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Abstract

Large Language Models (LLMs) acquire emergent reasoning capabilities when
fine-tuned in an online setting with simple rule-based rewards. Recent studies,
however, indicate that success in this regard is conditioned on the latent solvability
of tasks in the base LLM: RL can only amplify answers to which the base model
already assigns non-negligible probabilities. This work investigates the emergence
of chemical reasoning capabilities and what these prerequisites mean for chem-
istry. We identify two necessary conditions for RL-based chemical reasoning: 1)
Symbolic competence, and 2) Latent domain knowledge. We propose MiST: a
set of mid-stage training techniques to satisfy these, including data-mixing with
SMILES-aware preprocessing and continued pre-training on a rich data mixture of
2.9B tokens. These steps raise the latent-solvability score on [IUPAC to SMILES
translation by 2x and enable RL to lift top-1 accuracy on reaction prediction from
4.1% to 25.2% on challenging chemical tasks, while producing faithful reason-
ing traces. Our results define clear prerequisites for chemical reasoning training
and highlight the broader role of mid-stage pre-training in unlocking reasoning
capabilities.

1 Introduction

Reasoning tasks in chemistry are fundamental yet notoriously challenging, requiring models to
integrate multiple layers of chemical knowledge and logical deduction (Coley et al.|[2019; |Alampara
et al., 2024)). While traditional chemoinformatics approaches rely primarily on supervised archi-
tectures optimized for specific tasks, they lack generalization and human-like reasoning capacities,
instead often performing as highly specialized pattern recognition systems (Schwaller et al., 2019
Mirza et al.l [2024a)). Recently, reinforcement learning (RL) driven frameworks (Guo et al.,[2025b)
have shown promising advances in generating sophisticated emergent reasoning capabilities without
explicit step-level supervision, achieving remarkable results across general-purpose domains like
math and coding. Nevertheless, independent follow-ups have shown that such capabilities do not
simply appear, but emerge instead as amplified patterns already existing in the base model’s output
distribution —even if with low likelihoods (Guo et al.,[2023} [Flam-Shepherd & Aspuru-Guzik, [2023)).
Consequently, whether RL succeeds on a new domain depends crucially on the latent solvability of
the tasks for that specific base model.

Chemistry presents a severe stress test for this premise. Unlike arithmetic or programming, chemical
problems combine highly specialized symbol systems (Weininger, [1988)) (e.g. SMILES, IUPAC) with
domain-specific physical constraints (valence, stereochemistry). Off-the-shelf LLMs typically fail to
generate syntactically valid SMILES, let alone perform any tasks involving SMILES manipulation
and generation (Bran et al.| | 2025)). Empirically, we find that direct application of RL methods to such
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models fails: the reward signal vanishes because the correct answer never appears in the candidate
set, except for the simpler examples.

These observations raise a fundamental question: What pre-training and prerequisites must an LLM
satisfy so that RL can reliably unlock chemical reasoning? In this paper, we answer that question by
1) proposing quantitative diagnostics that measure a model’s latent solvability for chemical tasks, 2)
systematically creating and ablating two proposed domain-specific prerequisites, and 3) showing that
RL and other reasoning post-training techniques succeed if those diagnostics cross certain thresholds.

We propose symbolic competence and latent chemical knowledge as two necessary prerequisites for
reasoning in chemistry. The former requires that models must be able to read and generate syntac-
tically valid chemical strings, like SMILES, IUPAC names, or CIF files. The second requirement
means that answers must exist in the long-tail of the model’s prior distribution, so that these can be
exploited by the RL training. We demonstrate, through a diagnostic benchmark for latent solvability,
that improving on these requisites boosts model post-RL performance by up to 20%, yielding highly
capable chemical reasoning models.

In addition, we propose a representative set of tasks in chemistry that are suitable for reasoning, i.e.,
tasks that expert humans can typically solve through some reasoning process, see Section [I] We
perform a range of ablations and generalization tests on RL performance, and show that removing
any single prerequisite collapses RL gains, confirming their necessity. We release 1) a diagnostic
benchmark for latent solvability, and 2) our pre-training corpus. Our findings meaningfully inform
how reasoning-oriented RL methods can generalize to complex scientific domains and provide a
foundational roadmap toward flexible, robust chemical reasoning Al systems.
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Figure 1: Multi-stage pipeline for training a chemical-reasoning language model. Stepl (MiST, 3.9 B
tokens) Continued Pretraining exposes a general-purpose base model to a chemistry-centric corpus
that interleaves plain text with compound & synthesis information. A subsequent 1 B-token supervised
fine-tuning phase teaches three formats: (i) symbol-level molecular or material understanding, (ii)
structure-aware question & answers, and (iii) chemical chain-of-thought (CoT). In Step2 the MiST
backbone is further specialized with either RLSF (reinforcement learning from scientific feedback) or
rSFT (reasoning-style supervised fine-tuning). A pool of candidate answers (01, . .., 0,) generated
by the MiST model is scored by a task-specific reward model (r1,...,r,); a group-computation
module aggregates these signals to update the policy, iteratively refining the model into a Chemical
Reasoning Model.

2 Related Work

Post-training methods for reasoning The standard recipe for aligning LLMs augments supervised
fine-tuning (SFT) with reinforcement learning from human or synthetic feedback (RLHF/RLAIF) (Lee
et al.,[2024). While RLHF reliably improves helpfulness and stylistic alignment, it is often insufficient
for multi-step reasoning. Subsequent work therefore introduced chain-of-thought distillation (Wei
et al., 20225 |Li et al., [2023), step-aware reward models (Weng et al., 2025)), and tree search with
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self-consistency (Xie et al.,[2024b). A recent, influential result by |Guo et al.| (2025b) showed that
even rule-based rewards can unlock strong mathematical and coding skills, provided that the base
model already allocates non-negligible probability mass to correct answers. Independent analyses
confirmed that RL mainly acts as an amplifier: it can only surface solutions that lie somewhere in the
base distribution (Yue et al., [2025). For weaker bases, SFT on traces generated by a larger model
often outperforms RL (Guo et al.| 2025b)). Our work adopts this "RL as amplifier" view and asks
what pre-training conditions make chemical problems latently solvable so that RL can succeed.

Chemical language modeling ILanguage models have been adapted and used for a range of
chemical tasks (Caldas Ramos et al.| 2025). These models typically operate on linearized molecular
strings, such as SMILES (Weininger, [1988)), SELFIES (Krenn et al.,[2020), or [IUPAC names. Masked
pre-training approaches (ChemBERTa (Chithrananda et al.,2020), MolBERT (Fabian et al., [2020))
learn molecular fingerprints that are useful for QSAR, whereas the Molecular Transformer family
targets forward and retrosynthesis prediction (Schwaller et al., 2019} 2020). More recently, LLMs
have been adapted and applied for tackling chemical tasks (Frey et al., 2023} [Zhang et al., [2024;
Jablonka et al., [2024} [Xie et al.,2023b)); extending general LLMs for molecule generation, property
prediction, and Q&A. Other works have adapted LLMs for use as chemistry agents, integrating
robotic labs and other tools (Bran et al.||2023; |Boiko et al.,[2023), hypothesis generation (Yang et al.}
2025)), and more recently, workflows have been designed for molecular design and synthesis planning
(Wang et al., 2024a; Bran et al., [2025).

Mid-stage domain adaptation Continuing pre-training on an in-domain corpus—often called
domain-adaptive pre-training (DAPT) or continued pre-training (CPT)—has become the dominant
recipe for turning a general LLM into a domain specialist. Early successes such as BioMegatron
for biomedicine (Shin et al.| [2020), Legal-BERT (Chalkidis et al., |2020), and Code-Llama for
programming (Roziere et al., 2023)) demonstrated sizable gains with only a few billion extra tokens.
A recent wave of work scales the idea to scientific domains: (1) AdaptLLM (Cheng et al., 2023
shows that a 7B parameters model, after just 10—15B of financial tokens, rivals BloombergGPT
(50B parameters) on in-domain QA; (2) Tag-LLM (Shen et al.,|2024)) and Efficient-CPT (Xie et al.,
20244a) report similar jumps while using parameter-efficient adapters; (3) SciLitLLM (Li et al.|
2024b)) uses a 12.7B token corpus of textbooks and full-text papers and beats much larger baselines
on scientific-literature understanding; (4) domain-specific studies in materials science (Lu et al.|
2025)), radiation oncology (Holmes et al., |2023), Japanese finance (Hirano & Imajo, 2024)), and
cybersecurity (Bayer et al., [2024) confirm that CPT injects latent domain knowledge that survives
further instruction tuning. However, two caveats emerge: CPT can erode zero-shot prompting ability
if done naively (Cheng et al.,|2023)), and very small models (< 2B parameters) often fail to develop
new capabilities even after extensive CPT (Lu et al., 2025} Hsiehl |2025). Crucially, none of these
works evaluate whether the adapted model becomes latently solvable for multi-step reasoning tasks
that reinforcement learning could later amplify.

The chemical domain remains comparatively under-explored. ChemBERTa-2 (Maziarka et al., 2023)
continues a BERT-style encoder on ~1B SMILES tokens and improves fingerprint-style QSAR,
while ChemLLM (Brand et al.| 2023), DARWIN-Chem (Xie et al., [2023al), and SciDFM (Sun et al.}
2024])) incorporate reaction patents or literature but still operate in a single-shot, pattern-recognition
regime.

LLM capability diagnostics Benchmark accuracy and perplexity offer only coarse snapshots
of a model; they ignore the richer signal contained in the full conditional probability distribution.
Holistic evaluation suites such as HELM (Liang et al.,|2022) and LiveBench (White et al., [2024) log
likelihoods but still aggregate them into single numbers. Probability-based intrinsic probes provide
finer insight. BLIMP minimal pairs measure grammatical preference gaps (Meister & Cotterell, 2021)),
an idea later reused to analyze in-context learning brittleness (Zhao et al.,2024) and out-of-domain
(OOD) intent detection (Wang et al., | 2024b). For factual QA, calibration studies show that token-level
probabilities reveal when models "know what they know" (Jiang et al.| 2021} Kadavath et al., 2022).
Distributional uncertainty metrics now underpin OOD detection (Liu et al.,|2024a), self-correction
pipelines (Liu et al.| 2024b)), and medical-reasoning assessment (Li et al., [2024a). |Pezeshkpour
(2023) and [Wang et al.| (2024c) formalize diagnostics as distribution-matching problems using KL
divergence or Wasserstein distance, while (Ye et al.,|2024) links dispersion measures to downstream
robustness.
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3 Preliminaries

We formalize the notions used throughout the paper and introduce the metrics that constitute our
diagnostic suite.

3.1 Prerequisite 1: Symbolic Competence

To assess the symbolic competence of models, we compute the likelihood of generating a given
sequence, in our case, a set of SMILES strings. We use a dataset of 10,000 molecules obtained from
PubChem (Kim et al.| 2025), and use the following definitions to compute a symbolic competence
score.

Token log-likelihood extraction Given a model py and a SMILES string s = (t1, ..., t1).

At position ¢ we compute the log-likelihood 7; 5, (s) of ground-truth token s; within pg’s next-token
distribution r; ,, (s) := pg(t;|t1...ti—1). The mean of the whole string is taken as:

1 L
o (8) = 7 D Tin(5) (1
=1

Symbolic competence score We define the symbolic competence score (SCS) on the assumption
that a symbolically competent model should assign better likelihoods to chemically correct strings
than to corrupted or invalid ones. We therefore measure the separation in the distributions of mean
ranks between valid (canonical) SMILES and corrupted ones:

7(corrupt(m)) — 7(canon(m))

SCS = , )
Opool
_ [(ny—1)of + (ny — 1)o3
Opool = \/ Ny + ng — 2 (3)

where o1 and o3 are each set’s standard deviations, and o, is the pooled standard deviation of the
two sets. SCS is the Cohen’s d effect size, where higher values indicate a cleaner separation and
therefore stronger symbolic competence. A score of 0 means the model cannot distinguish canonical
from corrupted strings, while SCS ~ 2 corresponds to > 95 % separation. corrupt is a SMILES
corruption operator that randomly deletes grammar characters with a probability of 0.2, effectively
yielding invalid but similar SMILES. For the material science (MatSci) task, instead of corrupting
and calculating the SCS on SMILES, the calculations are performed on compositions, which specify
their elements and space group in the format: A B A B <sgX>, where A and B are elements, and X
represents the space group number.

3.2 Prerequisite 2: Latent Chemical Knowledge

As has recently been shown, the role of RL in training reasoning LLMs seems to be that of an
amplifier, i.e., correct answers already exist in the base model’s prior distribution with non-negligible
probability.

With this in mind, we aim to assess the latent chemical knowledge of a given base model. As a
proxy to this, we adopt the same strategy as that we use with the symbolic data, by measuring the
Chemical-Competence Score (CCS), defined as the difference in the distributions of mean ranks
between factually correct chemical statements and wrong ones. Given a list of chemical statements,
such as the SMollnstruct Molecule Description subset (Yu et al.,2024b)), we generate corrupted data
by randomly swapping one sentence from each original statement with that from another randomly
chosen statement in the pool.
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3.3 Post-training methods

Large-scale pre-training furnishes the prerequisites discussed in Sections We now de-
scribe the two post-training methods that we use throughout this work to surface and amplify these
capabilities.

Supervised fine-tuning on reasoning traces Recent research (Guo et al., 2025a) has revealed that
small base models can be trained with SFT on reasoning traces, resulting in small reasoning models
that mimic the behavior demonstrated in the SFT training data, even if such data does not directly
target the specific downstream task the models are evaluated on. The reason is that SFT transfers
the response style and not only the task-specific capabilities, thus serving as an amplifier of latent
knowledge. Following this, some reasoning traces were distilled from DeepSeek-R1 and used to
perform SFT on our pretrained models. We generated ~ 600,000 solutions for two canonical tasks:
TUPAC — SMILES and SMILES — IUPAC, based on PubChem compounds.

Reinforcement learning with verifiable rewards Following recent works (Wang et al., 2025)), we
adopt Reinforcement Learning with Verifiable Rewards (RLVR) as a post-training method for our
models. In this context, models are trained online with rule-based rewards that depend entirely on the
final outcome. The goal of this type of training, as exemplified in previous works (Wang et al.| 2025)
is to encourage the model to achieve good results on the training tasks, while developing intermediate
strategies to achieve this, that might involve reasoning.

We designed and used different types of reward functions for our GRPO experiments: (1) formatting
rewards to ensure separation between the model reasoning and answer, (2) accuracy rewards to verify
the correctness of the model answer, (3) helper rewards to penalize the model if the completions
are ill-formed (such as very short completions, repetitive behaviors etc.). For the accuracy rewards,
we employed different approaches to compare the answer and the solution, such as exact matches,
Tanimoto similarity between SMILES, or Levenshtein distance.

Downstream reasoning tasks To train and evaluate the reasoning capabilities of our models, we
implemented a suite of challenging tasks relevant to chemistry. The tasks have been selected with
the following criteria in mind: (1) Difficulty: the task must be challenging enough to be unsolvable
by base models alone, (2) Reasoning-suitable: tasks must be suitable for reasoning, i.e. solving an
instance of the task would require more System-2 thinking from human experts than System-1 (see
[3). and (3) Dataset availability: Datasets must be readily available such that, upon adaptation, an
input-outcome dataset can be built that is representative of the task. The final list of tasks is listed in
Table d and implementation details are provided in the Appendix I}

4 MiST: Mid-stage Scientific Training

The purpose of this mid-stage training is to enhance the model’s ability to generate valid SMILES,
accurately follow chemistry-focused instructions, and strengthen its general chemical knowledge. We
do this by continuing pretraining (next token prediction objective) on chemical and SMILES-related
data, and then by performing SFT to better follow instructions and increase the thinking context
window.

4.1 Datasets

The FineWeb chemistry dataset was filtered from FineWeb-Edu (Penedo et al.|(2024)) using a custom
non-ML classifier built using word frequency. The entire FineWeb-Edu dataset was fetched, and
about 10,000 texts were manually labeled as chemistry and 50,000 as non-chemistry (based on the
text source). These texts were lemmatized before building word frequency vectors for the two classes.
The frequencies of the lemma k in chemistry texts and non-chemistry texts are denoted f} and f;’,
respectively. The text chemistry score (TCS) is computed using the following formula:

DS 3 s
a2 if R > 1
1 ) ), 5
TCS(text) := Niemmas Zkelemmas intext Wky Wk = {gk otl{érwise
b

“
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This labeling strategy was applied to the entire FineWeb-Edu corpus, and the texts with T’C'S' > 4
were retained, yielding a pretraining set of 1.4 billion tokens of high-quality chemistry-labeled texts.

The first three million compounds from the PubChem database (Kim et al.| (2025))) were dumped
and filtered using the following pipeline: the compounds with ambiguous SMILES (different RDKit
canonical SMILES from the IUPAC, InChl (Heller et al., 2015), or PubChem SMILES) were
discarded, and the duplicates (for SMILES and IUPAC) were filtered out. Four SMILES variants
(non-canonical SMILES) were generated from the canonical SMILES for each valid compound.
Based on this strategy, the first million compounds from PubChem were filtered to around 600,000
compounds. The same approach was applied to the rest of the compounds, and the dataset was
split in the following manner: the first million compounds (CID from 1 to 1,000,000) were used for
pretraining, the second million compounds (CID from 1,000,001 to 2,000,000) were used for GRPO
training, and the third million compounds (CID from 2,000,001 to 3,000,000) were used as the test
split. Multiple derived datasets were also generated for the different chemical tasks used with GRPO
training.

To construct the pretraining data, we used the data mixture as described in Table[I] All the data
underwent the same preprocessing pipeline to interleave SMILES with text whenever a molecule name
appeared (e.g. [UPAC, common name, short form, etc), this type of interleaved data was also used
in (Taylor et al., 2022). We additionally generated a synthetic dataset using RDkit (RDKit, online)
extracted properties of molecules (like QED, TPSA, etc) and filled it in a template. Furthermore, we
include a "replay" dataset aiming to preserve the model’s natural language abilities while furthering
it’s learning about chemical knowledge. We chose the Qwen2.5-3B base model to perform the
pretraining for 3 epochs.

Dataset Source Tokens | Percentage
ChemRxiv + S20RC 1.2B 41.38%
FineWeb chemistry filtered data 1.4B 48.28%
PubChem synthetic data (600k compounds) 220M 7.59%
CommonCrawl Replay dataset 80M 2.75%
Total 2.9B 100%

Table 1: Dataset composition and token distribution used for the pretraining step.

For SFT, we utilized question-answering (QA) training examples derived from SmolInstruct (Yu et al.,
2024a), specifically employing only the SMILES ++IUPAC and molecule captioning subsets. We also
collect examples from MPtrj dataset(Deng et al., 2023). Additionally, we incorporated MMLU and
chain-of-thought (CoT) reasoning traces from DeepSeek-R1, which were preprocessed to maintain
coherence with our pretraining data. In this phase, we also expanded the model’s context window
from 4,096 to 8,192 tokens to accommodate longer reasoning sequences. The pretrained model
underwent SFT for approximately 8 epochs, continuing until the previously observed loss spikes
were fully mitigated. During fine-tuning, two distinct question types were used:

* Questions requiring explicit reasoning traces, with solutions prefixed by the tag "<think>".
* Questions directly presenting the final answers, prefixed by the tag "<answer>".

Dataset Source Notes / Sample Count

DeepSeek reaction traces ~7K samples

DeepSeek relaxation traces | ~2K samples

MPtrj dataset ~20K samples

Smollnstruct dataset 128, S2I, Molecule captioning and generation tasks
MMLU Train: ~350 samples, Chemistry: ~300 samples
CoT Chain ~27K samples

Total Tokens 1B

Table 2: Instruction tuning dataset composition used for the SFT step.

The model, despite using about 3B tokens for continued pretraining and 1B tokens for SFT, performs
better on some tasks in comparison with models like NatureLM (Xia et al., 2025)), which has used
hundreds of billions of tokens for pretraining and SFT. This was made possible by the high-quality
interleaved text produced by our preprocessing pipeline.
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Figure 2: Overview of the preprocessing pipeline

An overview of our preprocessing pipeline is depicted as follows. Initially, we leveraged Nougat
(Blecher et al. 2023)) and GROBID (Meuschke et al., [2023) libraries for converting PDF docu-
ments into textual formats. Nougat demonstrated superior performance in accurately transform-
ing complex structures such as tables, formulae, bibliographic references, and figure captions
into LaTeX-formatted text. Conversely, GROBID excelled at extracting plain textual content
from PDFs. The output of the authors were merged with explicit tags assigned to each struc-
tural element: tables were encapsulated with [START_TABLE] and [END_TABLE], formulas
marked by [START_FORMULA] and [END_FORMULA], bibliographic references enclosed within
[START_BIBREF] and [END_BIBREF], and figure descriptions bracketed by [START_FIGURE]
and [END_FIGURE]. Subsequently, this structured text was processed through the Chemical Data
Extractor 2 (Swain & Colel [2016)), identifying candidate molecule entities along with their positional
context within the text. To ensure high precision in entity identification, candidates were further
validated using a custom-trained sentence transformer model, designed specifically to discern genuine
molecular entities from contextual information. Validated molecular entities were then translated
from their [TUPAC nomenclature to SMILES notation using py2opsin, a Python interface for OPSIN
(Lowe et al.| [2011). In cases where OPSIN failed to yield a definitive conversion, entities were
cross-referenced against PubChem (Kim et al.l 2025). Ultimately, during the pretraining phase
alone, our model encountered approximately 800,000 unique chemical compounds along with their
corresponding SMILES representations.

S Post-training Experiments

This section quantifies how much of the potential unlocked by Mid-stage Scientific Training (MiST)
can actually be surfaced with standard post-training recipes. We therefore keep the mid-training
configuration fixed (Section ) and vary the post-training stack:

1. BASE: original Qwen2.5-3B

2. +MIST: after MiST continued pre-training (checkpoint v6-1)

3. +MIST+SFT: MiST backbone after SFT on 120k DeepSeek-R1 traces (see Section [3.3).
4.

+MIST+SFT+RL(TASK ¢): previous model further optimized with RLVR (see Section[3.3).
(TASK 1) specifies the single task the model is trained on with RLVR.

As an initial downstream test of our pipeline’s performance, we use ChemBench (Mirza et al., 2024b)
to evaluate the general chemistry knowledge of LLMs; the results are shown in Table 3]

The results in Table [3|demonstrate that MiST together with reasoning SFT, proposed in this work,
has a largely positive effect on downstream tasks of general chemistry knowledge, across most
chemistry sub-domains. The role of MiST is particularly important in Organic, Inorganic, and
General Chemistry, with improvements of up to 6-7% over the Qwen+SFT baseline, and more than
11% over the base (instruction-tuned) model, suggesting benefits of both post-training stages on
model’s chemical performance. These results serve already as diagnostic measures of success of
a given mid-training methodology, and serve as a basis to select models for the following stage of
RLVR, with the goal of enhancing reasoning and problem-solving capabilities.

We then proceed to evaluate model’s capacity of learning in an online setting from verifiable rewards
through RLVR. As explained in Section[I} we implement a number of chemical tasks that are suitable
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Table 3: ChemBench sub-domain Accuracy (%)

Models
Sub-domain Qwen-2.5-3B Instruct Qwen+SFT  MiST+SFT (ours)
Organic Chem 44.99 46.15 50.12
Inorganic Chem 46.70 51.08 57.60
Toxicity/Safety 21.33 26.52 26.37
Material Sci 35.84 42.50 48.75
General Chem 33.56 38.25 44.30
Chem Preference 45.40 50.00 52.10
Analytical Chem 25.00 34.20 40.70
Technical Chem 42.11 44.74 50.00
Physical Chem 20.60 35.10 38.78
Total 35.06 40.95 4541

for reasoning, and for which verifiable rewards can be defined. Several models were trained on this
setting and, in the following, we evaluate task performance as a function of the base model used. We
employ two different inference techniques to generate the results reported here, namely using System-
1 (direct answer) and System-2 (employing reasoning) thinking, as defined by (McGlynn, 2014). We
do this by appending the tags "<answer>" or "<reasoning>" respectively upon generation, which
induces models into either type of thinking. The results shown in Table 4] show the performances of
our models across the multiple tasks defined in Section [I] along with the diagnostic metrics defined
in Section[3.11

Table 4: Effect of MiST and each post-training stage on downstream reasoning tasks. SCS = symbolic-
competence score, CCS = chemical-competence score; both are unitless effect-size measures ranging
from O (no separation) to 2 (near-perfect separation); higher is better, see Section I2S =
TUPAC—SMILES translation, RxP = forward reaction prediction, RxN = reaction-naming, CMG
= conditional material generation. For the three downstream tasks we report top-1 accuracy. The
value outside the parentheses is obtained with a "direct answer" (system-1) prompt. Values inside
parentheses are the accuracy when "reasoning" (system-2 chain-of-thought) prompting is enabled.

Metrics Reasoning tasks
Model SCStT CCS1 2S 1 RxP 1 RxN 1 CMG 1t
Qwen-2.5 3B 0.95 0.352 0.03 0.6 10.33 (10.87) 58.6
+MiST 1.639  0.443 49.12 4.1 12.8 (11.30) 1.2
+SFT 1.906  0.771 68.2 (34.5) 8.20(21.2) 11.9 (11.0) 34.8
OrgChem Tasks
+RL(12S) 1.825  0.759  68.39 (67.5) — — —
+RL(RxP) 1.880  0.782 — 8.80 (25.2) — —
+RL(RxN) 1.906  0.789 — — 22.87 (35.17) —
MatSci Tasks
+RL(CMG) 0.893 0.777 — — — 73.8
Ablations
no MiST + SFT 1.853  0.788 22.00 5.10 2.6(4.80) —

The results reveal the large effect that the MiST proposed here has on symbolic competence, as
demonstrated by the SCS column. Clearly pretrained models like Qwen2.5-3B lack the symbolic
abilities needed to complete tasks requiring SMILES understanding and writing. However, this is
overcome with MiST. Furthermore, the results show that RL generally improves the performance of
LLMs on specific chemical tasks, and this effect is remarkably stronger on tasks requiring SMILES
synthesis, like Reaction Prediction or Iupac 2 SMILES.

One important observation from these results is that activating reasoning on RL-trained LLMs
generally yields better results; however in certain cases this trend reverses, as is the case of Iupac 2
SMILES. In this task, we measure better performance when reasoning is not activated, however the
gap is smaller for the RL-trained models. We attribute this to the ability already being present and
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amplified in the LLM after SFT, which during RL training hinders learning of different task-solving
patterns as models already perform well at that stage. Further research should go into this direction.

6 Discussion

This paper set out to answer a concrete, practical question: What conditions must a general-purpose
LLM satisfy so that light-weight, rule-based post-training methods (SFT + RLVR) can unlock reliable
chemical reasoning? We conducted a series of experiments using the Qwen2.5-3B model as a base.
Our results suggest that our proposed Mid-stage Scientific Training (MiST) is at least necessary for
unlocking chemical reasoning capabilities in LLMs. We show that both symbolic competence and
latent chemical knowledge increase under MiST, and that these gains translate downstream to better
achieved performances on post-training methods like RLVR and SFT.

Furthermore, as already indicated in other recent reports, RL remains an amplifier of already existing
behaviors and knowledge in base LLMs. However more importantly for the case of chemistry, and
other scientific fields that make heavy use of domain-specific terminology and symbolic systems,
symbolic competence remains the true bottleneck, at least for small-scale LLMs. As our results
demonstrate on SMILES-heavy tasks, like Reaction Prediction or IUPAC to SMILES, base models
barely perform on these tasks, with results nearing 0% accuracy. SFT only boosts the Reaction
Prediction results to 5.10%, however MiST is necessary to boost accuracies to 25.2% when reasoning
is activated, also shows the improvements in the material science knowledge that not specifically
trained (in CMG task),indicating a strong role of MiST in enabling the solution of scientific tasks.

Our findings generalize beyond chemistry. Any scientific field that (1) relies on specialized symbol
systems and (2) has access to verifiable rewards can likely benefit from the same two-stage recipe:
(1) ensure symbol mastery via targeted MiST, (2) apply RLVR or other post-training techniques to
amplify latent solutions. With this we show that, small, compute-efficient models can already reach
useful competence if those prerequisites are met. MiST demonstrates that carefully crafted, mid-stage
scientific training is a powerful lever for unlocking reasoning in specialized domains. Rather than
chasing ever larger parameter counts, we advocate investing in domain-specific data pipelines and
intrinsic diagnostics—ingredients that, as chemistry shows, can turn an otherwise myopic LLM into
a competent scientific assistant.

7 Limitations

While MiST demonstrates that targeted mid-stage pre-training can unlock chemical reasoning in a
3B-parameter model, several caveats remain. First, we have only probed a single backbone size;
larger or smaller architectures may exhibit different symbolic—competence thresholds, limiting direct
extrapolation of our findings. Second, the RLVR rewards we use focus on syntactic agreement with
ground truth (e.g. exact SMILES or high Tanimoto similarity) and thus do not discourage chemically
implausible or unsafe outputs, leaving open the possibility of reward hacking. Third, our evaluation
suite—reaction prediction, [UPAC to SMILES translation, and conditional material generation,
cover a narrow slice of chemistry; tasks that hinge on stereochemistry, kinetics, spectroscopy, or
three-dimensional conformations remain unexplored. Finally, our pre-training corpus is dominated
by small-molecule, organic literature and patents, potentially biasing the model against inorganic,
macromolecular, or bio-chemical domains. Addressing these scale, reward, coverage, and data-bias
issues will be critical before MiST-style models can be relied upon as general scientific assistants.
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