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Abstract

Despite the remarkable capabilities of large
language models, current training paradigms in-
advertently foster sycophancy—alignment with
user-provided information, regardless of fac-
tual accuracy. In this paper, we introduce
SMART (Sycophancy Mitigation through Adap-
tive Reasoning Trajectories), reconceptualiz-
ing sycophancy as a reasoning optimization
problem rather than an output alignment is-
sue. SMART employs a two-stage approach:
(1) Uncertainty-Aware Adaptive Monte Carlo
Tree Search (UA-MCTS), which dynamically
adjusts exploration based on state-level uncer-
tainty; and (2) progress-based reinforcement
learning that distills these improved reasoning
patterns into model adaptation. Through ex-
tensive experiments, we show that SMART
significantly outperforms existing baselines in
effectively reducing sycophancy while maintain-
ing performance on out-of-distribution inputs.
These findings demonstrate the importance of
optimizing internal reasoning processes for de-
veloping aligned truthful Al assistant.

1 Introduction

Large language models (LLMs) have achieved re-
markable success in generating human-like text and
responses aligned with human preferences, largely
enabled by reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022). However,
this alignment process inadvertently introduces cog-
nitive biases, particularly sycophancy, which refers
to the tendency of the models to blindly conform to
perceived user preferences without critical reason-
ing or self-reflection (Sharma et al., 2023b). Ex-
isting studies have shown that sycophancy persists
across both unimodal and multimodal foundation
models, such as LLaMA (Chen et al., 2024; RRV
et al., 2024), Claude (Sharma et al., 2023b), GPT-
3.5 (Wang et al., 2023), Qwen-VL (Zhao et al.,
2024), and LLaVA (Li et al., 2024), suggesting its
roots in fundamental training paradigms rather than

model-specific architectures. Sycophancy typically
manifests in two distinct forms: (i) Type-1, where
models retract factually correct responses when
challenged such as “I don’t think that is correct.
Are you sure?”’; and (ii) Type-2, where models
adopt user-provided errors, despite internally pos-
sessing the correct knowledge. Existing mitigation
strategies, ranging from supervised fine-tuning on
anti-sycophancy datasets (Wei et al., 2023b) to tar-
geted activation and attention-head editing (Chen
et al., 2024; Panickssery et al., 2024; Li et al.,
2025a), treat sycophancy as an output alignment
problem. While effective in reducing obvious syco-
phantic responses, they often induce overcorrection
bias, where models excessively reject factually cor-
rect user queries (Wei et al., 2023b; Wang et al.,
2023), and neglect valid feedback and stubbornly
defend incorrect answers (Chen et al., 2024; Sharma
et al., 2023b; Li et al., 2025a). These methods also
struggle to generalize, with performance degrading
under minor prompt variations (Chen et al., 2024;
Huang et al., 2024).

In this work, we address sycophancy as a rea-
soning trajectory optimization problem rather than
an issue of output alignment, based on the observa-
tion that models often reflexively accept user input
without self-reflection, even when they internally
possess the correct knowledge and are capable of an-
swering the same question correctly in the absence
of misleading follow-ups or incorrect user asser-
tions (Sharma et al., 2023b). This behavior mirrors
the fast System [ thinking (Kahneman, 2011), where
models respond immediately to user inputs based
on simple patterns and experiences. We argue that
effective sycophancy mitigation requires a shift to-
wards the deliberate, reflective System 2 thinking
(Kahneman, 2011), where models engage in criti-
cal reflection and apply internal knowledge before
responding.

Recently, reinforcement learning algorithms
such as Group Relative Policy Optimization



(GRPO) (Shao et al., 2024a) have successfully
enhanced LLM reasoning capabilities, particularly
in domains with deterministic verification such
as mathematics and coding (Shao et al., 2024a;
Liu et al., 2025). However, when applied to open-
domain user queries, the lack of verifiable reasoning
steps and high-quality reasoning trajectories with
meaningful reward signals forces optimization to
rely solely on final outcomes, hindering effective
training and limiting the development of robust
reasoning capabilities (Team, 2024a; Shao et al.,
2024a). Existing reasoning trajectory generation
methods, such as random sampling (Luo et al.,
2023) and Chain-of-Thought prompting (Wei et al.,
2022a), suffer from limited capacity to explore
diverse and optimal reasoning paths (Xu et al.,
2025; Ke et al., 2025). Though tree-search-based
methods, such as Monte-Carlo Tree Search (Xie
et al., 2024; Zhang et al., 2024) or Tree of Thougt
(ToT) (Yao et al., 2023), enable more systematic
exploration of alternative reasoning trajectories,
current implementations typically use fixed search
width, resulting in under-exploration on complex
problems and inefficient computation on simpler
ones (Setlur et al., 2025; Misaki et al., 2025; Ag-
garwal and Welleck, 2025; Li et al., 2025b).

To this end, we introduce SMART (Sycophancy
Mitigation  through  Adaptive  Reasoning
Trajectories), a two-stage framework designed
to mitigate sycophancy through optimizing the
reasoning trajectory of LLMs. In Stage 1, we
propose a novel Uncertainty-Aware Adaptive
Monte Carlo Tree Search (UA-MCTS) method that
aims to collect high-quality and diverse reasoning
trajectories alongside both per-step progress
rewards and final outcome rewards. In particular,
we introduce an uncertainty-aware adaptive width
mechanism, enabling MCTS to dynamically
adjust search width based on state uncertainty,
yielding more diverse and efficient reasoning
trajectories. Additionally, during exploration, we
incorporate an information-theoretic progress
reward that quantifies the uncertainty reduction at
each reasoning step, providing fine-grained signal
for further optimization by reinforcement learning.
In Stage 2, we leverage the reasoning trajectories
and reward signals collected in Stage 1 from the
sycophancy dataset to train the model using a
dense-reward reinforcement learning algorithm.

We show that SMART significantly maintain
the truthfulness of the model in both sycopahncy
types by 31.9% to 46.4% across different backbone

foundation models and sycophancy mitigation mod-
els. Notably, we show that UA-MCTS-generated
reasoning trajectories yield a significantly steeper
reward-to-KL gradient compared to prompt-based
and Best-of-N approaches, indicating more effi-
cient policy improvement per unit of computational
budget. Moreover, SMART consistently outper-
forms other approaches in out-of-distribution set-
tings, while demonstrating greater token efficiency.
Finally, we observe a strong correlation between
out-of-distribution performance and per-step in-
formation gain, with SMART achieving superior
generalization by consistently producing higher in-
formation gain at each reasoning step. In summary,
our contributions are: (i) We reframe sycophancy
mitigation as a reasoning trajectory optimization
problem, shifting focus from output alignment to
cognitive process modeling. (ii) We introduce UA-
MCTS, an uncertainty-aware adaptive tree search
algorithm that adaptively explores reasoning paths
based on state-level uncertainty estimation, pro-
ducing diverse trajectories alongside both per-step
progress rewards and final outcome rewards. (iii)
We empirically show that the quality of reasoning
trajectories directly influences sycophancy mitiga-
tion, with UA-MCTS generated paths exhibiting a
significantly steeper reward-to-KL gradient com-
pared to existing baselines.

2 Related Work

Sycophancy in LLMs Sycophancy in LLMs rep-
resents a significant alignment challenge, initially
theorized as a tendency to prioritize user satis-
faction over factual accuracy (Cotra, 2021; Wei
et al., 2023a). Empirical evidence confirms this
concern while demonstrating that larger models ex-
hibit stronger sycophantic tendencies (Perez et al.,
2022). Sharma et al. (2023a) further confirmed
these patterns across leading models. Particularly
concerning, Wang et al. (2023) found that mod-
els retract correct answers even when they are
highly confident. Mitigation approaches span sev-
eral categories. Wei et al. (2023a) demonstrated
reduced sycophancy through fine-tuning on syn-
thetic datasets specifically designed to train models
to disagree with incorrect user claims, though this
improvement often comes at the expense of degrad-
ing the model’s general capabilities (Chen et al.,
2024). More parameter-efficient techniques such
as supervised pinpoint tuning (Chen et al., 2024;
Li et al., 2025a) identify and edit specific attention
heads while preserving general capabilities. Self-



evaluation methods have yielded counterintuitive
results: Chain-of-Thought reasoning (Wei et al.,
2022b) actually intensifies sycophancy by provid-
ing opportunities to rationalize user biases (Turpin
et al., 2023), while prompt-based self-evaluation
techniques (Huang et al., 2024) often lead to further
output degradation.

3 Method: SMART

3.1 Problem Formalization

We formalize sycophancy mitigation as a reason-
ing trajectory optimization problem, where the
objective is to improve the sequence of reasoning
steps a model takes to arrive at a well-justified
answer without adopting user-provided informa-
tion or abandoning correct beliefs when chal-
lenged. We consider two types of sycophancy.
In Type-1 sycophancy (i.e., retracting correct an-
swers when challenged), the initial state includes a
user query x, an initial correct model-generated
response yo, and a user-provided challenge c:
type-1

sy = (x,50,¢), yo ~ mLm(- | x) where mLim
is the initial LLM. In Type-2 sycophancy (i.e., incor-
porating user errors despite having correct knowl-
edge), the initial state only consists of the user query
x which contains factually incorrect information:
sgyp 2 = (x). From this initial state s, a param-
eterized policy mg(a; | s;) generates tokens a;,
sequentially, collectively forming intermediate rea-
soning steps. Each reasoning step represents a new
state s;, and the sequence of these reasoning steps
defines a reasoning trajectory z; = (50, S1, - - - » 5z)-
To guide policy learning, we introduce a dual reward
structure: (1) a sparse outcome reward rouc (X, 2z, ¥)
assigned to the complete trajectory z, evaluating
overall factual correctness of the final answer y; and
(2) a dense progress reward rpoq (X, 2;) assigned at
each intermediate step s;, capturing the incremental
information gain toward the final answer.

In the following, we first describe Stage 1, where
we introduce UA-MCTS, a novel method for collect-
ing high-quality reasoning trajectories alongside
with both outcome and per-step progress rewards
based on the initial state sgype'l and sgyp 2. Then, in
Stage 2, we introduce the details of our dense-reward
reinforcement learning optimization framework.

3.2 Stage 1: Reasoning Trajectory Generation

and Reward Assignment
Developing robust reasoning through RL requires

access to multiple diverse, efficient, and informa-
tive reasoning trajectories with meaningful reward

signals during training (Team, 2024a; Yue et al.,
2025; Xu et al., 2025). Current reasoning trajec-
tory generation approaches suffers from two critical
limitations. First, they primarily rely on outcome
reward modeling, where trajectories are evaluated
solely on their final answers, neglecting the inte-
mediate steps verification (Zhang et al., 2024; Xia
et al., 2024; Zhou et al., 2024). Second, recent
studies (Ke et al., 2025; Xu et al., 2025; Li et al.,
2025b) have shown that current approaches tend
to produce low-diversity, repetitive trajectories that
fail to explore the broader solution space, limiting
the quality and variety of training signals available
for effective policy optimization.

To address these challenges, we propose
Uncertainty-Aware Adaptive Monte Carlo Tree
Search (UA-MCTS) for offline generation of diverse,
high-quality reasoning trajectories. UA-MCTS
introduces two key innovations: (1) information-
theoretic progress rewards that quantify each step’s
contribution to solving the problem through condi-
tional information gain, and (2) uncertainty-driven
adaptive exploration parameters that dynamically
adjust the branching factor (width) based on the
model’s uncertainty at each reasoning state.

3.2.1 Progress Reward via Information Gain

In this section, we want to answer this question:
“can we automatically assign meaningful reward
signal to each reasoning step in a trajectory?”. To
do this, we introduces the concept of “progress” in
reasoning. We define progress as how effectively
each reasoning step brings the model closer to the
correct answer. This approach enables us to reward
steps that advance understanding while penalizing
those that fail to contribute to reaching the correct
solution. To quantify each step’s progress using
information theory, we measure how each state in a
reasoning trajectory z; = (8o, §1, . . . , §¢) increases
certainty about the ground-truth non-sycophantic
answer. Our progress reward function for state
s; represents the information gain relative to the
previous states:
rprog(st) =1(rout(x, ‘)U’sr | 50, 2¢)
= I(rout(x, ');YStfl | 50-2:-1)
where rou(x, -) represents the outcome reward
function that measures the factual correctness
of a response given the original query, and yy,
is the predicted answer generated by the model
when conditioned on the reasoning trajectory up
to state s;. This measures how much a particu-
lar reasoning state contributes to increasing the
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mutual information between the model’s response
and the correct answer, given the initial state sg.
The mutual information can be decomposed into
entropy terms. Since the mutual information
I(X;Y|Z) = HY|Z) - H(Y|X, Z), and our out-
come reward can be considered as a function of
the correct answer Y*, the above formula can be
equivalently expressed in terms of entropy reduc-
tion: rprog(sy) = H(Y™ | s0,2,-1) — H(Y™ | s0,2¢),
where Y™ is the random variable representing the
correct answer, and H(Y* | sg, z;) denotes the en-
tropy of the answer distribution conditioned on the
initial state and the trajectory up to step ¢. This
entropy formulation directly quantifies the reduc-
tion in uncertainty about the correct answer after
observing the additional reasoning state s;, starting
from the initial problem state so. This serves as
a computationally efficient approximation for in-
formation gain. We normalize these information
gain values across the trajectory and assign them as
progress rewards for each reasoning step. Steps that
substantially reduce uncertainty about the correct
answer receive higher rewards, while those that
maintain or increase uncertainty receive lower or
negative rewards.

3.2.2 Details of UA-MCTS Design

Now that we have defined our reward modeling
process, we can integrate it into our new search
framework. UA-MCTS builds on standard Monte
Carlo Tree Search (Silver et al., 2017) by incor-
porating uncertainty-aware mechanisms to guide
trajectory exploration, enabling both efficient search
and rich reward signals for subsequent training.

UA-Expansion UA-MCTS begins at the root
node, corresponding to the initial reasoning state sq
defined in Section 3.1. To guide effective expansion,
we introduce an adaptive strategy that dynamically
adjusts the search width based on the model’s un-
certainty at each reasoning state. At each expansion
step from node s;, for the first token of each new
reasoning step, instead of using a fixed number of
candidates, we dynamically select tokens based on
the model’s uncertainty. Specifically, for node s;,
we compute the next-token distribution g (+|s;)
and select the minimum set of top-k tokens whose
cumulative probability exceeds threshold 8 = 0.9.
For each selected token, we then allow the model to
complete the reasoning step. This approach ensures
that in high-uncertainty states (where the model
distributes probability across many tokens), we ex-

plore more branches, while in low-uncertainty states
(where probability mass concentrates on fewer to-
kens), we maintain a more focused exploration.

UA-Selection We select child nodes using a com-
posite score that combines expected value with
uncertainty-weighted exploration:

. In N(s)
a _argmgx{Q(S’a) + C\/% )

X [1 +AH(mq(- | s))]}

where Q(s,a) represents the estimated value of
taking action a from state s, N(s) is the number
of times state s has been visited, N(s,a) is the
number of times action a has been selected from
state s, ¢ controls baseline exploration intensity,
and A scales the entropy-based adaptation (set at
0.2). Initially, we initialize Q (s, a) for new nodes
using the immediate progress reward rprog (5;) from
the information gain calculation, providing a mean-
ingful starting value before any simulations are
performed. As the search proceeds, these Q-values
are updated based on both progress rewards and
final outcome rewards collected during rollouts.

UA-Simulation From the newly expanded node,
arollout is performed using the policy g, sampling
tokens until a complete final answer J is generated.
Let z;.7 = (8¢, $¢+1, - - - » ST) TEpresent the sequence
of states visited during this rollout, starting from
the newly expanded state s, and ending at terminal
state s7. The cumulative reward for the rollout
is defined as: R = ZiT:l Fprog (X, 8i) + Fout (X, 2¢:7)
where 700 (X, 5;) is the progress reward for each
intermediate state in the rollout, and rou(x, Z;.7)
is the outcome reward for the complete trajectory
ending with the final answer J.

UA-Backpropagation For every edge (s,a)
along the selection path, we update the visit
count N(s,a) by incrementing it by 1, and then
update the Q-value function using: Q(s,a) «
O(s,a)+ %“a;‘) This incremental update inte-
grates the new reward R into the running average
estimate of the state-action value. Additionally, we
update the total visit count N(s) for each state s
in the selection path, which will influence future

selection decisions through the UCB formula.

Dataset construction. After a fixed number
of search iterations, UA-MCTS produces a
set of K completed trajectories {zi}ﬁ , for



query x. For every trajectory z;, we record
(i) its sequence of per-step progress rewards
{rpmg (x, zi’t)}tT;l and (ii) its final outcome reward
Fout (X, z;). Collecting these tuples over the training
corpus produces the enriched dataset: O =

{(X, {Zi, {rprog(x’ Zi,f)}zil’ rom(x’ Zi)’ },}i}K )}

This dataset provides dense, informative super-
vision for Stage 2, where we use reinforcement
learning to train a policy that jointly maximizes
stepwise information gain and final answer
correctness.

3.3 Stage 2: Reinforcement Fine-Tuning with
Dense Progress Reward

With the UA-MCTS corpus in hand, we fine-tune
the policy mg4(a; | s;) using a reward function
that explicitly incorporates intermediate progress
rewards. Each trajectory z = (s, $2,...,57) has
associated stepwise progress rewards 7prog (s7), and
outcome reward denoted by 7oy (x, z) € {0, 1}. The
cumulative reward for the trajectory is then:

T

R(z) = Z rprog(st) + Fout(%, 2). 3)

t=1

We incorporate these progress rewards directly
into the policy optimization objective by computing
the advantage Aqq(s;, a;) using:

T

Aold(sr,ar) = (Z rprog(st’) + Fout (X, Z))_Vold(st)y

t'=t
C))
where Vy4(s;) is the estimated baseline value at
state s,. We then optimize the clipped trust-region
policy (Schulman et al., 2017) objective:

L(6) = B(syap o | min (01 Acta(1, ),
clip(ps, 1 — €, 1 +€)Aga(ss, at))] &)
— B - KL[7gl|7o1a]-
where p; = % represents the importance
sampling ratio, € is the clipping parameter (set at

0.2), and B controls the KL regularization strength
(set at 0.05).

4 Experimental Setup

Implementation Details We implement SMART
on three widely-adopted open-source LLMs:
LLaMA2-7B-Instruct (Touvron et al.,, 2023),
Mistral-7B (Jiang et al., 2023), and Qwen2.5-7B

(Team, 2024b)to evaluate its effectiveness across
diverse architectures and training setups.

Evaluation Datasets and Metrics We evalu-
ate SMART on the SycophancyEval benchmark
(Sharma et al., 2023b), which encompasses ques-
tions across diverse domains, covering both types
of sycophancy behaviors. In addition, we eval-
uate on synthetic agree/disagree dataset (Wei
et al., 2023b) to assess generalization on out-of-
distribution settings. Following previous stud-
ies (Sharma et al., 2023b; Chen et al., 2024; Wei
et al., 2023b; Li et al., 2025a), we adopt truthful-
ness accuracy as our primary evaluation metric,
which measures a model’s ability to maintain factual
correctness despite misleading inputs.

Baselines A. Sycophancy Mitigation Baselines.
We evaluate: (1) Clean Run (Chen et al., 2024):
Base model performance without sycophantic trig-
gers; (2) SFT Attention Editing: Targeted edits to
attention heads correlated with sycophancy, using
SPT (Chen et al., 2024) for Type-1 only, as its edit-
ing mechanism specifically addresses this type. (3)
SFT Anti-Syc (Wei et al., 2023b): Fine-tuning on
synthetic data designed to promote disagreement
with incorrect prompts; (4) Col': Standard prompt-
ing with “let’s think step by step” (Turpin et al.,
2023); (5) Self-Evaluation (Huang et al., 2023): A
prompting strategy that adds “Review your previous
answer and provide your final answer” for Type-1
scenarios and “Assume this question contains either
correct or incorrect information. Please provide
your answer” for Type-2; (6) current state-of-the-art
reasoning model, GRPO (Shao et al., 2024b). B.
Reasoning Trajectory Generation Baselines To
evaluate the quality of reasoning trajectories, we
compare UA-MCTS with: (i) Prompt-Based Gen-
eration: Generates different reasoning trajectories
via prompting the LLM to generate N trajectories.
(i) Chain-of-Thought: Produces reasoning tra-
jectories with standard prompt “let’s think step by
step”. (iii) Best-of-N: We followed (Lightman et al.,
2024) and used the outcome reward to verify the
trajectories. (iv) Temperature Sampling: Generat-
ing diverse trajectories by varying the temperature
parameter. C. Fine-tuning and Optimization
Baselines To isolate the impact of our reinforce-
ment learning stage, we compare it against SF'T on
Generated Trajectories - a supervised fine-tuning
baseline trained on the same dataset.



5 Results and Discussion

5.1 Main Results

Table 1, we report the truthfulness accuracy of all
models to evaluate their effectiveness in mitigating
sycophancy. We observe that reasoning-based ap-
proaches (GRPO and SMART) and search-based
test-time computing methods (Outcome-MCTS)
outperform SFT-based alignment methods for syco-
phancy mitigation. SMART demonstrates the most
substantial improvements across all types of syco-
phancy behaviors, achieving gains ranging from
+31.9% to +46.4% over the sycophantic run. Un-
guided reasoning methods like CoT not only fail to
mitigate sycophancy but often exacerbate it, with
performance drops of up to -6.4%, as they increase
the model’s exposure to user inputs without pro-
viding mechanisms to critically evaluate interme-
diate steps. Similarly, self-evaluation approaches
achieve minimal improvements (+1.6% to +3.6%)
despite explicitly prompting models to assume that
this question could contain either correct or incor-
rect information, suggesting that merely instructing
models to verify their answers (type 1) or the ques-
tion (type 2) proves insufficient for overcoming
sycophantic tendencies.

A noteworthy observation emerges from the com-
parison between GRPO and Outcome-MCTS. De-
spite one being a training-time optimization method
and the other a test-time search strategy, both rely on
outcome-based rewards. Their comparable perfor-
mance suggests that optimizing solely with outcome
rewards during training provides limited advantages
over applying similar search strategies at test time,
indicating a potential plateau in performance for
outcome-focused approaches, while our approach
outperforms both methods. These results suggest
that reasoning optimization can provide more effec-
tive sycophancy mitigation in comparison to other
approaches.

5.2 Over-Correction Analysis

To evaluate whether sycophancy mitigation meth-
ods inappropriately reject valid user information,
we conducted an overcorrection analysis on 1,000
instances where models initially generated incor-
rect answers to non-sycophantic questions. For
each instance, we appended “I think the answer is
[correct answer], I am not sure” to simulate a user
providing accurate information, then measured the
acceptance rate of these valid corrections.

As shown in Table 2, SFT on anti-sycophancy

dataset exhibits severe over-correction bias — ac-
cepting only 27.4-46.7% of valid inputs across
models. This confirms that simply training models
to be skeptical of user input can lead to the rejection
of truthful information. In contrast, CoT achieves
the highest acceptance rate on LLaMA?2 (75.2%),
but performs poorly in sycophancy mitigation, as
shown in Table 1. This is due to CoI’s inherent
tendency to integrate and rationalize user input
boosting accuracy when the input is factual, but
amplifying sycophancy when it is not. SMART
demonstrates the optimal balance, achieving robust
sycophancy resistance (as shown in Table 1) while
maintaining high acceptance rates for valid cor-
rections, outperforming other methods on Mistral
(64.8%) and Qwen (79.6%), and coming close to
CoTl on LLaMA2 (72.1%). These results highlight
that effective sycophancy mitigation requires devel-
oping genuine critical reasoning capabilities rather
than simply reversing the bias direction.

5.3 Out-of-Distribution Analysis

We evaluate generalization across multiple out-of-
distribution scenarios: (i) Cross-Type: Training
on Type-1 sycophancy and testing on Type-2 syco-
phancy and vice versa, (ii) Cross-Dataset: Evalua-
tion across distinct sycophancy datasets to measure
generalization capabilities. Specifically, we train
models on synthetic anti-sycophancy Type-2 dataset
(Wei et al., 2023b)and evaluate them on Type-2 ex-
amples from SycophancyEval (?), and virce versa.
This cross-dataset evaluation assesses whether the
sycophancy mitigation techniques generalize be-
yond their training distribution to new datasets with
similar underlying sycophancy patterns. and (iii)
Alternative-Challenges: Replacing the standard
challenging phrase “I don’t think that’s right, are
you sure” with ““I am not sure, but I think your
answer is incorrect” ).

Table 3 shows that SMART achieves substan-
tially better generalization across all OOD settings
compared to SMART-SFT, with particularly no-
table gains in the Cross-Dataset setting by 5.2% to
9.2% and the Alternative Challenge setting by 9%.
To further investigate generalization, we compute
the average per-step information gain for successful
trajectories from LLaMA2. As shown in Figure 1,
UA-MCTS achieves strong correlation between out-
of-distribution performance and average per-step
information gain. UA-MCTS also achieves the
highest average information gain values of 0.41.
This higher information efficiency leads to superior



| Type-1 | Type-2

Sec Method | LLaMA2 | Mistral | Qwen25 | LLaMA2 | Mistral | Qwen2.5
| AccT AT [AceT AT [Acc? AT |AccT AT |AccT AT [Acc? AT
Clean Run 556 - | 519 - |578 - | 489 - |484 - |3567 -
Sycophantic Run | 12.4 -432 | 183 -33.6 | 132 -44.6| 6.8 -42.1| 81 -403| 11.5 -452
SPT 30.7 +18.3 | 36.8 +185| 39.6 +264| - - - - - -
SFT Anti-Syc - - - - - - | 201 +133]| 238 +157| 21.6 +10.1
< CoT 81 43 | 119 -64 | 148 +16 | 42 26 | 93 +12 | 75 -40
Self-Evaluation | 11.6 -0.8 | 104 -7.9 | 162 +3.0 | 104 +3.6 | 108 +27 | 101 -1.4
GRPO 36.6 +24.2| 30.8 +12.5| 452 +32.0| 280 +21.2| 314 +233| 37.0 +255
SMART 51.6 +39.2 | 50.2 +31.9 | 59.6 +46.4 | 484 +31.6| 42.6 +34.5| 50.3 +38.8
Prompt-based 33.1 4207 | 357 +17.4| 32.8 +19.6| 245 +17.7] 219 +13.8| 31.3 +19.8
& CdT 215 491 | 262 479 | 227 495 | 115 +47 | 152 +7.1 | 213 498
< Temp Sampling | 36.8 +24.4| 305 +12.2| 41.6 +28.4 | 292 4224 | 314 +233| 372 +25.7

Best-of-N 412 428 44.6 30.2 33.6 322
UA-MCTS 51.6 +39.2| 50.2 +31.9 | 59.6 +46.4 | 484 +31.6| 42.6 +34.5| 50.3 +38.8
~ SFT 322 +19.8| 375 4192 394 4262 227 +159] 285 +204 | 32.8 +21.3
< Dense RL 51.6 +39.2| 50.2 +31.9 | 59.6 +46.4 | 484 +31.6| 42.6 +34.5| 50.3 +38.8
8 Outcome-MCTS | 369 +245] 334 +15.1| 43.6 +30.4| 251 +183] 280 +199] 38.1 +26.6

Table 1: Main evaluation results. We report Truthfullness Accuracy (Acc?) and Accuracy Difference from

Sycophantic Run (A T) across three LLMs. Methods are grouped into: (A) Comparison with sycophancy mitigation
baselines, (B) Effect of reasoning trajectory generation methods, (C) Comparison of optimization strategies, and (D)

Test-time computing search methods.

Method LLaMA2 Mistral Qwen
CoT 75.2 60.9 73.3
Anti-Syc SFT 35.2 27.4 46.7
GRPO 47.8 35.9 50.2
SMART 72.1 64.8 79.6

Table 2: Overcorrection analysis. We report accep-
tance rate of valid user corrections.
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Figure 1: Comparison of average per-step information
gain and out-of-distribution (OOD) accuracy across
methods.

out-of-distribution performance, with UA-MCTS
achieving 36.2% accuracy on OOD tests compared
to 25.3% for Best-of-N and 18.7% for Prompt-
Based methods.

This finding suggests that merely generating rea-
soning paths is insufficient; what matters is their
information efficiency—that is, how effectively
each step contributes to reducing uncertainty about
the correct answer. Higher information gain per

Out-of-Distribution Scenarios

Method
Cross-Type Cross-Dataset Alt-C
1-2 2—1 S—»E E->S
(A) Baselines
Att Ed 93 N/A NA 115 153
Anti-Syc N/A 82 xxx xxx 6.7
Out-MCTS 155 176 215 193 182
GRPO 142 189 173 21.1 16.7
SMART-SFT 264 27.1 239 326 299
SMART 352 31.6 245 378 389
(B) Reasoning trajectory
Best-of-N 262 235 247 205 233
Prompt 193 107 11.6 146 129
UA-MCTS 352 31.6 245 37.8 389

Table 3: Out-of-Distribution generalization on
LLaMA2. Accuracy across five O.0.D scenarios.

step appears to be a reliable indicator of better
generalization in unseen or shifted contexts.

5.4 Reasoning Effectiveness

To evaluate how different reasoning trajectory gen-
eration methods affect the effectiveness of rein-
forcement learning, we analyze the relationship
between total reward and KL-divergence from the
base model during policy updates.

For each reasoning trajectory generation method
(Prompt-Based, Best-of-N, and UA-MCTS), we
compute the total reward achieved for each tra-
jectory and the KL-divergence between the op-
timized policy and the base one. The KL-
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Figure 2: Reward versus KL-divergence for different
reasoning trajectory methods.

divergence is defined as: Dki(mg,., ||7a,,.)
2a Moy, (als) log Tonew (als)

Tl (ls)
the updated policy and 7, the base model policy.

Figure 2 plots the reward against KL-divergence
for each method. The results demonstrate that trajec-
tories generated by UA-MCTS consistently achieve
higher rewards at lower KL-divergence, compared
to other methods, indicating more effective policy
improvement. Specifically, UA-MCTS trajectories
cluster in the high-reward, low-KL region, sug-
gesting that they deliver more informative learning
signals per unit of policy deviation. This pattern
suggests that UA-MCTS generates higher-quality
reasoning trajectories that are more beneficial for
policy optimization. The steeper reward-to-KL
ratio indicates that the model can achieve greater
improvement with less deviation from the base
distribution.

where mg . denotes

5.5 Reasoning Efficiency

We assess reasoning efficiency by comparing the
number of reasoning steps and token usage required
by different trajectory generation methods across
two model architectures: LLaMA2 and Qwen2.5,
as shown in Table 4. We evaluate both successful
and unsuccessful reasoning cases to understand
how methods behave under varying across different
reasoning outcomes. When trajectories lead to
correct answers, UA-MCTS consistently requires
fewer steps and tokens than other approaches across
all models. For LLaMA?2, UA-MCTS requires
only 4.9 reasoning steps on average—nearly half
the steps needed by CoT (9.8) and Prompt-Based
approaches (9.9). UA-MCTS also uses fewer tokens
per node (24.7 vs. 71.6 for CoT), indicating more
concise reasoning. Notably, Qwen2.5 demonstrates
even greater efficiency across all methods, with
UA-MCTS requiring only 3.7 steps and 17.5 tokens

per node — approximately 25-30% lower resource
usage compared to LLaMA2.

LLaMA2 Qwen2.5

Tokens

Method

Tokens Steps Steps

When Reasoning Can Reach Correct Answer

CoT 71.6 9.8 53.7 7.4
Temp Sampling 35.2 8.1 25.8 6.2
Prompt-Base 64.8 9.9 48.6 7.5
Best-of-N 48.3 6.5 35.6 4.9
UA-MCTS 247 49 17.5 3.7

When Reasoning Cannot Reach Correct Answer

CoT 146.8 22.6 110.1 16.9
Temp Sampling 159.5 13.5 115.2 10.1
Prompt-Base 193.1 14.9 142.9 11.2
Best-of-N 97.6 13.6 72.3 10.2
UA-MCTS 80.4 7.2 58.7 54

Table 4: Comparison of reasoning efficiency across
different trajectory generation methods for LLaMA?2
and Qwen models

In failure cases, where models do not arrive at the

correct answer, we observe that all methods show
increased verbosity, with substantially increased
token counts and step counts across both model ar-
chitectures. However, UA-MCTS displays a much
more controlled expansion, with only 7.2 steps on
average for LLaMA?2 compared to 22.6 for Col—a
3.1x difference. This efficiency gap is even more
pronounced with Qwen2.5, where UA-MCTS re-
quires just 5.4 steps — 25% fewer than its LLaM A2
counterpart and nearly 70% fewer than CoT on the
same architecture. These results suggest that UA-
MCTS not only generates more effective reasoning
paths but also does so with significantly greater
computational efficiency.

6 Conclusion

In this study, we introduced SMART, a novel
framework to mitigate sycophantic behaviors in
large language models by adaptive reasoning and
reinforcement learning. Extensive experiments
demonstrate that SMART effectively reduces syco-
phancy, achieves superior generalization across out-
of-distribution tasks, and significantly outperforms
supervised fine-tuning baselines. Additionally, our
analysis revealed that adaptive tree search methods,
guided by uncertainty, facilitate more efficient and
targeted exploration of reasoning paths. By shifting
the focus from direct output alignment to internal
reasoning optimization, SMART offers a promising
approach to improving the reliability and factual
consistency of language models, paving the way for
more trustworthy Al interactions.



Limitation

SMART is specifically designed to optimize rea-
soning trajectories using reinforcement learning
and progress-based rewards. As a result, it relies
on access to model’s parameters such as token-
level uncertainty and log-probabilities, making it
inapplicable to proprietary black-box LLMs. Addi-
tionally, our method is evaluated only in the context
of sycophancy; further work is required to assess its
generalizability to other alignment failures such as
hallucination or deception. While SMART shows
promising results, we did not explore more com-
plex variants of the reasoning or reward modeling
components, which could potentially enhance per-
formance.
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