IDER: IDEMPOTENT EXPERIENCE REPLAY FOR RELI-ABLE CONTINUAL LEARNING

Anonymous authorsPaper under double-blind review

000

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

028

029

031

032033034

037

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

Catastrophic forgetting, the tendency of neural networks to forget previously learned knowledge when learning new tasks, has been a major challenge in continual learning (CL). To tackle this challenge, CL methods have been proposed and shown to reduce forgetting. Furthermore, CL models deployed in mission-critical settings can benefit from uncertainty awareness by calibrating their predictions to reliably assess their confidences. However, existing uncertainty-aware continual learning methods suffer from high computational overhead and incompatibility with mainstream replay methods. To address this, we propose idempotent experience replay (IDER), a novel approach based on the idempotent property where repeated function applications yield the same output. Specifically, we first adapt the training loss to make model idempotent on current data streams. In addition, we introduce an idempotence distillation loss. We feed the output of the current model back into the old checkpoint and then minimize the distance between this reprocessed output and the original output of the current model. This yields a simple and effective new baseline for building reliable continual learners, which can be seamlessly integrated with other CL approaches. Extensive experiments on different CL benchmarks demonstrate that IDER consistently improves prediction reliability while simultaneously boosting accuracy and reducing forgetting. Our results suggest the potential of idempotence as a promising principle for deploying efficient and trustworthy continual learning systems in real-world applications. Our code will be released upon publication.

1 Introduction

Deep learning has achieved impressive success across various domains. However, a static batch setting where the training data of all classes can be accessed at the same time is essential for attaining good performance (Le & Yang, 2015; Rebuffi et al., 2017). In many real-world deployments, data arrive sequentially and previously seen samples cannot be fully retained due to storage or privacy constraints. This makes it a major challenge because neural networks tend to rapidly forget previously learned knowledge when trained on new tasks, which is a phenomenon known as catastrophic forgetting (McCloskey & Cohen, 1989).

To address this challenge, continual learning (CL) is proposed to enable models to accumulate knowledge as data streams arrive sequentially. Among valid CL strategies, rehearsal-based approaches are popular as they are simple and efficient. They (Boschini et al., 2022; Buzzega et al., 2020; Caccia et al., 2021; Chaudhry et al., 2019; Wu et al., 2019) address this by storing a small, fixed-capacity buffer of exemplars from previous tasks and replaying them when training on new task, thereby regularizing parameter updates and mitigating catastrophic forgetting. Despite strong average accuracy, CL methods are often poorly calibrated and over-confident, a problem exacerbated by recency bias toward new tasks (Arani et al., 2022). Thus, this undermines the broader deployment of CL models in real-world settings, especially in safety-critical domains (healthcare, transport, etc.) (LeCun, 2022). CL models deployed in these domains can benefit from uncertainty awareness by calibrating their predictions to reliably assess their confidences (Jha et al., 2024). To tackle this issue, Jha et al. (2023) propose neural processes based CL method (NPCL). However, it causes non-negligible parameter growth and exhibits incompatibility with logits-based replay methods due to the stochasticity in the posterior induced by Monte Carlo sampling. Motivated by these limitations, we aim for a lightweight and compatible principle for reliable CL methods.

Figure 1: We propose the IDER method, which can be directly applied to many recent rehearsal-based continual learning methods, resulting in less calibration error and significant improvements in FAA with less parameter growth compared with NPCL.

We draw inspiration from idempotence, a mathematical property that arises in algebra. An operator is idempotent if applying it multiple times yields the same result as applying it once, formally expressed as f(f(x)) = f(x). It can be used in deep learning by recursively feeding the model's predictions back as inputs, allowing the model to refine its outputs (Durasov et al., 2024a; Shocher et al., 2023). Durasov et al. (2024b) show that if a deep network f takes as input a vector f and a second auxiliary variable that can either be the ground truth label f corresponding to f or a neutral uninformative signal 0 and is trained so that f(f) = f

Thus, we propose an Idempotent Experience Replay (IDER) inspired by Idempotence, a simple and effective method that enforces idempotence for CL models when learning new tasks. We demonstrate that enforcing idempotence enables model to make more reliable predictions while reducing catastrophic forgetting. Both combined with naive rehearsal-based method experience replay (ER) (Riemer et al., 2019), compared with NPCL, our approach achieves lower calibration error evaluated by Expected Calibration Error (ECE) (Guo et al., 2017), higher accuracy, and requires smaller parameter numbers, as is shown in Figure 1.

More specifically, IDER integrates two components to enforce idempotence for CL models. Firstly, we adapt the training loss to train the current model to be idempotent with data from the current task. Secondly, we introduce idempotence distillation loss for both buffer data and the current data stream to enforce idempotence between last task model checkpoint f_{t-1} and current model f_t . We verify that incorporating the current data stream into idempotence achieves further performance improvements, suggesting that idempotence can help preserve model distribution, thereby mitigating decision boundary drift.

This yields a simple method that only requires two forward passes of the model almost without additional parameters. Our approach can be integrated into existing CL methods and experiments show that this simple change boosts both prediction reliability and final accuracy by a large margin. Especially on the Split-CIFAR10 dataset, enforcing idempotence improves the baseline method ER (Riemer et al., 2019) by up to 26%, achieving state-of-the-art class incremental learning accuracy. Through extensive empirical validation on challenging generalized class-incremental learning (Mi et al., 2020; Sarfraz et al., 2025), we demonstrate that this simple and powerful principle improves the reliability of predictions while mitigating catastrophic forgetting in real-world scenarios.

The contributions of this paper can be summarized as follows:

- We propose a novel framework for continual learning based on the idempotent property, which is a simple and robust method. Our method demonstrates that fundamental mathematical properties can be effectively utilized to address catastrophic forgetting for CL.
- We show that IDER can be easily integrated into other state-of-the-art methods, leading to more reliable predictions with comparable performance.
- Extensive experiments on several benchmarks demonstrate that our approach achieves strong
 performance in both mitigating catastrophic forgetting and making reliable predictions.

2 RELATED WORK

Continual Learning The goal of continual learning (CL) is to achieve the balance between learning plasticity and memory stability (Wang et al., 2024). Approaches in CL can be divided into three main categories. Regularization-based methods primarily rely on regularization loss to penalize changes in parameter space of the model (Farajtabar et al., 2020; Kirkpatrick et al., 2017). Rehearsal-based Method (Chaudhry et al., 2019) use a memory buffer to store task data and replay them during new task training. Architecture-based methods (Rusu et al., 2016; Wang et al., 2022) incrementally expand the network to allocate distinct parameters for preserving each task's knowledge. Among them, Rehearsal-based methods are general in various CL scenarios and can be naturally combined with knowledge Distillation (KD) techniques.

The baseline Experience Replay (ER) (Riemer et al., 2019) mixes the current task data with stored samples from past tasks in the memory buffer during training. DER (Buzzega et al., 2020) store old training samples together with their logits and preserve the old knowledge by matching the saved logits with logits obtained by current model. Its improved version XDER (Boschini et al., 2022) improves performance at the sacrifice of computational costs due to sophisticated mechanisms. CLSER (Arani et al., 2022) introduce a fast module for plastic knowledge and a slow learning module for stable knowledge. BFP (Gu et al., 2023) uses a learnable linear layer to perform knowledge distillation in the feature space. SCoMMER (Sarfraz et al., 2023) and SARL (Sarfraz et al., 2025) enforces sparse coding for efficient representation learning. Neural Processes for Continual Learning (NPCL) (Jha et al., 2023) explore uncertainty-aware CL models using neural processes (NPs). Unlike previous studies, we explore the idempotence in continual learning, which has never been studied before.

Idempotence in Deep Learning Idempotence is a property of a function whereby the result of applying the function once is the same as applying it multiple times in sequence. Recent work has explored the application of idempotence in deep learning. It is defined that the results obtained by the model will not change when applying the model multiple times (f(f(x)) = f(x)). The Idempotent Generative Network (IGN) (Shocher et al., 2023) firstly proposes this idea in deep learning for generative modeling and it has the capability of producing robust outputs in a single step. Another work ZigZag (Durasov et al., 2024a) introduces idempotence in neural networks for the measuring uncertainty, which is based on IterNet (Durasov et al., 2024b). IterNet proves that for iterative architectures, which use their own output as input, the convergence rate of their successive outputs is highly correlated with the accuracy of the value to which they converge. ZigZag recursively feeds predictions back as inputs, measuring the distance between successive results. A small distance indicates high confidence, while a large one signals uncertainty or out-of-distribution (OOD) data. Recent work ITTT (Durasov et al., 2024c) combines idempotence with Test-Time Training. These works proves the potential of idempotence in deep learning while these works are based on static batch learning.

3 Method

In this section, we deliver details of the proposed IDER. We first define both class-incremental learning and generalized class-incremental learning settings. Then, we elaborate on how to introduce idempotence in continual learning. Finally, we introduce the overall objective. An overview of IDER is depicted in Figure 5.

3.1 PROBLEM DEFINITION

In traditional continual learning, two primary settings are task incremental learning (TIL) and class incremental learning (CIL). The difference between the two settings is that when we test the model, we can know the task ID in task incremental learning. Since class incremental learning better reflects real-world scenarios and is more challenging, we focus on the class incremental learning setting in our experiments. In this paper, we focus on both typical class-incremental learning and generalized class-incremental learning (GCIL) is more close to real-world incremental learning. The key GCIL properties can be summarized as follows: (i) the number of

classes across different tasks is not fixed; (ii) classes shown in prior tasks could reappear in later tasks; (iii) training samples are imbalanced across different classes in each task.

In a typical class-incremental learning setting, a model f is trained on sequential tasks $T = \mathcal{T}_1, \mathcal{T}_2, ..., \mathcal{T}_t$ Each task \mathcal{T} consists of data points and these data points are unique within each task, which means $\mathcal{T}_t = \{(x_i, y_i)\}_{i=1}^{N_t}$ and $\mathcal{T}_i \cap \mathcal{T}_j = \emptyset$. The optimization objective is to minimize the overall loss over all the tasks:

$$f^* = \arg\min_{f} \sum_{i=0}^{t} \mathbb{E}_{(x,y) \sim \mathcal{T}_t} \left[\mathcal{L}(f(x), y) \right], \tag{1}$$

where L is the loss function for the tasks and y is the ground truth for x. However, in the continual setting, only the data from current task \mathcal{T}_t are available and the model should preserve the previous knowledge from the tasks before $\mathcal{T}_1, ..., \mathcal{T}_{t-1}$. As a result, additional memory buffer or additional regularization term \mathcal{L}_R may be chosen to avoid catastrophic forgetting and the actual objective on the current task should be:

$$f^* = \arg\min_{f} [\mathbb{E}_{(x,y) \sim \mathcal{T}_t \cup \mathcal{M}} [\mathcal{L}(f(x), y)] + \mathcal{L}_R], \tag{2}$$

where \mathcal{M} stands for the memory buffer to store the data from previous tasks.

3.2 Modified Architecture

To enable idempotence for the model with respect to the second input, we modify the original backbone as shown in Figure 2. We divide the backbone ResNet (He et al., 2016) as denoted f_t , into two parts f_t^1 and f_t^2 on the t-th task. The second input (either a one-hot vector y or a uniform distribution over all classes standing for "empty" input 0) is first transformed into a label feature vector. This is achieved by a linear layer with an output dimension that matches the dimensions of f_t^1 's output, followed by a LeakyReLU activation function. The image first is processed by f_t^1 to produce an intermediate feature map. The label feature is then added to this intermediate feature map, which is fed into f_t^2 . The output of f_t^2 , which is the logits for target classes, can work as the second input for model after softmax normalization. In this way, the

Figure 2: Modified Architecture. We modify the architecture of backbone(ResNet) and enable the model to accept two inputs.

backbone can accept two inputs and achieve idempotence with respect to the second argument after training.

3.3 STANDARD IDEMPOTENT MODULE: TRAINING THE NETWORK IDEMPOTENT

First, we rely on the model we train being idempotent. To achieve this, Standard Idempotent Module is used for training the model on data from the current task. Following Durasov et al. (2024a;b), when learning new tasks, we minimize the loss which consists of two cross-entropy losses obtained by the logits from the first and second forward propagation of model and the ground truth y:

$$\mathcal{L}_{ice} = \sum_{(x,y)\in\mathcal{T}_t} [\mathcal{L}_{ce}(f_t(x,y^*),y) + \mathcal{L}_{ce}(f_t(x,f_t(x,y^*)),y)], \tag{3}$$

where \mathcal{T}_t is current task and y^* is the second input that is is set to the ground-truth one-hot vector y with probability P and to the neutral "empty" signal input $\mathbf{0}$ with probability 1 - P. The empty signal $\mathbf{0}$ is defined as a uniform distribution over all classes.

By minimizing \mathcal{L}_{ice} , we can train the model idempotent with respect to the second argument, which can be obtained by:

$$f_t(x, \mathbf{0}) \approx y, \quad f_t(x, y) \approx y, \quad f_t(x, f_t(x, \mathbf{0})) \approx y \implies f_t(x, f_t(x, \mathbf{0})) \approx f_t(x, \mathbf{0}).$$
 (4)

Thus, f_t has been adjusted so that the model f_t is as idempotent as possible for all x in distribution. The model will map the data $(x, \mathbf{0})$ to the stable manifold (x, y) : f(x, y = y). Fig. 3 illustrates this

Figure 3: We plot the distribution of idempotence errors, measured by the distance |f(x,f(x,z))-f(x,z)|. Inputs x with second incorrect prediction input z exhibit significantly larger idempotence errors.

Figure 4: Probability of predicting each task at the end of training for models trained on CIFAR-10 with 500 buffer size. Idempotent distillation loss effectively mitigates the bias to the recent tasks and provides a more uniform probability size.

in the case of a network trained on data from the first task on CIFAR-100. With different second input y, the idempotence distance distribution varies. The input which contains incorrect prediction input y exhibits significantly larger idempotence errors. Thus, this distance can be used as a distillation loss for iterative prediction refinement to make reliable predictions.

3.4 IDEMPOTENT DISTILLATION MODULE: DISTILLING THE NETWORK FOR CONTINUAL LEARNING

In the CL setting, the model tends to have recency bias toward newly introduced classes, which negatively influences the performance and results in overconfidence predictions. Rehearsal-based methods suffer from this problem, as Wang et al. (2022) point out that when a new task is presented to the net, an asymmetry arises between the contributions of replay data and current examples to the weights updates: the gradients of new examples outweigh. Thus, we propose to minimize idempotence distances to mitigate recency bias and prediction distribution drift in CL. A naive way would be to minimize the loss function:

would be to minimize the loss function:
$$\mathcal{L}_{ide} = \sum_{(x,y)\in\mathcal{T}_t,M} \|f_t(x,\mathbf{0}) - f_t(x,f_t(x,\mathbf{0}))\|_2^2. \tag{5}$$

However, this can produce undesirable side effects in CL settings. As f_t has bias towards current data streams and $y_0 = f_t(x, \mathbf{0})$ may be an incorrect prediction, minimizing $||y_0 - y_1||_2^2$ may cause $y_1 = f_t(x, y_0)$ to be pulled towards the incorrect y_0 , thereby magnifying the error.

To address this, we keep the model checkpoint at the end of the last task f_{t-1} together with the current trained model f_t . We then modify the idempotence distillation loss to be:

$$\mathcal{L}_{ide} = \sum_{(x,y)\in\mathcal{T}_t,M} \|f_t(x,0) - f_{t-1}(x,f_t(x,0))\|_2^2.$$
 (6)

Thus, the first prediction $y_0 = f_t(x, \mathbf{0})$ is computed as before, but the second one, $y_1 = f_{t-1}(x, y_0)$, is made using the last model checkpoint f_{t-1} . By updating only f_t and keeping f_{t-1} frozen, which preserves more previous knowledge and stable prediction distribution for buffer data, we ensure that y_0 is adjusted to minimize the discrepancy with y_1 , without pulling y_1 towards an incorrect y_0 . This design achieves idempotence by ensuring that processing an input through the current model and then through a frozen old checkpoint yields a nearly identical output distribution. This self-consistency mechanism directly preserves previous knowledge while mitigating bias. Unlike traditional distillation in Buzzega et al. (2020), which only aligns the final output probabilities, our method anchors the model's representation to the stable manifold already learned by the frozen model, thereby maintaining balanced predictive performance across all tasks, as is shown in Figure 4.

3.5 OVERALL OBJECTIVE

We introduce idempotence into an experience replay (ER) framework (Riemer et al., 2019), where we keep a buffer M storing training examples from old tasks. We keep the model checkpoint at the end

Figure 5: Overall framework of Idempotent Experience Replay (IDER). Our method consists of two modules for continual learning: (1) Standard Idempotent Module that trains current model idempotent with data from the current task. (2) Idempotent Distillation Module that enforce the current model to become idempotent with respect to the last task model checkpoint, utilizing data from both the current task and buffer memory. IDER can be integrated into existing CL approaches to make reliable predictions while mitigate catastrophic forgetting.

of the last task f_{t-1} together with the current trained model f_t . During continual learning, the current model f_t is trained on the batch from data stream of the current task \mathcal{T}_t using the adapted training loss \mathcal{L}_{ice} in Eq. 3. We sample batch from M and combine the current batch to compute idempotence distillation loss \mathcal{L}_{ide} in Eq. 6.

Meanwhile, we sample another batch from M for experience replay. The experience replay loss $\mathcal{L}_{rep\text{-}ice}$ in ER is:

$$\mathcal{L}_{rep\text{-}ice} = \sum_{(x,y)\in M} [\mathcal{L}_{ce}(f_t(x,y^*),y) + \mathcal{L}_{ce}(f_t(x,f_t(x,y^*)),y)]. \tag{7}$$

The total loss function used in IDER is the weighted sum of the losses above, formally:

$$\mathcal{L}_{IDER} = \mathcal{L}_{ice} + \alpha \mathcal{L}_{ide} + \beta \mathcal{L}_{rev-ice}. \tag{8}$$

In addition, our method is simple and robust, which can be combined with other methods, such as BFP (Gu et al., 2023), to achieve higher performances. Details are shown in the appendix.

4 EXPERIMENTS

Continual Learning Settings. We follow Gu et al. (2023) and conduct experiments on state-of-the-art rehearsal-based models in class incremental learning (CIL) setting. CIL setting splits the dataset into a sequence of tasks, each containing a disjoint set of classes, while task identifiers are not available during testing. Following Sarfraz et al. (2025), we also evaluate methods in the generalized class incremental learning (GCIL) setting. GCIL setting (Mi et al., 2020) is closest to the real-world scenario as the number of classes in each task is not fixed, the classes can overlap and the sample size for each class can vary.

Evaluation Metrics. Following Boschini et al. (2022); Buzzega et al. (2020), we use Final Average Accuracy (FAA) and Final Forgetting (FF) to reflect the performances of mitigating catastrophic. We report well-established Expected Calibration Error(ECE) (Guo et al., 2017) to assess the reliability of continual learning methods. More details are shown in the appendix.

Table 1: Comparison of Final Average Accuracy (FAA) across different continual learning methods. All experiments are repeated 5 times with different seeds. Results for SARL (Sarfraz et al., 2025) are from our implementation. The best results are highlighted in blue. The second best results are highlighted in green.

Method	CIFA	.R-10	CIFA	R-100	Tiny-ImageNet		
	Buffer 200	Buffer 500	Buffer 500	Buffer 2000	Buffer 500	Buffer 4000	
Joint (upper bound)	91.93±0.29		71.15±0.51		59.52±0.33		
iCaRL (Rebuffi et al., 2017)	58.37±3.51	62.49±5.42	46.81±0.41	52.51±0.44	22.53±0.62	26.38±0.23	
ER (Riemer et al., 2019)	44.46±2.87	58.84±3.85	23.41±1.15	40.47±0.95	10.13±0.39	25.12±0.56	
BiC (Wu et al., 2019)	52.61±5.37	71.95±1.82	37.82±1.67	47.17±1.17	15.36±1.31	18.67±0.57	
LUCIR (Hou et al., 2019)	49.18±7.61	65.26±2.54	37.91±1.18	50.42±0.76	28.79±0.51	31.64±0.51	
DER (Buzzega et al., 2020)	57.92±1.91	68.65±1.82	34.83±2.09	50.12±0.75	15.14±1.29	20.35±0.35	
DER++ (Buzzega et al., 2020)	62.19±1.94	70.10±1.65	37.69±0.97	51.82±1.04	19.43± 1.63	36.89± 1.16	
ER-ACE (Caccia et al., 2021)	62.19±1.67	71.15±1.08	37.81±0.54	49.77±0.34	20.42±0.39	37.76±0.53	
XDER (Boschini et al., 2022)	64.10±1.08	67.42±2.16	48.14±0.34	57.57±0.84	29.12±0.47	46.12±0.46	
CLS-ER (Arani et al., 2022)	64.56±2.63	74.27±0.81	43.92±0.62	54.84±1.30	30.91±0.59	45.17±0.89	
SCoMMER (Sarfraz et al., 2023)	66.95±1.52	73.64±0.43	39.05±0.79	49.42±0.85	21.47±0.54	37.2±0.70	
BFP (Gu et al., 2023)	68.64±2.23	73.51±1.54	46.70±1.45	57.39±0.75	28.71±0.55	43.17±1.89	
SARL (Sarfraz et al., 2025)	68.87±1.37	73.98±0.46	46.69±0.79	57.06±0.48	28.44±2.30	38.83±0.81	
ER+ID(Ours)	71.02±1.98	74.74±0.42	44.82±0.85	56.59±0.35	29.88±1.15	43.05±1.40	
BFP+ID (Ours)	71.99±0.98	76.65±0.63	48.53±0.95	57.74±0.64	30.62±0.47	43.51±0.59	
CLS-ER+ID (Ours)	70.32±1.12	75.48±0.91	47.44±2.0	56.36±0.78	31.62±0.57	46.17±0.22	
CIFAR-10 $\mathcal{M} = 200$ 90 90 90 90 90 90 90							

Figure 6: Results on CIFAR-10 and Tiny-ImageNet with different buffer size. It shows the trend of the average test-set accuracy on the observed tasks.

Training Details. We adopt the standard experimental protocols following Boschini et al. (2022); Gu et al. (2023). All methods use a ResNet-18 backbone (He et al., 2016) trained from scratch with an SGD optimizer. For a fair comparison, we employ uniform settings across all methods (including epochs, batch sizes, and optimizer configurations). Datasets are split as follows: 5 tasks for CIFAR-10, and 10 tasks each for CIFAR-100 and TinyImageNet. We report the average results over 5 independent runs with different random seeds to ensure statistical reliability. Comprehensive hyperparameter settings and further implementation details are provided in the appendix.

4.1 RESULTS

Comparison with the state-of-the-art methods. We evaluate our method against state-of-the-art continual learning approaches across three benchmark datasets with different memory buffer sizes: CIFAR-10, CIFAR-100, and Tiny-ImageNet. The Final Average Accuracies in the class incremental learning setting on different benchmarks are reported in Table 1. Our method outperforms all rehearsal-based methods on three datasets. Notably, our method outperforms the second best method BFP by up to 3% on CIFAR-10, which shows that our method remains highly effective even on a small-scale benchmark. Though outperforming XDER only slightly in FAA on CIFAR-100 and Tiny-ImageNet, our approach attains this accuracy with markedly lower computational cost, which can be shown in Figure 7 (a). Figure 6 shows that IDER has better performance at most intermediate tasks and also the final one. In addition, Table 2 highlights the advantage of IDER in the challenging

Table 2: Comparison of Final Average Accuracy (FAA) across different continual learning methods on GCIL-CIFAR-100 dataset. All experiments are repeated 5 times with different seeds. Absolute gains are indicated in green.

Method	Uniform			Longtail				
Method	Buffer 200	Δ	Buffer 500	Δ	Buffer 200	Δ	Buffer 500	Δ
Joint (upper bound)	58.36±1.02			56.94±1.56				
DER++ (Buzzega et al., 2020)	19.36±0.65		33.66±0.96		27.05±1.11		25.98±0.81	
SCoMMER (Sarfraz et al., 2023)	28.56±2.26		35.70±0.86		28.47±1.12		32.99±0.49	
ER (Riemer et al., 2019)	16.34±0.74		28.76±0.66		19.55±0.69		20.02±1.05	
Ours (ER+ID)	26.66±0.63	+10.32	40.54±0.46	+11.78	30.04±0.58	+10.49	35.92±0.35	+15.90
CLS-ER (Arani et al., 2022)	22.37±0.48		36.80±0.34		28.34±0.99		28.35±0.72	
Ours (CLS-ER+ID)	31.17±1.62	+8.80	37.57±1.81	+0.77	34.08±0.45	+5.74	36.75±0.62	+8.40
SARL (Sarfraz et al., 2025)	36.20±0.46		38.73±0.66		34.13±1.07		34.64±0.49	
Ours (SARL+ID)	36.45±0.37	+0.25	39.65±0.43	+0.92	35.04±0.54	+0.91	35.67±0.74	+1.03

GCIL setting, which tests the model's ability to deal with class imbalance and to continuously integrate knowledge from overlapping classes. The results in such a challenging setting prove the benefits of idempotence, which encourages the model to produce more robust representations to identify concepts clearly. This ability of IDER shows the potential for realistic continual learning.

Plug-and-play with other rehearsal-based methods. Considering the effectiveness and simplicity of idempotence, it is natural to consider whether it can be integrated into other rehearsal-based methods. Table 1 shows consistent performance improvements on various datasets with this integration. Enforcing idempotence boosts FAA by a significant margin, especially for ER (26% on CIFAR-10 with buffer size 200 and 21% on CIFAR-100 with buffer size 500). The results in GCIL in Table 2 can also prove that IDER, by enforcing model idempotence, is complementary to other methods in relieving forgetting. It is worth mentioning that in more challenging setting, the performance gains can be obvious. Combined with CLS-ER, in traditional CIL, idempotence yields a gain of about 3.5% on CIFAR-100 with buffer size 500, while in GCIL, the gains can reach 8%. This additionally demonstrates the potential of this mathematical property to address catastrophic forgetting for more challenging CL scenarios.

Table 3: Comparison of Expected Calibration Error (ECE) across different continual learning methods on CIFAR-10 and CIFAR-100 dataset. All experiments are repeated 5 times with different seeds. Results of NPCL are imported from its original work (Gu et al., 2023). Absolute improvements (lower ECE) are indicated in red.

Method	CIFAR-10				CIFAR-100			
	Buffer 200	Δ	Buffer 500	Δ	Buffer 500	Δ	Buffer 2000	Δ
DER (Buzzega et al., 2020)	29.91		16.20		24.84		10.79	
NPCL (Jha et al., 2023)	21.03		-		19.95		-	
ER (Riemer et al., 2018)	45.53		32.69		64.59		45.64	
Ours (ER+ID)	12.36	-33.17	11.73	-20.96	13.65	-50.94	12.87	-32.77
BFP (Gu et al., 2023)	9.83		9.40		11.93		9.28	
Ours (BFP+ID)	9.30	-0.53	8.63	-0.77	8.92	-3.01	8.29	-0.99

Idempotence Improves prediction Reliability. As previously reported by Guo et al. (2017), DNN are uncalibrated, often tending towards overconfidence. Arani et al. (2022) show that this problem is pronounced in continual learning where the models tend to be biased towards recent tasks. Following Boschini et al. (2022); Jha et al. (2023) we evaluate the calibration errors for different CL baselines using the well-established Expected Calibration Error (ECE), which is shown in Table 3. Table 3 shows that IDER consistently reduce the calibration error. In general, IDER benefits CL models in confidence calibration which demonstrates the ability of IDER to make reliable predictions. This strong correlation between improved calibration and higher accuracy suggests that by producing more reliable confidence estimates, the model mitigates overconfidence on its own predictions (potentially incorrect), thereby facilitating a more stable and effective learning process that leads to better overall performance.

Table 4: Comparison of the performances with modified backbone and normal backbone. The results are almost same, which shows that the modified structure is reasonable and don't influence the performance.

Model	Method	Accuracy (%)	Forgetting (%)	
Normal ResNet-18	Finetune	8.29	90.52	
Nomiai Resnet-16	ER	24.36	71.30	
Modified ResNet-18	Finetune	8.23	90.58	
Widdiffed Resiret-16	ER	24.73	70.61	

(a) Training Times

(b) Forgetting on CIFAR-100

(c) Distance Metrics

Figure 7: Results for model analysis. (a) the training time of different methods on Split TinyImageNet with buffer 500. (b) the Final Forgetting (FF) measures on Split CIFAR-100 with different buffer sizes. (c) the performances on Split CIFAR-100 using different distance metrics for idempotent distillation loss.

4.2 Additional Analysis

Effectiveness of modified structure. To enforce idempotence, we introduce a lightweight architectural modification (details in Section 3.2). We ablate its influence on Split CIFAR-100 with a buffer size of 500. As shown in Table 4, the modified structure performs similarly to the normal backbone. This indicates that the architectural change itself does not influence the baseline performance. Consequently, the observed improvements in performance benefit from idempotent loss instead of modified architecture.

Idempotence improves forgetting. The Figure 7 (b) shows Final Forgetting (FF) measured on the Split CIFAR-100 dataset with different buffer sizes. Our method consistently reduces forgetting, which shows that enforcing idempotence improves accuracy while mitigating the forgetting problem simultaneously.

On training time. Figure 7 (a) compares the training times of various methods. As expected, our proposed method introduces minimal computational overhead when integrated into existing replay-based methods. This highlights IDER's practicality as a lightweight and effective method.

Comparison with different distance metrics. The figure 7 (c) shows the effect of different distance metrics for computing the Idempotent distillation loss. While both MSE and KL divergence are well-established metrics for quantifying loss distance, MSE provides better and more stable performance. The reason is that MSE avoids the information loss occurring in probability space due to the squashing function.

5 CONCLUSION

In this paper, we propose Idempotent Experience Replay (IDER), a simple and effective method designed to mitigate catastrophic forgetting and improve predictive reliability in continual learning. Our approach adapts the training loss and introduces idempotence distillation loss for CL methods to encourage. Extensive experiments demonstrate that IDER consistently improves performance across multiple datasets and diverse continual learning settings. Our results show that enforcing idempotence enables a balance between stability and plasticity while yielding better calibrated predictions. Our method, requiring only two forward passes without additional parameters and seamlessly integrated with other CL approaches, shows promise for deployment of CL models in real-world scenarios. We hope this work inspires future research to place greater emphasis on uncertainty-aware continual learning. We also plan to explore the potential of idempotence property in different domains.

REFERENCES

- Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual learning method based on complementary learning system. *arXiv* preprint arXiv:2201.12604, 2022.
- Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-incremental continual learning into the extended der-verse. *IEEE transactions on pattern analysis and machine intelligence*, 45(5):5497–5512, 2022.
- Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for general continual learning: a strong, simple baseline. *Advances in neural information processing systems*, 33: 15920–15930, 2020.
- Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Simone Calderara. Rethinking experience replay: a bag of tricks for continual learning. In 2020 25th International Conference on Pattern Recognition (ICPR), pp. 2180–2187. IEEE, 2021.
- Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky. New insights on reducing abrupt representation change in online continual learning. *arXiv preprint arXiv:2104.05025*, 2021.
- Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania, P Torr, and M Ranzato. Continual learning with tiny episodic memories. In *Workshop on Multi-Task and Lifelong Reinforcement Learning*, 2019.
- Nikita Durasov, Nik Dorndorf, Hieu Le, and Pascal Fua. Zigzag: Universal sampling-free uncertainty estimation through two-step inference. *Transactions on Machine Learning Research*, 2024a. ISSN 2835-8856.
- Nikita Durasov, Doruk Oner, Jonathan Donier, Hieu Le, and Pascal Fua. Enabling uncertainty estimation in iterative neural networks. In *Forty-first International Conference on Machine Learning*, 2024b.
- Nikita Durasov, Assaf Shocher, Doruk Oner, Gal Chechik, Alexei A Efros, and Pascal Fua. It3: Idempotent test-time training. *arXiv preprint arXiv:2410.04201*, 2024c.
- Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual learning. In *International conference on artificial intelligence and statistics*, pp. 3762–3773. PMLR, 2020.
- Qiao Gu, Dongsub Shim, and Florian Shkurti. Preserving linear separability in continual learning by backward feature projection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24286–24295, 2023.
- Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
- Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier incrementally via rebalancing. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 831–839, 2019.
- Saurav Jha, Dong Gong, He Zhao, and Lina Yao. Npcl: Neural processes for uncertainty-aware continual learning. *Advances in Neural Information Processing Systems*, 36:34329–34353, 2023.
- Saurav Jha, Dong Gong, and Lina Yao. Clap4clip: Continual learning with probabilistic finetuning for vision-language models. *Advances in neural information processing systems*, 37:129146–129186, 2024.
- James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114(13):3521–3526, 2017.
- Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.
- Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. *Open Review*, 62(1): 1–62, 2022.
 - Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165. Elsevier, 1989.

- Fei Mi, Lingjing Kong, Tao Lin, Kaicheng Yu, and Boi Faltings. Generalized class incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*, pp. 240–241, 2020.
 - Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation learning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp. 2001–2010, 2017.
 - Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interference. *arXiv preprint arXiv:1810.11910*, 2018.
 - Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interference. In *ICLR (Poster)*, 2019.
 - Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.
 - Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Sparse coding in a dual memory system for lifelong learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 9714–9722, 2023.
 - Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Semantic aware representation learning for lifelong learning. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Assaf Shocher, Amil Dravid, Yossi Gandelsman, Inbar Mosseri, Michael Rubinstein, and Alexei A Efros. Idempotent generative network. *arXiv preprint arXiv:2311.01462*, 2023.
 - Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS), 11 (1):37–57, 1985.
 - Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory, method and application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.
 - Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149, 2022.
 - Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large scale incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 374–382, 2019.

Appendix

A EXPERIMENTAL SETTING

We evaluate our method on three standard continual learning benchmarks under Class-IL setting, where task identifiers are unavailable during testing, making it a challenging scenario for maintaining performance across tasks.

Datasets. Our experiments use three datasets with varying complexity:

- **Split CIFAR-10**: The CIFAR-10 dataset is divided into 5 sequential tasks, each containing 2 classes. Each class comprises 5,000 training and 1,000 test images of size 32×32.
- **Split CIFAR-100**: CIFAR-100 is split into 10 tasks with 10 classes per task. Each class contains 500 training and 100 test images of size 32×32.
- **Split TinyImageNet**: TinyImageNet is divided into 10 tasks with 20 classes each. Each class has 500 training images, 50 validation images, and 50 test images.

Evaluation Metrics. We use two standard metrics to evaluate continual learning performance:

- Final Average Accuracy (FAA): Measures the average accuracy across all tasks after training is complete. For a model that has finished training on task t, let a_i^t denote the test accuracy on task i. FAA is computed as the mean accuracy across all tasks.
- Final Forgetting (FF): Quantifies how much knowledge of previous tasks is forgotten, defined as:

$$FF = \frac{1}{T-1} \sum_{i=1}^{T-1} \max_{j \in \{1, \dots, T-1\}} (a_i^j - a_i^T)$$
 (9)

where lower values indicate better retention of previously learned tasks.

• Expected Calibration Error (ECE): Quantifies the mismatch between a model's predicted confidence and its actual accuracy. Predictions are partitioned into M confidence interval bins B_m . The ECE is computed as the weighted average of the absolute difference between the average confidence $(\text{conf}(B_m))$ and the average accuracy $(\text{acc}(B_m))$ within each bin:

$$ECE = \sum_{m=1}^{M} \frac{|B_m|}{N} \left| \operatorname{conf}(B_m) - \operatorname{acc}(B_m) \right|$$
 (10)

where N is the total number of samples. A lower ECE indicates a better-calibrated model whose confidence estimates are more reliable.

A.1 IMPLEMENTATION DETAILS SUPPLEMENTARY

Besides the details mentioned above, we train 50 epochs per task for Split CIFAR-10 and Split CIFAR-100 and 100 epochs per task for Split TinyImageNet (Le & Yang, 2015). For Split CIFAR100, the learning rate is decreased by a factor of 0.1 at epochs 35 and 45, while for Split TinyImageNet,the learning rate is decreased by a factor of 0.1 at epochs 35, 60 and 75. The learning rate may vary in the light of different continual learning methods, while for a fair comparison, we use the same initial learning rate as DER and BFP for our methods. If not specified, all baselines use the reservoir sampling algorithm (Vitter, 1985) to update memory, while BFP (Gu et al., 2023) uses class-balanced reservoir sampling (Buzzega et al., 2021) for pushing balanced examples into the buffer.

A.2 HYPERPARAMETERS

In this section, we show hyperparameter combination that used in our experiments. These hyperparameters are adopted from Boschini et al. (2022); Buzzega et al. (2020); Gu et al. (2023) to make fair comparison.

```
648
                      SPLIT CIFAR-10
649
650
                      Buffer size = 200
651
652
                            iCaRL: lr = 0.1, wd = 10^{-5}
653
654
                            LUCIR: \lambda_{\text{base}} = 5, mom = 0.9, k = 2, epoch<sub>fitting</sub> = 20, lr = 0.03, lr_{\text{fitting}} = 0.01, m = 0.03
655
                            0.5
656
                            BiC: \tau = 2, epochs<sub>BiC</sub> = 250, lr = 0.03
657
658
                            ER-ACE: lr = 0.03
659
                            ER: lr = 0.1
660
661
                            DER: lr = 0.03, \ \alpha = 0.3
662
                            DER++: lr = 0.03, \ \alpha = 0.1, \ \beta = 0.5
663
                            XDER: \alpha = 0.3, m = 0.7, \beta = 0.9, \gamma = 0.85, wd = 1e - 06, \lambda = 0.05, \eta = 0.001, lr = 0.0
664
                            0.03, \ \tau = 5, \ mom = 0.9
665
666
                            DEP++ w/ BFP: lr = 0.03, \ \alpha_{distill} = 0.1, \ \alpha_{ce} = 0.5, \ \alpha_{bfp} = 1
667
668
                      Buffer size = 500
669
670
671
                            iCaRL: lr = 0.1, wd = 10^{-5}
672
673
                            LUCIR: \lambda_{\text{base}} = 5, mom = 0.9, k = 2, epoch<sub>fitting</sub> = 20, lr = 0.03, lr_{\text{fitting}} = 0.01, m = 0.03
674
675
                            BiC: \tau=2, epochs<sub>BiC</sub> = 250, lr=0.03
676
                            ER-ACE: lr = 0.03
677
678
                            ER: lr = 0.1
679
                            DER: lr = 0.03, \ \alpha = 0.3
680
681
                            DER++: lr = 0.03, \ \alpha = 0.1, \ \beta = 0.5
682
                            XDER: \alpha = 0.3, m = 0.7, \beta = 0.9, \gamma = 0.85, wd = 1e - 06, \lambda = 0.0, \eta = 0.001, lr = 0.001
683
                            0.03, \ \tau = 5, \ mom = 0.9
684
685
                            DEP++ w/ BFP: lr = 0.03, \ \alpha_{distill} = 0.2, \ \alpha_{ce} = 0.5, \ \alpha_{bfp} = 1
686
687
688
                       SPLIT CIFAR-100
689
                      Buffer size = 500
690
691
692
                            iCaRL: lr = 0.3, wd = 10^{-5}
693
694
                            LUCIR: \lambda_{\text{base}} = 5, mom = 0.9, k = 2, epoch<sub>fitting</sub> = 20, lr = 0.03, lr_{\text{fitting}} = 0.01, m = 0.03
695
696
                            BiC: \tau = 2, epochs<sub>BiC</sub> = 250, lr = 0.03
697
                            ER-ACE: lr = 0.03
```

ER: lr = 0.1

DER: $lr = 0.03, \ \alpha = 0.3$

DER++: $lr = 0.03, \ \alpha = 0.1, \ \beta = 0.5$ **XDER:** $\alpha = 0.3, \ m = 0.7, \ \beta = 0.9, \ \gamma = 0.85, \ wd = 1e - 06, \ \lambda = 0.05, \ \eta = 0.001, \ lr = 0.03, \ \tau = 5, \ mom = 0.9$

DEP++ w/ BFP: $lr = 0.03, \ \alpha_{distill} = 0.1, \ \alpha_{ce} = 0.5, \ \alpha_{bfp} = 1$

Buffer size = 2000

iCaRL: $lr=0.3,\ wd=10^{-5}$ LUCIR: $\lambda_{\mathrm{base}}=5,\ \mathrm{mom}=0.9,\ k=2,\ \mathrm{epoch_{fitting}}=20,\ lr=0.03,\ lr_{\mathrm{fitting}}=0.01,\ m=0.5$ BiC: $\tau=2,\ \mathrm{epochs_{BiC}}=250,\ lr=0.03$ ER-ACE: lr=0.03ER: lr=0.1DER: $lr=0.03,\ \alpha=0.3$ DER++: $lr=0.03,\ \alpha=0.1,\ \beta=0.5$ XDER: $\alpha=0.3,\ m=0.7,\ \beta=0.9,\ \gamma=0.85,\ wd=1e-06,\ \lambda=0.05,\ \eta=0.001,\ lr=0.03,\ \tau=5,\ mom=0.9$ DEP++ w/BFP: $lr=0.03,\ \alpha_{distill}=0.1,\ \alpha_{ce}=0.5,\ \alpha_{bfp}=1$

SPLIT TINYIMAGENET

Buffer size = 4000

iCaRL: $lr=0.03,\ wd=10^{-5}$ LUCIR: $\lambda_{\mathrm{base}}=5,\ \mathrm{mom}=0.9,\ k=2,\ \mathrm{epoch_{fitting}}=20,\ lr=0.03,\ lr_{\mathrm{fitting}}=0.01,\ m=0.5$ BiC: $\tau=2,\ \mathrm{epochs_{BiC}}=250,\ lr=0.03$ ER-ACE: lr=0.03 ER: lr=0.1 DER: $lr=0.03,\ \alpha=0.1$ DER+: $lr=0.03,\ \alpha=0.1$, $\beta=0.5$ XDER: $\alpha=0.3,\ m=0.7,\ \beta=0.9,\ \gamma=0.85,\ wd=1e-06,\ \lambda=0.0,\ \eta=0.001,\ lr=0.03,\ \tau=5,\ mom=0.9$ DEP++ w/BFP: $lr=0.03,\ \alpha_{distill}=0.3,\ \alpha_{ce}=0.8,\ \alpha_{bfp}=1$

A.3 INTERGRATED IDER INTO BFP

As Gu et al. (2023) introduces BFP distillation loss, which focuses on features. We can easily incorporate our method into BFP framework. The BFP loss is:

$$\mathcal{L}_{BFP} = \sum_{(x,y)\in\mathcal{T}_t,M} ||Ah_t(x,0) - h_{t-1}(x,0)||_2,$$
(11)

Table 5: Comparison of Final Forgetting (FF) across different continual learning methods. All experiments are repeated 5 times with different seeds. The best results (lowest forgetting) are highlighted in blue. The second best results are highlighted in green.

Method	CIFA	R-10	CIFA	R-100	Tiny-ImageNet	
	Buffer 200	Buffer 500	Buffer 500	Buffer 2000	Buffer 500	Buffer 4000
Joint	0.00	0.00	0.00	0.00	0.00	0.00
iCaRL (Rebuffi et al., 2017)	36.00±7.29	30.19±3.38	28.58±0.84	24.24±0.58	20.82±1.31	15.29±0.53
ER (Riemer et al., 2018)	71.35±7.77	52.12±7.56	71.92±0.74	51.82±0.75	74.79±0.67	57.47±0.57
BiC (Wu et al., 2019)	53.63±7.18	24.87±0.98	48.87±0.91	38.50±1.09	67.57±1.98	63.48±0.28
LUCIR (Hou et al., 2019)	59.79±10.16	37.58±3.80	50.22±1.26	32.48±0.76	35.02±0.56	30.59±0.95
DER (Buzzega et al., 2020)	45.31±2.73	32.04±2.88	56.66±2.55	34.41±2.05	68.43±2.73	59.54±6.13
DER++ (Buzzega et al., 2020)	36.20±4.15	27.93±3.34	51.85±1.61	34.44±1.42	61.45±3.12	39.11±3.66
ER-ACE (Caccia et al., 2021)	19.52±1.23	12.87±1.06	38.61±1.15	28.42±0.55	40.97±1.38	29.37±1.09
XDER (Boschini et al., 2022)	16.36±0.91	12.81±0.48	24.15±1.37	11.17±1.21	42.90±0.54	18.87±1.08
BFP (Gu et al., 2023)	22.53±5.00	16.81±1.11	35.32±3.94	19.76±0.87	30.02±4.37	27.19±6.53
Ours (ER+ID)	15.28±2.41	11.93±0.49	29.98±2.52	17.46±1.04	36.63±3.37	22.46±±1.86
Ours (BFP+ID)	15.79±2.73	12.11±0.82	26.56±2.56	12.52±1.29	27.41±3.92	16.68±0.44

where h_t is feature extractor in model f_t on the t-th task and A is linear transformation aimed to preserve the linear separability of features backward in time.

During training on the task t, the model f_t and A are optimized respectively. Thus, the \mathcal{L}_{BFP+ID} can be:

$$\mathcal{L}_{BFP+ID} = \mathcal{L}_{ice} + \alpha \mathcal{L}_{ide} + \beta \mathcal{L}_{rep-ice} + \gamma \mathcal{L}_{BFP}. \tag{12}$$

COMPLEXITY AND TRAINING COST

We train all experiments on GeForce 4090. The additional parameters we need for modified architecture are very small. Using ResNet-18 as the backbone, the normal architecture contains 11.22M parameters on CIFAR-100 while the modified architecture increases the parameter count to 11.91M parameters. Although we need two forward passes to train the model, which leads to a slightly longer training time compared with DER++, the longer training time is acceptable as it increases the performance by a significant margin.

В FORGETTING COMPARISON OF DIFFERENT REHEARSAL-BASED CONTINUAL LEARNING METHODS

Instead of FAA, Final Forgetting (FF) reflects the model's anti-forgetting capacity. To make fair comparison, we exclude the Exponential Moving Average (EMA) based methods, as the highest model performance on each task is from working model instead of EMA model, thereby reducing FF following Eq. 9 in appendix. FF measures the drop from each task's historical peak accuracy (its best accuracy when first learned) to its final accuracy after all tasks, while EMA artificially smooths performance drops by reducing the accuracy it is first learned, thus understating true forgetting. The Table 5 shows Final Forgetting (FF) of different continual learning methods. The results show that the idempotence loss yields a lower FF, indicating improved stability. It is worth noting that compared with XDER, there are no additional architectures or learnable parameters introduced in our method, just forwarding pass the model twice.

T-SNE VISUALIZATION OF VARIOUS METHODS

In this section, we show more t-SNE visualization of various methods on first task testing data on CIFAR-100 with 500 buffer size. The task number is 10. t-SNE figures shows our method has the better capability of resisting catstrophic forgetting compared with ER, DER and BFP. We observed that the feature clusters of the 10 classes from the first task become increasingly blurred as the model

learns knowledge from new tasks in these methods. However, this phenomenon is alleviated in our method.

Figure 8: We perform t-SNE visualization of the features extracted from the first task testing data on CIFAR-100 across training tasks. The figures show how the feature clusters of the 10 classes from the first task change when the model train data from new tasks.

D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We hereby declare that large language models (LLMs), specifically GPT-5, were used during the preparation of this manuscript. The use of LLMs was strictly limited to: aiding and polishing writing. The LLM was used solely as an assistive tool for prose refinement and did not contribute to the intellectual content of the research.

E LIMITATIONS

Naive Implementation. As we first introduce idempotence property into continual learning, the method should be very simple. In the future, we try to combine our method with more complementary techniques to further improve performance. In addition, we also plan to explore the application of the idempotence property in data sampling strategies for continual learning.