than what is provided in this list.

1195
1196

1197

1198

1199
1200

1201

1202
1203

1204

1205
1206

1207

1208
1209

1210

1211
1212

1213

1214

1215
1216

1217

1218

Target Molecular Reaction Name

Protection

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Output <think> First, let's break down the reagents. The first reagent is CC(C)(C)[Si](C)(C)Cl which is tert-butyldimethylsilyl chloride ...

Answer <answer> Protection </answer>

Table 5: Reaction Naming experiment description.

The reaction naming task is a classic example of a structured classification problem in cheminformatics, where the goal is to categories the nature of a reaction given reactants, conditions and products. This approach aim to test the ability of the LLM to conduct chemical reasoning and instruction following for discrete level answering. In addition to that, this setup also tests the model's ability to interpret chemical structures from linear notation and enables us to reveal how chain-of-thought guidance and prompt design impact classification accuracy. To stimulate reasoning, the model is tasked to output his thinking process inside <think>...</think> tags before emitting the final choice in <answer>...</answer> tags. The ground-truth class labels are evenly drawn from ten commonly found reaction type in chemistry: "Acylation", "Aromatic Heterocycle Formation", "C-C", "Coupling", "Deprotection", "Functional Group Addition", "Functional Group Interconversion", "Heteroatom", "Alkylation and Arylation", "Miscellaneous", "Protection" and "Reduction" derived from curated USPTO reactions dataset.

Reward Functions:• **Continuous Format Reward:**

- This reward is described in Section D.2.1 in the Algorithm 3.

• **Accuracy Reward:**

- 0 if no answer is given
- 0.1 if a single answer is given (but wrong)
- 1 if the answer is entirely correct
- -0.2 penalty if the model always output the same wrong class

• **Accuracy Percentage Reward:** discrete reward to foster perfect answers

- 0 if the answer is wrong

1242 – 1 if the answer is entirely correct

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296	B.4 REACTION REPLACEMENT
<hr/>	
1298	Task: Reaction Replacement (RxR)
1299	
1300	
1301	Dataset Source
1302	Input
1303	Question: Which chemical reaction is correct? Choose from the following options:
1304	A. In the following reaction, the reagents are:
1305	<chem>Cc1ncc(C=O)n1C1CC1, CC(C)OC=C(Br)C=O, Cl,</chem>
1306	<chem>O=C(c1cc(N2CCNC2=O)ccc1F)N1CCCN(c2nccs2)CC1</chem>
1307	and the product is: <chem>O=Cc1nnc2n1CCCC2</chem> .
1308	B. In the following reaction, the reagents are:
1309	<chem>Cc1ncc(C=O)n1C1CC1, CC(C)OC=C(Br)C=O,</chem>
1310	<chem>Cl, N=C1CCCCN1</chem> and the product is: <chem>CNC(=O)CC1(O)CCCN(C(=O)c2cncc(F)c2)C1</chem> .
1311	C. In the following reaction, the reagents are:
1312	<chem>Cc1ncc(C=O)n1C1CC1, CC(C)OC=C(Br)C=O, Cl,</chem>
1313	<chem>N=C1CCCCN1</chem> and the product is: <chem>O=Cc1nnc2n1CCCC2</chem> .
1314	D. In the following reaction, the reagents are:
1315	<chem>Cc1cccc1OCCC(=O)N1CCCC(c2ccn[nH]2)C1,</chem>
1316	<chem>CC(C)OC=C(Br)C=O, Cl, N=C1CCCCN1</chem> and the product is: <chem>O=Cc1nnc2n1CCCC2</chem> .
1317	Make sure to give your choice A, B, C, or D inside the <chem><answer>...</answer></chem> tags.
1318	
1319	Target Molecular Reaction (Choice)
1320	C
1321	Output
1322	<chem><think> Let's evaluate each option step by step to determine which one is correct. Option A: The reagent: Cc1ncc(C=O)n1C1CC1 matches with the molecule Cc1ncc(C=O)n1C1CC1.</chem>
1323	
1324	
1325	Answer
1326	<chem><answer> C </answer></chem>
1327	

Table 6: Reaction Replacement experiment description.

The reaction replacement tasks challenges the model to understand chemical reaction concepts, validity and ability to detect subtle structural inconsistencies. By providing the model with four nearly identical choices, chemical reaction notation coherence understanding is required. Each dummy reaction has one reagent randomly swapped, where starting from a correct USPTO reaction, we generate three “corrupted” variants by replacing a single reactant or product with the most Tanimoto-similar molecule drawn from a random batch of 50 Enamine50k compounds. In the prompt we provide the lists options A–D, each specifying reagent SMILES, conditions SMILES, and product SMILES, and the model is then instructed to answer one of the four choices as the correct one. The model is also instructed to think through each option step by step inside <think>...</think> and the answer is emitted inside <answer>...</answer> tags.

Reward Functions:

- **Continuous Format Reward:**
 - This reward is described in Section D.2.1 in the Algorithm 3.
- **Accuracy Reward:**
 - 0 if the answer is wrong
 - 1 if the answer is entirely correct

1350 B.5 REACTION INVERSION
13511352 **Task: Reaction Inversion (RxI)**
1353

1354	Dataset Source	1355 USPTO Reaction 1M; (Coley et al., 2017)
1356	Input	1357 Question: Which chemical reaction is correct? Choose 1358 from the following options: 1359 1360 A. In the following reaction, the reagents 1361 are: BrCc1ccccc1, [K+], [OH-], 1362 O=C(O)c1ccc(OCc2ccccc2)cc1 and the 1363 product is: CCOC(=O)c1ccc(O)cc1. 1364 B. In the following reaction, the reagents 1365 are: C=O, O=Cc1ccccc1, [B-]C#N, [Na+], 1366 CN[C@H]1[C@H](C)C[C@H](c2ccncc2NC 1367 (=O)OC(C)(C)C[C@H]1NC(=O)OC(C)(C)C, 1368 the conditions are: CO, [OH-], 1369 [Pd+2], and the product is: 1370 C[C@H]1C[C@H](c2ccncc2NC(=O)OC(C) 1371 (C)C[C@H](NC(=O)OC(C)(C)C[C@H]1N. 1372 C. In the following reaction, the reagents 1373 are: CCOC(=O)C#N, CCOC(=O)Cl, 1374 Cc1ccoc1C=Nc1ccccc1, the condition is: 1375 C1(C)C(C)=CC=CC=1, and the product is: 1376 CCOC(=O)c1cc2ccoc2cn1. 1377 D. In the following reaction, the reagents 1378 are: CC1(C)OB(c2cn[nH]c2)OC1(C)C, 1379 Nc1nc(-c2cc3c(s2)-c2ccc(-c4cn[nH]c4) 1380 cc2OCC3)c(-c2ccccc2Cl)s1 and the prod- 1381 uct is: Nc1nc(-c2cc3c(s2)-c2ccc(Br) 1382 cc2OCC3)c(-c2ccccc2Cl)s1. 1383 Make sure to give your choice A, B, C, or D inside the 1384 <answer>...</answer> tags. 1385
1381	Target Molecular Reaction (Choice)	C
1382	Output	1383 <think> Starting with option A: The reaction uses ben- 1384 zyl bromide BrCc1ccccc1 ... 1385
1386	Answer	<answer> C </answer>

1386 Table 7: Reaction Inversion experiment description
1387

1388 The reaction inversion task challenges the model to understand chemical reaction concepts, validity
1389 and ability to detect subtle structural inconsistencies. By providing the model with four completely
1390 different choices, strong chemical reaction notation coherence understanding is required. Each
1391 dummy reaction has one reagent randomly swapped with the longest string SMILES among the
1392 products, enabling us to obtain 4 different reaction choices. In the prompt we provide the lists options
1393 A–D, each specifying reagent SMILES, conditions SMILES, and product SMILES, and the model is
1394 then instructed to answer one of the four choices as the correct one. The model is also instructed to
1395 think through each option step by step inside <think>...</think> and the answer is emitted inside
1396 <answer>...</answer> tags.

1397 **Reward Functions:**

1398

- 1399 • **Continuous Format Reward:**
 - 1400 – This reward is described in Section D.2.1 in the Algorithm 3.
- 1401 • **Accuracy Reward:**
 - 1402 – 0 if the answer is wrong
 - 1403 – 1 if the answer is entirely correct

1404
1405 B.6 REACTION TRUE/FALSE1406
1407 **Task: Reaction True/False (RxTF)**

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457	Dataset Source Input Target Molecular Reaction Validity Output Answer	USPTO Reaction 1M; (Coley et al., 2017) Question: Is this chemical reaction correct? In the following reaction, the reagent is: COC(=O)c1ccc(OC)c(OCCc2cccc(C#N)c2)c1, the conditions are: C1COCCO1, [Li ⁺], [OH ⁻], and the product is: COc1ccc(C(=O)O)cc1OCCc1cccc(C#N)c1. True <think> First, I remember that LiOH, [Li ⁺]. [OH ⁻] is a strong base, so it's likely an acid-base reaction. The ester group in the starting material ... <answer> True </answer>
--	---	---

Table 8: Reaction True/False experiment description

The Reaction True/False task is a binary derivative of the Reaction Replacement task. In this case, the model is asked to analyze and judge based on one single reaction, whether the reaction is correct or wrong. Each prompt presents one reaction—listing the reagent SMILES, the reaction conditions SMILES, and the product SMILES—and then asks “Is this chemical reaction correct?”. The examples are drawn from the Reaction Replacement set, where some of the reactions have been corrupted by swapping one random molecule in the reaction string by a new candidate. The model is instructed to reason step by step inside <think>...</think>, then has to emit <answer>True</answer> or <answer>False</answer> accordingly. This format was designed to simplify the reaction replacement task by providing only a binary label choice, allowing us to not only reduce the task complexity but also diminish the hallucination effects emanating from providing many examples in the prompt. In this scenario, the model only ever sees one reaction, and its ability to detect subtle mismatches in chemical transformations and to follow a true/false classification protocol with transparent chain-of-thought is tested.

Reward Functions:

- **Continuous Format Reward:**
 - This reward is described in Section D.2.1 in the Algorithm 3.
- **Accuracy Reward:**
 - 0 if the answer is wrong
 - 1 if the answer is entirely correct

1458 B.7 CHEMICAL FORMULA BALANCING TASK (CEB)
14591460
1461 **Task: Chemical Formula Balancing Task (CeB)**
1462

1463 Dataset Source	The Perovskite Dataset (Jacobsson et al., 2022)
1464 Input	You are now acting as a skilled chemistry expert. Your goal is to identify and complete the missing compound(s) represented by [MASK] in the given chemical reaction. Reaction: 6 BaCO ₃ + 1 Na ₂ CO ₃ + 4 SiO ₂ == [Mark] Na ₂ Ba[Mark](Si[Mark]O[Mark])(SiO[Mark]) ₂ + 7 CO ₂ . Analyze the equation carefully, considering the law of conservation of mass and stoichiometry. Ensure the total number of atoms of each element on both sides of the equation remains balanced.
1465 Target Molecule (Material)	6 BaCO ₃ + 1 Na ₂ CO ₃ + 4 SiO ₂ = 1 Na ₂ Ba ₆ (Si ₂ O ₉)(SiO ₃) ₂ + 7 CO ₂
1466 Output	<thinking>1. Element Count Analysis: - Reactants: - Ba: 6 (from 6 BaCO ₃) - Na: 2 (from Na ₂ CO ₃) - Si: 4 (from 4 SiO ₂) - C: 7 (6 from BaCO ₃ + 1 from Na ₂ CO ₃) - O: 6×3 (BaCO ₃) + 1×3 (Na ₂ CO ₃) + 4×2 (SiO ₂) = 29 - Products: - CO ₂ : 7 CO ₂ (7 C, 14 O) - Missing compound must account for remaining elements: 6 Ba, 2 Na, 4 Si, and 15 O (29 total O - 14 from CO ₂). 2. Structure of Missing Compound: - The formula template [MASK] Na ₂ Ba[Mark](Si[Mark]O[Mark])(SiO[Mark]) ₂ suggests: - 2 Na, 6 Ba (to balance Ba from reactants), 4 Si (from SiO ₂), and 15 O. - Silicate groups: (Si ₂ O ₉) and (SiO ₃) ₂ (to total 4 Si and 15 O). 3. Charge Balance: - Cations: Na ₂ (2+) + Ba ₆ (12+) = +14 charge. - Anion: Si ₄ O ₁₅ (4 Si × +4 + 15 O × -2 = +16 - 30 = -14) balances the +14 charge. 4. Final Formula: - Na ₂ Ba ₆ (Si ₂ O ₉)(SiO ₃) ₂ consolidates all elements and charges correctly.</thinking>
1467 Answer	<answer>6 BaCO ₃ + 1 Na ₂ CO ₃ + 4 SiO ₂ = 1 Na ₂ Ba ₆ (Si ₂ O ₉)(SiO ₃) ₂ + 7 CO ₂ </answer>

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
Table 9: Template for reporting RL experiments.

The goal of this task is to evaluate the performance of large language models (LLM) in predicting balanced chemical equations, specifically leveraging a reward mechanism to enhance the accuracy of chemical formula generation. The GRPO reinforcement learning data set was derived from a data set of chemical formulas focusing on perovskite compounds. The dataset was prepared by selectively masking certain products or their stoichiometric coefficients within balanced chemical equations.

Reward Function Design: The reward function combines two distinct components: format correctness and prediction accuracy.

- **Format Reward:**

- Initial reward is set to 0 if the generated chemical equation does not follow the correct format.
- An additional reward of 0.3 is given if the left-hand side (reactants) of the generated equation matches exactly with the ground truth.

- **Accuracy Reward:** This reward component assesses the similarity between the generated right-hand side (products) (y_{LLM}) and the ground truth (y_{GT}) using a predefined similarity metric, formulated as:

$$1511 \text{reward} = \text{format_reward} + \text{sim}(y_{LLM}, y_{GT})$$

1512	B.8 CONDITIONAL MATERIAL GENERATION (CMG)	
1513	<hr/>	
1514	Task: Conditional Material Generation (CMG)	
1515	Dataset Source	Materials Project (Jain et al., 2013)
1516	Input	Build a material that has O, Te, Tm. Please keep your reasoning as concise as possible. For example <material> A A B B B <sg12></material> where A, B refer to elements and <sg12> denotes the space group for example: <material> Pa In Tc Tc <sg225></material>.
1517	Target Material Composition	Any valid composition made up of the elements O, Te and Tm with a valid space group number e.g. <material> O O Te Tm Tm Te <sg127></material>
1518	Output	To combine O, Te, and Tm, a space group like sg127 (for a 1:1:1 ratio) could work. A possible structure could be: <material> O O Te Tm Tm Te <sg127></material> This fits the space group 127, which is a common space group for spacefilling structures.(Note: Space groups can vary, but this is a reasonable choice for a simple ternary compound.)
1519	Answer	<material> O O Te Tm Tm Te <sg127></material>
1520	<hr/>	
1521		
1522		
1523		
1524		
1525		
1526		
1527		
1528		
1529		
1530		

Table 10: Conditional Material Generation experiment description

1531 This task aims to leverage the scientific knowledge embedded in MiST-trained LLMs to generate
 1532 novel materials from a specified set of elements. The experiment focuses on the model’s ability
 1533 to understand three-dimensional atomic relationships within crystal structures and, based on that
 1534 understanding, produce valid compositions. If the model can perform this task with high accuracy, it
 1535 could significantly enhance the efficiency and cost-effectiveness of the material generation phase in
 1536 the materials discovery process.

1537 **Reward Function Design:** The quality of the generated composition is measured by the metrics:
 1538 validity, precision and novelty. Validity is assessed using SMAXT (Davies et al., 2016) validity, which
 1539 checks whether the generated composition adheres to fundamental chemical rules, such as charge
 1540 neutrality. Precision measures the model’s ability to follow instructions and correctly include the
 1541 specified elements. It is computed using the following equation:

$$1544 \quad \text{Precision} = \frac{|E_{pi} \cap E_{qi}|}{E_{pi}},$$

$$1545 \quad 1546$$

1547 where E_{pi} is the set of elements specified in the i -th prompt and E_{qi} is the corresponding generated
 1548 element (Xia et al., 2025). The novelty of the generated composition was determined based on whether
 1549 the composition was present within the materials project dataset or was previously generated by the
 1550 model. Furthermore, to ensure the model provided its generated solution in a valid format, the reward
 1551 function also checked that the generated composition was enclosed within the <material>...</material>
 1552 tags and that the assigned space group number lies within the valid range of 1 to 230.

1553 Therefore, the reward function used to train the LLM for the conditional material generation task was:

$$1554 \quad R = \alpha_1 \text{Validity} + \alpha_2 \text{Precision} + \alpha_3 \text{Novelty} + \alpha_4 \text{Format},$$

$$1555 \quad 1556$$

1557 where the parameters α_i for $i = 1, \dots, 5$ are scaling factors for each portion of the reward.

1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566
1567

B.9 BINARY COMPOUND STRUCTURE RELAXATION TASK (CRR)

1568
1569
1570**Task: Binary Compound Structure Relaxation Task (CrR)**1571
1572
1573

Dataset Source Materials Project Trajectory (MPtrj) Dataset (Deng, 2023), Materials Project (Jain et al., 2013)

1574
1575
1576
1577
1578
1579
1580
1581

Input Given a perturbed binary compound: formula Ti 1_int Ni 1_int, space_group_symbol 'P1' lattice_parameters a 2.74603000 b 2.94419691 c 2.94419691 alpha 119.99997545 beta 90.00000000 gamma 90.00000000 Zr 1_int 0.00000000 0.00000000 0.00000000 N 1_int 0.50000000 0.66670000 0.33330000 perform multiple steps Structural Relaxation on the given perturbed binary compound and reduce the internal energy. Please document your thought process within <think> </think> tags, and provide the final corrected structure in <answer> </answer> tags

1582
1583
1584

Target Material A more stable structure of the same material with lower inner energy.

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605Output <thinking>The input structure describes ZrN in a hexagonal P-6m2 space group with significant initial distortions. The relaxation process improves stability through three key mechanisms: 1. Symmetry Restoration: The nitrogen position (0.5,0.6667,0.3333) deviated from standard WC-type coordinates (1/3,2/3,1/2). Relaxation shifts N to (0.3333,0.6666,0.5), aligning with proper Wyckoff positions for P-6m2. This restores three-fold rotational symmetry about [001], eliminating unnecessary symmetry-breaking distortions. 2. **Bond Strain Reduction**: Initial Zr-N bonds (2.19 Å) were compressed relative to ionic radius predictions (Zr³⁺ CN6: 0.85 Å + N³⁻ CN6: 1.32 Å = 2.17 Å ideal). However, the metallic character of ZrN allows for shorter bonds. The relaxation increases bond length to 2.34 Å, balancing ionic size mismatch with metallic bonding contraction while reducing internal strain energy. 3. **Lattice Parameter Optimization**: The original a-axis (2.746 Å) expanded to 3.15 Å post-relaxation, better matching hexagonal close-packing requirements for Zr (atomic radius 1.60 Å). The c-axis remained near 2.94 Å, maintaining axial ratio c/a ≈ 0.93 - consistent with known WC-type structures rather than ideal HCP (c/a=1.633). The final structure shows improved prototype alignment with tungsten carbide (space group P-6m2), where both elements occupy high-symmetry positions. However, residual distortion in the pentagonal pyramidal coordination suggests possible metastability compared to the more common rock-salt ZrN polymorph. The increased symmetry and reduced bond strain would lower total energy, though the hexagonal phase may still lie above the cubic phase in energy.</thinking>1606
1607
1608
1609

Answer formula Zr 1_int N 1_int space_group_symbol 'P1' lattice_parameters a 3.15089295 b 3.15093266 c 2.93526192 alpha 90.00000000 beta 90.00000000 gamma 119.99958321 Zr 1_int 0.99999066 0.99998132 0.00000000 N 1_int 0.33330934 0.66661868 0.50000000</answer>

1610

Table 11: Template for reporting RL experiments.

1611
1612
16131614 This task aims to utilize LLMs to perform preliminary relaxation (pre-relaxation) of unstable crystal
1615 structures, aiming to yield more stable structural configurations. This preliminary step is intended
1616 to substantially decrease computational costs and improve efficiency in subsequent high-accuracy
1617 Density Functional Theory (DFT) calculations. DFT calculations, while accurate, are computationally
1618 intensive. By leveraging LLM-generated pre-relaxation adjustments, the experiment seeks to
1619 effectively reduce the quantity of computationally unfavorable structures, thereby streamlining and
accelerating the DFT computational pipeline.

1620 **Format Reward:**
1621
1622 $R_{\text{format}} = \begin{cases} -1, & \text{if } S_{\text{gen}} \text{ is valid Mat2Seq format and have lower inner energy than input structure} \\ -5, & \text{if } S_{\text{gen}} \text{ is valid Mat2Seq format} \\ -10, & \text{otherwise} \end{cases}$
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674 **C BENCHMARKING PROCEDURE**
1675

1676 In this section we elaborate on the methods used to evaluate the models in the multiple ways displayed
1677 in Table 20. Here we give details of how diagnostic metrics have been computed (SCS, CCS), which
1678 evaluate the capabilities in LLMs that are necessary for success on chemical tasks in an RL setting.
1679 Additionally, performances on downstream tasks have been computed using benchmarks derived
1680 from each task (see Appendix above), along with different prompting techniques, that mark the
1681 difference between direct answer, or reasoning answer.
1682

1683 **C.1 LATENT SYMBOLIC AND CHEMICAL KNOWLEDGE**
1684

1685 **C.1.1 SYMBOLIC COMPETENCE SCORE BENCHMARK**
1686

1687 The Symbolic Competence Score benchmark measures the model’s latent capability to read and write
1688 correct chemical symbols. In this benchmark we focus particularly on SMILES, as organic chemistry
1689 spans a majority of our tasks. For this we collected 10000 valid SMILES from PubChem Kim et al.
1690 (2025), such that no overlap exists with the MiST data. A second dataset is created with corrupted
1691 smiles based on these smiles, where corruptions are minimal, however render the smiles invalid. The
1692 corruption procedure is specified in Algorithm 1. The algorithm removes a random subset of key
1693 structural grammar elements (ring/branch brackets and digits) from the SMILES string, producing
1694 broken or ambiguous strings. Corruption rate ρ controls the proportion of removed elements, which
1695 for all our experiments has been set to 0.2.
1696

1697 **Algorithm 1: SMILES Grammar Element Corruption**
1698

1699 **Input:** SMILES string s , corruption rate ρ
1700 **Output:** Corrupted SMILES string s_{corrupt}
1701 Let $\mathcal{G} = \{(,), [,], 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ (grammar elements);
1702 $L \leftarrow \text{length of } s$;
1703 $I \leftarrow \text{indices of } s \text{ where } s_i \in \mathcal{G}$;
1704 **if** $|I| = 0$ **then**
1705 **return** s ;
1706 **end**
1707 $N_{\text{remove}} \leftarrow \max(1, \lfloor \rho \cdot |I| \rfloor)$;
1708 Randomly select $R \subseteq I$ with $|R| = N_{\text{remove}}$;
1709 $s_{\text{corrupt}} \leftarrow \text{empty string}$;
1710 **for** $i \leftarrow 1$ **to** L **do**
1711 **if** $i \notin R$ **then**
1712 Append s_i to s_{corrupt} ;
1713 **end**
1714 **end**
1715 **return** s_{corrupt} ;
1716

1717 Finally, evaluation happens in two stages. First, the log-likelihoods are computed using the model for
1718 the following string, that provides context for the string to look more natural:
1719

1720 The molecule represented with the SMILES
1721 [BEGIN_SMILES] smiles [END_SMILES]
1722

1723 Where `smiles` is replaced by both the correct, and the incorrect SMILES string. The log-likelihoods
1724 corresponding to the `smiles` tokens are isolated by dropping the computed likelihoods associated with
1725 the context shown above. The two corresponding strings are thus
1726

1727 Original SMILES:
1728

1729 The molecule represented with the SMILES
1730 [BEGIN_SMILES] O=C(O)C[C@H](O)C[C@H](O)CCn2c(c(c(c2c1ccc(F)cc1)c3cccc3)C(=O)N
1731 [END_SMILES]
1732

1733 Corrupted SMILES:
1734

1728 The molecule represented with the SMILES
 1729 [BEGIN_SMILES] O=C(O)C[C@H](O)C[C@H](O)CCn2c(c(c(c2c1ccc(F)cc1)c3cccc3)C(=O)N
 1730 [END_SMILES]

1731
 1732 Average loglikelihoods are computed for the whole sample of 10000 SMILES in this manner, and
 1733 SCS score is computed as the Cohen's d effect size between the distributions of loglikelihoods of
 1734 correct smiles, vs that of corrupted smiles.

1735 Note that although the structure of material compositions is different from that of SMILES, the
 1736 corruption method is similar, as key structural elements such as the space group number tag (<sg12>)
 1737 and elemental symbols are replaced with special characters.

1738
 1739 **C.1.2 CHEMICAL COMPETENCE SCORE BENCHMARK**

1740 The Chemical Competence Score (CCS) evaluates a model's latent ability to distinguish between
 1741 chemically accurate and inaccurate factual statements. To construct this benchmark, we selected
 1742 1,000 samples from the test split of the SMolInstruct Molecule Description dataset (Yu et al., 2024b),
 1743 which was never used in all post-training stages. Each sample in the dataset consists of a brief
 1744 description of an organic molecule. For example, one entry describes an acetamide as:

1745 N-[4-(1,3-thiazol-2-ylsulfamoyl)phenyl]acetamide is a
 1746 sulfonamide that is benzenesulfonamide substituted
 1747 by an acetyl amino group at position 4 and a
 1748 1,3-thiazol-2-yl group at the nitrogen atom. It is
 1749 a metabolite of sulfathiazole. It has a role as a
 1750 marine xenobiotic metabolite. It is a sulfonamide, a
 1751 member of acetamides, and a member of 1,3-thiazoles.

1752 For material data, we utilized Robocrystallographer (Ganose & Jain, 2019) to generate 600
 1753 natural text descriptions for crystal structures from the Material Project (Jain et al., 2013). Here is an
 1754 example entry:

1755 AlN is Wurtzite structured and crystallizes in the
 1756 hexagonal P6_3mc space group. Al(1) is bonded to
 1757 four equivalent N(1) atoms to form corner-sharing
 1758 AlN₄ tetrahedra. There are three shorter (1.90 Å)
 1759 and one longer (1.91 Å) Al(1)-N(1) bond length. N(1)
 1760 is bonded to four equivalent Al(1) atoms to form
 1761 corner-sharing NAl₄ tetrahedra.

1762 To create a contrastive benchmark, we generated an incorrect version for each entry by replacing one
 1763 sentence in the original description with a sentence from a different one, while keeping the target
 1764 molecule/crystal unchanged. Here is an example of an incorrect version of the above acetamide
 1765 example with the edited section highlighted:

1766 N-[4-(1,3-thiazol-2-ylsulfamoyl)phenyl]acetamide **is a**
 1767 **tricyclic triterpenoid of the isomalabaricane group.**
 1768 It is a metabolite of sulfathiazole. It has a role as
 1769 a marine xenobiotic metabolite. It is a sulfonamide,
 1770 a member of acetamides and a member of 1,3-thiazoles.

1771
 1772 **C.2 TASK BENCHMARKS**

1773 The benchmarks have been obtained by selecting a subset of the datasets defined in Appendix B, for
 1774 each of the tasks.

1775
 1776 **C.3 INFERENCE TECHNIQUES**

1777 We observed that models' full text generation often overflows the available context window, without
 1778 providing any final answer within <answer> tags, thus preventing its correct evaluation. To overcome

1782

1783

Table 12: Evaluation methods for each reaction task

1784

1785

Task	Evaluation Method
Reaction Prediction (RxP)	Exact match with the groundtruth product
Reaction Naming (RxN)	Top-1 classification accuracy over the 10 reaction classes.
Reaction Replacement (RxR)	Multiple-choice accuracy (selecting the one correct reaction out of four).
Reaction Inversion (RxI)	Multiple-choice accuracy (selecting the one correct reaction out of four).
Reaction True/False (RxTF)	Binary classification accuracy (correct vs. incorrect reaction).

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

this, upon failure to generate an `<answer>` tag, we directly append the `<answer>` tag and retry the generation, biasing the model towards generating an answer at that point. Pseudo-code for this is provided in Algorithm 2.

1797

1798

1799

1800

An extension of such an injection technique is that models can be biased from the beginning of the completion towards directly providing an answer, thereby allowing us to evaluate the effect of the intermediate text inside `<think>` tags. In Table 20 in the main manuscript, direct answer results are reported outside of the parentheses, while reasoning results are in parentheses.

1801

1802

Algorithm 2: Answer tag injection `<answer>` - Think and answer procedure

1803

Input :`prompt`, `model_sampling_params`, `model`, `nbr_max_retries`

1804

Output :A completion containing `<answer>...</answer>`

1805

result \leftarrow `llm.generate(prompt, sampling_params);`

1806

completion \leftarrow result.outputs[0].text;

1807

for $i \leftarrow 1$ **to** `max_retries` **do**

1808

 // Append the '`<answer>`' token to coax a proper tag

1809

 new_prompt \leftarrow prompt ++ competition ++ "`<answer>`";

1810

 result \leftarrow `llm.generate(new_prompt, sampling_params);`

1811

 complete_completion \leftarrow result.outputs[0].text;

1812

if `HasAnswer(complete_completion)` **then**

1813

return complete_completion;

1814

return complete_completion; // fallback if still no tag

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836
1837

D EXPERIMENTAL SETTINGS

1838
1839

D.1 MiST: MID-STAGE SCIENTIFIC TRAINING

1840
1841
1842

Our MiST model is based on the Qwen-2.5-3B model. We continue the pre-training and perform SFT thereafter on a chemically enriched corpus spanning a diversity of sources, targeting the two prerequisites we proposed in the main manuscript.

1843
1844

The following configuration of hyperparameters was used for training:

1845

Table 13: MiST Pretraining Hyperparameters

Parameter	Value
Model Architecture	Qwen-2.5-3B
Epochs	4 (~90,000 steps)
Batch Size	32
Max/Min Learning Rate	$1 \times 10^{-5} / 1 \times 10^{-6}$
LR Warmup Steps	1,000
LR Decay Steps	1,000
Optimizer	AdamW
Loss Function	Cross-Entropy
Hardware	32 × H100 GPUs
Total GPU Hours	640

1858

After this stage, the model is further trained with SFT on instruction and Q&A data, as well as reasoning traces obtained from a stronger reasoning LLM, on more chemistry-relevant tasks; see the following section for more details. The following configuration was used:

1862

1863

Table 14: MiST SFT Hyperparameters

Parameter	Value
Model Architecture	Qwen-3B
Epochs	3 (~32,000 steps)
Batch Size	32
Learning Rate	1×10^{-6}
Optimizer	AdamW
Loss Function	Cross-Entropy
Hardware	32 × H100 GPUs

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

D.2 REINFORCEMENT LEARNING EXPERIMENTS

1891

1892

1893

The Open-R1 repository from Hugging Face (<https://github.com/huggingface/open-r1>) was forked and modified with additional features/optimizations for the GRPO experiments. Each training was run for 12 hours on four nodes (with four NVIDIA GH200 120GB GPUs), summing to 16 GPUs and 192 GPU-hours per training. The best hyperparameters are summarized in Table 15. A completion length of 8192 was used to let the model output long reasoning thoughts. The best hyperparameters and rewards were optimized using a total of 30k GPU-hours with variations in the experimental setups. The list of used rewards is described in Section D.2.1.

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

parameter	value
per_device_train_batch_size	1
gradient_accumulation_steps	8
learning_rate	2e-6
lr_scheduler_type	cosine
warmup_ratio	0.03
beta	0.04
max_prompt_length	384
max_completion_length	8192
num_generations	8
use_vllm	true
vllm_max_model_len	8192

1914

Table 15: Optimized hyperparameters used for the GRPO training experiments.

1915

1916

1917

1918

1919

1920

1921

1922

1923

D.2.1 REWARDS

1924

1925

The rewards designed for our GRPO experiments are grouped into two main categories:

1926

1927

1928

1929

- Format reward: the goal is to ensure that the trained model uses the appropriate format with reasoning (between `<think>` tags) and answer (between `<answer>` tags).
- Accuracy reward: the goal is to verify the answer of the model for the given task.

1930

1931

1932

1933

1934

1935

1936

1937

1938

Accuracy reward: For the different tasks, different accuracy rewards are implemented in a continuous manner if possible. For SMILES-based tasks, the Tanimoto similarity score is generally used. However, for MCQA-based tasks, the rewards are usually discrete since the answers are correct or wrong. These rewards typically range from 0 to 1 (perfect answer).

1939

1940

1941

1942

1943

Accuracy percentage reward: For each task, we also implement a discrete accuracy percentage reward to foster perfect answers and to log the training accuracy of the models. This reward is 0 if the answer is wrong and 1 if the answer is entirely correct.

Continuous format reward: A continuous format reward has been implemented with the structure described in Algorithm 3. The idea behind this reward is to output a score between -1 (very bad format)

1944 and 1 (perfect format) with continuous steps to help the model with the learning of the expected format.
 1945

Algorithm 3: Incremental Formatting Reward Calculation

1947 **Input** :Raw model output $o \in \text{String}$
 1948 **Output** :Formatting reward $r \in [-1, 1]$

1949 $r \leftarrow 0.0$ // Initialize reward
 1950 $T \leftarrow \{\langle\text{think}\rangle, \langle/\text{think}\rangle, \langle\text{answer}\rangle, \langle/\text{answer}\rangle\}$
 1951 // Check each tag appears exactly once
 1952 **foreach** tag $\in T$ **do**
 1953 | **if** COUNT(o , tag) = 1 **then** $r \leftarrow r + 0.05$
 1954 | **else** $r \leftarrow r - 0.05$
 1955 **end**
 1956 // Check correct start and end tags
 1957 **if** STARTS_WITH(o , $\langle\text{think}\rangle$) **then** $r \leftarrow r + 0.05$
 1958 **else** $r \leftarrow r - 0.05$
 1959 **if** ENDS_WITH(o , $\langle/\text{answer}\rangle$) **then** $r \leftarrow r + 0.05$
 1960 **else** $r \leftarrow r - 0.05$
 1961 // Check think-answer boundary
 1962 **if** COUNT(o , $\langle/\text{think}\rangle \backslash n \langle\text{answer}\rangle$) = 1 **then** $r \leftarrow r + 0.1$
 1963 **else** $r \leftarrow r - 0.1$
 1964 // Check answer block extraction
 1965 $m_1 \leftarrow \text{REGEX_MATCH}(\langle\text{answer}\rangle(.*)\langle/\text{answer}\rangle, o)$
 1966 **if** m_1 = None **then**
 1967 | $r \leftarrow r - 0.2$
 1968 **else if** NUM_GROUPS(m_1) $\neq 1$ **then**
 1969 | $r \leftarrow r - 0.05$
 1970 **else**
 1971 | $r \leftarrow r + 0.2$
 1972 **end**
 1973 // Check whole think \n answer pattern
 1974 $m_2 \leftarrow \text{REGEX_MATCH}(\langle\text{think}\rangle(.*)\langle/\text{think}\rangle \backslash n \langle\text{answer}\rangle(.*)\langle/\text{answer}\rangle, o)$
 1975 **if** m_2 = None **then**
 1976 | $r \leftarrow r - 0.4$
 1977 **else if** NUM_GROUPS(m_2) $\neq 2$ **then**
 1978 | $r \leftarrow r - 0.1$
 1979 **else**
 1980 | $r \leftarrow r + 0.4$
 1981 **end**
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

E DATA

E.1 DATA SOURCES AND PROCESSING

E.1.1 FINEWEB-EDU

The FineWeb-Edu can be found on Hugging Face (<https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu>) (Penedo et al., 2024). The subsets "CC-MAIN-2013-20" to "CC-MAIN-2024-10" were downloaded for a total of ~ 6 TB, which represents roughly 1.3T tokens and 1.26B individual texts. Based on the representative subset "sample-10BT" (also downloaded), the text sources were computed by taking the base URL (from the dataset column "url"), then these sources were sorted from the most prevalent to the least. We manually labeled the most prevalent sources as "chemistry", "non-chemistry", or "undetermined". The goal was to label a source as "chemistry" only if nearly all the texts from that source are about chemistry. On the other hand, a source is classified as "non-chemistry" only if there is no mention of chemistry in all the texts from that source. When a source contains a mix, like a school website with chemistry texts and texts for other fields, the label used is "undetermined", and the source is not used. After this manual labeling, the texts from "sample-10BT" were classified based on the labeled sources. It led to a ground truth of approximately 10,000 "chemistry" texts and 50,000 "non-chemistry" texts (out of the ~ 10 M texts found in "sample-10BT"). Based on this ground truth, a custom non-ML classifier was built using the word frequencies in "chemistry" and "non-chemistry" texts. The texts were lemmatized before building word frequency vectors for the two classes using a simple processing script that replaces any non-standard character with a space, before splitting the strings by the spaces. A custom vocabulary was also built to store these lemmatized texts in a tokenized manner. Other lemmatization methods (such as Spacy or NLTK) were also tried, but did not lead to better results and were extremely expensive to use on the full FineWeb dataset (> 6 TB). After building the vocabulary and the word frequency vectors for the two classes, the formula below was applied to each FineWeb text to create an associated "chemistry score" (ranging from 0 to "infinity"). The frequencies of the lemma k in chemistry texts and non-chemistry texts are denoted f_k^c and f_k^n , respectively. The text chemistry score (TCS) is computed using the following equation:

$$TCS(text) := \frac{1}{N_{lemmas}} \sum_{\substack{k=\text{lemma} \\ \text{in text}}} w_k \quad \text{with} \quad w_k = \begin{cases} f_k^c / f_k^n, & \text{if } f_k^c / f_k^n > 1 \\ 0, & \text{otherwise} \end{cases} \quad (4)$$

This labeling strategy was applied to the entire FineWeb-Edu corpus, and the texts with $TCS > 4$ were retained, yielding a pretraining set of 1.4 billion tokens of high-quality chemistry-labeled texts. The threshold $TCS > 4$ was decided based on the PR curve plot shown in Figure 7. This threshold allows for high precision, and the quantity of texts retrieved was sufficient for our pretraining pipeline. Additional plots with the percentage of chemistry texts by threshold and the cumulative number of chemistry token counts by threshold can be observed in Figures 8 and 9, respectively. Some chemistry text examples (with their associated TCS scores) are shown in Figure 10.

E.1.2 ACADEMIC PAPER EXTRACTION

An overview of our preprocessing pipeline is depicted as follows. Initially, we leveraged Nougat (Blecher et al., 2023) and GROBID (Meuschke et al., 2023) libraries for converting PDF documents into textual formats. Nougat demonstrated superior performance in accurately transforming complex structures such as tables, formulae, bibliographic references, and figure captions into LaTeX-formatted text. Conversely, GROBID excelled at extracting plain textual content from PDFs. The output of the authors were merged with explicit tags assigned to each structural element: tables were encapsulated with [START_TABLE] and [END_TABLE], formulas marked by [START_FORMULA] and [END_FORMULA], bibliographic references enclosed within [START_BIBREF] and [END_BIBREF], and figure descriptions bracketed by [START FIGURE] and [END FIGURE]. Subsequently, this structured text was processed through the Chemical Data Extractor 2 (Swain & Cole, 2016), identifying candidate molecule entities along with their positional context within the text. To ensure high precision in entity identification, candidates were further validated using a custom-trained sentence transformer model, designed specifically to discern genuine molecular entities from contextual information. Validated molecular entities were then translated from their IUPAC nomenclature to SMILES notation using py2opsin, a Python interface for OPSIN

Figure 7: Precision-recall curve of the estimated retrieved chemistry texts based on the manually labeled ground truth. The different *TCS* thresholds are shown in red dots on the PR curve.

Figure 8: Estimated percentage of chemistry texts by TCS threshold.

2088 (Lowe et al., 2011). In cases where OPSIN failed to yield a definitive conversion, entities were
2089 cross-referenced against PubChem (Kim et al., 2025). Ultimately, during the pretraining phase
2090 alone, our model encountered approximately 800,000 unique chemical compounds along with their
2091 corresponding SMILES representations.

2093 E.1.3 PUBCHEM

2095 The first three million compounds from the PubChem database Kim et al. (2025) (CID from 1 to
2096 3,000,000) were dumped using the PUG REST API with batched requests in October 2024. Each
2097 record contains these columns (among others): CanonicalSMILES, IsomericSMILES, IUPACName,
2098 and InChI. Since the molecule canonicalization algorithm used in the PubChem database is not the
2099 same as the one used by RDKit, all the compounds were re-canonicalized. The canonical SMILES
2100 consistency was also ensured for each compound by computing four canonical SMILES for each
2101 molecule:

- 2102 • CanonicalSMILES → canonicalized using RDKit.
- 2103 • IsomericSMILES → canonicalized using RDKit.
- 2104 • IUPACName → SMILES using py2opsin and then canonicalized using RDKit.
- 2105 • InChI → canonical SMILES using RDKit.

Figure 9: Estimated cumulative chemistry token count by TCS threshold.

2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144

```
score=5.18 | chemistry_id=733904
HTML by Rhodium
The methods available for the methylation of aromatic o-dihydroxy compounds to the methyleneoxy compounds are unsatisfactory. The reaction with methylene sulphate has been described, and was first prepared by Delapine1 by the action of paraformaldehyde on fuming sulphuric acid. It is Reaction with o-Dihydric Phenols
Catechol reacts readily with methylene sulphate in 50% acetone solution in presence of sodium hydroxide to give catechol methylene ether. To stirred molten fuming sulphuric acid containing 50% of sulphur trioxide (500 g), finely powdered paraformaldehyde (100 g) is added, The methylation of catechol in benzene containing potassium carbonate, or of its disodium salt in acetone. To a mixture of catechol (Protocatechic aldehyde (1.4 g) in alcohol (10 mL) was treated with potassium hydroxide (4.9 g) in water (10 mL) and methylene sulphate
score=5.29 | chemistry_id=724531
An organic acid is a carbon-based compound with acidic properties, while an organic base is a carbon-based compound with basic properties. A typical acid is one that is a proton donor, while a base is usually a proton acceptor. Thus, by viewing it in this light, the acid-base relationship is reduced to a simple chemical reaction between acids and bases. pH = -log([H+]) However, since most organic acids are weak acids, then Ka and pKa are values that are also considered in acid-base calculations: Ka = [H+][A-]/[HA] While pKa = -log(Ka) pH and pKa are also related in the following manner: pH = pKa + log([A-]/[HA]) Thus, understanding the definition of an organic acid and base as well as the relationships between these two entities is crucial
score=2.10 | chemistry_id=8121181
Analyzing the effects of varying hydrogen peroxide (H2O2) concentrations on the volume of its drop Jonah Jenime IB Chemistry SL is From the books, "Hydrogen Peroxide: Medical Miracle" by Douglass and "Applications of Hydrogen peroxide and derivatives" by Jones As a molecule, hydrogen peroxide has a double bent structure and is also a polar covalent particle. Due to these properties, hydrogen peroxide is soluble in water. To obtain different concentrations, 35% hydrogen peroxide will be diluted with varying amounts of distilled water. Each different concentration will also be observed by analyzing their relative diameter and height sizes on a flat surface table using a micrometer. Generally, the stronger the intermolecular forces are between molecules, the more they are attracted to one another resulting to a stronger bond. score=2.10 | chemistry_id=8114130
DNA polymerase is an enzyme which makes DNA molecules from its nucleotide building blocks. DNA polymerases are essential for DNA replication. DNA polymerases also play key roles in other processes within cells, including DNA repair, genetic recombination, reverse transcription, and RNA synthesis. score=2.10 | chemistry_id=8114213
Brief History and Some Definitions
Liquid chromatography (LC) was defined in the early 1900s by the work of the Russian botanist, Mikhail S. Tswett. His pioneering studies focused on the separation of plant pigments. Tswett filled an open glass column with particles. Two specific materials that he found useful were powdered chalk [calcium carbonate] and asphaltum. Tswett coined the name chromatography [from the Greek words chroma, meaning color, and graph, meaning writing-literally, color writing] to describe his work. Figure A: Tswett's Experiment
Liquid Chromatography (LC) Techniques
Liquid chromatography can be performed using planar [Techniques 1 and 2] or column techniques [Technique 3]. Column liquid chromatography is more versatile than planar chromatography. In column chromatography, the sample is applied to the top of a column and then eluted with a solvent. The sample moves down the column and then separates into different components. The components are then detected and analyzed. score=0.60 | chemistry_id=864289
Should You Be Taking Zinc Tablets?
Zinc - a metallic element - occurs naturally in dairy foods, nuts, beans, red meat and many types of seafood. It plays an important role in growth and development. Symptoms Of Zinc Deficiency
Maintaining a healthy level of zinc is important for your immune system and your ability to heal, as well as sustaining a healthy thyroid and hormone balance. Zinc isn't a mineral people think too closely about. It simply does its job and isn't missed until a person is faced with a zinc deficiency.
```

Figure 10: Examples of labeled chemistry texts with the associated TCS scores.

2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Then the four newly generated canonical SMILES were compared, and if a mismatch is found, the compound is discarded. This method filtered out approximately 40% of the compounds, and the duplicated canonical SMILES were also discarded. For the remaining compounds, four "SMILES variants" were computed using RDKit based on the canonical SMILES to have four non-canonical

Figure 11: Overview of the preprocessing pipeline

2160 SMILES in each record. At the end of this processing script, an approximate of 1,800,000 compounds
 2161 were kept and ready to be used. The dataset was then split in the following manner: the first million
 2162 compounds (CID from 1 to 1,000,000) were used for pretraining, the second million compounds
 2163 (CID from 1,000,001 to 2,000,000) were used for GRPO training, and the third million compounds
 2164 (CID from 2,000,001 to 3,000,000) were used as the test split for benchmarking. Each split contains
 2165 ~600,000 valid compounds. Multiple derived datasets were also generated for the different chemical
 2166 tasks used with GRPO training (explained in Section E.2 below).

2167

2168 **E.2 CHEMICAL TASKS DATA SOURCES**

2169

2170 All MCQA-derived tasks for GRPO training are built on the USPTO Reaction 1M dataset, and the
 2171 I2S dataset was built using the PubChem dataset from Section E.1.3:

2172

2173 **Reaction Prediction (RxP)**

2174

- The USPTO-480K dataset (Coley et al., 2019) consists of approximately 480K organic reactions, divided into training and test splits.
- We retained only reactions with a single product, resulting in roughly 400K training samples and 38K test samples.
- The first 10K reactions from the training set are used to generate reasoning traces.
- An additional 50K reactions, randomly selected from the remaining training data, are used for RLVF.
- A set of 500 reactions, randomly sampled from the test set, is used for benchmarking.

2182

2183 **IUPAC to SMILES (I2S)**

2184

- The processed PubChem compounds (CID from 1,000,001 to 2,000,000) from the Section E.1.3 are used as the base data.
- The canonical SMILES and the IUPAC were directly used from the dataset.

2185

2186 **Reaction Naming (RxN)**

2187

- Start from the full USPTO 1M reaction set.
- Use Rxn-Insight’s class generation to detect the reaction name.
- Filter to 600 000 samples, evenly distributing across the 10 classes.

2188

2189 **Reaction Replacement (RxR)**

2190

- Duplicate each USPTO 1M reaction four times.
- For three copies, randomly select one molecule (reactant or reagent) to replace.
- Draw a batch of 50 candidate molecules from Enamine50k and compute Tanimoto similarity.
- Swap in the most similar molecule as the replacement.

2191

2192 **Reaction Inversion (RxI)**

2193

- Take four instances of reactions in USPTO 1M, and invert one reagent with a product for 3 of them.
- The LLM is required to predict which one of the four reactions is still correct.

2194

2195 **Reaction True/False (RxTF)**

2196

- Derived from the Reaction Replacement dataset.
- Present a single reaction (original or corrupted) and ask the model to judge its chemical correctness.

2197

2198 **E.3 MATERIAL TASKS DATA SOURCES**

2199

2200 **Chemical Formula Balancing Task (CeB)**

2201

- A total of 1500 chemical formulas were selected from the Perovskite Dataset (Jacobsson et al., 2022) to form the data set, and the data set was then enhanced by randomly masking individual stoichiometric coefficients within products or entire product compounds using [MASK].

2214

Conditional Material Generation (CMG)

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

- We selected 1000 samples from Materials Project (Jain et al., 2013) and extracted the constituent elements from each sample to create our dataset. For example, the compound TeO_2 was decomposed into its constituent elements Te and O to form our training set.,

Binary Compound Structure Relaxation Task (CrR)

- We selected 2,000 binary compound crystal structures from the Materials Project (Jain et al., 2013) across the following categories: Intermetallics, Semiconductors, Oxides, Sulfides, Nitrides, Carbides, Hydrides, Halides, Borides, Silicides, Phosphides, Arsenides, Tellurides, and Selenides. And we applied perturbations to alter the positions of certain atoms and modify the cell parameters of these structures to form our training dataset.

2268
2269

E.4 RESULTING DATA MIXTURE

2270
2271
2272
2273

The pretraining dataset was post-processed using an annotation pipeline to detect each molecule in the texts. For each molecule, the tags "[START_MOL]" and "[END_MOL]" were added to enclose it. Similarly, the SMILES were computed for each molecule and added between "[START_SMILES]" and "[END_SMILES]" tags after the molecule.

2274

2275

Table 16: MiST Pretraining Dataset Composition

2276
2277

Data Source	Tokens	Proportion
ChemRxiv + S2ORC	1.2B	41.37%
FineWeb (Q4–6)	1.4B	48.27%
PubChem Synthetic	120M	4.14%
Synthetic Reactions	100M	3.44%
CommonCrawl Replay	80M	2.75%
Total	2.9B	100%

2283

2284
2285

Supervised fine-tuning was performed on the MiST - Qwen-3B model, primarily using chemistry-specific reasoning and instruction datasets, as follows:

2286

2287

2288

Table 17: MiST SFT Dataset Composition

2289

Data Source	Contents/Size
DeepSeek Rxn Traces	~7,000 samples
SmolInstruct	I2S, S2I, captioning, gen.
MMLU	350 general + 300 chemistry samples
Chain-of-Thought (CoT)	~27,000 samples

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322 F COMPUTE RESOURCES
23232324 As described in Section D.2 for the GRPO experiments, each training was run for 12 hours on four
2325 nodes (with 4 NVIDIA GH200 120GB GPUs or 8 AMD MI250x 128GB GPUs), summing to 16
2326 GPUs and 192 GPU-hours per training. The best hyperparameters and rewards were optimized using
2327 a total of 30k GPU-hours with variations in the experimental setups. An additional 10k GPU-hours
2328 were used for the final runs, summing to a total of 40k GPU-hours.
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

2376 **G ADDITIONAL EXPERIMENTAL RESULTS**
23772378 **G.1 MiST**
23792380 We conducted other experiments to evaluate our MiST model’s performance on other tasks and in
2381 comparison with strong baselines from the literature. In particular, we compare against NatureLM
2382 Xia et al. (2025) and other general-purpose LLMS, on the task of SMILES to IUPAC and IUPAC to
2383 SMILES conversion. The results shown below put our MiST model (3B) on par with NatureLM 8B,
2384 while approaching the 8x7B MoE variant on IUPAC-to-SMILES conversion.
23852386 Table 18: Accuracy for IUPAC-to-SMILES and SMILES-to-IUPAC on benchmark datasets. The
2387 best value in each column is shown in bold.

2388 Model	2389 IUPAC-to-SMILES	2390 SMILES-to-IUPAC
2391 STOUT	0.735	0.565
2392 GPT-4	0.033	0.0
2393 Claude 3 Opus	0.177	0.0
2394 LlaSMol_Mistral	0.701	0.29
2395 NatureLM (1B)	0.476	0.284
NatureLM (8B)	0.679	0.517
<i>Qwen+MiST+SFT</i>	0.682	0.445

2396 **G.2 RL**
23972398 From Table 19, it can be observed that the base model, Qwen-2.5 3B, possesses a degree of domain
2399 knowledge in materials science sufficient to generate some valid compositions. However, the
2400 relatively low scores suggest that the model is primarily retrieving compositions seen during training
2401 or generating valid combinations through rough heuristics. This is further supported by its low SCS,
2402 which indicates a limited understanding of compositions at the symbolic level.
24032404 The introduction of MiST leads to a significant improvement in SCS, as MiST specifically targets
2405 symbolic competence during training. However, since the model was not trained directly on materials
2406 science data and has a relatively small parameter size, it likely replaced some of its prior knowledge
2407 with representations more aligned with SMILES syntax. This shift contributes to the lower validity
2408 and precision scores, reflecting a reduced ability to follow instructions in non-SMILES-based tasks.
2409 As a result, the model often fails to generate outputs in the required format, especially when it
2410 encounters ambiguous prompts or reaches its maximum output length.
24112412 Fine-tuning the MiST model using SFT yields improvements in both SCS and instruction-following
2413 ability, as evidenced by higher validity and precision scores. These gains suggest that the model
2414 is able to recover some materials science knowledge while refining its symbolic understanding.
2415 However, the low novelty score indicates limited generalization, implying that the model is overfitting
2416 to training data and struggles to produce truly new compositions.
24172418 In comparison, SFT applied directly to the base Qwen-2.5 3B model results in high validity and
2419 precision but retains a poor SCS score. This contrast highlights that symbolic competence is primarily
2420 achieved through MiST, not SFT. Additionally, the low novelty score again suggests overfitting, as
2421 the model continues to rely on memorized examples rather than generating original compositions.
24222423 When combining MiST, SFT, and RL, there is a substantial improvement in novelty, indicating that
2424 the model is better able to utilize its symbolic understanding and domain knowledge to generate rather
2425 than recall compositions. This suggests that while base models have weak symbolic competence,
2426 MiST significantly enhances this capability. Though MiST initially reduces instruction-following
2427 ability due to longer and more complex outputs, SFT helps regain this ability for specific tasks.
2428 Ultimately, RL fine-tuning balances symbolic competence with domain-specific generation, enabling
2429 the model to produce valid, precise, and novel compositions using the specified elements.2430 In contrast to the findings observed in the Conditional Material Generation task, we did not detect any
2431 notable improvement in CCS after introducing MiST to the Binary Crystal Structure Relaxation task.
2432 This discrepancy arises because the Binary Crystal Structure Relaxation task specifically emphasizes

2430

2431

Table 19: CMG = Conditional Material Generation.

2432

2433

Model	SCS ↑	CCS ↑	Validity ↑	Precision ↑	Novelty ↑
Qwen-2.5 3B	0.122	0.828	58.6	68	74.8
+MiST	0.989	0.795	1.2	0.67	84.6
+SFT	1.142	0.785	34.8	38.5	49.2
+RL	0.893	0.777	73.8	97.1	91.3
Ablations					
no MiST + SFT	0.199	0.824	87.4	93.9	60.2

2439

2440

Table 20: CrR = Binary crystal stucture relaxation, CeB = Chemical formula balancing.

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

structural relaxation, a domain not directly targeted by MiST training. Consequently, MiST did not enhance the model’s chemical competence related to structural relaxation.

2454

However, subsequent fine-tuning via SFT successfully incorporated relevant domain knowledge into the model, resulting in substantial performance improvements on the task. This step notably increased the model’s capability to accurately execute structural relaxations, which was previously limited. Moreover, further refinement through reinforcement learning (RL) effectively enhanced the model’s success rate, demonstrating that the integration of RL optimally balances domain-specific expertise with task-oriented performance improvements.

2455

2456

2457

2458

2459

2460

2461

2462

We further conducted an additional analysis across all 200 test set datapoints, and observed that the model performed comparably across the five crystal systems included in the test set.

2463

2464

2465

2466

2467

Table 21: Summary of Crystal Systems for the MiST + SFT + RL (CrR) Model. This table presents a detailed breakdown of the performance (accuracy) of the MiST + SFT + RL (CrR) task, as shown in the Table, evaluated separately across different crystal systems.

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

We illustrate the capability of our Mist + SFT + RL model to reduce the inner energy of a perturbed, unstable ZnSe-P4_nmm crystal structure within 10 steps, where the stable state of the ZnSe-P4_nmm crystal has an inner energy of -2.94069766998291.

2481

2482

2483

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518 Figure 12: Graph demonstrating the relaxation of the ZnSe-P4_nmm crystal structure with the Mist +
2519 SFT + RL model
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

2538 H MODEL ANALYSIS

2542 Here, we provide some analysis of the models' behavior. For the following example reaction:

Question

Reason and predict the correct product in SMILES notation from the following reaction

CC(C)(C)C(=O)c1oc2nc(-c3ccc(Cl)cc3Cl)c(-c3ccc(Cl)cc3)cc2c1N.CCBr

Correct answer

$$\text{CCNc1c}(\text{C}(\text{=O})\text{C}(\text{C})(\text{C})\text{C})\text{oc2nc}(-\text{c3ccc}(\text{Cl})\text{cc3Cl})\text{c}(-\text{c3ccc}(\text{Cl})\text{cc3})\text{cc12}$$

After RL training, although the output format is correct, the base model Qwen2.5-3B (+RL) fails to predict the correct product of this reaction, with simple reasoning and incorrect reaction type (esterification reaction). On the other hand, the variant with SFT exhibits a more detailed reasoning that delves into the functional groups of the precursors. However, it hallucinates the presence of sodium hydride and the hydroxyl group, which are not present in the input reagents, leading to an incorrect result. This could be attributed to the lack of SMILES symbolic understanding. Lastly, the model that underwent the full pipeline (MiST + SFT + RL) successfully reasons the correct product with reasonable description of the reactants' structure and mechanism, showing better symbolic understanding and Chemical knowledge.

The full responses of these models are given below:

Owen2.5-3B + RL [Wrong]

<think> The given reactants are a carboxylic acid and a bromoalkane. The reaction between these two compounds is an esterification reaction, where the carboxylic acid reacts with the alkyl halide to form an ester and a halide. The product of this reaction is an ester with the general formula $R-COOR'$. In this case, the product is a carboxylic acid ester with the general formula $R-COOR'$, where R is the alkyl group and R' is the alkyl group from the bromoalkane.

2592
2593**Qwen2.5-3B + SFT + RL [Wrong]**2594
2595
2596
2597
2598
2599
2600
2601
2602

<think> The reaction involves the alkylation of a phenolic oxygen in the first compound using ethyl bromide CCBBr (CCBr) under basic conditions. Here's the step-by-step mechanism:

1. Deprotonation**: Sodium hydride $[H^-].[Na^+]([Na^+] [H^-])$ deprotonates the hydroxyl group ($-OH [OH^-]$) on the benzene $c1ccccc1$ ring of the first compound (CC(C)(C)C(=O)c1cc2nc(-c3ccc(Cl)cc3Cl)c(-c3ccc(Cl)cc3)cc2c1N), generating a phenoxide $[O^-]c1ccccc1$ ion. The phenoxide $[O^-]c1ccccc1$ is a strong nucleophile.

2. Nucleophilic Substitution(SN2)**: The phenoxide $[O^-]c1ccccc1$ ion attacks the electrophilic carbon $[C]$ in ethyl bromide CCBBr (CCBr). The bromide $[Br^-]$ ion (Br) is displaced, forming a new ether CCOCC bond (C-O-C) between the benzene $c1ccccc1$ ring and the ethyl group.

3. Product Formation**: The final product retains the original fused aromatic system of the first compound, with the hydroxyl group replaced by an ether CCOCC-linked ethyl group. The tert-butyl carbonyl (CC(C)(C)C(=O)), oxazole $c1cocl$ ring ($oc2...$), and amine group (N) remain unchanged. Product SMILES**:

CCOCc1ccc(-c2cc(-c3cc(Cl)cc(Cl)c3)c(N)c(=O)c2OC)cc1
 Explanation**: CCOCC Ethyl ether CCOCC group formed from ethyl bromide CCBBr. $c1ccc(...cc1)$ **: Benzene $c1ccccc1$ ring from the first compound. $c2cc(...c(N)...$ **: Fused oxazole $c1cocl$ ring (positions 1-6) with substituents retained. $c3cc(Cl)cc(Cl)c3$ **: Chlorinated benzene substituent from the first compound. N Amine group preserved in the fused ring. OC Oxazole $c1cocl$ ring (positions 2-5) with a hydroxyl group replaced by the ether CCOCC linkage.

This reaction exemplifies a Williamson ether synthesis, where a phenoxide $[O^-]c1ccccc1$ displaces a halide in the presence of a strong base to form an ether CCOCC. </think>

<answer>

CCOCc1ccc(-c2cc(-c3cc(Cl)cc(Cl)c3)c(N)c(=O)c2OC)cc1

</answer>

2637
2638
2639
2640
2641
2642
2643
2644
2645

2646
2647**Qwen2.5-3B + MiST + SFT + RL [Correct]**2648
2649
2650
2651
2652
2653
2654
26552656 <think> The reaction involves the alkylation of a primary
2657 amine group in the first molecule by bromoethane CCB_r(
2658 CCB_r). Here's the step-by-step mechanism:

2659 1. Reactant Analysis**:

2660 First molecule**: A bicyclic compound with a tert-butyl
2661 group(CC(C)(C)C(=O)), a furan clccoc1-like ring(
2662 clcc2nc(...cc2c1N), and two chlorobenzene Clc1cccc1
2663 substituents(c3ccc(Cl)cc3 and c4ccc(Cl)cc4).2664 Second molecule**: Bromoethane CCB_r(CCB_r), where the
2665 bromine [Br] is a good leaving group.

2666 2. Mechanism**:

2667 The lone pair on the primary amine nitrogen [N](N [N]) in
2668 the first molecule acts as a nucleophile. This nitrogen
2669 [N] undergoes an SN₂ reaction** with bromoethane CCB_r. The
2670 amine attacks the electrophilic carbon [C] adjacent to the
2671 bromine [Br] in bromoethane CCB_r, displacing the bromide
2672 [Br⁻] ion(Br). The result is the formation of a secondary
2673 amine** in the first molecule, where the nitrogen [N] is
2674 now bonded to an ethyl group(CC).

2675 3. Product Structure**:

2676 The nitrogen [N] in the furan clccoc1-like ring is replaced
2677 by a CH₂CH₃ group, making it NCC** in the product. All
2678 other substituents(tert-butyl, chlorobenzenes [C-]#CCl,
2679 and furan clccoc1 ring) remain unchanged.

2680 Final Answer**:

2681 The product SMILES is

2682 CC(C)(C)C(=O)clcc2nc(-c3ccc(Cl)cc3Cl)c(-c3ccc(Cl)cc3)cc2c1NCC`.

2683 The reaction selectively alkylates the primary amine group
2684 in the bicyclic compound with bromoethane CCB_r, converting
2685 it to a secondary amine while retaining the rest of the
2686 structure. </think>

2687 <answer>

2688 CC(C)(C)C(=O)clcc2nc(-c3ccc(Cl)cc3Cl)c(-c3ccc(Cl)cc3)cc2c1NCC

2689 </answer>

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700 **I REPRODUCIBILITY**

2701

2702 All the code used to produce the results presented in this work can be found under <https://figshare.com/s/7afa3c106d6d874e4094>. The continued pretraining and supervised fine-
 2703 tuning, as described in Section 4 and Appendix D, have been conducted using the nanotron library
 2704 (see <https://github.com/huggingface/nanotron>). The configuration files and datasets
 2705 used are released at <https://figshare.com/s/7afa3c106d6d874e4094>.
 2706

2707

2708 **TABLE OF RELEASED ASSETS**

2709

2710

Asset	Usage Instructions	License/Citation Info	Location/URL
Source code	Download and unzip. See README.md for installation and experiment scripts (run_train.py).	MIT License. Please cite this paper.	https://figshare.com/s/7afa3c106d6d874e4094
Model checkpoints	Download the archive. Full instructions in README.md.	MIT License. Please cite this paper.	https://figshare.com/s/7afa3c106d6d874e4094
Datasets (pretraining/fine-tuning splits)	Download files; load as a HuggingFace Dataset.	For research use only. Cite the original dataset and this paper.	https://figshare.com/s/7afa3c106d6d874e4094
Training configs	Config YAML files for nanotron available as .yaml; pass as argument to Nanotron CLI.	MIT License.	https://figshare.com/s/7afa3c106d6d874e4094

2728

2729 Table 22: List of digital assets released with this work, including usage instructions and licensing/citation information. Note: All assets are hosted anonymously on Figshare for double-blind review.

2730

2731

2732 All digital assets (code, models, data splits, and configs) are provided through anonymous Figshare
 2733 links for double-blind review, as recommended by NeurIPS guidelines. After publication, these will
 2734 be migrated to a permanent repository.

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753