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Abstract

Large Language Models (LLMs) acquire emergent reasoning capabilities when1

fine-tuned in an online setting with simple rule-based rewards. Recent studies,2

however, indicate that success in this regard is conditioned on the latent solvability3

of tasks in the base LLM: RL can only amplify answers to which the base model4

already assigns non-negligible probabilities. This work investigates the emergence5

of chemical reasoning capabilities and what these prerequisites mean for chem-6

istry. We identify two necessary conditions for RL-based chemical reasoning: 1)7

Symbolic competence, and 2) Latent domain knowledge. We propose MiST: a8

set of mid-stage training techniques to satisfy these, including data-mixing with9

SMILES-aware preprocessing and continued pre-training on a rich data mixture of10

2.9B tokens. These steps raise the latent-solvability score on IUPAC to SMILES11

translation by 2x and enable RL to lift top-1 accuracy on reaction prediction from12

4.1% to 25.2% on challenging chemical tasks, while producing faithful reason-13

ing traces. Our results define clear prerequisites for chemical reasoning training14

and highlight the broader role of mid-stage pre-training in unlocking reasoning15

capabilities.16

1 Introduction17

Reasoning tasks in chemistry are fundamental yet notoriously challenging, requiring models to18

integrate multiple layers of chemical knowledge and logical deduction (Coley et al., 2019; Alampara19

et al., 2024). While traditional chemoinformatics approaches rely primarily on supervised archi-20

tectures optimized for specific tasks, they lack generalization and human-like reasoning capacities,21

instead often performing as highly specialized pattern recognition systems (Schwaller et al., 2019;22

Mirza et al., 2024a). Recently, reinforcement learning (RL) driven frameworks (Guo et al., 2025b)23

have shown promising advances in generating sophisticated emergent reasoning capabilities without24

explicit step-level supervision, achieving remarkable results across general-purpose domains like25

math and coding. Nevertheless, independent follow-ups have shown that such capabilities do not26

simply appear, but emerge instead as amplified patterns already existing in the base model’s output27

distribution —even if with low likelihoods (Guo et al., 2023; Flam-Shepherd & Aspuru-Guzik, 2023).28

Consequently, whether RL succeeds on a new domain depends crucially on the latent solvability of29

the tasks for that specific base model.30

Chemistry presents a severe stress test for this premise. Unlike arithmetic or programming, chemical31

problems combine highly specialized symbol systems (Weininger, 1988) (e.g. SMILES, IUPAC) with32

domain-specific physical constraints (valence, stereochemistry). Off-the-shelf LLMs typically fail to33

generate syntactically valid SMILES, let alone perform any tasks involving SMILES manipulation34

and generation (Bran et al., 2025). Empirically, we find that direct application of RL methods to such35
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models fails: the reward signal vanishes because the correct answer never appears in the candidate36

set, except for the simpler examples.37

These observations raise a fundamental question: What pre-training and prerequisites must an LLM38

satisfy so that RL can reliably unlock chemical reasoning? In this paper, we answer that question by39

1) proposing quantitative diagnostics that measure a model’s latent solvability for chemical tasks, 2)40

systematically creating and ablating two proposed domain-specific prerequisites, and 3) showing that41

RL and other reasoning post-training techniques succeed if those diagnostics cross certain thresholds.42

We propose symbolic competence and latent chemical knowledge as two necessary prerequisites for43

reasoning in chemistry. The former requires that models must be able to read and generate syntac-44

tically valid chemical strings, like SMILES, IUPAC names, or CIF files. The second requirement45

means that answers must exist in the long-tail of the model’s prior distribution, so that these can be46

exploited by the RL training. We demonstrate, through a diagnostic benchmark for latent solvability,47

that improving on these requisites boosts model post-RL performance by up to 20%, yielding highly48

capable chemical reasoning models.49

In addition, we propose a representative set of tasks in chemistry that are suitable for reasoning, i.e.,50

tasks that expert humans can typically solve through some reasoning process, see Section 1. We51

perform a range of ablations and generalization tests on RL performance, and show that removing52

any single prerequisite collapses RL gains, confirming their necessity. We release 1) a diagnostic53

benchmark for latent solvability, and 2) our pre-training corpus. Our findings meaningfully inform54

how reasoning-oriented RL methods can generalize to complex scientific domains and provide a55

foundational roadmap toward flexible, robust chemical reasoning AI systems.56

Figure 1: Multi-stage pipeline for training a chemical-reasoning language model. Step1 (MiST, 3.9 B
tokens) Continued Pretraining exposes a general-purpose base model to a chemistry-centric corpus
that interleaves plain text with compound & synthesis information. A subsequent 1 B-token supervised
fine-tuning phase teaches three formats: (i) symbol-level molecular or material understanding, (ii)
structure-aware question & answers, and (iii) chemical chain-of-thought (CoT). In Step2 the MiST
backbone is further specialized with either RLSF (reinforcement learning from scientific feedback) or
rSFT (reasoning-style supervised fine-tuning). A pool of candidate answers (o1, . . . , on) generated
by the MiST model is scored by a task-specific reward model (r1, . . . , rn); a group-computation
module aggregates these signals to update the policy, iteratively refining the model into a Chemical
Reasoning Model.

2 Related Work57

Post-training methods for reasoning The standard recipe for aligning LLMs augments supervised58

fine-tuning (SFT) with reinforcement learning from human or synthetic feedback (RLHF/RLAIF) (Lee59

et al., 2024). While RLHF reliably improves helpfulness and stylistic alignment, it is often insufficient60

for multi-step reasoning. Subsequent work therefore introduced chain-of-thought distillation (Wei61

et al., 2022; Li et al., 2023), step-aware reward models (Weng et al., 2025), and tree search with62
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self-consistency (Xie et al., 2024b). A recent, influential result by Guo et al. (2025b) showed that63

even rule-based rewards can unlock strong mathematical and coding skills, provided that the base64

model already allocates non-negligible probability mass to correct answers. Independent analyses65

confirmed that RL mainly acts as an amplifier: it can only surface solutions that lie somewhere in the66

base distribution (Yue et al., 2025). For weaker bases, SFT on traces generated by a larger model67

often outperforms RL (Guo et al., 2025b). Our work adopts this "RL as amplifier" view and asks68

what pre-training conditions make chemical problems latently solvable so that RL can succeed.69

Chemical language modeling Language models have been adapted and used for a range of70

chemical tasks (Caldas Ramos et al., 2025). These models typically operate on linearized molecular71

strings, such as SMILES (Weininger, 1988), SELFIES (Krenn et al., 2020), or IUPAC names. Masked72

pre-training approaches (ChemBERTa (Chithrananda et al., 2020), MolBERT (Fabian et al., 2020))73

learn molecular fingerprints that are useful for QSAR, whereas the Molecular Transformer family74

targets forward and retrosynthesis prediction (Schwaller et al., 2019, 2020). More recently, LLMs75

have been adapted and applied for tackling chemical tasks (Frey et al., 2023; Zhang et al., 2024;76

Jablonka et al., 2024; Xie et al., 2023b); extending general LLMs for molecule generation, property77

prediction, and Q&A. Other works have adapted LLMs for use as chemistry agents, integrating78

robotic labs and other tools (Bran et al., 2023; Boiko et al., 2023), hypothesis generation (Yang et al.,79

2025), and more recently, workflows have been designed for molecular design and synthesis planning80

(Wang et al., 2024a; Bran et al., 2025).81

Mid-stage domain adaptation Continuing pre-training on an in-domain corpus—often called82

domain-adaptive pre-training (DAPT) or continued pre-training (CPT)—has become the dominant83

recipe for turning a general LLM into a domain specialist. Early successes such as BioMegatron84

for biomedicine (Shin et al., 2020), Legal-BERT (Chalkidis et al., 2020), and Code-Llama for85

programming (Rozière et al., 2023) demonstrated sizable gains with only a few billion extra tokens.86

A recent wave of work scales the idea to scientific domains: (1) AdaptLLM (Cheng et al., 2023)87

shows that a 7B parameters model, after just 10–15B of financial tokens, rivals BloombergGPT88

(50B parameters) on in-domain QA; (2) Tag-LLM (Shen et al., 2024) and Efficient-CPT (Xie et al.,89

2024a) report similar jumps while using parameter-efficient adapters; (3) SciLitLLM (Li et al.,90

2024b) uses a 12.7B token corpus of textbooks and full-text papers and beats much larger baselines91

on scientific-literature understanding; (4) domain-specific studies in materials science (Lu et al.,92

2025), radiation oncology (Holmes et al., 2023), Japanese finance (Hirano & Imajo, 2024), and93

cybersecurity (Bayer et al., 2024) confirm that CPT injects latent domain knowledge that survives94

further instruction tuning. However, two caveats emerge: CPT can erode zero-shot prompting ability95

if done naively (Cheng et al., 2023), and very small models (< 2B parameters) often fail to develop96

new capabilities even after extensive CPT (Lu et al., 2025; Hsieh, 2025). Crucially, none of these97

works evaluate whether the adapted model becomes latently solvable for multi-step reasoning tasks98

that reinforcement learning could later amplify.99

The chemical domain remains comparatively under-explored. ChemBERTa-2 (Maziarka et al., 2023)100

continues a BERT-style encoder on ∼1B SMILES tokens and improves fingerprint-style QSAR,101

while ChemLLM (Brand et al., 2023), DARWIN-Chem (Xie et al., 2023a), and SciDFM (Sun et al.,102

2024) incorporate reaction patents or literature but still operate in a single-shot, pattern-recognition103

regime.104

LLM capability diagnostics Benchmark accuracy and perplexity offer only coarse snapshots105

of a model; they ignore the richer signal contained in the full conditional probability distribution.106

Holistic evaluation suites such as HELM (Liang et al., 2022) and LiveBench (White et al., 2024) log107

likelihoods but still aggregate them into single numbers. Probability-based intrinsic probes provide108

finer insight. BLiMP minimal pairs measure grammatical preference gaps (Meister & Cotterell, 2021),109

an idea later reused to analyze in-context learning brittleness (Zhao et al., 2024) and out-of-domain110

(OOD) intent detection (Wang et al., 2024b). For factual QA, calibration studies show that token-level111

probabilities reveal when models "know what they know" (Jiang et al., 2021; Kadavath et al., 2022).112

Distributional uncertainty metrics now underpin OOD detection (Liu et al., 2024a), self-correction113

pipelines (Liu et al., 2024b), and medical-reasoning assessment (Li et al., 2024a). Pezeshkpour114

(2023) and Wang et al. (2024c) formalize diagnostics as distribution-matching problems using KL115

divergence or Wasserstein distance, while (Ye et al., 2024) links dispersion measures to downstream116

robustness.117
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3 Preliminaries118

We formalize the notions used throughout the paper and introduce the metrics that constitute our119

diagnostic suite.120

3.1 Prerequisite 1: Symbolic Competence121

To assess the symbolic competence of models, we compute the likelihood of generating a given122

sequence, in our case, a set of SMILES strings. We use a dataset of 10,000 molecules obtained from123

PubChem (Kim et al., 2025), and use the following definitions to compute a symbolic competence124

score.125

Token log-likelihood extraction Given a model pθ and a SMILES string s = (t1, ..., tL).126

At position i we compute the log-likelihood ri,pθ
(s) of ground-truth token si within pθ’s next-token127

distribution ri,pθ
(s) := pθ(ti|t1...ti−1). The mean of the whole string is taken as:128

rpθ
(s) =

1

L

L∑
i=1

ri,pθ
(s) (1)

Symbolic competence score We define the symbolic competence score (SCS) on the assumption129

that a symbolically competent model should assign better likelihoods to chemically correct strings130

than to corrupted or invalid ones. We therefore measure the separation in the distributions of mean131

ranks between valid (canonical) SMILES and corrupted ones:132

SCS :=
r̄(corrupt(m))− r̄(canon(m))

σpool
, (2)

σpool =

√
(n1 − 1)σ2

1 + (n2 − 1)σ2
2

n1 + n2 − 2
(3)

where σ1 and σ2 are each set’s standard deviations, and σpool is the pooled standard deviation of the133

two sets. SCS is the Cohen’s d effect size, where higher values indicate a cleaner separation and134

therefore stronger symbolic competence. A score of 0 means the model cannot distinguish canonical135

from corrupted strings, while SCS ≈ 2 corresponds to > 95 % separation. corrupt is a SMILES136

corruption operator that randomly deletes grammar characters with a probability of 0.2, effectively137

yielding invalid but similar SMILES. For the material science (MatSci) task, instead of corrupting138

and calculating the SCS on SMILES, the calculations are performed on compositions, which specify139

their elements and space group in the format: A B A B <sgX>, where A and B are elements, and X140

represents the space group number.141

3.2 Prerequisite 2: Latent Chemical Knowledge142

As has recently been shown, the role of RL in training reasoning LLMs seems to be that of an143

amplifier, i.e., correct answers already exist in the base model’s prior distribution with non-negligible144

probability.145

With this in mind, we aim to assess the latent chemical knowledge of a given base model. As a146

proxy to this, we adopt the same strategy as that we use with the symbolic data, by measuring the147

Chemical-Competence Score (CCS), defined as the difference in the distributions of mean ranks148

between factually correct chemical statements and wrong ones. Given a list of chemical statements,149

such as the SMolInstruct Molecule Description subset (Yu et al., 2024b), we generate corrupted data150

by randomly swapping one sentence from each original statement with that from another randomly151

chosen statement in the pool.152
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3.3 Post-training methods153

Large-scale pre-training furnishes the prerequisites discussed in Sections 3.1–3.2. We now de-154

scribe the two post-training methods that we use throughout this work to surface and amplify these155

capabilities.156

Supervised fine-tuning on reasoning traces Recent research (Guo et al., 2025a) has revealed that157

small base models can be trained with SFT on reasoning traces, resulting in small reasoning models158

that mimic the behavior demonstrated in the SFT training data, even if such data does not directly159

target the specific downstream task the models are evaluated on. The reason is that SFT transfers160

the response style and not only the task-specific capabilities, thus serving as an amplifier of latent161

knowledge. Following this, some reasoning traces were distilled from DeepSeek-R1 and used to162

perform SFT on our pretrained models. We generated ∼ 600,000 solutions for two canonical tasks:163

IUPAC→SMILES and SMILES→ IUPAC, based on PubChem compounds.164

Reinforcement learning with verifiable rewards Following recent works (Wang et al., 2025), we165

adopt Reinforcement Learning with Verifiable Rewards (RLVR) as a post-training method for our166

models. In this context, models are trained online with rule-based rewards that depend entirely on the167

final outcome. The goal of this type of training, as exemplified in previous works (Wang et al., 2025)168

is to encourage the model to achieve good results on the training tasks, while developing intermediate169

strategies to achieve this, that might involve reasoning.170

We designed and used different types of reward functions for our GRPO experiments: (1) formatting171

rewards to ensure separation between the model reasoning and answer, (2) accuracy rewards to verify172

the correctness of the model answer, (3) helper rewards to penalize the model if the completions173

are ill-formed (such as very short completions, repetitive behaviors etc.). For the accuracy rewards,174

we employed different approaches to compare the answer and the solution, such as exact matches,175

Tanimoto similarity between SMILES, or Levenshtein distance.176

Downstream reasoning tasks To train and evaluate the reasoning capabilities of our models, we177

implemented a suite of challenging tasks relevant to chemistry. The tasks have been selected with178

the following criteria in mind: (1) Difficulty: the task must be challenging enough to be unsolvable179

by base models alone, (2) Reasoning-suitable: tasks must be suitable for reasoning, i.e. solving an180

instance of the task would require more System-2 thinking from human experts than System-1 (see181

5), and (3) Dataset availability: Datasets must be readily available such that, upon adaptation, an182

input-outcome dataset can be built that is representative of the task. The final list of tasks is listed in183

Table 4, and implementation details are provided in the Appendix 1.184

4 MiST: Mid-stage Scientific Training185

The purpose of this mid-stage training is to enhance the model’s ability to generate valid SMILES,186

accurately follow chemistry-focused instructions, and strengthen its general chemical knowledge. We187

do this by continuing pretraining (next token prediction objective) on chemical and SMILES-related188

data, and then by performing SFT to better follow instructions and increase the thinking context189

window.190

4.1 Datasets191

The FineWeb chemistry dataset was filtered from FineWeb-Edu (Penedo et al. (2024)) using a custom192

non-ML classifier built using word frequency. The entire FineWeb-Edu dataset was fetched, and193

about 10,000 texts were manually labeled as chemistry and 50,000 as non-chemistry (based on the194

text source). These texts were lemmatized before building word frequency vectors for the two classes.195

The frequencies of the lemma k in chemistry texts and non-chemistry texts are denoted f c
k and fn

k ,196

respectively. The text chemistry score (TCS) is computed using the following formula:197

TCS(text) := 1
Nlemmas

∑
k∈lemmas in text wk, wk =

{
fc
k

fn
k
, if fc

k

fn
k
> 1

0, otherwise
(4)
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This labeling strategy was applied to the entire FineWeb-Edu corpus, and the texts with TCS > 4198

were retained, yielding a pretraining set of 1.4 billion tokens of high-quality chemistry-labeled texts.199

The first three million compounds from the PubChem database (Kim et al. (2025)) were dumped200

and filtered using the following pipeline: the compounds with ambiguous SMILES (different RDKit201

canonical SMILES from the IUPAC, InChI (Heller et al., 2015), or PubChem SMILES) were202

discarded, and the duplicates (for SMILES and IUPAC) were filtered out. Four SMILES variants203

(non-canonical SMILES) were generated from the canonical SMILES for each valid compound.204

Based on this strategy, the first million compounds from PubChem were filtered to around 600,000205

compounds. The same approach was applied to the rest of the compounds, and the dataset was206

split in the following manner: the first million compounds (CID from 1 to 1,000,000) were used for207

pretraining, the second million compounds (CID from 1,000,001 to 2,000,000) were used for GRPO208

training, and the third million compounds (CID from 2,000,001 to 3,000,000) were used as the test209

split. Multiple derived datasets were also generated for the different chemical tasks used with GRPO210

training.211

To construct the pretraining data, we used the data mixture as described in Table 1. All the data212

underwent the same preprocessing pipeline to interleave SMILES with text whenever a molecule name213

appeared (e.g. IUPAC, common name, short form, etc), this type of interleaved data was also used214

in (Taylor et al., 2022). We additionally generated a synthetic dataset using RDkit (RDKit, online)215

extracted properties of molecules (like QED, TPSA, etc) and filled it in a template. Furthermore, we216

include a "replay" dataset aiming to preserve the model’s natural language abilities while furthering217

it’s learning about chemical knowledge. We chose the Qwen2.5-3B base model to perform the218

pretraining for 3 epochs.219

Dataset Source Tokens Percentage
ChemRxiv + S2ORC 1.2B 41.38%
FineWeb chemistry filtered data 1.4B 48.28%
PubChem synthetic data (600k compounds) 220M 7.59%
CommonCrawl Replay dataset 80M 2.75%
Total 2.9B 100%

Table 1: Dataset composition and token distribution used for the pretraining step.

For SFT, we utilized question-answering (QA) training examples derived from SmolInstruct (Yu et al.,220

2024a), specifically employing only the SMILES↔IUPAC and molecule captioning subsets. We also221

collect examples from MPtrj dataset(Deng et al., 2023). Additionally, we incorporated MMLU and222

chain-of-thought (CoT) reasoning traces from DeepSeek-R1, which were preprocessed to maintain223

coherence with our pretraining data. In this phase, we also expanded the model’s context window224

from 4,096 to 8,192 tokens to accommodate longer reasoning sequences. The pretrained model225

underwent SFT for approximately 8 epochs, continuing until the previously observed loss spikes226

were fully mitigated. During fine-tuning, two distinct question types were used:227

∗ Questions requiring explicit reasoning traces, with solutions prefixed by the tag "<think>".228

∗ Questions directly presenting the final answers, prefixed by the tag "<answer>".229

Dataset Source Notes / Sample Count
DeepSeek reaction traces ∼7K samples
DeepSeek relaxation traces ∼2K samples
MPtrj dataset ∼20K samples
SmolInstruct dataset I2S, S2I, Molecule captioning and generation tasks
MMLU Train: ∼350 samples, Chemistry: ∼300 samples
CoT Chain ∼27K samples
Total Tokens 1B

Table 2: Instruction tuning dataset composition used for the SFT step.

The model, despite using about 3B tokens for continued pretraining and 1B tokens for SFT, performs230

better on some tasks in comparison with models like NatureLM (Xia et al., 2025), which has used231

hundreds of billions of tokens for pretraining and SFT. This was made possible by the high-quality232

interleaved text produced by our preprocessing pipeline.233
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Figure 2: Overview of the preprocessing pipeline

An overview of our preprocessing pipeline is depicted as follows. Initially, we leveraged Nougat234

(Blecher et al., 2023) and GROBID (Meuschke et al., 2023) libraries for converting PDF docu-235

ments into textual formats. Nougat demonstrated superior performance in accurately transform-236

ing complex structures such as tables, formulae, bibliographic references, and figure captions237

into LaTeX-formatted text. Conversely, GROBID excelled at extracting plain textual content238

from PDFs. The output of the authors were merged with explicit tags assigned to each struc-239

tural element: tables were encapsulated with [START_TABLE] and [END_TABLE], formulas240

marked by [START_FORMULA] and [END_FORMULA], bibliographic references enclosed within241

[START_BIBREF] and [END_BIBREF], and figure descriptions bracketed by [START_FIGURE]242

and [END_FIGURE]. Subsequently, this structured text was processed through the Chemical Data243

Extractor 2 (Swain & Cole, 2016), identifying candidate molecule entities along with their positional244

context within the text. To ensure high precision in entity identification, candidates were further245

validated using a custom-trained sentence transformer model, designed specifically to discern genuine246

molecular entities from contextual information. Validated molecular entities were then translated247

from their IUPAC nomenclature to SMILES notation using py2opsin, a Python interface for OPSIN248

(Lowe et al., 2011). In cases where OPSIN failed to yield a definitive conversion, entities were249

cross-referenced against PubChem (Kim et al., 2025). Ultimately, during the pretraining phase250

alone, our model encountered approximately 800,000 unique chemical compounds along with their251

corresponding SMILES representations.252

5 Post-training Experiments253

This section quantifies how much of the potential unlocked by Mid-stage Scientific Training (MiST)254

can actually be surfaced with standard post-training recipes. We therefore keep the mid-training255

configuration fixed (Section 4) and vary the post-training stack:256

1. BASE: original Qwen2.5-3B257

2. +MIST: after MiST continued pre-training (checkpoint v6-1)258

3. +MIST+SFT: MiST backbone after SFT on 120k DeepSeek-R1 traces (see Section 3.3).259

4. +MIST+SFT+RL(TASK i): previous model further optimized with RLVR (see Section 3.3).260

(TASK i) specifies the single task the model is trained on with RLVR.261

As an initial downstream test of our pipeline’s performance, we use ChemBench (Mirza et al., 2024b)262

to evaluate the general chemistry knowledge of LLMs; the results are shown in Table 3.263

The results in Table 3 demonstrate that MiST together with reasoning SFT, proposed in this work,264

has a largely positive effect on downstream tasks of general chemistry knowledge, across most265

chemistry sub-domains. The role of MiST is particularly important in Organic, Inorganic, and266

General Chemistry, with improvements of up to 6-7% over the Qwen+SFT baseline, and more than267

11% over the base (instruction-tuned) model, suggesting benefits of both post-training stages on268

model’s chemical performance. These results serve already as diagnostic measures of success of269

a given mid-training methodology, and serve as a basis to select models for the following stage of270

RLVR, with the goal of enhancing reasoning and problem-solving capabilities.271

We then proceed to evaluate model’s capacity of learning in an online setting from verifiable rewards272

through RLVR. As explained in Section 1, we implement a number of chemical tasks that are suitable273
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Table 3: ChemBench sub-domain Accuracy (%)

Models

Sub-domain Qwen-2.5-3B Instruct Qwen+SFT MiST+SFT (ours)

Organic Chem 44.99 46.15 50.12
Inorganic Chem 46.70 51.08 57.60
Toxicity/Safety 21.33 26.52 26.37
Material Sci 35.84 42.50 48.75
General Chem 33.56 38.25 44.30
Chem Preference 45.40 50.00 52.10
Analytical Chem 25.00 34.20 40.70
Technical Chem 42.11 44.74 50.00
Physical Chem 20.60 35.10 38.78
Total 35.06 40.95 45.41

for reasoning, and for which verifiable rewards can be defined. Several models were trained on this274

setting and, in the following, we evaluate task performance as a function of the base model used. We275

employ two different inference techniques to generate the results reported here, namely using System-276

1 (direct answer) and System-2 (employing reasoning) thinking, as defined by (McGlynn, 2014). We277

do this by appending the tags "<answer>" or "<reasoning>" respectively upon generation, which278

induces models into either type of thinking. The results shown in Table 4 show the performances of279

our models across the multiple tasks defined in Section 1, along with the diagnostic metrics defined280

in Section 3.1.281

Table 4: Effect of MiST and each post-training stage on downstream reasoning tasks. SCS = symbolic-
competence score, CCS = chemical-competence score; both are unitless effect-size measures ranging
from 0 (no separation) to 2 (near-perfect separation); higher is better, see Section 3.1. I2S =
IUPAC→SMILES translation, RxP = forward reaction prediction, RxN = reaction-naming, CMG
= conditional material generation. For the three downstream tasks we report top-1 accuracy. The
value outside the parentheses is obtained with a "direct answer" (system-1) prompt. Values inside
parentheses are the accuracy when "reasoning" (system-2 chain-of-thought) prompting is enabled.

Metrics Reasoning tasks

Model SCS ↑ CCS ↑ I2S ↑ RxP ↑ RxN ↑ CMG ↑
Qwen-2.5 3B 0.95 0.352 0.03 0.6 10.33 (10.87) 58.6

+MiST 1.639 0.443 49.12 4.1 12.8 (11.30) 1.2
+SFT 1.906 0.771 68.2 (34.5) 8.20 (21.2) 11.9 (11.0) 34.8

OrgChem Tasks
+RL(I2S) 1.825 0.759 68.39 (67.5) — — —
+RL(RxP) 1.880 0.782 — 8.80 (25.2) — —
+RL(RxN) 1.906 0.789 — — 22.87 (35.17) —

MatSci Tasks
+RL(CMG) 0.893 0.777 — — — 73.8

Ablations
no MiST + SFT 1.853 0.788 22.00 5.10 2.6(4.80) —

The results reveal the large effect that the MiST proposed here has on symbolic competence, as282

demonstrated by the SCS column. Clearly pretrained models like Qwen2.5-3B lack the symbolic283

abilities needed to complete tasks requiring SMILES understanding and writing. However, this is284

overcome with MiST. Furthermore, the results show that RL generally improves the performance of285

LLMs on specific chemical tasks, and this effect is remarkably stronger on tasks requiring SMILES286

synthesis, like Reaction Prediction or Iupac 2 SMILES.287

One important observation from these results is that activating reasoning on RL-trained LLMs288

generally yields better results; however in certain cases this trend reverses, as is the case of Iupac 2289

SMILES. In this task, we measure better performance when reasoning is not activated, however the290

gap is smaller for the RL-trained models. We attribute this to the ability already being present and291
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amplified in the LLM after SFT, which during RL training hinders learning of different task-solving292

patterns as models already perform well at that stage. Further research should go into this direction.293

6 Discussion294

This paper set out to answer a concrete, practical question: What conditions must a general-purpose295

LLM satisfy so that light-weight, rule-based post-training methods (SFT + RLVR) can unlock reliable296

chemical reasoning? We conducted a series of experiments using the Qwen2.5-3B model as a base.297

Our results suggest that our proposed Mid-stage Scientific Training (MiST) is at least necessary for298

unlocking chemical reasoning capabilities in LLMs. We show that both symbolic competence and299

latent chemical knowledge increase under MiST, and that these gains translate downstream to better300

achieved performances on post-training methods like RLVR and SFT.301

Furthermore, as already indicated in other recent reports, RL remains an amplifier of already existing302

behaviors and knowledge in base LLMs. However more importantly for the case of chemistry, and303

other scientific fields that make heavy use of domain-specific terminology and symbolic systems,304

symbolic competence remains the true bottleneck, at least for small-scale LLMs. As our results305

demonstrate on SMILES-heavy tasks, like Reaction Prediction or IUPAC to SMILES, base models306

barely perform on these tasks, with results nearing 0% accuracy. SFT only boosts the Reaction307

Prediction results to 5.10%, however MiST is necessary to boost accuracies to 25.2% when reasoning308

is activated, also shows the improvements in the material science knowledge that not specifically309

trained (in CMG task),indicating a strong role of MiST in enabling the solution of scientific tasks.310

Our findings generalize beyond chemistry. Any scientific field that (1) relies on specialized symbol311

systems and (2) has access to verifiable rewards can likely benefit from the same two-stage recipe:312

(1) ensure symbol mastery via targeted MiST, (2) apply RLVR or other post-training techniques to313

amplify latent solutions. With this we show that, small, compute-efficient models can already reach314

useful competence if those prerequisites are met. MiST demonstrates that carefully crafted, mid-stage315

scientific training is a powerful lever for unlocking reasoning in specialized domains. Rather than316

chasing ever larger parameter counts, we advocate investing in domain-specific data pipelines and317

intrinsic diagnostics—ingredients that, as chemistry shows, can turn an otherwise myopic LLM into318

a competent scientific assistant.319

7 Limitations320

While MiST demonstrates that targeted mid-stage pre-training can unlock chemical reasoning in a321

3B-parameter model, several caveats remain. First, we have only probed a single backbone size;322

larger or smaller architectures may exhibit different symbolic–competence thresholds, limiting direct323

extrapolation of our findings. Second, the RLVR rewards we use focus on syntactic agreement with324

ground truth (e.g. exact SMILES or high Tanimoto similarity) and thus do not discourage chemically325

implausible or unsafe outputs, leaving open the possibility of reward hacking. Third, our evaluation326

suite—reaction prediction, IUPAC to SMILES translation, and conditional material generation,327

cover a narrow slice of chemistry; tasks that hinge on stereochemistry, kinetics, spectroscopy, or328

three-dimensional conformations remain unexplored. Finally, our pre-training corpus is dominated329

by small-molecule, organic literature and patents, potentially biasing the model against inorganic,330

macromolecular, or bio-chemical domains. Addressing these scale, reward, coverage, and data-bias331

issues will be critical before MiST-style models can be relied upon as general scientific assistants.332

9



References333

Nawaf Alampara, Mara Schilling-Wilhelmi, Martiño Ríos-García, Indrajeet Mandal, Pranav334

Khetarpal, Hargun Singh Grover, NM Krishnan, and Kevin Maik Jablonka. Probing the lim-335

itations of multimodal language models for chemistry and materials research. arXiv preprint336

arXiv:2411.16955, 2024.337

Markus Bayer, Philip D Kuehn, Ramin Shanehsaz, and Christian A Reuter. CySecBERT: A domain-338

adapted language model for the cybersecurity domain. ACM Transactions on Privacy and Security,339

2024.340

Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic. Nougat: Neural optical341

understanding for academic documents, 2023. URL https://arxiv.org/abs/2308.13418.342

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research343

with large language models. Nature, 624(7992):570–578, 2023.344

Andrés M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D. White, and Philippe345

Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelligence,346

6:525 – 535, 2023. URL https://api.semanticscholar.org/CorpusID:258059792.347

Andres M Bran, Theo A Neukomm, Daniel P Armstrong, Zlatko Jončev, and Philippe Schwaller.348
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