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ABSTRACT

Catastrophic forgetting, the tendency of neural networks to forget previously
learned knowledge when learning new tasks, has been a major challenge in contin-
ual learning (CL). To tackle this challenge, CL methods have been proposed and
shown to reduce forgetting. Furthermore, CL models deployed in mission-critical
settings can benefit from uncertainty awareness by calibrating their predictions to
reliably assess their confidences. However, existing uncertainty-aware continual
learning methods suffer from high computational overhead and incompatibility
with mainstream replay methods. To address this, we propose idempotent expe-
rience replay (IDER), a novel approach based on the idempotent property where
repeated function applications yield the same output. Specifically, we first adapt
the training loss to make model idempotent on current data streams. In addition,
we introduce an idempotence distillation loss. We feed the output of the current
model back into the old checkpoint and then minimize the distance between this
reprocessed output and the original output of the current model. This yields a
simple and effective new baseline for building reliable continual learners, which
can be seamlessly integrated with other CL approaches. Extensive experiments on
different CL benchmarks demonstrate that IDER consistently improves prediction
reliability while simultaneously boosting accuracy and reducing forgetting. Our
results suggest the potential of idempotence as a promising principle for deploying
efficient and trustworthy continual learning systems in real-world applications. Our
code will be released upon publication.

1 INTRODUCTION

Deep learning has achieved impressive success across various domains. However, a static batch
setting where the training data of all classes can be accessed at the same time is essential for attaining
good performance (Le & Yang, 2015; Rebuffi et al., 2017). In many real-world deployments, data
arrive sequentially and previously seen samples cannot be fully retained due to storage or privacy
constraints. This makes it a major challenge because neural networks tend to rapidly forget previously
learned knowledge when trained on new tasks, which is a phenomenon known as catastrophic
forgetting (McCloskey & Cohen, 1989).

To address this challenge, continual learning (CL) is proposed to enable models to accumulate
knowledge as data streams arrive sequentially. Among valid CL strategies, rehearsal-based approaches
are popular as they are simple and efficient. They (Boschini et al., 2022; Buzzega et al., 2020;
Caccia et al., 2021; Chaudhry et al., 2019; Wu et al., 2019) address this by storing a small, fixed-
capacity buffer of exemplars from previous tasks and replaying them when training on new task,
thereby regularizing parameter updates and mitigating catastrophic forgetting. Despite strong average
accuracy, CL methods are often poorly calibrated and over-confident, a problem exacerbated by
recency bias toward new tasks (Arani et al., 2022). Thus, this undermines the broader deployment
of CL models in real-world settings, especially in safety-critical domains (healthcare, transport,
etc.) (LeCun, 2022). CL models deployed in these domains can benefit from uncertainty awareness
by calibrating their predictions to reliably assess their confidences (Jha et al., 2024). To tackle this
issue, Jha et al. (2023) propose neural processes based CL method (NPCL). However, it causes
non-negligible parameter growth and exhibits incompatibility with logits-based replay methods due
to the stochasticity in the posterior induced by Monte Carlo sampling. Motivated by these limitations,
we aim for a lightweight and compatible principle for reliable CL methods.
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Figure 1: We propose the IDER method, which can be directly applied to many recent rehearsal-based
continual learning methods, resulting in less calibration error and significant improvements in FAA
with less parameter growth compared with NPCL.

We draw inspiration from idempotence, a mathematical property that arises in algebra. An operator is
idempotent if applying it multiple times yields the same result as applying it once, formally expressed
as f(f(x)) = f(x). It can be used in deep learning by recursively feeding the model’s predictions
back as inputs, allowing the model to refine its outputs (Durasov et al., 2024a; Shocher et al., 2023).
Durasov et al. (2024b) show that if a deep network f takes as input a vector x and a second auxiliary
variable that can either be the ground truth label y corresponding to x or a neutral uninformative
signal 0 and is trained so that f(x, 0) = f(x, y) = y, then the distance ||f(x, f(x, 0)) − f(x, 0)||
correlates strongly with the prediction error. What if we actively minimize this distance of buffer data
when we learn new tasks in CL settings? Could we project outputs into the stable manifold where
instances are mapped to themselves to prevent predictive distribution drift?

Thus, we propose an Idempotent Experience Replay (IDER) inspired by Idempotence, a simple
and effective method that enforces idempotence for CL models when learning new tasks. We
demonstrate that enforcing idempotence enables model to make more reliable predictions while
reducing catastrophic forgetting. Both combined with naive rehearsal-based method experience
replay (ER) (Riemer et al., 2019), compared with NPCL, our approach achieves lower calibration
error evaluated by Expected Calibration Error (ECE) (Guo et al., 2017), higher accuracy, and requires
smaller parameter numbers, as is shown in Figure 1.

More specifically, IDER integrates two components to enforce idempotence for CL models. Firstly,
we adapt the training loss to train the current model to be idempotent with data from the current
task. Secondly, we introduce idempotence distillation loss for both buffer data and the current data
stream to enforce idempotence between last task model checkpoint ft−1 and current model ft. We
verify that incorporating the current data stream into idempotence achieves further performance
improvements, suggesting that idempotence can help preserve model distribution, thereby mitigating
decision boundary drift.

This yields a simple method that only requires two forward passes of the model almost without
additional parameters. Our approach can be integrated into existing CL methods and experiments
show that this simple change boosts both prediction reliability and final accuracy by a large margin.
Especially on the Split-CIFAR10 dataset, enforcing idempotence improves the baseline method
ER (Riemer et al., 2019) by up to 26%, achieving state-of-the-art class incremental learning accuracy.
Through extensive empirical validation on challenging generalized class-incremental learning (Mi
et al., 2020; Sarfraz et al., 2025), we demonstrate that this simple and powerful principle improves
the reliability of predictions while mitigating catastrophic forgetting in real-world scenarios.

The contributions of this paper can be summarized as follows:

• We propose a novel framework for continual learning based on the idempotent property, which is
a simple and robust method. Our method demonstrates that fundamental mathematical properties
can be effectively utilized to address catastrophic forgetting for CL.

• We show that IDER can be easily integrated into other state-of-the-art methods, leading to more
reliable predictions with comparable performance.

• Extensive experiments on several benchmarks demonstrate that our approach achieves strong
performance in both mitigating catastrophic forgetting and making reliable predictions.
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2 RELATED WORK

Continual Learning The goal of continual learning (CL) is to achieve the balance between learning
plasticity and memory stability (Wang et al., 2024). Approaches in CL can be divided into three main
categories. Regularization-based methods primarily rely on regularization loss to penalize changes
in parameter space of the model (Farajtabar et al., 2020; Kirkpatrick et al., 2017). Rehearsal-based
Method (Chaudhry et al., 2019) use a memory buffer to store task data and replay them during
new task training. Architecture-based methods (Rusu et al., 2016; Wang et al., 2022) incrementally
expand the network to allocate distinct parameters for preserving each task’s knowledge. Among
them, Rehearsal-based methods are general in various CL scenarios and can be naturally combined
with knowledge Distillation (KD) techniques.

The baseline Experience Replay (ER) (Riemer et al., 2019) mixes the current task data with stored
samples from past tasks in the memory buffer during training. DER (Buzzega et al., 2020) store
old training samples together with their logits and preserve the old knowledge by matching the
saved logits with logits obtained by current model. Its improved version XDER (Boschini et al.,
2022) improves performance at the sacrifice of computational costs due to sophisticated mechanisms.
CLSER (Arani et al., 2022) introduce a fast module for plastic knowledge and a slow learning module
for stable knowledge. BFP (Gu et al., 2023) uses a learnable linear layer to perform knowledge
distillation in the feature space. SCoMMER (Sarfraz et al., 2023) and SARL (Sarfraz et al., 2025)
enforces sparse coding for efficient representation learning. Neural Processes for Continual Learning
(NPCL) (Jha et al., 2023) explore uncertainty-aware CL models using neural processes (NPs). Unlike
previous studies, we explore the idempotence in continual learning, which has never been studied
before.

Idempotence in Deep Learning Idempotence is a property of a function whereby the result of
applying the function once is the same as applying it multiple times in sequence. Recent work has
explored the application of idempotence in deep learning. It is defined that the results obtained by the
model will not change when applying the model multiple times (f(f(x)) = f(x)). The Idempotent
Generative Network (IGN) (Shocher et al., 2023) firstly proposes this idea in deep learning for
generative modeling and it has the capability of producing robust outputs in a single step. Another
work ZigZag (Durasov et al., 2024a) introduces idempotence in neural networks for the measuring
uncertainty, which is based on IterNet (Durasov et al., 2024b). IterNet proves that for iterative
architectures, which use their own output as input, the convergence rate of their successive outputs is
highly correlated with the accuracy of the value to which they converge. ZigZag recursively feeds
predictions back as inputs, measuring the distance between successive results. A small distance
indicates high confidence, while a large one signals uncertainty or out-of-distribution (OOD) data.
Recent work ITTT (Durasov et al., 2024c) combines idempotence with Test-Time Training. These
works proves the potential of idempotence in deep learning while these works are based on static
batch learning.

3 METHOD

In this section, we deliver details of the proposed IDER. We first define both class-incremental
learning and generalized class-incremental learning settings. Then, we elaborate on how to introduce
idempotence in continual learning. Finally, we introduce the overall objective. An overview of IDER
is depicted in Figure 5.

3.1 PROBLEM DEFINITION

In traditional continual learning, two primary settings are task incremental learning (TIL) and class
incremental learning (CIL). The difference between the two settings is that when we test the model,
we can know the task ID in task incremental learning. Since class incremental learning better reflects
real-world scenarios and is more challenging, we focus on the class incremental learning setting in
our experiments. In this paper, we focus on both typical class-incremental learning and generalized
class-incremental learning. Generalized class-incremental learning (GCIL) is more close to real-world
incremental learning. The key GCIL properties can be summarized as follows: (i) the number of
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classes across different tasks is not fixed; (ii) classes shown in prior tasks could reappear in later
tasks; (iii) training samples are imbalanced across different classes in each task.

In a typical class-incremental learning setting, a model f is trained on sequential tasks T =
T1, T2, ..., Tt Each task T consists of data points and these data points are unique within each
task, which means Tt = {(xi, yi)}Nt

i=1 and Ti ∩ Tj = ∅. The optimization objective is to minimize
the overall loss over all the tasks:

f∗ = argmin
f

t∑
i=0

E(x,y)∼Tt
[L(f(x), y)] , (1)

where L is the loss function for the tasks and y is the ground truth for x. However, in the continual
setting, only the data from current task Tt are available and the model should preserve the previous
knowledge from the tasks beforeT1, ..., Tt−1. As a result, additional memory buffer or additional
regularization term LR may be chosen to avoid catastrophic forgetting and the actual objective on the
current task should be:

f∗ = argmin
f

[E(x,y)∼Tt∪M [L(f(x), y)] + LR], (2)

where M stands for the memory buffer to store the data from previous tasks.

3.2 MODIFIED ARCHITECTURE
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Figure 2: Modified Architecture. We modify
the architecture of backbone(ResNet) and en-
able the model to accept two inputs.

To enable idempotence for the model with respect to the
second input, we modify the original backbone as shown
in Figure 2. We divide the backbone ResNet (He et al.,
2016) as denoted ft, into two parts f1

t and f2
t on the t-th

task. The second input (either a one-hot vector y or a
uniform distribution over all classes standing for “empty”
input 0) is first transformed into a label feature vector.
This is achieved by a linear layer with an output dimen-
sion that matches the dimensions of f1

t ’s output, followed
by a LeakyReLU activation function. The image first is
processed by f1

t to produce an intermediate feature map.
The label feature is then added to this intermediate feature
map, which is fed into f2

t . The output of f2
t , which is

the logits for target classes, can work as the second input
for model after softmax normalization. In this way, the
backbone can accept two inputs and achieve idempotence with respect to the second argument after
training.

3.3 STANDARD IDEMPOTENT MODULE:TRAINING THE NETWORK IDEMPOTENT

First, we rely on the model we train being idempotent. To achieve this, Standard Idempotent Module
is used for training the model on data from the current task. Following Durasov et al. (2024a;b),
when learning new tasks, we minimize the loss which consists of two cross-entropy losses obtained
by the logits from the first and second forward propagation of model and the ground truth y :

Lice =
∑

(x,y)∈Tt

[Lce(ft(x, y
∗), y) + Lce(ft(x, ft(x, y

∗)), y)], (3)

where Tt is current task and y∗ is the second input that is is set to the ground-truth one-hot vector
y with probability P and to the neutral "empty" signal input 0 with probability 1− P . The empty
signal 0 is defined as a uniform distribution over all classes.

By minimizing Lice, we can train the model idempotent with respect to the second argument, which
can be obtained by:

ft(x,0) ≈ y, ft(x, y) ≈ y, ft(x, ft(x,0)) ≈ y =⇒ ft(x, ft(x,0)) ≈ ft(x,0). (4)

Thus, ft has been adjusted so that the model ft is as idempotent as possible for all x in distribution.
The model will map the data (x,0) to the stable manifold (x, y) : f(x, y = y). Fig. 3 illustrates this
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Figure 3: We plot the distribution of idempotence
errors, measured by the distance |f(x, f(x, z))−
f(x, z)|. Inputs x with second incorrect predic-
tion input z exhibit significantly larger idempo-
tence errors.

Figure 4: Probability of predicting each task at
the end of training for models trained on CIFAR-
10 with 500 buffer size. Idempotent distillation
loss effectively mitigates the bias to the recent
tasks and provides a more uniform probability
size.

in the case of a network trained on data from the first task on CIFAR-100. With different second input
y, the idempotence distance distribution varies. The input which contains incorrect prediction input y
exhibits significantly larger idempotence errors. Thus, this distance can be used as a distillation loss
for iterative prediction refinement to make reliable predictions.

3.4 IDEMPOTENT DISTILLATION MODULE: DISTILLING THE NETWORK FOR CONTINUAL
LEARNING

In the CL setting, the model tends to have recency bias toward newly introduced classes, which
negatively influences the performance and results in overconfidence predictions. Rehearsal-based
methods suffer from this problem, as Wang et al. (2022) point out that when a new task is presented
to the net, an asymmetry arises between the contributions of replay data and current examples to
the weights updates: the gradients of new examples outweigh. Thus, we propose to minimize
idempotence distances to mitigate recency bias and prediction distribution drift in CL. A naive way
would be to minimize the loss function:

Lide =
∑

(x,y)∈Tt,M

∥ft(x,0)− ft(x, ft(x,0))∥22. (5)

However, this can produce undesirable side effects in CL settings. As ft has bias towards current
data streams and y0 = ft(x,0) may be an incorrect prediction, minimizing ∥y0− y1∥22 may cause
y1 = ft(x, y0) to be pulled towards the incorrect y0, thereby magnifying the error.

To address this, we keep the model checkpoint at the end of the last task ft−1 together with the
current trained model ft. We then modify the idempotence distillation loss to be:

Lide =
∑

(x,y)∈Tt,M

∥ft(x, 0)− ft−1(x, ft(x, 0))∥22. (6)

Thus, the first prediction y0 = ft(x,0) is computed as before, but the second one, y1 = ft−1(x, y0),
is made using the last model checkpoint ft−1. By updating only ft and keeping ft−1 frozen, which
preserves more previous knowledge and stable prediction distribution for buffer data, we ensure
that y0 is adjusted to minimize the discrepancy with y1, without pulling y1 towards an incorrect
y0. This design achieves idempotence by ensuring that processing an input through the current
model and then through a frozen old checkpoint yields a nearly identical output distribution. This
self-consistency mechanism directly preserves previous knowledge while mitigating bias. Unlike
traditional distillation in Buzzega et al. (2020), which only aligns the final output probabilities, our
method anchors the model’s representation to the stable manifold already learned by the frozen model,
thereby maintaining balanced predictive performance across all tasks, as is shown in Figure 4.

3.5 OVERALL OBJECTIVE

We introduce idempotence into an experience replay (ER) framework (Riemer et al., 2019), where we
keep a buffer M storing training examples from old tasks. We keep the model checkpoint at the end

5
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Figure 5: Overall framework of Idempotent Experience Replay (IDER). Our method consists of two
modules for continual learning: (1) Standard Idempotent Module that trains current model idempotent
with data from the current task. (2) Idempotent Distillation Module that enforce the current model
to become idempotent with respect to the last task model checkpoint, utilizing data from both the
current task and buffer memory. IDER can be integrated into existing CL approaches to make reliable
predictions while mitigate catastrophic forgetting.

of the last task ft−1 together with the current trained model ft. During continual learning, the current
model ft is trained on the batch from data stream of the current task Tt using the adapted training
loss Lice in Eq. 3. We sample batch from M and combine the current batch to compute idempotence
distillation loss Lide in Eq. 6.

Meanwhile, we sample another batch from M for experience replay. The experience replay loss
Lrep-ice in ER is:

Lrep-ice =
∑

(x,y)∈M

[Lce(ft(x, y
∗), y) + Lce(ft(x, ft(x, y

∗)), y)]. (7)

The total loss function used in IDER is the weighted sum of the losses above, formally:

LIDER = Lice + αLide + βLrep-ice. (8)

In addition, our method is simple and robust, which can be combined with other methods, such as
BFP (Gu et al., 2023), to achieve higher performances. Details are shown in the appendix.

4 EXPERIMENTS

Continual Learning Settings. We follow Gu et al. (2023) and conduct experiments on state-of-
the-art rehearsal-based models in class incremental learning (CIL) setting. CIL setting splits the
dataset into a sequence of tasks, each containing a disjoint set of classes, while task identifiers are not
available during testing. Following Sarfraz et al. (2025), we also evaluate methods in the generalized
class incremental learning (GCIL) setting. GCIL setting (Mi et al., 2020) is closest to the real-world
scenario as the number of classes in each task is not fixed, the classes can overlap and the sample size
for each class can vary.
Evaluation Metrics. Following Boschini et al. (2022); Buzzega et al. (2020), we use Final Average
Accuracy (FAA) and Final Forgetting (FF) to reflect the performances of mitigating catastrophic. We
report well-established Expected Calibration Error(ECE) (Guo et al., 2017) to assess the reliability of
continual learning methods. More details are shown in the appendix.
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Table 1: Comparison of Final Average Accuracy (FAA) across different continual learning methods. All
experiments are repeated 5 times with different seeds. Results for SARL (Sarfraz et al., 2025) are from our
implementation. The best results are highlighted in blue.The second best results are highlighted in green.

Method
CIFAR-10 CIFAR-100 Tiny-ImageNet

Buffer 200 Buffer 500 Buffer 500 Buffer 2000 Buffer 500 Buffer 4000

Joint (upper bound) 91.93±0.29 71.15±0.51 59.52±0.33

iCaRL (Rebuffi et al., 2017) 58.37±3.51 62.49±5.42 46.81±0.41 52.51±0.44 22.53±0.62 26.38±0.23

ER (Riemer et al., 2019) 44.46±2.87 58.84±3.85 23.41±1.15 40.47±0.95 10.13±0.39 25.12±0.56

BiC (Wu et al., 2019) 52.61±5.37 71.95±1.82 37.82±1.67 47.17±1.17 15.36±1.31 18.67±0.57

LUCIR (Hou et al., 2019) 49.18±7.61 65.26±2.54 37.91±1.18 50.42±0.76 28.79±0.51 31.64±0.51

DER (Buzzega et al., 2020) 57.92±1.91 68.65±1.82 34.83±2.09 50.12±0.75 15.14±1.29 20.35±0.35

DER++ (Buzzega et al., 2020) 62.19±1.94 70.10±1.65 37.69±0.97 51.82±1.04 19.43± 1.63 36.89± 1.16

ER-ACE (Caccia et al., 2021) 62.19±1.67 71.15±1.08 37.81±0.54 49.77±0.34 20.42±0.39 37.76±0.53

XDER (Boschini et al., 2022) 64.10±1.08 67.42±2.16 48.14±0.34 57.57±0.84 29.12±0.47 46.12±0.46

CLS-ER (Arani et al., 2022) 64.56±2.63 74.27±0.81 43.92±0.62 54.84±1.30 30.91±0.59 45.17±0.89

SCoMMER (Sarfraz et al., 2023) 66.95±1.52 73.64±0.43 39.05±0.79 49.42±0.85 21.47±0.54 37.2±0.70

BFP (Gu et al., 2023) 68.64±2.23 73.51±1.54 46.70±1.45 57.39±0.75 28.71±0.55 43.17±1.89

SARL (Sarfraz et al., 2025) 68.87±1.37 73.98±0.46 46.69±0.79 57.06±0.48 28.44±2.30 38.83±0.81

ER+ID(Ours) 71.02±1.98 74.74±0.42 44.82±0.85 56.59±0.35 29.88±1.15 43.05±1.40

BFP+ID (Ours) 71.99±0.98 76.65±0.63 48.53±0.95 57.74±0.64 30.62±0.47 43.51±0.59

CLS-ER+ID (Ours) 70.32±1.12 75.48±0.91 47.44±2.0 56.36±0.78 31.62±0.57 46.17±0.22

Figure 6: Results on CIFAR-10 and Tiny-ImageNet with different buffer size. It shows the trend of
the average test-set accuracy on the observed tasks.

Training Details. We adopt the standard experimental protocols following Boschini et al. (2022);
Gu et al. (2023). All methods use a ResNet-18 backbone (He et al., 2016) trained from scratch
with an SGD optimizer. For a fair comparison, we employ uniform settings across all methods
(including epochs, batch sizes, and optimizer configurations). Datasets are split as follows: 5 tasks
for CIFAR-10, and 10 tasks each for CIFAR-100 and TinyImageNet. We report the average results
over 5 independent runs with different random seeds to ensure statistical reliability. Comprehensive
hyperparameter settings and further implementation details are provided in the appendix.

4.1 RESULTS

Comparison with the state-of-the-art methods. We evaluate our method against state-of-the-art
continual learning approaches across three benchmark datasets with different memory buffer sizes:
CIFAR-10, CIFAR-100, and Tiny-ImageNet. The Final Average Accuracies in the class incremental
learning setting on different benchmarks are reported in Table 1. Our method outperforms all
rehearsal-based methods on three datasets. Notably, our method outperforms the second best method
BFP by up to 3% on CIFAR-10, which shows that our method remains highly effective even on
a small-scale benchmark. Though outperforming XDER only slightly in FAA on CIFAR-100 and
Tiny-ImageNet, our approach attains this accuracy with markedly lower computational cost, which
can be shown in Figure 7 (a). Figure 6 shows that IDER has better performance at most intermediate
tasks and also the final one. In addition, Table 2 highlights the advantage of IDER in the challenging
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Table 2: Comparison of Final Average Accuracy (FAA) across different continual learning methods on GCIL-
CIFAR-100 dataset. All experiments are repeated 5 times with different seeds. Absolute gains are indicated in
green.

Method Uniform Longtail
Buffer 200 ∆ Buffer 500 ∆ Buffer 200 ∆ Buffer 500 ∆

Joint (upper bound) 58.36±1.02 56.94±1.56

DER++ (Buzzega et al., 2020) 19.36±0.65 33.66±0.96 27.05±1.11 25.98±0.81

SCoMMER (Sarfraz et al., 2023) 28.56±2.26 35.70±0.86 28.47±1.12 32.99±0.49

ER (Riemer et al., 2019) 16.34±0.74 28.76±0.66 19.55±0.69 20.02±1.05

Ours (ER+ID) 26.66±0.63 +10.32 40.54±0.46 +11.78 30.04±0.58 +10.49 35.92±0.35 +15.90
CLS-ER (Arani et al., 2022) 22.37±0.48 36.80±0.34 28.34±0.99 28.35±0.72

Ours (CLS-ER+ID) 31.17±1.62 +8.80 37.57±1.81 +0.77 34.08±0.45 +5.74 36.75±0.62 +8.40
SARL (Sarfraz et al., 2025) 36.20±0.46 38.73±0.66 34.13±1.07 34.64±0.49

Ours (SARL+ID) 36.45±0.37 +0.25 39.65±0.43 +0.92 35.04±0.54 +0.91 35.67±0.74 +1.03

GCIL setting, which tests the model’s ability to deal with class imbalance and to continuously
integrate knowledge from overlapping classes. The results in such a challenging setting prove the
benefits of idempotence, which encourages the model to produce more robust representations to
identify concepts clearly. This ability of IDER shows the potential for realistic continual learning.

Plug-and-play with other rehearsal-based methods. Considering the effectiveness and simplicity
of idempotence, it is natural to consider whether it can be integrated into other rehearsal-based meth-
ods. Table 1 shows consistent performance improvements on various datasets with this integration.
Enforcing idempotence boosts FAA by a significant margin, especially for ER ( 26% on CIFAR-10
with buffer size 200 and 21% on CIFAR-100 with buffer size 500). The results in GCIL in Table 2
can also prove that IDER, by enforcing model idempotence, is complementary to other methods in
relieving forgetting. It is worth mentioning that in more challenging setting, the performance gains
can be obvious. Combined with CLS-ER, in traditional CIL, idempotence yields a gain of about
3.5% on CIFAR-100 with buffer size 500, while in GCIL, the gains can reach 8%. This additionally
demonstrates the potential of this mathematical property to address catastrophic forgetting for more
challenging CL scenarios.

Table 3: Comparison of Expected Calibration Error (ECE) across different continual learning methods on
CIFAR-10 and CIFAR-100 dataset. All experiments are repeated 5 times with different seeds. Results of NPCL
are imported from its original work (Gu et al., 2023). Absolute improvements (lower ECE) are indicated in red.

Method CIFAR-10 CIFAR-100
Buffer 200 ∆ Buffer 500 ∆ Buffer 500 ∆ Buffer 2000 ∆

DER (Buzzega et al., 2020) 29.91 16.20 24.84 10.79
NPCL (Jha et al., 2023) 21.03 - 19.95 -

ER (Riemer et al., 2018) 45.53 32.69 64.59 45.64
Ours (ER+ID) 12.36 -33.17 11.73 -20.96 13.65 -50.94 12.87 -32.77
BFP (Gu et al., 2023) 9.83 9.40 11.93 9.28
Ours (BFP+ID) 9.30 -0.53 8.63 -0.77 8.92 -3.01 8.29 -0.99

Idempotence Improves prediction Reliability. As previously reported by Guo et al. (2017), DNN
are uncalibrated, often tending towards overconfidence. Arani et al. (2022) show that this problem is
pronounced in continual learning where the models tend to be biased towards recent tasks. Following
Boschini et al. (2022); Jha et al. (2023) we evaluate the calibration errors for different CL baselines
using the well-established Expected Calibration Error (ECE), which is shown in Table 3. Table 3
shows that IDER consistently reduce the calibration error. In general, IDER benefits CL models in
confidence calibration which demonstrates the ability of IDER to make reliable predictions. This
strong correlation between improved calibration and higher accuracy suggests that by producing more
reliable confidence estimates, the model mitigates overconfidence on its own predictions (potentially
incorrect), thereby facilitating a more stable and effective learning process that leads to better overall
performance.
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Table 4: Comparison of the performances with modified backbone and normal backbone. The results are almost
same, which shows that the modified structure is reasonable and don’t influence the performance.

Model Method Accuracy (%) Forgetting (%)

Normal ResNet-18
Finetune 8.29 90.52

ER 24.36 71.30

Modified ResNet-18
Finetune 8.23 90.58

ER 24.73 70.61

(a) Training Times (b) Forgetting on CIFAR-100 (c) Distance Metrics
Figure 7: Results for model analysis. (a) the training time of different methods on Split TinyImageNet
with buffer 500. (b) the Final Forgetting (FF) measures on Split CIFAR-100 with different buffer
sizes. (c) the performances on Split CIFAR-100 using different distance metrics for idempotent
distillation loss.

4.2 ADDITIONAL ANALYSIS

Effectiveness of modified structure. To enforce idempotence, we introduce a lightweight architec-
tural modification (details in Section 3.2). We ablate its influence on Split CIFAR-100 with a buffer
size of 500. As shown in Table 4, the modified structure performs similarly to the normal backbone.
This indicates that the architectural change itself does not influence the baseline performance. Conse-
quently, the observed improvements in performance benefit from idempotent loss instead of modified
architecture.

Idempotence improves forgetting. The Figure 7 (b) shows Final Forgetting (FF) measured on the
Split CIFAR-100 dataset with different buffer sizes. Our method consistently reduces forgetting,
which shows that enforcing idempotence improves accuracy while mitigating the forgetting problem
simultaneously.

On training time. Figure 7 (a) compares the training times of various methods. As expected,
our proposed method introduces minimal computational overhead when integrated into existing
replay-based methods. This highlights IDER’s practicality as a lightweight and effective method.

Comparison with different distance metrics. The figure 7 (c) shows the effect of different distance
metrics for computing the Idempotent distillation loss. While both MSE and KL divergence are well-
established metrics for quantifying loss distance, MSE provides better and more stable performance.
The reason is that MSE avoids the information loss occurring in probability space due to the squashing
function.

5 CONCLUSION

In this paper, we propose Idempotent Experience Replay (IDER), a simple and effective method
designed to mitigate catastrophic forgetting and improve predictive reliability in continual learning.
Our approach adapts the training loss and introduces idempotence distillation loss for CL methods to
encourage . Extensive experiments demonstrate that IDER consistently improves performance across
multiple datasets and diverse continual learning settings. Our results show that enforcing idempotence
enables a balance between stability and plasticity while yielding better calibrated predictions. Our
method, requiring only two forward passes without additional parameters and seamlessly integrated
with other CL approaches, shows promise for deployment of CL models in real-world scenarios. We
hope this work inspires future research to place greater emphasis on uncertainty-aware continual
learning. We also plan to explore the potential of idempotence property in different domains.
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Appendix

A EXPERIMENTAL SETTING

We evaluate our method on three standard continual learning benchmarks under Class-IL setting,
where task identifiers are unavailable during testing, making it a challenging scenario for maintaining
performance across tasks.

Datasets. Our experiments use three datasets with varying complexity:

• Split CIFAR-10: The CIFAR-10 dataset is divided into 5 sequential tasks, each containing
2 classes. Each class comprises 5,000 training and 1,000 test images of size 32×32.

• Split CIFAR-100: CIFAR-100 is split into 10 tasks with 10 classes per task. Each class
contains 500 training and 100 test images of size 32×32.

• Split TinyImageNet: TinyImageNet is divided into 10 tasks with 20 classes each. Each
class has 500 training images, 50 validation images, and 50 test images.

Evaluation Metrics. We use two standard metrics to evaluate continual learning performance:

• Final Average Accuracy (FAA): Measures the average accuracy across all tasks after
training is complete. For a model that has finished training on task t, let ati denote the test
accuracy on task i. FAA is computed as the mean accuracy across all tasks.

• Final Forgetting (FF): Quantifies how much knowledge of previous tasks is forgotten,
defined as:

FF =
1

T − 1

T−1∑
i=1

max
j∈{1,··· ,T−1}

(aji − aTi ) (9)

where lower values indicate better retention of previously learned tasks.

• Expected Calibration Error (ECE): Quantifies the mismatch between a model’s predicted
confidence and its actual accuracy. Predictions are partitioned into M confidence interval
bins Bm. The ECE is computed as the weighted average of the absolute difference between
the average confidence (conf(Bm)) and the average accuracy (acc(Bm)) within each bin:

ECE =

M∑
m=1

|Bm|
N

|conf(Bm)− acc(Bm)| (10)

where N is the total number of samples. A lower ECE indicates a better-calibrated model
whose confidence estimates are more reliable.

A.1 IMPLEMENTATION DETAILS SUPPLEMENTARY

Besides the details mentioned above, we train 50 epochs per task for Split CIFAR-10 and Split
CIFAR-100 and 100 epochs per task for Split TinyImageNet (Le & Yang, 2015). For Split CIFAR100,
the learning rate is decreased by a factor of 0.1 at epochs 35 and 45, while for Split TinyImageNet,the
learning rate is decreased by a factor of 0.1 at epochs 35, 60 and 75. The learning rate may vary
in the light of different continual learning methods, while for a fair comparison, we use the same
initial learning rate as DER and BFP for our methods. If not specified, all baselines use the reservoir
sampling algorithm (Vitter, 1985) to update memory, while BFP (Gu et al., 2023) uses class-balanced
reservoir sampling (Buzzega et al., 2021) for pushing balanced examples into the buffer.

A.2 HYPERPARAMETERS

In this section, we show hyperparameter combination that used in our experiments. These hyperpa-
rameters are adopted from Boschini et al. (2022); Buzzega et al. (2020); Gu et al. (2023) to make fair
comparison.

12
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SPLIT CIFAR-10

Buffer size = 200

iCaRL: lr = 0.1, wd = 10−5

LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20, lr = 0.03, lrfitting = 0.01, m =
0.5

BiC: τ = 2, epochsBiC = 250, lr = 0.03

ER-ACE: lr = 0.03

ER: lr = 0.1

DER: lr = 0.03, α = 0.3

DER++: lr = 0.03, α = 0.1, β = 0.5

XDER: α = 0.3, m = 0.7, β = 0.9, γ = 0.85, wd = 1e− 06, λ = 0.05, η = 0.001, lr =
0.03, τ = 5, mom = 0.9

DEP++ w/ BFP: lr = 0.03, αdistill = 0.1, αce = 0.5, αbfp = 1

Buffer size = 500

iCaRL: lr = 0.1, wd = 10−5

LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20, lr = 0.03, lrfitting = 0.01, m =
0.5

BiC: τ = 2, epochsBiC = 250, lr = 0.03

ER-ACE: lr = 0.03

ER: lr = 0.1

DER: lr = 0.03, α = 0.3

DER++: lr = 0.03, α = 0.1, β = 0.5

XDER: α = 0.3, m = 0.7, β = 0.9, γ = 0.85, wd = 1e− 06, λ = 0.0, η = 0.001, lr =
0.03, τ = 5, mom = 0.9

DEP++ w/ BFP: lr = 0.03, αdistill = 0.2, αce = 0.5, αbfp = 1

SPLIT CIFAR-100

Buffer size = 500

iCaRL: lr = 0.3, wd = 10−5

LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20, lr = 0.03, lrfitting = 0.01, m =
0.5

BiC: τ = 2, epochsBiC = 250, lr = 0.03

ER-ACE: lr = 0.03

ER: lr = 0.1

DER: lr = 0.03, α = 0.3

13
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DER++: lr = 0.03, α = 0.1, β = 0.5

XDER: α = 0.3, m = 0.7, β = 0.9, γ = 0.85, wd = 1e− 06, λ = 0.05, η = 0.001, lr =
0.03, τ = 5, mom = 0.9

DEP++ w/ BFP: lr = 0.03, αdistill = 0.1, αce = 0.5, αbfp = 1

Buffer size = 2000

iCaRL: lr = 0.3, wd = 10−5

LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20, lr = 0.03, lrfitting = 0.01, m =
0.5

BiC: τ = 2, epochsBiC = 250, lr = 0.03

ER-ACE: lr = 0.03

ER: lr = 0.1

DER: lr = 0.03, α = 0.3

DER++: lr = 0.03, α = 0.1, β = 0.5

XDER: α = 0.3, m = 0.7, β = 0.9, γ = 0.85, wd = 1e− 06, λ = 0.05, η = 0.001, lr =
0.03, τ = 5, mom = 0.9

DEP++ w/ BFP: lr = 0.03, αdistill = 0.1, αce = 0.5, αbfp = 1

SPLIT TINYIMAGENET

Buffer size = 4000

iCaRL: lr = 0.03, wd = 10−5

LUCIR: λbase = 5, mom = 0.9, k = 2, epochfitting = 20, lr = 0.03, lrfitting = 0.01, m =
0.5

BiC: τ = 2, epochsBiC = 250, lr = 0.03

ER-ACE: lr = 0.03

ER: lr = 0.1

DER: lr = 0.03, α = 0.1

DER++: lr = 0.03, α = 0.1, β = 0.5

XDER: α = 0.3, m = 0.7, β = 0.9, γ = 0.85, wd = 1e − 06, λ = 0.0, η = 0.001, lr =
0.03, τ = 5, mom = 0.9

DEP++ w/ BFP: lr = 0.03, αdistill = 0.3, αce = 0.8, αbfp = 1

A.3 INTERGRATED IDER INTO BFP

As Gu et al. (2023) introduces BFP distillation loss, which focuses on features. We can easily
incorporate our method into BFP framework. The BFP loss is:

LBFP =
∑

(x,y)∈Tt,M

∥Aht(x, 0)− ht−1(x, 0)∥2, (11)
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Table 5: Comparison of Final Forgetting (FF) across different continual learning methods. All experiments are
repeated 5 times with different seeds. The best results (lowest forgetting) are highlighted in blue. The second
best results are highlighted in green.

Method
CIFAR-10 CIFAR-100 Tiny-ImageNet

Buffer 200 Buffer 500 Buffer 500 Buffer 2000 Buffer 500 Buffer 4000

Joint 0.00 0.00 0.00 0.00 0.00 0.00

iCaRL (Rebuffi et al., 2017) 36.00±7.29 30.19±3.38 28.58±0.84 24.24±0.58 20.82±1.31 15.29±0.53

ER (Riemer et al., 2018) 71.35±7.77 52.12±7.56 71.92±0.74 51.82±0.75 74.79±0.67 57.47±0.57

BiC (Wu et al., 2019) 53.63±7.18 24.87±0.98 48.87±0.91 38.50±1.09 67.57±1.98 63.48±0.28

LUCIR (Hou et al., 2019) 59.79±10.16 37.58±3.80 50.22±1.26 32.48±0.76 35.02±0.56 30.59±0.95

DER (Buzzega et al., 2020) 45.31±2.73 32.04±2.88 56.66±2.55 34.41±2.05 68.43±2.73 59.54±6.13

DER++ (Buzzega et al., 2020) 36.20±4.15 27.93±3.34 51.85±1.61 34.44±1.42 61.45±3.12 39.11±3.66

ER-ACE (Caccia et al., 2021) 19.52±1.23 12.87±1.06 38.61±1.15 28.42±0.55 40.97±1.38 29.37±1.09

XDER (Boschini et al., 2022) 16.36±0.91 12.81±0.48 24.15±1.37 11.17±1.21 42.90±0.54 18.87±1.08

BFP (Gu et al., 2023) 22.53±5.00 16.81±1.11 35.32±3.94 19.76±0.87 30.02±4.37 27.19±6.53

Ours (ER+ID) 15.28±2.41 11.93±0.49 29.98±2.52 17.46±1.04 36.63±3.37 22.46±±1.86

Ours (BFP+ID) 15.79±2.73 12.11±0.82 26.56±2.56 12.52±1.29 27.41±3.92 16.68±0.44

where ht is feature extractor in model ft on the t-th task and A is linear transformation aimed to
preserve the linear separability of features backward in time.

During training on the task t, the model ft and A are optimized respectively. Thus, the LBFP+ID

can be:
LBFP+ID = Lice + αLide + βLrep-ice + γLBFP . (12)

A.4 COMPLEXITY AND TRAINING COST

We train all experiments on GeForce 4090. The additional parameters we need for modified archi-
tecture are very small. Using ResNet-18 as the backbone, the normal architecture contains 11.22M
parameters on CIFAR-100 while the modified architecture increases the parameter count to 11.91M
parameters. Although we need two forward passes to train the model, which leads to a slightly
longer training time compared with DER++, the longer training time is acceptable as it increases the
performance by a significant margin.

B FORGETTING COMPARISON OF DIFFERENT REHEARSAL-BASED CONTINUAL
LEARNING METHODS

Instead of FAA, Final Forgetting (FF) reflects the model’s anti-forgetting capacity. To make fair
comparison, we exclude the Exponential Moving Average (EMA) based methods, as the highest
model performance on each task is from working model instead of EMA model, thereby reducing
FF following Eq. 9 in appendix. FF measures the drop from each task’s historical peak accuracy (its
best accuracy when first learned) to its final accuracy after all tasks, while EMA artificially smooths
performance drops by reducing the accuracy it is first learned, thus understating true forgetting.The
Table 5 shows Final Forgetting (FF) of different continual learning methods. The results show that the
idempotence loss yields a lower FF, indicating improved stability. It is worth noting that compared
with XDER, there are no additional architectures or learnable parameters introduced in our method,
just forwarding pass the model twice.

C T-SNE VISUALIZATION OF VARIOUS METHODS

In this section, we show more t-SNE visualization of various methods on first task testing data on
CIFAR-100 with 500 buffer size. The task number is 10. t-SNE figures shows our method has the
better capability of resisting catstrophic forgetting compared with ER, DER and BFP. We observed
that the feature clusters of the 10 classes from the first task become increasingly blurred as the model
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learns knowledge from new tasks in these methods. However, this phenomenon is alleviated in our
method.

task 1   task 2 task 3

DER

task 1   task 2 task 3

BFP

task 1   task 2 task 3

ER

task 1   task 2 task 3

ER+ID(Ours)

Figure 8: We perform t-SNE visualization of the features extracted from the first task testing data on CIFAR-100
across training tasks. The figures show how the feature clusters of the 10 classes from the first task change when
the model train data from new tasks.

D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We hereby declare that large language models (LLMs), specifically GPT-5 , were used during the
preparation of this manuscript. The use of LLMs was strictly limited to: aiding and polishing writing.
The LLM was used solely as an assistive tool for prose refinement and did not contribute to the
intellectual content of the research.

E LIMITATIONS

Naive Implementation. As we first introduce idempotence property into continual learning, the
method should be very simple. In the future, we try to combine our method with more complementary
techniques to further improve performance. In addition, we also plan to explore the application of the
idempotence property in data sampling strategies for continual learning.
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