
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IDER: IDEMPOTENT EXPERIENCE REPLAY FOR RELI-
ABLE CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Catastrophic forgetting, the tendency of neural networks to forget previously
learned knowledge when learning new tasks, has been a major challenge in contin-
ual learning (CL). To tackle this challenge, CL methods have been proposed and
shown to reduce forgetting. Furthermore, CL models deployed in mission-critical
settings can benefit from uncertainty awareness by calibrating their predictions to
reliably assess their confidences. However, existing uncertainty-aware continual
learning methods suffer from high computational overhead and incompatibility
with mainstream replay methods. To address this, we propose idempotent expe-
rience replay (IDER), a novel approach based on the idempotent property where
repeated function applications yield the same output. Specifically, we first adapt
the training loss to make model idempotent on current data streams. In addition,
we introduce an idempotence distillation loss. We feed the output of the current
model back into the old checkpoint and then minimize the distance between this
reprocessed output and the original output of the current model. This yields a
simple and effective new baseline for building reliable continual learners, which
can be seamlessly integrated with other CL approaches. Extensive experiments on
different CL benchmarks demonstrate that IDER consistently improves prediction
reliability while simultaneously boosting accuracy and reducing forgetting. Our
results suggest the potential of idempotence as a promising principle for deploying
efficient and trustworthy continual learning systems in real-world applications. Our
code will be released upon publication.

1 INTRODUCTION

Deep learning has achieved impressive success across various domains. However, a static batch
setting where the training data of all classes can be accessed at the same time is essential for attaining
good performance (Le & Yang, 2015; Rebuffi et al., 2017). In many real-world deployments, data
arrive sequentially and previously seen samples cannot be fully retained due to storage or privacy
constraints. This makes it a major challenge because neural networks tend to rapidly forget previously
learned knowledge when trained on new tasks, which is a phenomenon known as catastrophic
forgetting (McCloskey & Cohen, 1989).

To address this challenge, continual learning (CL) is proposed to enable models to accumulate
knowledge as data streams arrive sequentially. Among valid CL strategies, rehearsal-based approaches
are popular as they are simple and efficient. They (Boschini et al., 2022; Buzzega et al., 2020;
Caccia et al., 2021; Chaudhry et al., 2019; Wu et al., 2019) address this by storing a small, fixed-
capacity buffer of exemplars from previous tasks and replaying them when training on new task,
thereby regularizing parameter updates and mitigating catastrophic forgetting. Despite strong average
accuracy, CL methods are often poorly calibrated and over-confident, a problem exacerbated by
recency bias toward new tasks (Arani et al., 2022). Thus, this undermines the broader deployment
of CL models in real-world settings, especially in safety-critical domains (healthcare, transport,
etc.) (LeCun, 2022). CL models deployed in these domains can benefit from uncertainty awareness
by calibrating their predictions to reliably assess their confidences (Jha et al., 2024). To tackle this
issue, Jha et al. (2023) propose neural processes based CL method (NPCL). However, it causes
non-negligible parameter growth and exhibits incompatibility with logits-based replay methods due
to the stochasticity in the posterior induced by Monte Carlo sampling. Motivated by these limitations,
we aim for a lightweight and compatible principle for reliable CL methods.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: We propose the IDER method, which can be directly applied to many recent rehearsal-based
continual learning methods, resulting in less calibration error and significant improvements in FAA
with less parameter growth compared with NPCL.

We draw inspiration from idempotence, a mathematical property that arises in algebra. An operator is
idempotent if applying it multiple times yields the same result as applying it once, formally expressed
as f(f(x)) = f(x). It can be used in deep learning by recursively feeding the model’s predictions
back as inputs, allowing the model to refine its outputs (Durasov et al., 2024a; Shocher et al., 2023).
Durasov et al. (2024b) show that if a deep network f takes as input a vector x and a second auxiliary
variable that can either be the ground truth label y corresponding to x or a neutral uninformative
signal 0 and is trained so that f(x, 0) = f(x, y) = y, then the distance ||f(x, f(x, 0)) − f(x, 0)||
correlates strongly with the prediction error. What if we actively minimize this distance of buffer data
when we learn new tasks in CL settings? Could we project outputs into the stable manifold where
instances are mapped to themselves to prevent predictive distribution drift?

Thus, we propose an Idempotent Experience Replay (IDER) inspired by Idempotence, a simple
and effective method that enforces idempotence for CL models when learning new tasks. We
demonstrate that enforcing idempotence enables model to make more reliable predictions while
reducing catastrophic forgetting. Both combined with naive rehearsal-based method experience
replay (ER) (Riemer et al., 2019), compared with NPCL, our approach achieves lower calibration
error evaluated by Expected Calibration Error (ECE) (Guo et al., 2017), higher accuracy, and requires
smaller parameter numbers, as is shown in Figure 1.

More specifically, IDER integrates two components to enforce idempotence for CL models. Firstly,
we adapt the training loss to train the current model to be idempotent with data from the current
task. Secondly, we introduce idempotence distillation loss for both buffer data and the current data
stream to enforce idempotence between last task model checkpoint ft−1 and current model ft. We
verify that incorporating the current data stream into idempotence achieves further performance
improvements, suggesting that idempotence can help preserve model distribution, thereby mitigating
decision boundary drift.

This yields a simple method that only requires two forward passes of the model almost without
additional parameters. Our approach can be integrated into existing CL methods and experiments
show that this simple change boosts both prediction reliability and final accuracy by a large margin.
Especially on the Split-CIFAR10 dataset, enforcing idempotence improves the baseline method
ER (Riemer et al., 2019) by up to 26%, achieving state-of-the-art class incremental learning accuracy.
Through extensive empirical validation on challenging generalized class-incremental learning (Mi
et al., 2020; Sarfraz et al., 2025), we demonstrate that this simple and powerful principle improves
the reliability of predictions while mitigating catastrophic forgetting in real-world scenarios.

The contributions of this paper can be summarized as follows:

• We propose a novel framework for continual learning based on the idempotent property, which is
a simple and robust method. Our method demonstrates that fundamental mathematical properties
can be effectively utilized to address catastrophic forgetting for CL.

• We show that IDER can be easily integrated into other state-of-the-art methods, leading to more
reliable predictions with comparable performance.

• Extensive experiments on several benchmarks demonstrate that our approach achieves strong
performance in both mitigating catastrophic forgetting and making reliable predictions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Continual Learning The goal of continual learning (CL) is to achieve the balance between learning
plasticity and memory stability (Wang et al., 2024). Approaches in CL can be divided into three main
categories. Regularization-based methods primarily rely on regularization loss to penalize changes
in parameter space of the model (Farajtabar et al., 2020; Kirkpatrick et al., 2017). Rehearsal-based
Method (Chaudhry et al., 2019) use a memory buffer to store task data and replay them during
new task training. Architecture-based methods (Rusu et al., 2016; Wang et al., 2022) incrementally
expand the network to allocate distinct parameters for preserving each task’s knowledge. Among
them, Rehearsal-based methods are general in various CL scenarios and can be naturally combined
with knowledge Distillation (KD) techniques.

The baseline Experience Replay (ER) (Riemer et al., 2019) mixes the current task data with stored
samples from past tasks in the memory buffer during training. DER (Buzzega et al., 2020) store
old training samples together with their logits and preserve the old knowledge by matching the
saved logits with logits obtained by current model. Its improved version XDER (Boschini et al.,
2022) improves performance at the sacrifice of computational costs due to sophisticated mechanisms.
CLSER (Arani et al., 2022) introduce a fast module for plastic knowledge and a slow learning module
for stable knowledge. BFP (Gu et al., 2023) uses a learnable linear layer to perform knowledge
distillation in the feature space. SCoMMER (Sarfraz et al., 2023) and SARL (Sarfraz et al., 2025)
enforces sparse coding for efficient representation learning. Neural Processes for Continual Learning
(NPCL) (Jha et al., 2023) explore uncertainty-aware CL models using neural processes (NPs). Unlike
previous studies, we explore the idempotence in continual learning, which has never been studied
before.

Idempotence in Deep Learning Idempotence is a property of a function whereby the result of
applying the function once is the same as applying it multiple times in sequence. Recent work has
explored the application of idempotence in deep learning. It is defined that the results obtained by the
model will not change when applying the model multiple times (f(f(x)) = f(x)). The Idempotent
Generative Network (IGN) (Shocher et al., 2023) firstly proposes this idea in deep learning for
generative modeling and it has the capability of producing robust outputs in a single step. Another
work ZigZag (Durasov et al., 2024a) introduces idempotence in neural networks for the measuring
uncertainty, which is based on IterNet (Durasov et al., 2024b). IterNet proves that for iterative
architectures, which use their own output as input, the convergence rate of their successive outputs is
highly correlated with the accuracy of the value to which they converge. ZigZag recursively feeds
predictions back as inputs, measuring the distance between successive results. A small distance
indicates high confidence, while a large one signals uncertainty or out-of-distribution (OOD) data.
Recent work ITTT (Durasov et al., 2024c) combines idempotence with Test-Time Training. These
works proves the potential of idempotence in deep learning while these works are based on static
batch learning.

3 METHOD

In this section, we deliver details of the proposed IDER. We first define both class-incremental
learning and generalized class-incremental learning settings. Then, we elaborate on how to introduce
idempotence in continual learning. Finally, we introduce the overall objective. An overview of IDER
is depicted in Figure 5.

3.1 PROBLEM DEFINITION

In traditional continual learning, two primary settings are task incremental learning (TIL) and class
incremental learning (CIL). The difference between the two settings is that when we test the model,
we can know the task ID in task incremental learning. Since class incremental learning better reflects
real-world scenarios and is more challenging, we focus on the class incremental learning setting in
our experiments. In this paper, we focus on both typical class-incremental learning and generalized
class-incremental learning. Generalized class-incremental learning (GCIL) is more close to real-world
incremental learning. The key GCIL properties can be summarized as follows: (i) the number of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

classes across different tasks is not fixed; (ii) classes shown in prior tasks could reappear in later
tasks; (iii) training samples are imbalanced across different classes in each task.

In a typical class-incremental learning setting, a model f is trained on sequential tasks T =
T1, T2, ..., Tt Each task T consists of data points and these data points are unique within each
task, which means Tt = {(xi, yi)}Nt

i=1 and Ti ∩ Tj = ∅. The optimization objective is to minimize
the overall loss over all the tasks:

f∗ = argmin
f

t∑
i=0

E(x,y)∼Tt
[L(f(x), y)] , (1)

where L is the loss function for the tasks and y is the ground truth for x. However, in the continual
setting, only the data from current task Tt are available and the model should preserve the previous
knowledge from the tasks beforeT1, ..., Tt−1. As a result, additional memory buffer or additional
regularization term LR may be chosen to avoid catastrophic forgetting and the actual objective on the
current task should be:

f∗ = argmin
f

[E(x,y)∼Tt∪M [L(f(x), y)] + LR], (2)

where M stands for the memory buffer to store the data from previous tasks.

3.2 MODIFIED ARCHITECTURE

 N

× ��

 C A
ctivation

 Label
Feature

��
1 ��

2

Image
Feature

Output

one hot “cat” or uniform
distribution “empty”

ResNet

 C

 C

Figure 2: Modified Architecture. We modify
the architecture of backbone(ResNet) and en-
able the model to accept two inputs.

To enable idempotence for the model with respect to the
second input, we modify the original backbone as shown
in Figure 2. We divide the backbone ResNet (He et al.,
2016) as denoted ft, into two parts f1

t and f2
t on the t-th

task. The second input (either a one-hot vector y or a
uniform distribution over all classes standing for “empty”
input 0) is first transformed into a label feature vector.
This is achieved by a linear layer with an output dimen-
sion that matches the dimensions of f1

t ’s output, followed
by a LeakyReLU activation function. The image first is
processed by f1

t to produce an intermediate feature map.
The label feature is then added to this intermediate feature
map, which is fed into f2

t . The output of f2
t , which is

the logits for target classes, can work as the second input
for model after softmax normalization. In this way, the
backbone can accept two inputs and achieve idempotence with respect to the second argument after
training.

3.3 STANDARD IDEMPOTENT MODULE:TRAINING THE NETWORK IDEMPOTENT

First, we rely on the model we train being idempotent. To achieve this, Standard Idempotent Module
is used for training the model on data from the current task. Following Durasov et al. (2024a;b),
when learning new tasks, we minimize the loss which consists of two cross-entropy losses obtained
by the logits from the first and second forward propagation of model and the ground truth y :

Lice =
∑

(x,y)∈Tt

[Lce(ft(x, y
∗), y) + Lce(ft(x, ft(x, y

∗)), y)], (3)

where Tt is current task and y∗ is the second input that is is set to the ground-truth one-hot vector
y with probability P and to the neutral "empty" signal input 0 with probability 1− P . The empty
signal 0 is defined as a uniform distribution over all classes.

By minimizing Lice, we can train the model idempotent with respect to the second argument, which
can be obtained by:

ft(x,0) ≈ y, ft(x, y) ≈ y, ft(x, ft(x,0)) ≈ y =⇒ ft(x, ft(x,0)) ≈ ft(x,0). (4)

Thus, ft has been adjusted so that the model ft is as idempotent as possible for all x in distribution.
The model will map the data (x,0) to the stable manifold (x, y) : f(x, y = y). Fig. 3 illustrates this

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: We plot the distribution of idempotence
errors, measured by the distance |f(x, f(x, z))−
f(x, z)|. Inputs x with second incorrect predic-
tion input z exhibit significantly larger idempo-
tence errors.

Figure 4: Probability of predicting each task at
the end of training for models trained on CIFAR-
10 with 500 buffer size. Idempotent distillation
loss effectively mitigates the bias to the recent
tasks and provides a more uniform probability
size.

in the case of a network trained on data from the first task on CIFAR-100. With different second input
y, the idempotence distance distribution varies. The input which contains incorrect prediction input y
exhibits significantly larger idempotence errors. Thus, this distance can be used as a distillation loss
for iterative prediction refinement to make reliable predictions.

3.4 IDEMPOTENT DISTILLATION MODULE: DISTILLING THE NETWORK FOR CONTINUAL
LEARNING

In the CL setting, the model tends to have recency bias toward newly introduced classes, which
negatively influences the performance and results in overconfidence predictions. Rehearsal-based
methods suffer from this problem, as Wang et al. (2022) point out that when a new task is presented
to the net, an asymmetry arises between the contributions of replay data and current examples to
the weights updates: the gradients of new examples outweigh. Thus, we propose to minimize
idempotence distances to mitigate recency bias and prediction distribution drift in CL. A naive way
would be to minimize the loss function:

Lide =
∑

(x,y)∈Tt,M

∥ft(x,0)− ft(x, ft(x,0))∥22. (5)

However, this can produce undesirable side effects in CL settings. As ft has bias towards current
data streams and y0 = ft(x,0) may be an incorrect prediction, minimizing ∥y0− y1∥22 may cause
y1 = ft(x, y0) to be pulled towards the incorrect y0, thereby magnifying the error.

To address this, we keep the model checkpoint at the end of the last task ft−1 together with the
current trained model ft. We then modify the idempotence distillation loss to be:

Lide =
∑

(x,y)∈Tt,M

∥ft(x, 0)− ft−1(x, ft(x, 0))∥22. (6)

Thus, the first prediction y0 = ft(x,0) is computed as before, but the second one, y1 = ft−1(x, y0),
is made using the last model checkpoint ft−1. By updating only ft and keeping ft−1 frozen, which
preserves more previous knowledge and stable prediction distribution for buffer data, we ensure
that y0 is adjusted to minimize the discrepancy with y1, without pulling y1 towards an incorrect
y0. This design achieves idempotence by ensuring that processing an input through the current
model and then through a frozen old checkpoint yields a nearly identical output distribution. This
self-consistency mechanism directly preserves previous knowledge while mitigating bias. Unlike
traditional distillation in Buzzega et al. (2020), which only aligns the final output probabilities, our
method anchors the model’s representation to the stable manifold already learned by the frozen model,
thereby maintaining balanced predictive performance across all tasks, as is shown in Figure 4.

3.5 OVERALL OBJECTIVE

We introduce idempotence into an experience replay (ER) framework (Riemer et al., 2019), where we
keep a buffer M storing training examples from old tasks. We keep the model checkpoint at the end

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

cat,
dog...

... ...

Task t - 1

IDM��

��

��

��−1

�� SIM

��

��

��

��

“Dog”

fish,
lion...

desk,
car...

empty

empty
�

� − �

empty
Random

select

❄

����

 Task t Task 1

����
��������

Figure 5: Overall framework of Idempotent Experience Replay (IDER). Our method consists of two
modules for continual learning: (1) Standard Idempotent Module that trains current model idempotent
with data from the current task. (2) Idempotent Distillation Module that enforce the current model
to become idempotent with respect to the last task model checkpoint, utilizing data from both the
current task and buffer memory. IDER can be integrated into existing CL approaches to make reliable
predictions while mitigate catastrophic forgetting.

of the last task ft−1 together with the current trained model ft. During continual learning, the current
model ft is trained on the batch from data stream of the current task Tt using the adapted training
loss Lice in Eq. 3. We sample batch from M and combine the current batch to compute idempotence
distillation loss Lide in Eq. 6.

Meanwhile, we sample another batch from M for experience replay. The experience replay loss
Lrep-ice in ER is:

Lrep-ice =
∑

(x,y)∈M

[Lce(ft(x, y
∗), y) + Lce(ft(x, ft(x, y

∗)), y)]. (7)

The total loss function used in IDER is the weighted sum of the losses above, formally:

LIDER = Lice + αLide + βLrep-ice. (8)

In addition, our method is simple and robust, which can be combined with other methods, such as
BFP (Gu et al., 2023), to achieve higher performances. Details are shown in the appendix.

4 EXPERIMENTS

Continual Learning Settings. We follow Gu et al. (2023) and conduct experiments on state-of-
the-art rehearsal-based models in class incremental learning (CIL) setting. CIL setting splits the
dataset into a sequence of tasks, each containing a disjoint set of classes, while task identifiers are not
available during testing. Following Sarfraz et al. (2025), we also evaluate methods in the generalized
class incremental learning (GCIL) setting. GCIL setting (Mi et al., 2020) is closest to the real-world
scenario as the number of classes in each task is not fixed, the classes can overlap and the sample size
for each class can vary.
Evaluation Metrics. Following Boschini et al. (2022); Buzzega et al. (2020), we use Final Average
Accuracy (FAA) and Final Forgetting (FF) to reflect the performances of mitigating catastrophic. We
report well-established Expected Calibration Error(ECE) (Guo et al., 2017) to assess the reliability of
continual learning methods. More details are shown in the appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Final Average Accuracy (FAA) across different continual learning methods. All
experiments are repeated 5 times with different seeds. Results for SARL (Sarfraz et al., 2025) are from our
implementation. The best results are highlighted in blue.The second best results are highlighted in green.

Method
CIFAR-10 CIFAR-100 Tiny-ImageNet

Buffer 200 Buffer 500 Buffer 500 Buffer 2000 Buffer 500 Buffer 4000

Joint (upper bound) 91.93±0.29 71.15±0.51 59.52±0.33

iCaRL (Rebuffi et al., 2017) 58.37±3.51 62.49±5.42 46.81±0.41 52.51±0.44 22.53±0.62 26.38±0.23

ER (Riemer et al., 2019) 44.46±2.87 58.84±3.85 23.41±1.15 40.47±0.95 10.13±0.39 25.12±0.56

BiC (Wu et al., 2019) 52.61±5.37 71.95±1.82 37.82±1.67 47.17±1.17 15.36±1.31 18.67±0.57

LUCIR (Hou et al., 2019) 49.18±7.61 65.26±2.54 37.91±1.18 50.42±0.76 28.79±0.51 31.64±0.51

DER (Buzzega et al., 2020) 57.92±1.91 68.65±1.82 34.83±2.09 50.12±0.75 15.14±1.29 20.35±0.35

DER++ (Buzzega et al., 2020) 62.19±1.94 70.10±1.65 37.69±0.97 51.82±1.04 19.43± 1.63 36.89± 1.16

ER-ACE (Caccia et al., 2021) 62.19±1.67 71.15±1.08 37.81±0.54 49.77±0.34 20.42±0.39 37.76±0.53

XDER (Boschini et al., 2022) 64.10±1.08 67.42±2.16 48.14±0.34 57.57±0.84 29.12±0.47 46.12±0.46

CLS-ER (Arani et al., 2022) 64.56±2.63 74.27±0.81 43.92±0.62 54.84±1.30 30.91±0.59 45.17±0.89

SCoMMER (Sarfraz et al., 2023) 66.95±1.52 73.64±0.43 39.05±0.79 49.42±0.85 21.47±0.54 37.2±0.70

BFP (Gu et al., 2023) 68.64±2.23 73.51±1.54 46.70±1.45 57.39±0.75 28.71±0.55 43.17±1.89

SARL (Sarfraz et al., 2025) 68.87±1.37 73.98±0.46 46.69±0.79 57.06±0.48 28.44±2.30 38.83±0.81

ER+ID(Ours) 71.02±1.98 74.74±0.42 44.82±0.85 56.59±0.35 29.88±1.15 43.05±1.40

BFP+ID (Ours) 71.99±0.98 76.65±0.63 48.53±0.95 57.74±0.64 30.62±0.47 43.51±0.59

CLS-ER+ID (Ours) 70.32±1.12 75.48±0.91 47.44±2.0 56.36±0.78 31.62±0.57 46.17±0.22

Figure 6: Results on CIFAR-10 and Tiny-ImageNet with different buffer size. It shows the trend of
the average test-set accuracy on the observed tasks.

Training Details. We adopt the standard experimental protocols following Boschini et al. (2022);
Gu et al. (2023). All methods use a ResNet-18 backbone (He et al., 2016) trained from scratch
with an SGD optimizer. For a fair comparison, we employ uniform settings across all methods
(including epochs, batch sizes, and optimizer configurations). Datasets are split as follows: 5 tasks
for CIFAR-10, and 10 tasks each for CIFAR-100 and TinyImageNet. We report the average results
over 5 independent runs with different random seeds to ensure statistical reliability. Comprehensive
hyperparameter settings and further implementation details are provided in the appendix.

4.1 RESULTS

Comparison with the state-of-the-art methods. We evaluate our method against state-of-the-art
continual learning approaches across three benchmark datasets with different memory buffer sizes:
CIFAR-10, CIFAR-100, and Tiny-ImageNet. The Final Average Accuracies in the class incremental
learning setting on different benchmarks are reported in Table 1. Our method outperforms all
rehearsal-based methods on three datasets. Notably, our method outperforms the second best method
BFP by up to 3% on CIFAR-10, which shows that our method remains highly effective even on
a small-scale benchmark. Though outperforming XDER only slightly in FAA on CIFAR-100 and
Tiny-ImageNet, our approach attains this accuracy with markedly lower computational cost, which
can be shown in Figure 7 (a). Figure 6 shows that IDER has better performance at most intermediate
tasks and also the final one. In addition, Table 2 highlights the advantage of IDER in the challenging

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of Final Average Accuracy (FAA) across different continual learning methods on GCIL-
CIFAR-100 dataset. All experiments are repeated 5 times with different seeds. Absolute gains are indicated in
green.

Method Uniform Longtail
Buffer 200 ∆ Buffer 500 ∆ Buffer 200 ∆ Buffer 500 ∆

Joint (upper bound) 58.36±1.02 56.94±1.56

DER++ (Buzzega et al., 2020) 19.36±0.65 33.66±0.96 27.05±1.11 25.98±0.81

SCoMMER (Sarfraz et al., 2023) 28.56±2.26 35.70±0.86 28.47±1.12 32.99±0.49

ER (Riemer et al., 2019) 16.34±0.74 28.76±0.66 19.55±0.69 20.02±1.05

Ours (ER+ID) 26.66±0.63 +10.32 40.54±0.46 +11.78 30.04±0.58 +10.49 35.92±0.35 +15.90
CLS-ER (Arani et al., 2022) 22.37±0.48 36.80±0.34 28.34±0.99 28.35±0.72

Ours (CLS-ER+ID) 31.17±1.62 +8.80 37.57±1.81 +0.77 34.08±0.45 +5.74 36.75±0.62 +8.40
SARL (Sarfraz et al., 2025) 36.20±0.46 38.73±0.66 34.13±1.07 34.64±0.49

Ours (SARL+ID) 36.45±0.37 +0.25 39.65±0.43 +0.92 35.04±0.54 +0.91 35.67±0.74 +1.03

GCIL setting, which tests the model’s ability to deal with class imbalance and to continuously
integrate knowledge from overlapping classes. The results in such a challenging setting prove the
benefits of idempotence, which encourages the model to produce more robust representations to
identify concepts clearly. This ability of IDER shows the potential for realistic continual learning.

Plug-and-play with other rehearsal-based methods. Considering the effectiveness and simplicity
of idempotence, it is natural to consider whether it can be integrated into other rehearsal-based meth-
ods. Table 1 shows consistent performance improvements on various datasets with this integration.
Enforcing idempotence boosts FAA by a significant margin, especially for ER (26% on CIFAR-10
with buffer size 200 and 21% on CIFAR-100 with buffer size 500). The results in GCIL in Table 2
can also prove that IDER, by enforcing model idempotence, is complementary to other methods in
relieving forgetting. It is worth mentioning that in more challenging setting, the performance gains
can be obvious. Combined with CLS-ER, in traditional CIL, idempotence yields a gain of about
3.5% on CIFAR-100 with buffer size 500, while in GCIL, the gains can reach 8%. This additionally
demonstrates the potential of this mathematical property to address catastrophic forgetting for more
challenging CL scenarios.

Table 3: Comparison of Expected Calibration Error (ECE) across different continual learning methods on
CIFAR-10 and CIFAR-100 dataset. All experiments are repeated 5 times with different seeds. Results of NPCL
are imported from its original work (Gu et al., 2023). Absolute improvements (lower ECE) are indicated in red.

Method CIFAR-10 CIFAR-100
Buffer 200 ∆ Buffer 500 ∆ Buffer 500 ∆ Buffer 2000 ∆

DER (Buzzega et al., 2020) 29.91 16.20 24.84 10.79
NPCL (Jha et al., 2023) 21.03 - 19.95 -

ER (Riemer et al., 2018) 45.53 32.69 64.59 45.64
Ours (ER+ID) 12.36 -33.17 11.73 -20.96 13.65 -50.94 12.87 -32.77
BFP (Gu et al., 2023) 9.83 9.40 11.93 9.28
Ours (BFP+ID) 9.30 -0.53 8.63 -0.77 8.92 -3.01 8.29 -0.99

Idempotence Improves prediction Reliability. As previously reported by Guo et al. (2017), DNN
are uncalibrated, often tending towards overconfidence. Arani et al. (2022) show that this problem is
pronounced in continual learning where the models tend to be biased towards recent tasks. Following
Boschini et al. (2022); Jha et al. (2023) we evaluate the calibration errors for different CL baselines
using the well-established Expected Calibration Error (ECE), which is shown in Table 3. Table 3
shows that IDER consistently reduce the calibration error. In general, IDER benefits CL models in
confidence calibration which demonstrates the ability of IDER to make reliable predictions. This
strong correlation between improved calibration and higher accuracy suggests that by producing more
reliable confidence estimates, the model mitigates overconfidence on its own predictions (potentially
incorrect), thereby facilitating a more stable and effective learning process that leads to better overall
performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparison of the performances with modified backbone and normal backbone. The results are almost
same, which shows that the modified structure is reasonable and don’t influence the performance.

Model Method Accuracy (%) Forgetting (%)

Normal ResNet-18
Finetune 8.29 90.52

ER 24.36 71.30

Modified ResNet-18
Finetune 8.23 90.58

ER 24.73 70.61

(a) Training Times (b) Forgetting on CIFAR-100 (c) Distance Metrics
Figure 7: Results for model analysis. (a) the training time of different methods on Split TinyImageNet
with buffer 500. (b) the Final Forgetting (FF) measures on Split CIFAR-100 with different buffer
sizes. (c) the performances on Split CIFAR-100 using different distance metrics for idempotent
distillation loss.

4.2 ADDITIONAL ANALYSIS

Effectiveness of modified structure. To enforce idempotence, we introduce a lightweight architec-
tural modification (details in Section 3.2). We ablate its influence on Split CIFAR-100 with a buffer
size of 500. As shown in Table 4, the modified structure performs similarly to the normal backbone.
This indicates that the architectural change itself does not influence the baseline performance. Conse-
quently, the observed improvements in performance benefit from idempotent loss instead of modified
architecture.

Idempotence improves forgetting. The Figure 7 (b) shows Final Forgetting (FF) measured on the
Split CIFAR-100 dataset with different buffer sizes. Our method consistently reduces forgetting,
which shows that enforcing idempotence improves accuracy while mitigating the forgetting problem
simultaneously.

On training time. Figure 7 (a) compares the training times of various methods. As expected,
our proposed method introduces minimal computational overhead when integrated into existing
replay-based methods. This highlights IDER’s practicality as a lightweight and effective method.

Comparison with different distance metrics. The figure 7 (c) shows the effect of different distance
metrics for computing the Idempotent distillation loss. While both MSE and KL divergence are well-
established metrics for quantifying loss distance, MSE provides better and more stable performance.
The reason is that MSE avoids the information loss occurring in probability space due to the squashing
function.

5 CONCLUSION

In this paper, we propose Idempotent Experience Replay (IDER), a simple and effective method
designed to mitigate catastrophic forgetting and improve predictive reliability in continual learning.
Our approach adapts the training loss and introduces idempotence distillation loss for CL methods to
encourage . Extensive experiments demonstrate that IDER consistently improves performance across
multiple datasets and diverse continual learning settings. Our results show that enforcing idempotence
enables a balance between stability and plasticity while yielding better calibrated predictions. Our
method, requiring only two forward passes without additional parameters and seamlessly integrated
with other CL approaches, shows promise for deployment of CL models in real-world scenarios. We
hope this work inspires future research to place greater emphasis on uncertainty-aware continual
learning. We also plan to explore the potential of idempotence property in different domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual learning
method based on complementary learning system. arXiv preprint arXiv:2201.12604, 2022.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-incremental
continual learning into the extended der-verse. IEEE transactions on pattern analysis and machine intelligence,
45(5):5497–5512, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for
general continual learning: a strong, simple baseline. Advances in neural information processing systems, 33:
15920–15930, 2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Simone Calderara. Rethinking experience replay: a bag
of tricks for continual learning. In 2020 25th International Conference on Pattern Recognition (ICPR), pp.
2180–2187. IEEE, 2021.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky. New insights
on reducing abrupt representation change in online continual learning. arXiv preprint arXiv:2104.05025,
2021.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania, P Torr, and
M Ranzato. Continual learning with tiny episodic memories. In Workshop on Multi-Task and Lifelong
Reinforcement Learning, 2019.

Nikita Durasov, Nik Dorndorf, Hieu Le, and Pascal Fua. Zigzag: Universal sampling-free uncertainty estimation
through two-step inference. Transactions on Machine Learning Research, 2024a. ISSN 2835-8856.

Nikita Durasov, Doruk Oner, Jonathan Donier, Hieu Le, and Pascal Fua. Enabling uncertainty estimation in
iterative neural networks. In Forty-first International Conference on Machine Learning, 2024b.

Nikita Durasov, Assaf Shocher, Doruk Oner, Gal Chechik, Alexei A Efros, and Pascal Fua. It3: Idempotent
test-time training. arXiv preprint arXiv:2410.04201, 2024c.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual learning.
In International conference on artificial intelligence and statistics, pp. 3762–3773. PMLR, 2020.

Qiao Gu, Dongsub Shim, and Florian Shkurti. Preserving linear separability in continual learning by backward
feature projection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 24286–24295, 2023.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier incrementally
via rebalancing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
831–839, 2019.

Saurav Jha, Dong Gong, He Zhao, and Lina Yao. Npcl: Neural processes for uncertainty-aware continual
learning. Advances in Neural Information Processing Systems, 36:34329–34353, 2023.

Saurav Jha, Dong Gong, and Lina Yao. Clap4clip: Continual learning with probabilistic finetuning for vision-
language models. Advances in neural information processing systems, 37:129146–129186, 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open Review, 62(1):
1–62, 2022.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165. Elsevier, 1989.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Fei Mi, Lingjing Kong, Tao Lin, Kaicheng Yu, and Boi Faltings. Generalized class incremental learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 240–241,
2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 2001–2010, 2017.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint
arXiv:1810.11910, 2018.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning
to learn without forgetting by maximizing transfer and minimizing interference. In ICLR (Poster), 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu,
Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.

Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Sparse coding in a dual memory system for lifelong learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 9714–9722, 2023.

Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Semantic aware representation learning for lifelong learning.
In The Thirteenth International Conference on Learning Representations, 2025.

Assaf Shocher, Amil Dravid, Yossi Gandelsman, Inbar Mosseri, Michael Rubinstein, and Alexei A Efros.
Idempotent generative network. arXiv preprint arXiv:2311.01462, 2023.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS), 11
(1):37–57, 1985.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory,
method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,
Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 139–149, 2022.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large scale
incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 374–382, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Appendix

A EXPERIMENTAL SETTING

We evaluate our method on three standard continual learning benchmarks under Class-IL setting,
where task identifiers are unavailable during testing, making it a challenging scenario for maintaining
performance across tasks.

Datasets. Our experiments use three datasets with varying complexity:

• Split CIFAR-10: The CIFAR-10 dataset is divided into 5 sequential tasks, each containing
2 classes. Each class comprises 5,000 training and 1,000 test images of size 32×32.

• Split CIFAR-100: CIFAR-100 is split into 10 tasks with 10 classes per task. Each class
contains 500 training and 100 test images of size 32×32.

• Split TinyImageNet: TinyImageNet is divided into 10 tasks with 20 classes each. Each
class has 500 training images, 50 validation images, and 50 test images.

Evaluation Metrics. We use two standard metrics to evaluate continual learning performance:

• Final Average Accuracy (FAA): Measures the average accuracy across all tasks after
training is complete. For a model that has finished training on task t, let ati denote the test
accuracy on task i. FAA is computed as the mean accuracy across all tasks.

• Final Forgetting (FF): Quantifies how much knowledge of previous tasks is forgotten,
defined as:

FF =
1

T − 1

T−1∑
i=1

max
j∈{1,··· ,T−1}

(aji − aTi) (9)

where lower values indicate better retention of previously learned tasks.

• Expected Calibration Error (ECE): Quantifies the mismatch between a model’s predicted
confidence and its actual accuracy. Predictions are partitioned into M confidence interval
bins Bm. The ECE is computed as the weighted average of the absolute difference between
the average confidence (conf(Bm)) and the average accuracy (acc(Bm)) within each bin:

ECE =

M∑
m=1

|Bm|
N

|conf(Bm)− acc(Bm)| (10)

where N is the total number of samples. A lower ECE indicates a better-calibrated model
whose confidence estimates are more reliable.

A.1 IMPLEMENTATION DETAILS SUPPLEMENTARY

Besides the details mentioned above, we train 50 epochs per task for Split CIFAR-10 and Split
CIFAR-100 and 100 epochs per task for Split TinyImageNet (Le & Yang, 2015). For Split CIFAR100,
the learning rate is decreased by a factor of 0.1 at epochs 35 and 45, while for Split TinyImageNet,the
learning rate is decreased by a factor of 0.1 at epochs 35, 60 and 75. The learning rate may vary
in the light of different continual learning methods, while for a fair comparison, we use the same
initial learning rate as DER and BFP for our methods. If not specified, all baselines use the reservoir
sampling algorithm (Vitter, 1985) to update memory, while BFP (Gu et al., 2023) uses class-balanced
reservoir sampling (Buzzega et al., 2021) for pushing balanced examples into the buffer.

A.2 HYPERPARAMETERS

In this section, we show hyperparameter combination that used in our experiments. These hyperpa-
rameters are adopted from Boschini et al. (2022); Buzzega et al. (2020); Gu et al. (2023) to make fair
comparison.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

SPLIT CIFAR-10

Buffer size = 200

iCaRL: lr = 0.1, wd = 10−5

LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20, lr = 0.03, lrfitting = 0.01, m =
0.5

BiC: τ = 2, epochsBiC = 250, lr = 0.03

ER-ACE: lr = 0.03

ER: lr = 0.1

DER: lr = 0.03, α = 0.3

DER++: lr = 0.03, α = 0.1, β = 0.5

XDER: α = 0.3, m = 0.7, β = 0.9, γ = 0.85, wd = 1e− 06, λ = 0.05, η = 0.001, lr =
0.03, τ = 5, mom = 0.9

DEP++ w/ BFP: lr = 0.03, αdistill = 0.1, αce = 0.5, αbfp = 1

Buffer size = 500

iCaRL: lr = 0.1, wd = 10−5

LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20, lr = 0.03, lrfitting = 0.01, m =
0.5

BiC: τ = 2, epochsBiC = 250, lr = 0.03

ER-ACE: lr = 0.03

ER: lr = 0.1

DER: lr = 0.03, α = 0.3

DER++: lr = 0.03, α = 0.1, β = 0.5

XDER: α = 0.3, m = 0.7, β = 0.9, γ = 0.85, wd = 1e− 06, λ = 0.0, η = 0.001, lr =
0.03, τ = 5, mom = 0.9

DEP++ w/ BFP: lr = 0.03, αdistill = 0.2, αce = 0.5, αbfp = 1

SPLIT CIFAR-100

Buffer size = 500

iCaRL: lr = 0.3, wd = 10−5

LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20, lr = 0.03, lrfitting = 0.01, m =
0.5

BiC: τ = 2, epochsBiC = 250, lr = 0.03

ER-ACE: lr = 0.03

ER: lr = 0.1

DER: lr = 0.03, α = 0.3

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

DER++: lr = 0.03, α = 0.1, β = 0.5

XDER: α = 0.3, m = 0.7, β = 0.9, γ = 0.85, wd = 1e− 06, λ = 0.05, η = 0.001, lr =
0.03, τ = 5, mom = 0.9

DEP++ w/ BFP: lr = 0.03, αdistill = 0.1, αce = 0.5, αbfp = 1

Buffer size = 2000

iCaRL: lr = 0.3, wd = 10−5

LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20, lr = 0.03, lrfitting = 0.01, m =
0.5

BiC: τ = 2, epochsBiC = 250, lr = 0.03

ER-ACE: lr = 0.03

ER: lr = 0.1

DER: lr = 0.03, α = 0.3

DER++: lr = 0.03, α = 0.1, β = 0.5

XDER: α = 0.3, m = 0.7, β = 0.9, γ = 0.85, wd = 1e− 06, λ = 0.05, η = 0.001, lr =
0.03, τ = 5, mom = 0.9

DEP++ w/ BFP: lr = 0.03, αdistill = 0.1, αce = 0.5, αbfp = 1

SPLIT TINYIMAGENET

Buffer size = 4000

iCaRL: lr = 0.03, wd = 10−5

LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20, lr = 0.03, lrfitting = 0.01, m =
0.5

BiC: τ = 2, epochsBiC = 250, lr = 0.03

ER-ACE: lr = 0.03

ER: lr = 0.1

DER: lr = 0.03, α = 0.1

DER++: lr = 0.03, α = 0.1, β = 0.5

XDER: α = 0.3, m = 0.7, β = 0.9, γ = 0.85, wd = 1e − 06, λ = 0.0, η = 0.001, lr =
0.03, τ = 5, mom = 0.9

DEP++ w/ BFP: lr = 0.03, αdistill = 0.3, αce = 0.8, αbfp = 1

A.3 INTERGRATED IDER INTO BFP

As Gu et al. (2023) introduces BFP distillation loss, which focuses on features. We can easily
incorporate our method into BFP framework. The BFP loss is:

LBFP =
∑

(x,y)∈Tt,M

∥Aht(x, 0)− ht−1(x, 0)∥2, (11)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Comparison of Final Forgetting (FF) across different continual learning methods. All experiments are
repeated 5 times with different seeds. The best results (lowest forgetting) are highlighted in blue. The second
best results are highlighted in green.

Method
CIFAR-10 CIFAR-100 Tiny-ImageNet

Buffer 200 Buffer 500 Buffer 500 Buffer 2000 Buffer 500 Buffer 4000

Joint 0.00 0.00 0.00 0.00 0.00 0.00

iCaRL (Rebuffi et al., 2017) 36.00±7.29 30.19±3.38 28.58±0.84 24.24±0.58 20.82±1.31 15.29±0.53

ER (Riemer et al., 2018) 71.35±7.77 52.12±7.56 71.92±0.74 51.82±0.75 74.79±0.67 57.47±0.57

BiC (Wu et al., 2019) 53.63±7.18 24.87±0.98 48.87±0.91 38.50±1.09 67.57±1.98 63.48±0.28

LUCIR (Hou et al., 2019) 59.79±10.16 37.58±3.80 50.22±1.26 32.48±0.76 35.02±0.56 30.59±0.95

DER (Buzzega et al., 2020) 45.31±2.73 32.04±2.88 56.66±2.55 34.41±2.05 68.43±2.73 59.54±6.13

DER++ (Buzzega et al., 2020) 36.20±4.15 27.93±3.34 51.85±1.61 34.44±1.42 61.45±3.12 39.11±3.66

ER-ACE (Caccia et al., 2021) 19.52±1.23 12.87±1.06 38.61±1.15 28.42±0.55 40.97±1.38 29.37±1.09

XDER (Boschini et al., 2022) 16.36±0.91 12.81±0.48 24.15±1.37 11.17±1.21 42.90±0.54 18.87±1.08

BFP (Gu et al., 2023) 22.53±5.00 16.81±1.11 35.32±3.94 19.76±0.87 30.02±4.37 27.19±6.53

Ours (ER+ID) 15.28±2.41 11.93±0.49 29.98±2.52 17.46±1.04 36.63±3.37 22.46±±1.86

Ours (BFP+ID) 15.79±2.73 12.11±0.82 26.56±2.56 12.52±1.29 27.41±3.92 16.68±0.44

where ht is feature extractor in model ft on the t-th task and A is linear transformation aimed to
preserve the linear separability of features backward in time.

During training on the task t, the model ft and A are optimized respectively. Thus, the LBFP+ID

can be:
LBFP+ID = Lice + αLide + βLrep-ice + γLBFP . (12)

A.4 COMPLEXITY AND TRAINING COST

We train all experiments on GeForce 4090. The additional parameters we need for modified archi-
tecture are very small. Using ResNet-18 as the backbone, the normal architecture contains 11.22M
parameters on CIFAR-100 while the modified architecture increases the parameter count to 11.91M
parameters. Although we need two forward passes to train the model, which leads to a slightly
longer training time compared with DER++, the longer training time is acceptable as it increases the
performance by a significant margin.

B FORGETTING COMPARISON OF DIFFERENT REHEARSAL-BASED CONTINUAL
LEARNING METHODS

Instead of FAA, Final Forgetting (FF) reflects the model’s anti-forgetting capacity. To make fair
comparison, we exclude the Exponential Moving Average (EMA) based methods, as the highest
model performance on each task is from working model instead of EMA model, thereby reducing
FF following Eq. 9 in appendix. FF measures the drop from each task’s historical peak accuracy (its
best accuracy when first learned) to its final accuracy after all tasks, while EMA artificially smooths
performance drops by reducing the accuracy it is first learned, thus understating true forgetting.The
Table 5 shows Final Forgetting (FF) of different continual learning methods. The results show that the
idempotence loss yields a lower FF, indicating improved stability. It is worth noting that compared
with XDER, there are no additional architectures or learnable parameters introduced in our method,
just forwarding pass the model twice.

C T-SNE VISUALIZATION OF VARIOUS METHODS

In this section, we show more t-SNE visualization of various methods on first task testing data on
CIFAR-100 with 500 buffer size. The task number is 10. t-SNE figures shows our method has the
better capability of resisting catstrophic forgetting compared with ER, DER and BFP. We observed
that the feature clusters of the 10 classes from the first task become increasingly blurred as the model

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

learns knowledge from new tasks in these methods. However, this phenomenon is alleviated in our
method.

task 1 task 2 task 3

DER

task 1 task 2 task 3

BFP

task 1 task 2 task 3

ER

task 1 task 2 task 3

ER+ID(Ours)

Figure 8: We perform t-SNE visualization of the features extracted from the first task testing data on CIFAR-100
across training tasks. The figures show how the feature clusters of the 10 classes from the first task change when
the model train data from new tasks.

D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We hereby declare that large language models (LLMs), specifically GPT-5 , were used during the
preparation of this manuscript. The use of LLMs was strictly limited to: aiding and polishing writing.
The LLM was used solely as an assistive tool for prose refinement and did not contribute to the
intellectual content of the research.

E LIMITATIONS

Naive Implementation. As we first introduce idempotence property into continual learning, the
method should be very simple. In the future, we try to combine our method with more complementary
techniques to further improve performance. In addition, we also plan to explore the application of the
idempotence property in data sampling strategies for continual learning.

16

