

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IDER: IDEMPOTENT EXPERIENCE REPLAY FOR RELIABLE CONTINUAL LEARNING

Anonymous authors

Paper under double-blind review

## ABSTRACT

Catastrophic forgetting, the tendency of neural networks to forget previously learned knowledge when learning new tasks, has been a major challenge in continual learning (CL). To tackle this challenge, CL methods have been proposed and shown to reduce forgetting. Furthermore, CL models deployed in mission-critical settings can benefit from uncertainty awareness by calibrating their predictions to reliably assess their confidences. However, existing uncertainty-aware continual learning methods suffer from high computational overhead and incompatibility with mainstream replay methods. To address this, we propose idempotent experience replay (IDER), a novel approach based on the idempotent property where repeated function applications yield the same output. Specifically, we first adapt the training loss to make model idempotent on current data streams. In addition, we introduce an idempotence distillation loss. We feed the output of the current model back into the old checkpoint and then minimize the distance between this reprocessed output and the original output of the current model. This yields a simple and effective new baseline for building reliable continual learners, which can be seamlessly integrated with other CL approaches. Extensive experiments on different CL benchmarks demonstrate that IDER consistently improves prediction reliability while simultaneously boosting accuracy and reducing forgetting. Our results suggest the potential of idempotence as a promising principle for deploying efficient and trustworthy continual learning systems in real-world applications. Our code will be released upon publication.

## 1 INTRODUCTION

Deep learning has achieved impressive success across various domains. However, a static batch setting where the training data of all classes can be accessed at the same time is essential for attaining good performance (Le & Yang, 2015; Rebuffi et al., 2017). In many real-world deployments, data arrive sequentially and previously seen samples cannot be fully retained due to storage or privacy constraints. This makes it a major challenge because neural networks tend to rapidly forget previously learned knowledge when trained on new tasks, which is a phenomenon known as catastrophic forgetting (McCloskey & Cohen, 1989).

To address this challenge, continual learning (CL) is proposed to enable models to accumulate knowledge as data streams arrive sequentially. Among valid CL strategies, rehearsal-based approaches are popular as they are simple and efficient. They (Boschini et al., 2022; Buzzega et al., 2020; Caccia et al., 2021; Chaudhry et al., 2019; Wu et al., 2019) address this by storing a small, fixed-capacity buffer of exemplars from previous tasks and replaying them when training on new task, thereby regularizing parameter updates and mitigating catastrophic forgetting. Despite strong average accuracy, CL methods are often poorly calibrated and over-confident, a problem exacerbated by recency bias toward new tasks (Arani et al., 2022). Thus, this undermines the broader deployment of CL models in real-world settings, especially in safety-critical domains (healthcare, transport, etc.) (LeCun, 2022). CL models deployed in these domains can benefit from uncertainty awareness by calibrating their predictions to reliably assess their confidences (Jha et al., 2024). To tackle this issue, Jha et al. (2023) propose neural processes based CL method (NPCL). However, it causes non-negligible parameter growth and exhibits incompatibility with logits-based replay methods due to the stochasticity in the posterior induced by Monte Carlo sampling. Motivated by these limitations, we aim for a lightweight and compatible principle for reliable CL methods.



Figure 1: We propose the IDER method, which can be directly applied to many recent rehearsal-based continual learning methods, resulting in less calibration error and significant improvements in FAA with less parameter growth compared with NPCL.

We draw inspiration from idempotence, a mathematical property that arises in algebra. An operator is idempotent if applying it multiple times yields the same result as applying it once, formally expressed as  $f(f(x)) = f(x)$ . It can be used in deep learning by recursively feeding the model’s predictions back as inputs, allowing the model to refine its outputs (Durasov et al., 2024a; Shocher et al., 2023). Durasov et al. (2024b) empirically demonstrate that if a deep network  $f$  takes as input a vector  $x$  and a second auxiliary variable that can either be the ground truth label  $y$  corresponding to  $x$  or a neutral uninformative signal 0 and is trained so that  $f(x, 0) = f(x, y) = y$ , then the distance  $\|f(x, f(x, 0)) - f(x, 0)\|$  correlates strongly with the prediction error. What if we actively minimize this distance of buffer data when we learn new tasks in CL settings? Could we project outputs into the stable manifold where instances are mapped to themselves to prevent predictive distribution drift?

Thus, we propose an Idempotent Experience Replay (IDER) inspired by Idempotence, a simple and effective method that enforces idempotence for CL models when learning new tasks. We demonstrate that enforcing idempotence enables model to make more reliable predictions while reducing catastrophic forgetting. Both combined with naive rehearsal-based method experience replay (ER) (Riemer et al., 2019), compared with NPCL, our approach achieves lower calibration error evaluated by Expected Calibration Error (ECE) (Guo et al., 2017), higher accuracy, and requires smaller parameter numbers, as is shown in Figure 1.

More specifically, IDER integrates two components to enforce idempotence for CL models. Firstly, we adapt the training loss to train the current model to be idempotent with data from the current task. Secondly, we introduce idempotence distillation loss for both buffer data and the current data stream to enforce idempotence between last task model checkpoint  $f_{t-1}$  and current model  $f_t$ . We verify that incorporating the current data stream into idempotence achieves further performance improvements, suggesting that idempotence can help preserve model distribution, thereby mitigating decision boundary drift.

This yields a simple method that only requires two forward passes of the model almost without additional parameters. Our approach can be integrated into existing CL methods and experiments show that this simple change boosts both prediction reliability and final accuracy by a large margin. Especially on the Split-CIFAR10 dataset, enforcing idempotence improves the baseline method ER (Riemer et al., 2019) by up to 26%, achieving state-of-the-art class incremental learning accuracy. Through extensive empirical validation on challenging generalized class-incremental learning (Mi et al., 2020; Sarfraz et al., 2025), we demonstrate that this simple and powerful principle improves the reliability of predictions while mitigating catastrophic forgetting in real-world scenarios.

The contributions of this paper can be summarized as follows:

- We propose a novel framework for continual learning based on the idempotent property, which is a simple and robust method. Our method demonstrates that fundamental mathematical properties can be effectively utilized to address catastrophic forgetting for CL.
- We show that IDER can be easily integrated into other state-of-the-art methods, leading to more reliable predictions with comparable performance.
- Extensive experiments on several benchmarks demonstrate that our approach achieves strong performance in both mitigating catastrophic forgetting and making reliable predictions.

108  
109  

## 2 RELATED WORK

110  
111 **Continual Learning** The goal of continual learning (CL) is to achieve the balance between learning  
112 plasticity and memory stability (Wang et al., 2024). Approaches in CL can be divided into three main  
113 categories. Regularization-based methods primarily rely on regularization loss to penalize changes  
114 in parameter space of the model (Farajtabar et al., 2020; Kirkpatrick et al., 2017). Rehearsal-based  
115 Method (Chaudhry et al., 2019) use a memory buffer to store task data and replay them during  
116 new task training. Architecture-based methods (Rusu et al., 2016; Wang et al., 2022) incrementally  
117 expand the network to allocate distinct parameters for preserving each task’s knowledge. Among  
118 them, Rehearsal-based methods are general in various CL scenarios and can be naturally combined  
119 with knowledge Distillation (KD) techniques.120 The baseline Experience Replay (ER) (Riemer et al., 2019) mixes the current task data with stored  
121 samples from past tasks in the memory buffer during training. DER (Buzzega et al., 2020) store  
122 old training samples together with their logits and preserve the old knowledge by matching the  
123 saved logits with logits obtained by current model. Its improved version XDER (Boschini et al.,  
124 2022) improves performance at the sacrifice of computational costs due to sophisticated mechanisms.  
125 CLSER (Arani et al., 2022) introduce a fast module for plastic knowledge and a slow learning module  
126 for stable knowledge. BFP (Gu et al., 2023) uses a learnable linear layer to perform knowledge  
127 distillation in the feature space. SCoMMER (Sarfraz et al., 2023) and SARL (Sarfraz et al., 2025)  
128 enforces sparse coding for efficient representation learning. Neural Processes for Continual Learning  
129 (NPCL) (Jha et al., 2023) explore uncertainty-aware CL models using neural processes (NPs). Unlike  
130 previous studies, we explore the idempotence in continual learning, which has never been studied  
131 before.132 **Idempotence in Deep Learning** Idempotence is a property of a function whereby the result of  
133 applying the function once is the same as applying it multiple times in sequence. Recent work has  
134 explored the application of idempotence in deep learning. It is defined that the results obtained by the  
135 model will not change when applying the model multiple times ( $f(f(x)) = f(x)$ ). The Idempotent  
136 Generative Network (IGN) (Shocher et al., 2023) firstly proposes this idea in deep learning for  
137 generative modeling and it has the capability of producing robust outputs in a single step. Another  
138 work ZigZag (Durasov et al., 2024a) introduces idempotence in neural networks for the measuring  
139 uncertainty, which is based on IterNet (Durasov et al., 2024b). IterNet proves that for iterative  
140 architectures, which use their own output as input, the convergence rate of their successive outputs is  
141 highly correlated with the accuracy of the value to which they converge. ZigZag recursively feeds  
142 predictions back as inputs, measuring the distance between successive results. A small distance  
143 indicates high confidence, while a large one signals uncertainty or out-of-distribution (OOD) data.  
144 Recent work ITTT (Durasov et al., 2024c) combines idempotence with Test-Time Training. These  
145 works proves the potential of idempotence in deep learning while these works are based on static  
146 batch learning.147  
148  

## 3 METHOD

149 In this section, we deliver details of the proposed IDER. We first define both class-incremental  
150 learning and generalized class-incremental learning settings. Then, we elaborate on how to introduce  
151 idempotence in continual learning. Finally, we introduce the overall objective. An overview of IDER  
152 is depicted in Figure 5.153  
154 

### 3.1 PROBLEM DEFINITION

155  
156 In traditional continual learning, two primary settings are task incremental learning (TIL) and class  
157 incremental learning (CIL). The difference between the two settings is that when we test the model,  
158 we can know the task ID in task incremental learning. Since class incremental learning better reflects  
159 real-world scenarios and is more challenging, we focus on the class incremental learning setting in  
160 our experiments. In this paper, we focus on both typical class-incremental learning and generalized  
161 class-incremental learning. Generalized class-incremental learning (GCIL) is more close to real-world  
incremental learning. The key GCIL properties can be summarized as follows: (i) the number of

162 classes across different tasks is not fixed; (ii) classes shown in prior tasks could reappear in later  
 163 tasks; (iii) training samples are imbalanced across different classes in each task.

164 In a typical class-incremental learning setting, a model  $f$  is trained on sequential tasks  $T =$   
 165  $\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_t$ . Each task  $\mathcal{T}$  consists of data points and these data points are unique within each  
 166 task, which means  $\mathcal{T}_t = \{(x_i, y_i)\}_{i=1}^{N_t}$  and  $\mathcal{T}_i \cap \mathcal{T}_j = \emptyset$ . The optimization objective is to minimize  
 167 the overall loss over all the tasks:

$$169 \quad f^* = \arg \min_f \sum_{i=0}^t \mathbb{E}_{(x,y) \sim \mathcal{T}_t} [\mathcal{L}(f(x), y)], \quad (1)$$

172 where  $L$  is the loss function for the tasks and  $y$  is the ground truth for  $x$ . However, in the continual  
 173 setting, only the data from current task  $\mathcal{T}_t$  are available and the model should preserve the previous  
 174 knowledge from the tasks before  $\mathcal{T}_1, \dots, \mathcal{T}_{t-1}$ . As a result, additional memory buffer or additional  
 175 regularization term  $\mathcal{L}_R$  may be chosen to avoid catastrophic forgetting and the actual objective on the  
 176 current task should be:

$$177 \quad f^* = \arg \min_f [\mathbb{E}_{(x,y) \sim \mathcal{T}_t \cup \mathcal{M}} [\mathcal{L}(f(x), y)] + \mathcal{L}_R], \quad (2)$$

179 where  $\mathcal{M}$  stands for the memory buffer to store the data from previous tasks.

### 181 3.2 MODIFIED ARCHITECTURE

183 To enable idempotence for the model with respect to the  
 184 second input, we modify the original backbone as shown  
 185 in Figure 2. We divide the backbone ResNet (He et al.,  
 186 2016) as denoted  $f_t$ , into two parts  $f_t^1$  and  $f_t^2$  on the  $t$ -th  
 187 task. The second input (either a one-hot vector  $y$  or a  
 188 uniform distribution over all classes standing for “empty”  
 189 input  $\mathbf{0}$ ) is first transformed into a label feature vector.  
 190 This is achieved by a linear layer with an output dimen-  
 191 sion that matches the dimensions of  $f_t^1$ ’s output, followed  
 192 by a LeakyReLU activation function. The image first is  
 193 processed by  $f_t^1$  to produce an intermediate feature map.  
 194 The label feature is then added to this intermediate feature  
 195 map, which is fed into  $f_t^2$ . The output of  $f_t^2$ , which is  
 196 the logits for target classes, can work as the second input  
 197 for model after softmax normalization. In this way, the  
 198 backbone can accept two inputs and achieve idempotence  
 199 after training.

### 200 3.3 STANDARD IDEMPOTENT MODULE: TRAINING THE NETWORK IDEMPOTENT

202 First, we rely on the model we train being idempotent. To achieve this, Standard Idempotent Module  
 203 is used for training the model on data from the current task. Following Durasov et al. (2024a;b),  
 204 when learning new tasks, we minimize the loss which consists of two cross-entropy losses obtained  
 205 by the logits from the first and second forward propagation of model and the ground truth  $y$ :

$$206 \quad \mathcal{L}_{ice} = \sum_{(x,y) \in \mathcal{T}_t} [\mathcal{L}_{ce}(f_t(x, y^*), y) + \mathcal{L}_{ce}(f_t(x, f_t(x, y^*)), y)], \quad (3)$$

209 where  $\mathcal{T}_t$  is current task and  $y^*$  is the second input that is set to either the ground-truth one-hot vector  
 210  $y$  or the neutral “empty” signal input  $\mathbf{0}$ . We random select  $y$  with  $1 - P$  and the neutral “empty”  
 211 signal input  $\mathbf{0}$  with probability  $P$ . The empty signal  $\mathbf{0}$  is defined as a uniform distribution over all  
 212 classes.

213 By minimizing  $\mathcal{L}_{ice}$ , we can train the model idempotent with respect to the second argument, which  
 214 can be obtained by:

$$215 \quad f_t(x, \mathbf{0}) \approx y, \quad f_t(x, y) \approx y, \quad f_t(x, f_t(x, \mathbf{0})) \approx y \implies f_t(x, f_t(x, \mathbf{0})) \approx f_t(x, \mathbf{0}). \quad (4)$$



216 Figure 2: Modified Architecture. We modify  
 217 the architecture of backbone(ResNet) and enable  
 218 the model to accept two inputs.

216 Thus,  $f_t$  has been adjusted so that the model  $f_t$  is as idempotent as possible for all  $x$  in distribution.  
 217 The model will map the data  $(x, \mathbf{0})$  to the stable manifold  $(x, y) : f(x, y) = y$ . Fig. 3 illustrates this  
 218 in the case of a network trained on data from the first task on CIFAR-100. With different second input  
 219  $y$ , the idempotence distance distribution varies. The input which contains incorrect prediction input  $y$   
 220 exhibits significantly larger idempotence errors. Thus, this distance can be used as a distillation loss  
 221 for iterative prediction refinement to make reliable predictions.

222

### 223 3.4 IDEMPOTENT DISTILLATION MODULE: DISTILLING THE NETWORK FOR CONTINUAL 224 LEARNING

225 In the CL setting, the model tends to have recency bias toward newly introduced classes, which  
 226 negatively influences the performance and results in overconfidence predictions. Rehearsal-based  
 227 methods suffer from this problem, as Wang et al. (2022) point out that when a new task is presented  
 228 to the net, an asymmetry arises between the contributions of replay data and current examples to  
 229 the weights updates: the gradients of new examples outweigh. To mitigate this issue, we require  
 230 the model to maintain stable predictions on data from previous tasks even after parameter updates  
 231 induced by new knowledge, as self-consistency indicates that the network’s output is aligned with the  
 232 learned in-distribution manifold and can make reliable (well-calibrated) prediction. This condition  
 233 can be translated into enforcing idempotence. Thus, we propose to minimize idempotence distances  
 234 to mitigate recency bias and prediction distribution drift in CL. A naive way would be to minimize  
 235 the loss function:

$$\mathcal{L}_{ide} = \sum_{(x,y) \in \mathcal{T}_t, M} \|f_t(x, \mathbf{0}) - f_t(x, f_t(x, \mathbf{0}))\|_2^2. \quad (5)$$

236 However, this can produce undesirable side effects in CL settings. As  $f_t$  has bias towards current  
 237 data streams and  $y_0 = f_t(x, \mathbf{0})$  may be an incorrect prediction, minimizing  $\|y_0 - y_1\|_2^2$  may cause  
 238  $y_1 = f_t(x, y_0)$  to be pulled towards the incorrect  $y_0$ , thereby magnifying the error.

239 To address this, we keep the model checkpoint at the end of the last task  $f_{t-1}$  together with the  
 240 current trained model  $f_t$ . We then modify the idempotence distillation loss to be:

$$\mathcal{L}_{ide} = \sum_{(x,y) \in \mathcal{T}_t, M} \|f_t(x, \mathbf{0}) - f_{t-1}(x, f_t(x, \mathbf{0}))\|_2^2. \quad (6)$$

241 Thus, the first prediction  $y_0 = f_t(x, \mathbf{0})$  is computed as before, but the second one,  $y_1 = f_{t-1}(x, y_0)$ ,  
 242 is made using the last model checkpoint  $f_{t-1}$ . By updating only  $f_t$  and keeping  $f_{t-1}$  frozen, which  
 243 preserves more previous knowledge and stable prediction distribution for buffer data, we ensure that  
 244  $y_0$  is adjusted to minimize the discrepancy with  $y_1$ , without pulling  $y_1$  towards an incorrect  $y_0$ . Thus,  
 245 we could prevent manifold expansion that would include mistaken outputs, focusing optimization  
 246 solely on the first pass prediction and thereby avoiding error reinforcement. This design achieves  
 247 idempotence by ensuring that processing an input through the current model and then through the  
 248 last model checkpoint yields a nearly identical output distribution. This self-consistency between the  
 249 current model and the last model satisfy the requirement for idempotence condition for sequential tasks  
 250 in CL. What’s more,  $\mathcal{L}_{ide}$  can also serve as the distillation loss to mitigate catastrophic forgetting.  
 251 Unlike traditional distillation in Buzzega et al. (2020), which only aligns the final output probabilities,  
 252 our method anchors the model’s representation to the stable manifold already learned by the frozen  
 253 model, thereby maintaining balanced predictive performance across all tasks, as is shown in Figure 4.  
 254 As a result, enforcing idempotence can help CL models mitigate catastrophic forgetting while make  
 255 reliable predictions. More details can be seen in Appendix F.

256

### 257 3.5 OVERALL OBJECTIVE

258 We introduce idempotence into an experience replay (ER) framework (Riemer et al., 2019), where we  
 259 keep a buffer  $M$  storing training examples from old tasks. We keep the model checkpoint at the end  
 260 of the last task  $f_{t-1}$  together with the current trained model  $f_t$ . During continual learning, the current  
 261 model  $f_t$  is trained on the batch from data stream of the current task  $\mathcal{T}_t$  using the adapted training  
 262 loss  $\mathcal{L}_{ice}$  in Eq. 3. We sample batch from  $M$  and combine the current batch to compute idempotence  
 263 distillation loss  $\mathcal{L}_{ide}$  in Eq. 6.

264 Meanwhile, we sample another batch from  $M$  for experience replay. The experience replay loss  
 265  $\mathcal{L}_{rep-ice}$  in ER is:



Figure 3: We plot the distribution of idempotence errors, measured by the distance  $|f(x, f(x, z)) - f(x, z)|$ . Inputs  $x$  with second incorrect prediction input  $z$  exhibit significantly larger idempotence errors. Thus, this distance can be used as a idempotent distillation loss.



Figure 4: Probability of predicting each task at the end of training for models trained on CIFAR-10 with 500 buffer size. Idempotent distillation loss effectively mitigates the bias to the recent tasks and provides a more uniform probability size **across different tasks**.



Figure 5: Overall framework of Idempotent Experience Replay (IDER). Our method consists of two modules for continual learning: (1) Standard Idempotent Module that trains current model idempotent with data from the current task. (2) Idempotent Distillation Module that enforces the current model to become idempotent with respect to the last task model checkpoint, utilizing data from both the current task and buffer memory. IDER can be integrated into existing CL approaches to make reliable predictions while mitigating catastrophic forgetting.

$$\mathcal{L}_{rep-ice} = \sum_{(x,y) \in M} [\mathcal{L}_{ce}(f_t(x, y^*), y) + \mathcal{L}_{ce}(f_t(x, f_t(x, y^*)), y)]. \quad (7)$$

The total loss function used in IDER is the weighted sum of the losses above, formally:

$$\mathcal{L}_{IDER} = \mathcal{L}_{ice} + \alpha \mathcal{L}_{ide} + \beta \mathcal{L}_{rep-ice} \quad (8)$$

In addition, our method is simple and robust, which can be combined with other methods, such as BFP (Gu et al., 2023), to achieve higher performances. Details are shown in the appendix.

## 4 EXPERIMENTS

**Continual Learning Settings.** We follow [Gu et al. \(2023\)](#) and conduct experiments on state-of-the-art rehearsal-based models in class incremental learning (CIL) setting. CIL setting splits the dataset into a sequence of tasks, each containing a disjoint set of classes, while task identifiers are not

324

325 Table 1: Comparison of Final Average Accuracy (FAA) across different continual learning methods. All  
326 experiments are repeated 5 times with different seeds. Results for SARL (Sarfraz et al., 2025) are from our  
327 implementation. The best results are highlighted in blue. The second best results are highlighted in green.

| Method                         | CIFAR-10                         |                                  | CIFAR-100                        |                                  | Tiny-ImageNet                    |                                  |
|--------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                | Buffer 200                       | Buffer 500                       | Buffer 500                       | Buffer 2000                      | Buffer 500                       | Buffer 4000                      |
| Joint (upper bound)            | 91.93 $\pm$ 0.29                 |                                  | 71.15 $\pm$ 0.51                 |                                  | 59.52 $\pm$ 0.33                 |                                  |
| iCaRL (Rebuffi et al., 2017)   | 58.37 $\pm$ 3.51                 | 62.49 $\pm$ 5.42                 | 46.81 $\pm$ 0.41                 | 52.51 $\pm$ 0.44                 | 22.53 $\pm$ 0.62                 | 26.38 $\pm$ 0.23                 |
| ER (Riemer et al., 2019)       | 44.46 $\pm$ 2.87                 | 58.84 $\pm$ 3.85                 | 23.41 $\pm$ 1.15                 | 40.47 $\pm$ 0.95                 | 10.13 $\pm$ 0.39                 | 25.12 $\pm$ 0.56                 |
| BiC (Wu et al., 2019)          | 52.61 $\pm$ 5.37                 | 71.95 $\pm$ 1.82                 | 37.82 $\pm$ 1.67                 | 47.17 $\pm$ 1.17                 | 15.36 $\pm$ 1.31                 | 18.67 $\pm$ 0.57                 |
| LUCIR (Hou et al., 2019)       | 49.18 $\pm$ 7.61                 | 65.26 $\pm$ 2.54                 | 37.91 $\pm$ 1.18                 | 50.42 $\pm$ 0.76                 | 28.79 $\pm$ 0.51                 | 31.64 $\pm$ 0.51                 |
| DER (Buzzega et al., 2020)     | 57.92 $\pm$ 1.91                 | 68.65 $\pm$ 1.82                 | 34.83 $\pm$ 2.09                 | 50.12 $\pm$ 0.75                 | 15.14 $\pm$ 1.29                 | 20.35 $\pm$ 0.35                 |
| DER++ (Buzzega et al., 2020)   | 62.19 $\pm$ 1.94                 | 70.10 $\pm$ 1.65                 | 37.69 $\pm$ 0.97                 | 51.82 $\pm$ 1.04                 | 19.43 $\pm$ 1.63                 | 36.89 $\pm$ 1.16                 |
| ER-ACE (Caccia et al., 2021)   | 62.19 $\pm$ 1.67                 | 71.15 $\pm$ 1.08                 | 37.81 $\pm$ 0.54                 | 49.77 $\pm$ 0.34                 | 20.42 $\pm$ 0.39                 | 37.76 $\pm$ 0.53                 |
| XDER (Boschini et al., 2022)   | 64.10 $\pm$ 1.08                 | 67.42 $\pm$ 2.16                 | 48.14 $\pm$ 0.34                 | 57.57 $\pm$ 0.84                 | 29.12 $\pm$ 0.47                 | 46.12 $\pm$ 0.46                 |
| CLS-ER (Arani et al., 2022)    | 64.56 $\pm$ 2.63                 | 74.27 $\pm$ 0.81                 | 43.92 $\pm$ 0.62                 | 54.84 $\pm$ 1.30                 | 30.91 $\pm$ 0.59                 | 45.17 $\pm$ 0.89                 |
| SCOMMER (Sarfraz et al., 2023) | 66.95 $\pm$ 1.52                 | 73.64 $\pm$ 0.43                 | 39.05 $\pm$ 0.79                 | 49.42 $\pm$ 0.85                 | 21.47 $\pm$ 0.54                 | 37.2 $\pm$ 0.70                  |
| BFP (Gu et al., 2023)          | 68.64 $\pm$ 2.23                 | 73.51 $\pm$ 1.54                 | 46.70 $\pm$ 1.45                 | 57.39 $\pm$ 0.75                 | 28.71 $\pm$ 0.55                 | 43.17 $\pm$ 1.89                 |
| SARL (Sarfraz et al., 2025)    | 68.87 $\pm$ 1.37                 | 73.98 $\pm$ 0.46                 | 46.69 $\pm$ 0.79                 | 57.06 $\pm$ 0.48                 | 28.44 $\pm$ 2.30                 | 38.83 $\pm$ 0.81                 |
| <b>ER+ID(Ours)</b>             | <b>71.02<math>\pm</math>1.98</b> | 74.74 $\pm$ 0.42                 | 44.82 $\pm$ 0.85                 | 56.59 $\pm$ 0.35                 | 29.88 $\pm$ 1.15                 | 43.05 $\pm$ 1.40                 |
| <b>BFP+ID (Ours)</b>           | <b>71.99<math>\pm</math>0.98</b> | <b>76.65<math>\pm</math>0.63</b> | <b>48.53<math>\pm</math>0.95</b> | <b>57.74<math>\pm</math>0.64</b> | 30.62 $\pm$ 0.47                 | 43.51 $\pm$ 0.59                 |
| <b>CLS-ER+ID (Ours)</b>        | 70.32 $\pm$ 1.12                 | <b>75.48<math>\pm</math>0.91</b> | 47.44 $\pm$ 2.0                  | 56.36 $\pm$ 0.78                 | <b>31.62<math>\pm</math>0.57</b> | <b>46.17<math>\pm</math>0.22</b> |

348 available during testing. Following Sarfraz et al. (2025), we also evaluate methods in the generalized  
349 class incremental learning (GCIL) setting. GCIL setting (Mi et al., 2020) is closest to the real-world  
350 scenario as the number of classes in each task is not fixed, the classes can overlap and the sample size  
351 for each class can vary.352 **Evaluation Metrics.** Following Boschini et al. (2022); Buzzega et al. (2020), we use Final Average  
353 Accuracy (FAA) and Final Forgetting (FF) to reflect the performances of mitigating catastrophic. We  
354 report well-established Expected Calibration Error(ECE) (Guo et al., 2017) to assess the reliability of  
355 continual learning methods. More details are shown in the appendix.364 Figure 6: Results on CIFAR-10 and Tiny-ImageNet with different buffer size. It shows the trend of  
365 the average test-set accuracy on the observed tasks.  
366367 **Training Details.** We adopt the standard experimental protocols following Boschini et al. (2022);  
368 Gu et al. (2023). All methods use a ResNet-18 backbone (He et al., 2016) trained from scratch  
369 with an SGD optimizer. For a fair comparison, we employ uniform settings across all methods  
370 (including epochs, batch sizes, and optimizer configurations). Datasets are split as follows: 5 tasks  
371 for CIFAR-10, and 10 tasks each for CIFAR-100 and TinyImageNet. We report the average results  
372 over 5 independent runs with different random seeds to ensure statistical reliability. Comprehensive  
373 hyperparameter settings and further implementation details are provided in the appendix.  
374  
375  
376  
377

378  
 379 Table 2: Comparison of Final Average Accuracy (FAA) across different continual learning methods on GCIL-  
 380 CIFAR-100 dataset. All experiments are repeated 5 times with different seeds. Absolute gains are indicated in  
 381 green.

| Method                         | Uniform          |               |                  |               | Longtail         |               |                  |               |
|--------------------------------|------------------|---------------|------------------|---------------|------------------|---------------|------------------|---------------|
|                                | Buffer 200       | $\Delta$      | Buffer 500       | $\Delta$      | Buffer 200       | $\Delta$      | Buffer 500       | $\Delta$      |
| Joint (upper bound)            | 58.36 $\pm$ 1.02 |               |                  |               | 56.94 $\pm$ 1.56 |               |                  |               |
| DER++ (Buzzega et al., 2020)   | 19.36 $\pm$ 0.65 |               | 33.66 $\pm$ 0.96 |               | 27.05 $\pm$ 1.11 |               | 25.98 $\pm$ 0.81 |               |
| SCoMMER (Sarfraz et al., 2023) | 28.56 $\pm$ 2.26 |               | 35.70 $\pm$ 0.86 |               | 28.47 $\pm$ 1.12 |               | 32.99 $\pm$ 0.49 |               |
| ER (Riemer et al., 2019)       | 16.34 $\pm$ 0.74 |               | 28.76 $\pm$ 0.66 |               | 19.55 $\pm$ 0.69 |               | 20.02 $\pm$ 1.05 |               |
| <b>Ours (ER+ID)</b>            | 26.66 $\pm$ 0.63 | <b>+10.32</b> | 40.54 $\pm$ 0.46 | <b>+11.78</b> | 30.04 $\pm$ 0.58 | <b>+10.49</b> | 35.92 $\pm$ 0.35 | <b>+15.90</b> |
| CLS-ER (Arani et al., 2022)    | 22.37 $\pm$ 0.48 |               | 36.80 $\pm$ 0.34 |               | 28.34 $\pm$ 0.99 |               | 28.35 $\pm$ 0.72 |               |
| <b>Ours (CLS-ER+ID)</b>        | 31.17 $\pm$ 1.62 | <b>+8.80</b>  | 37.57 $\pm$ 1.81 | <b>+0.77</b>  | 34.08 $\pm$ 0.45 | <b>+5.74</b>  | 36.75 $\pm$ 0.62 | <b>+8.40</b>  |
| SARL (Sarfraz et al., 2025)    | 36.20 $\pm$ 0.46 |               | 38.73 $\pm$ 0.66 |               | 34.13 $\pm$ 1.07 |               | 34.64 $\pm$ 0.49 |               |
| <b>Ours (SARL+ID)</b>          | 36.45 $\pm$ 0.37 | <b>+0.25</b>  | 39.65 $\pm$ 0.43 | <b>+0.92</b>  | 35.04 $\pm$ 0.54 | <b>+0.91</b>  | 35.67 $\pm$ 0.74 | <b>+1.03</b>  |

## 4.1 RESULTS

394 **Comparison with the state-of-the-art methods.** We evaluate our method against state-of-the-art  
 395 continual learning approaches across three benchmark datasets with different memory buffer sizes:  
 396 CIFAR-10, CIFAR-100, and Tiny-ImageNet. The Final Average Accuracies in the class incremental  
 397 learning setting on different benchmarks are reported in Table 1. Our method outperforms all  
 398 rehearsal-based methods on three datasets. Notably, our method outperforms the second best method  
 399 BFP by up to 3% on CIFAR-10, which shows that our method remains highly effective even on  
 400 a small-scale benchmark. Though outperforming XDER only slightly in FAA on CIFAR-100 and  
 401 Tiny-ImageNet, our approach attains this accuracy with markedly lower computational cost, which  
 402 can be shown in Figure 7 (a). Figure 6 shows that IDER has better performance at most intermediate  
 403 tasks and also the final one. In addition, Table 2 highlights the advantage of IDER in the challenging  
 404 GCIL setting, which tests the model’s ability to deal with class imbalance and to continuously  
 405 integrate knowledge from overlapping classes. The results in such a challenging setting prove the  
 406 benefits of idempotence, which encourages the model to produce more robust representations to  
 407 identify concepts clearly. This ability of IDER shows the potential for realistic continual learning.

408 **Plug-and-play with other rehearsal-based methods.** Considering the effectiveness and simplicity  
 409 of idempotence, it is natural to consider whether it can be integrated into other rehearsal-based meth-  
 410 ods. Table 1 shows consistent performance improvements on various datasets with this integration.  
 411 Enforcing idempotence boosts FAA by a significant margin, especially for ER ( 26% on CIFAR-10  
 412 with buffer size 200 and 21% on CIFAR-100 with buffer size 500). The results in GCIL in Table 2  
 413 can also prove that IDER, by enforcing model idempotence, is complementary to other methods in  
 414 relieving forgetting. It is worth mentioning that in more challenging setting, the performance gains  
 415 can be obvious. Combined with CLS-ER, in traditional CIL, idempotence yields a gain of about  
 416 3.5% on CIFAR-100 with buffer size 500, while in GCIL, the gains can reach 8%. This additionally  
 417 demonstrates the potential of this mathematical property to address catastrophic forgetting for more  
 418 challenging CL scenarios.

418 Table 3: Comparison of Expected Calibration Error (ECE) across different continual learning methods on  
 419 CIFAR-10 and CIFAR-100 dataset. All experiments are repeated 5 times with different seeds. Results of NPCL  
 420 are imported from its original work (Gu et al., 2023). Absolute improvements (lower ECE) are indicated in red.

| Method                     | CIFAR-10     |               |              |               | CIFAR-100    |               |              |               | Tiny-ImageNet |              |              |              |
|----------------------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|---------------|--------------|--------------|--------------|
|                            | Buffer 200   | $\Delta$      | Buffer 500   | $\Delta$      | Buffer 500   | $\Delta$      | Buffer 2000  | $\Delta$      | Buffer 500    | $\Delta$     | Buffer 4000  | $\Delta$     |
| DER (Buzzega et al., 2020) | 29.91        |               | 16.20        |               | 24.84        |               | 10.79        |               | 22.80         |              | 10.52        |              |
| NPCL (Jha et al., 2023)    | 21.03        |               | -            |               | 19.95        |               | -            |               | -             |              | -            |              |
| RC (Li et al., 2024)       | <b>16.39</b> |               | <b>12.84</b> |               | <b>19.43</b> |               | <b>19.31</b> |               | <b>21.32</b>  |              | <b>16.49</b> |              |
| T-CIL (Hwang et al., 2025) | <b>22.50</b> |               | <b>10.51</b> |               | <b>15.79</b> |               | <b>8.67</b>  |               | <b>14.50</b>  |              | <b>10.30</b> |              |
| ER (Riemer et al., 2018)   | 45.53        |               | 32.69        |               | 64.59        |               | 45.64        |               | 67.50         |              | 51.37        |              |
| <b>Ours (ER+ID)</b>        | <b>12.36</b> | <b>-33.17</b> | <b>11.73</b> | <b>-20.96</b> | <b>13.65</b> | <b>-50.94</b> | <b>12.87</b> | <b>-32.77</b> | <b>21.55</b>  | <b>49.45</b> | <b>11.14</b> | <b>40.23</b> |
| BFP (Gu et al., 2023)      | 9.83         |               | 9.40         |               | 11.93        |               | 9.28         |               | 9.45          |              | 8.25         |              |
| <b>Ours (BFP+ID)</b>       | <b>9.30</b>  | <b>-0.53</b>  | <b>8.63</b>  | <b>-0.77</b>  | <b>8.92</b>  | <b>-3.01</b>  | <b>8.29</b>  | <b>-0.99</b>  | <b>7.77</b>   | <b>1.68</b>  | <b>6.35</b>  | <b>1.9</b>   |

429 **Idempotence Improves prediction Reliability.** As previously reported by Guo et al. (2017), DNN  
 430 are uncalibrated, often tending towards overconfidence. Arani et al. (2022) show that this problem is  
 431 pronounced in continual learning where the models tend to be biased towards recent tasks. Following

432

433 Table 4: Comparison of the performances with modified backbone and normal backbone. The results are almost  
434 same, which shows that the modified structure is reasonable and don't influence the performance.

| Model              | Method   | Accuracy (%) | Forgetting (%) |
|--------------------|----------|--------------|----------------|
| Normal ResNet-18   | Finetune | 8.29         | 90.52          |
|                    | ER       | 24.36        | 71.30          |
| Modified ResNet-18 | Finetune | 8.23         | 90.58          |
|                    | ER       | 24.73        | 70.61          |

435

436

437

438

439

440

441

442

443

444

445

446

447



(a) Training Times



(b) Forgetting on CIFAR-100



(c) Distance Metrics

448 Figure 7: Results for model analysis. (a) the training time of different methods on Split TinyImageNet  
449 with buffer 500. (b) the Final Forgetting (FF) measures on Split CIFAR-100 with different buffer  
450 sizes. (c) the performances on Split CIFAR-100 using different distance metrics for idempotent  
451 distillation loss.

452

453

454

455

456

457

458

459

460

461

462

463

464

**Boschini et al. (2022); Jha et al. (2023)** we evaluate the calibration errors for different CL baselines using the well-established Expected Calibration Error (ECE), which is shown in Table 3. Table 3 shows that IDER consistently reduce the calibration error. In general, IDER benefits CL models in confidence calibration which demonstrates the ability of IDER to make reliable predictions. **Comparing with post-hoc uncertainty calibration methods for CIL, IDER achieves comparable performances across different datasets.** This strong correlation between improved calibration and higher accuracy suggests that by producing more reliable confidence estimates, the model mitigates overconfidence on its own predictions (potentially incorrect), thereby facilitating a more stable and effective learning process that leads to better overall performance.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

## 4.2 ADDITIONAL ANALYSIS

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

**Effectiveness of modified structure.** To enforce idempotence, we introduce a lightweight architectural modification (details in Section 3.2). We ablate its influence on Split CIFAR-100 with a buffer size of 500. As shown in Table 4, the modified structure performs similarly to the normal backbone. This indicates that the architectural change itself does not influence the baseline performance. Consequently, the observed improvements in performance benefit from idempotent loss instead of modified architecture.

**Idempotence improves forgetting.** The Figure 7 (b) shows Final Forgetting (FF) measured on the Split CIFAR-100 dataset with different buffer sizes. Our method consistently reduces forgetting, which shows that enforcing idempotence improves accuracy while mitigating the forgetting problem simultaneously.

**On training time.** Figure 7 (a) compares the training times of various methods. As expected, our proposed method introduces minimal computational overhead when integrated into existing replay-based methods. This highlights IDER's practicality as a lightweight and effective method.

**Comparison with different distance metrics.** The figure 7 (c) shows the effect of different distance metrics for computing the Idempotent distillation loss. While both MSE and KL divergence are well-established metrics for quantifying loss distance, MSE provides better and more stable performance. The reason is that MSE avoids the information loss occurring in probability space due to the squashing function.

**Visualizations of concrete example.** To explore how enforcing idempotence mitigates recency bias and improves calibration, we visualize predictions for test examples using ER and ER+ID on Split CIFAR-100 with a buffer size of 500 and 10 incremental tasks. Figure 8 shows top-5 predictions after



Figure 8: Visualizations of the predictions on Split CIFAR-100. It shows top-5 prediction probability produced by ER and ER+ID (ours) after training the first two tasks. The first 10 classes (class ids from 0 to 9) belong to task 1 and the next 10 classes (class ids from 10 to 19) belong to task 2. The ground-truth class is highlighted with red boxes.

learning the first two tasks on Split CIFAR-100. ER exhibits clear recency bias: classes from the current task (class ids from 10 to 19) receive inflated scores, leading to misclassifications. Integrated with idempotence loss, the predictions get corrected as true class is promoted to top-1 prediction and overconfidence on new classes notably reduced.

**Probability selection.** We provide ablation study of the probability  $P$  used in the Standard Idempotent Module.  $P$  is the probability that determines whether the second input is set to the empty signal or the ground-truth one-hot vector. We perform a sensitivity ablation on Split CIFAR-100 with 500 buffer size and on ER+ID method. In our ablation study, the second input is set to the neutral "empty" signal input 0 with probability  $P$  and the ground-truth one-hot vector  $y$  with probability  $1 - P$ . Table 5 shows that as  $P$  increases, FAA consistently improves and peaks at  $P = 0.9$ , which reaches 44.82. Then there is a slight drop at  $P = 1.0$ , where FAA is 43.26. Given that, we choose  $P=0.9$  as a default in our method.

**Partition points selection.** To enable idempotence with respect to the second input, our method divides the backbone into two parts. We conduct ablation studies for different partition points with ResNet-18 on Split CIFAR-100 and Tiny-ImageNet. Table 11 demonstrates that shallower splits amplify noise and destabilize training while deeper splits attenuate the second signal and weaken idempotence effect. Thus, we choose to divide the backbone at a mid-layer which achieves the best performance consistently across different datasets.

Table 5: Impact of the probability  $P$  on Final Average Accuracy (FAA) on Split CIFAR-100.

| P          | 0.2  | 0.3   | 0.4   | 0.5   | 0.6   | 0.7   | 0.8   | 0.9          | 1     |
|------------|------|-------|-------|-------|-------|-------|-------|--------------|-------|
| <b>FAA</b> | 20.9 | 22.24 | 27.03 | 29.19 | 31.46 | 37.48 | 42.24 | <b>44.82</b> | 43.26 |

Table 6: Comparisons with different partition points on Split CIFAR-100 and Tiny-ImageNet.

| Layer Selection         | CIFAR-100    | Tiny-ImageNet |
|-------------------------|--------------|---------------|
| Shallower (5th layer)   | 40.51        | 42.10         |
| Deeper (13th layer)     | 43.09        | 42.28         |
| <b>Ours (9th layer)</b> | <b>44.82</b> | <b>43.05</b>  |

## 5 CONCLUSION

In this paper, we propose Idempotent Experience Replay (IDER), a simple and effective method designed to mitigate catastrophic forgetting and improve predictive reliability in continual learning. Our approach adapts the training loss and introduces idempotence distillation loss for CL methods to encourage . Extensive experiments demonstrate that IDER consistently improves performance across multiple datasets and diverse continual learning settings. Our results show that enforcing idempotence enables a balance between stability and plasticity while yielding better calibrated predictions. Our method, requiring only two forward passes without additional parameters and seamlessly integrated with other CL approaches, shows promise for deployment of CL models in real-world scenarios. We hope this work inspires future research to place greater emphasis on uncertainty-aware continual learning. We also plan to explore the potential of idempotence property in different domains.

## 540 REFERENCES

541

542 Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual learning  
543 method based on complementary learning system. *arXiv preprint arXiv:2201.12604*, 2022.

544 Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-incremental  
545 continual learning into the extended der-verse. *IEEE transactions on pattern analysis and machine intelligence*,  
546 45(5):5497–5512, 2022.

547 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience for  
548 general continual learning: a strong, simple baseline. *Advances in neural information processing systems*, 33:  
549 15920–15930, 2020.

550 Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Simone Calderara. Rethinking experience replay: a bag  
551 of tricks for continual learning. In *2020 25th International Conference on Pattern Recognition (ICPR)*, pp.  
552 2180–2187. IEEE, 2021.

553

554 Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky. New insights  
555 on reducing abrupt representation change in online continual learning. *arXiv preprint arXiv:2104.05025*,  
556 2021.

557 Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania, P Torr, and  
558 M Ranzato. Continual learning with tiny episodic memories. In *Workshop on Multi-Task and Lifelong*  
559 *Reinforcement Learning*, 2019.

560 Nikita Durasov, Nik Dorndorf, Hieu Le, and Pascal Fua. Zigzag: Universal sampling-free uncertainty estimation  
561 through two-step inference. *Transactions on Machine Learning Research*, 2024a. ISSN 2835-8856.

562 Nikita Durasov, Doruk Oner, Jonathan Donier, Hieu Le, and Pascal Fua. Enabling uncertainty estimation in  
563 iterative neural networks. In *Forty-first International Conference on Machine Learning*, 2024b.

564 Nikita Durasov, Assaf Shocher, Doruk Oner, Gal Chechik, Alexei A Efros, and Pascal Fua. It3: Idempotent  
565 test-time training. *arXiv preprint arXiv:2410.04201*, 2024c.

566

567 Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual learning.  
568 In *International conference on artificial intelligence and statistics*, pp. 3762–3773. PMLR, 2020.

569

570 Alex Gomez-Villa, Dipam Goswami, Kai Wang, Andrew D Bagdanov, Bartłomiej Twardowski, and Joost van de  
571 Weijer. Exemplar-free continual representation learning via learnable drift compensation. In *European*  
572 *Conference on Computer Vision*, pp. 473–490. Springer, 2024.

573 Dipam Goswami, Yuyang Liu, Bartłomiej Twardowski, and Joost Van De Weijer. Fecam: Exploiting the  
574 heterogeneity of class distributions in exemplar-free continual learning. *Advances in Neural Information*  
575 *Processing Systems*, 36:6582–6595, 2023.

576

577 Qiao Gu, Dongsub Shim, and Florian Shkurti. Preserving linear separability in continual learning by backward  
578 feature projection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,  
579 pp. 24286–24295, 2023.

580

581 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In  
582 *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

583

584 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In  
585 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.

586

587 Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier incrementally  
588 via rebalancing. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.  
589 831–839, 2019.

590

591 Seong-Hyeon Hwang, Minsu Kim, and Steven Euijong Whang. T-cil: Temperature scaling using adversarial  
592 perturbation for calibration in class-incremental learning. In *Proceedings of the Computer Vision and Pattern*  
593 *Recognition Conference*, pp. 15339–15348, 2025.

594

595 Saurav Jha, Dong Gong, He Zhao, and Lina Yao. Npcl: Neural processes for uncertainty-aware continual  
596 learning. *Advances in Neural Information Processing Systems*, 36:34329–34353, 2023.

597

598 Saurav Jha, Dong Gong, and Lina Yao. Clap4clip: Continual learning with probabilistic finetuning for vision-  
599 language models. *Advances in neural information processing systems*, 37:129146–129186, 2024.

594 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,  
 595 Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic  
 596 forgetting in neural networks. *Proceedings of the national academy of sciences*, 114(13):3521–3526, 2017.

597 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

598 Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. *Open Review*, 62(1):  
 600 1–62, 2022.

601 Lanpei Li, Elia Piccoli, Andrea Cossu, Davide Bacciu, and Vincenzo Lomonaco. Calibration of continual  
 602 learning models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,  
 603 pp. 4160–4169, 2024.

604 Simone Magistri, Tomaso Trinci, Albin Soutif-Cormerais, Joost van de Weijer, and Andrew D Bagdanov. Elastic  
 605 feature consolidation for cold start exemplar-free incremental learning. *arXiv preprint arXiv:2402.03917*,  
 606 2024.

607 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential  
 608 learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165. Elsevier, 1989.

609 Fei Mi, Lingjing Kong, Tao Lin, Kaicheng Yu, and Boi Faltings. Generalized class incremental learning. In  
 610 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*, pp. 240–241,  
 611 2020.

612 Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Delezoide. Fetril: Feature  
 613 translation for exemplar-free class-incremental learning. In *Proceedings of the IEEE/CVF winter conference  
 614 on applications of computer vision*, pp. 3911–3920, 2023.

615 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental  
 616 classifier and representation learning. In *Proceedings of the IEEE conference on Computer Vision and Pattern  
 617 Recognition*, pp. 2001–2010, 2017.

618 Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.  
 619 Learning to learn without forgetting by maximizing transfer and minimizing interference. *arXiv preprint  
 620 arXiv:1810.11910*, 2018.

621 Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning  
 622 to learn without forgetting by maximizing transfer and minimizing interference. In *ICLR (Poster)*, 2019.

623 Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu,  
 624 Razvan Pascanu, and Raia Hadsell. Progressive neural networks. *arXiv preprint arXiv:1606.04671*, 2016.

626 Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Sparse coding in a dual memory system for lifelong learning.  
 627 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 9714–9722, 2023.

628 Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Semantic aware representation learning for lifelong learning.  
 629 In *The Thirteenth International Conference on Learning Representations*, 2025.

630 Assaf Shocher, Amil Dravid, Yossi Gandelsman, Inbar Mosseri, Michael Rubinstein, and Alexei A Efros.  
 631 Idempotent generative network. *arXiv preprint arXiv:2311.01462*, 2023.

632 Jeffrey S Vitter. Random sampling with a reservoir. *ACM Transactions on Mathematical Software (TOMS)*, 11  
 633 (1):37–57, 1985.

635 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning: Theory,  
 636 method and application. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

637 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,  
 638 Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings of the IEEE/CVF  
 639 conference on computer vision and pattern recognition*, pp. 139–149, 2022.

640 Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large scale  
 641 incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,  
 642 pp. 374–382, 2019.

643 Lu Yu, Bartłomiej Twardowski, Xiaolei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling Jui, and Joost  
 644 van de Weijer. Semantic drift compensation for class-incremental learning. In *Proceedings of the IEEE/CVF  
 645 conference on computer vision and pattern recognition*, pp. 6982–6991, 2020.

646 Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and self-  
 647 supervision for incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and  
 pattern recognition*, pp. 5871–5880, 2021.

## 648 649 650 651 652 653 654 655 Appendix

### 656 A EXPERIMENTAL SETTING

657  
658 We evaluate our method on three standard continual learning benchmarks under Class-IL setting,  
659 where task identifiers are unavailable during testing, making it a challenging scenario for maintaining  
660 performance across tasks.  
661

662 **Datasets.** Our experiments use three datasets with varying complexity:  
663

- 664 • **Split CIFAR-10:** The CIFAR-10 dataset is divided into 5 sequential tasks, each containing  
665 2 classes. Each class comprises 5,000 training and 1,000 test images of size 32×32.
- 666 • **Split CIFAR-100:** CIFAR-100 is split into 10 tasks with 10 classes per task. Each class  
667 contains 500 training and 100 test images of size 32×32.
- 668 • **Split TinyImageNet:** TinyImageNet is divided into 10 tasks with 20 classes each. Each  
669 class has 500 training images, 50 validation images, and 50 test images.

670 **Evaluation Metrics.** We use two standard metrics to evaluate continual learning performance:  
671

- 672 • **Final Average Accuracy (FAA):** Measures the average accuracy across all tasks after  
673 training is complete. For a model that has finished training on task  $t$ , let  $a_i^t$  denote the test  
674 accuracy on task  $i$ . FAA is computed as the mean accuracy across all tasks.
- 675 • **Final Forgetting (FF):** Quantifies how much knowledge of previous tasks is forgotten,  
676 defined as:

$$677 \text{FF} = \frac{1}{T-1} \sum_{i=1}^{T-1} \max_{j \in \{1, \dots, T-1\}} (a_i^j - a_i^T) \quad (9)$$

678 where lower values indicate better retention of previously learned tasks.  
679

- 680 • **Expected Calibration Error (ECE):** Quantifies the mismatch between a model’s predicted  
681 confidence and its actual accuracy. Predictions are partitioned into  $M$  confidence interval  
682 bins  $B_m$ . The ECE is computed as the weighted average of the absolute difference between  
683 the average confidence ( $\text{conf}(B_m)$ ) and the average accuracy ( $\text{acc}(B_m)$ ) within each bin:

$$684 \text{ECE} = \sum_{m=1}^M \frac{|B_m|}{N} |\text{conf}(B_m) - \text{acc}(B_m)| \quad (10)$$

685 where  $N$  is the total number of samples. A lower ECE indicates a better-calibrated model  
686 whose confidence estimates are more reliable.  
687

### 688 A.1 IMPLEMENTATION DETAILS SUPPLEMENTARY

689 Besides the details mentioned above, we train 50 epochs per task for Split CIFAR-10 and Split  
690 CIFAR-100 and 100 epochs per task for Split TinyImageNet (Le & Yang, 2015). For Split CIFAR100,  
691 the learning rate is decreased by a factor of 0.1 at epochs 35 and 45, while for Split TinyImageNet, the  
692 learning rate is decreased by a factor of 0.1 at epochs 35, 60 and 75. The learning rate may vary  
693 in the light of different continual learning methods, while for a fair comparison, we use the same  
694 initial learning rate as DER and BFP for our methods. If not specified, all baselines use the reservoir  
695 sampling algorithm (Vitter, 1985) to update memory, while BFP (Gu et al., 2023) uses class-balanced  
696 reservoir sampling (Buzzega et al., 2021) for pushing balanced examples into the buffer.  
697

### 698 A.2 HYPERPARAMETERS

699 In this section, we show hyperparameter combination that used in our experiments. These hyperpa-  
700 rameters are adopted from Boschini et al. (2022); Buzzega et al. (2020); Gu et al. (2023) to make fair  
701 comparison.

702 SPLIT CIFAR-10  
703704 **Buffer size = 200**  
705706  
707 **iCaRL**:  $lr = 0.1$ ,  $wd = 10^{-5}$   
708709 **LUCIR**:  $\lambda_{\text{base}} = 5$ ,  $\text{mom} = 0.9$ ,  $k = 2$ ,  $\text{epoch}_{\text{fitting}} = 20$ ,  $lr = 0.03$ ,  $lr_{\text{fitting}} = 0.01$ ,  $m =$   
710  $0.5$ 711 **BiC**:  $\tau = 2$ ,  $\text{epochs}_{\text{BiC}} = 250$ ,  $lr = 0.03$   
712713 **ER-ACE**:  $lr = 0.03$   
714715 **ER**:  $lr = 0.1$   
716717 **DER**:  $lr = 0.03$ ,  $\alpha = 0.3$   
718719 **DER++**:  $lr = 0.03$ ,  $\alpha = 0.1$ ,  $\beta = 0.5$   
720721 **XDER**:  $\alpha = 0.3$ ,  $m = 0.7$ ,  $\beta = 0.9$ ,  $\gamma = 0.85$ ,  $wd = 1e - 06$ ,  $\lambda = 0.05$ ,  $\eta = 0.001$ ,  $lr =$   
722  $0.03$ ,  $\tau = 5$ ,  $\text{mom} = 0.9$   
723724 **DEP++ w/ BFP**:  $lr = 0.03$ ,  $\alpha_{\text{distill}} = 0.1$ ,  $\alpha_{\text{ce}} = 0.5$ ,  $\alpha_{\text{bfp}} = 1$   
725726 **Buffer size = 500**  
727728  
729 **iCaRL**:  $lr = 0.1$ ,  $wd = 10^{-5}$   
730731 **LUCIR**:  $\lambda_{\text{base}} = 5$ ,  $\text{mom} = 0.9$ ,  $k = 2$ ,  $\text{epoch}_{\text{fitting}} = 20$ ,  $lr = 0.03$ ,  $lr_{\text{fitting}} = 0.01$ ,  $m =$   
732  $0.5$ 733 **BiC**:  $\tau = 2$ ,  $\text{epochs}_{\text{BiC}} = 250$ ,  $lr = 0.03$   
734735 **ER-ACE**:  $lr = 0.03$   
736737 **ER**:  $lr = 0.1$   
738739 **DER**:  $lr = 0.03$ ,  $\alpha = 0.3$   
740741 **DER++**:  $lr = 0.03$ ,  $\alpha = 0.1$ ,  $\beta = 0.5$   
742743 **XDER**:  $\alpha = 0.3$ ,  $m = 0.7$ ,  $\beta = 0.9$ ,  $\gamma = 0.85$ ,  $wd = 1e - 06$ ,  $\lambda = 0.0$ ,  $\eta = 0.001$ ,  $lr =$   
744  $0.03$ ,  $\tau = 5$ ,  $\text{mom} = 0.9$   
745746 **DEP++ w/ BFP**:  $lr = 0.03$ ,  $\alpha_{\text{distill}} = 0.2$ ,  $\alpha_{\text{ce}} = 0.5$ ,  $\alpha_{\text{bfp}} = 1$   
747748 SPLIT CIFAR-100  
749750 **Buffer size = 500**  
751752  
753 **iCaRL**:  $lr = 0.3$ ,  $wd = 10^{-5}$   
754755 **LUCIR**:  $\lambda_{\text{base}} = 5$ ,  $\text{mom} = 0.9$ ,  $k = 2$ ,  $\text{epoch}_{\text{fitting}} = 20$ ,  $lr = 0.03$ ,  $lr_{\text{fitting}} = 0.01$ ,  $m =$   
756  $0.5$ 757 **BiC**:  $\tau = 2$ ,  $\text{epochs}_{\text{BiC}} = 250$ ,  $lr = 0.03$   
758759 **ER-ACE**:  $lr = 0.03$   
760761 **ER**:  $lr = 0.1$   
762763 **DER**:  $lr = 0.03$ ,  $\alpha = 0.3$   
764

756

757 **DER++:**  $lr = 0.03, \alpha = 0.1, \beta = 0.5$ 

758

759 **XDER:**  $\alpha = 0.3, m = 0.7, \beta = 0.9, \gamma = 0.85, wd = 1e - 06, \lambda = 0.05, \eta = 0.001, lr =$   
760  $0.03, \tau = 5, mom = 0.9$ 761 **DEP++ w/ BFP:**  $lr = 0.03, \alpha_{distill} = 0.1, \alpha_{ce} = 0.5, \alpha_{bfp} = 1$ 

762

763

**Buffer size = 2000**

764

765

766

767 **iCaRL:**  $lr = 0.3, wd = 10^{-5}$ 768 **LUCIR:**  $\lambda_{base} = 5, mom = 0.9, k = 2, epoch_{fitting} = 20, lr = 0.03, lr_{fitting} = 0.01, m =$   
769  $0.5$ 770 **BiC:**  $\tau = 2, epochs_{BiC} = 250, lr = 0.03$ 771 **ER-ACE:**  $lr = 0.03$ 772 **ER:**  $lr = 0.1$ 773 **DER:**  $lr = 0.03, \alpha = 0.3$ 774 **DER++:**  $lr = 0.03, \alpha = 0.1, \beta = 0.5$ 775 **XDER:**  $\alpha = 0.3, m = 0.7, \beta = 0.9, \gamma = 0.85, wd = 1e - 06, \lambda = 0.05, \eta = 0.001, lr =$   
776  $0.03, \tau = 5, mom = 0.9$ 777 **DEP++ w/ BFP:**  $lr = 0.03, \alpha_{distill} = 0.1, \alpha_{ce} = 0.5, \alpha_{bfp} = 1$ 

778

779

780

781

782

783 SPLIT TINYIMAGENET

784

785 **Buffer size = 4000**

786

787

788 **iCaRL:**  $lr = 0.03, wd = 10^{-5}$ 789 **LUCIR:**  $\lambda_{base} = 5, mom = 0.9, k = 2, epoch_{fitting} = 20, lr = 0.03, lr_{fitting} = 0.01, m =$   
790  $0.5$ 791 **BiC:**  $\tau = 2, epochs_{BiC} = 250, lr = 0.03$ 792 **ER-ACE:**  $lr = 0.03$ 793 **ER:**  $lr = 0.1$ 794 **DER:**  $lr = 0.03, \alpha = 0.1$ 795 **DER++:**  $lr = 0.03, \alpha = 0.1, \beta = 0.5$ 796 **XDER:**  $\alpha = 0.3, m = 0.7, \beta = 0.9, \gamma = 0.85, wd = 1e - 06, \lambda = 0.0, \eta = 0.001, lr =$   
797  $0.03, \tau = 5, mom = 0.9$ 798 **DEP++ w/ BFP:**  $lr = 0.03, \alpha_{distill} = 0.3, \alpha_{ce} = 0.8, \alpha_{bfp} = 1$ 

800

801

802

803

804

805 **A.3 INTERGRATED IDER INTO BFP**

806

807 As [Gu et al. \(2023\)](#) introduces BFP distillation loss, which focuses on features. We can easily  
808 incorporate our method into BFP framework. The BFP loss is:

809

810 
$$\mathcal{L}_{BFP} = \sum_{(x,y) \in \mathcal{T}_t, M} \|Ah_t(x, 0) - h_{t-1}(x, 0)\|_2, \quad (11)$$

810  
 811 Table 7: Comparison of Final Forgetting (FF) across different continual learning methods. All experiments are  
 812 repeated 5 times with different seeds. The best results (lowest forgetting) are highlighted in **blue**. The second  
 813 best results are highlighted in **green**.

| Method                       | CIFAR-10                         |                                  | CIFAR-100                        |                                  | Tiny-ImageNet                    |                                  |
|------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                              | Buffer 200                       | Buffer 500                       | Buffer 500                       | Buffer 2000                      | Buffer 500                       | Buffer 4000                      |
| Joint                        | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             | 0.00                             |
| iCaRL (Rebuffi et al., 2017) | 36.00 $\pm$ 7.29                 | 30.19 $\pm$ 3.38                 | 28.58 $\pm$ 0.84                 | 24.24 $\pm$ 0.58                 | 20.82 $\pm$ 1.31                 | <b>15.29<math>\pm</math>0.53</b> |
| ER (Riemer et al., 2018)     | 71.35 $\pm$ 7.77                 | 52.12 $\pm$ 7.56                 | 71.92 $\pm$ 0.74                 | 51.82 $\pm$ 0.75                 | 74.79 $\pm$ 0.67                 | 57.47 $\pm$ 0.57                 |
| BiC (Wu et al., 2019)        | 53.63 $\pm$ 7.18                 | 24.87 $\pm$ 0.98                 | 48.87 $\pm$ 0.91                 | 38.50 $\pm$ 1.09                 | 67.57 $\pm$ 1.98                 | 63.48 $\pm$ 0.28                 |
| LUCIR (Hou et al., 2019)     | 59.79 $\pm$ 10.16                | 37.58 $\pm$ 3.80                 | 50.22 $\pm$ 1.26                 | 32.48 $\pm$ 0.76                 | 35.02 $\pm$ 0.56                 | 30.59 $\pm$ 0.95                 |
| DER (Buzzega et al., 2020)   | 45.31 $\pm$ 2.73                 | 32.04 $\pm$ 2.88                 | 56.66 $\pm$ 2.55                 | 34.41 $\pm$ 2.05                 | 68.43 $\pm$ 2.73                 | 59.54 $\pm$ 6.13                 |
| DER++ (Buzzega et al., 2020) | 36.20 $\pm$ 4.15                 | 27.93 $\pm$ 3.34                 | 51.85 $\pm$ 1.61                 | 34.44 $\pm$ 1.42                 | 61.45 $\pm$ 3.12                 | 39.11 $\pm$ 3.66                 |
| ER-ACE (Caccia et al., 2021) | 19.52 $\pm$ 1.23                 | 12.87 $\pm$ 1.06                 | 38.61 $\pm$ 1.15                 | 28.42 $\pm$ 0.55                 | 40.97 $\pm$ 1.38                 | 29.37 $\pm$ 1.09                 |
| XDER (Boschini et al., 2022) | 16.36 $\pm$ 0.91                 | 12.81 $\pm$ 0.48                 | <b>24.15<math>\pm</math>1.37</b> | <b>11.17<math>\pm</math>1.21</b> | 42.90 $\pm$ 0.54                 | 18.87 $\pm$ 1.08                 |
| BFP (Gu et al., 2023)        | 22.53 $\pm$ 5.00                 | 16.81 $\pm$ 1.11                 | 35.32 $\pm$ 3.94                 | 19.76 $\pm$ 0.87                 | <b>30.02<math>\pm</math>4.37</b> | 27.19 $\pm$ 6.53                 |
| <b>Ours (ER+ID)</b>          | <b>15.28<math>\pm</math>2.41</b> | <b>11.93<math>\pm</math>0.49</b> | 29.98 $\pm$ 2.52                 | 17.46 $\pm$ 1.04                 | 36.63 $\pm$ 3.37                 | 22.46 $\pm$ 1.86                 |
| <b>Ours (BFP+ID)</b>         | <b>15.79<math>\pm</math>2.73</b> | <b>12.11<math>\pm</math>0.82</b> | <b>26.56<math>\pm</math>2.56</b> | <b>12.52<math>\pm</math>1.29</b> | <b>27.41<math>\pm</math>3.92</b> | <b>16.68<math>\pm</math>0.44</b> |

829 where  $h_t$  is feature extractor in model  $f_t$  on the  $t$ -th task and  $A$  is linear transformation aimed to  
 830 preserve the linear separability of features backward in time.

831 During training on the task  $t$ , the model  $f_t$  and  $A$  are optimized respectively. Thus, the  $\mathcal{L}_{BFP+ID}$   
 832 can be:

$$\mathcal{L}_{BFP+ID} = \mathcal{L}_{ice} + \alpha \mathcal{L}_{ide} + \beta \mathcal{L}_{rep-ice} + \gamma \mathcal{L}_{BFP}. \quad (12)$$

#### A.4 COMPLEXITY AND TRAINING COST

837 We train all experiments on GeForce 4090. The additional parameters we need for modified archi-  
 838 tecture are very small. Using ResNet-18 as the backbone, the normal architecture contains 11.22M  
 839 parameters on CIFAR-100 while the modified architecture increases the parameter count to 11.91M  
 840 parameters. Although we need two forward passes to train the model, which leads to a slightly  
 841 longer training time compared with DER++, the longer training time is acceptable as it increases the  
 842 performance by a significant margin.

## B FORGETTING COMPARISON OF DIFFERENT REHEARSAL-BASED CONTINUAL LEARNING METHODS

848 Instead of FAA, Final Forgetting (FF) reflects the model’s anti-forgetting capacity. To make fair  
 849 comparison, we exclude the Exponential Moving Average (EMA) based methods, as the highest  
 850 model performance on each task is from working model instead of EMA model, thereby reducing  
 851 FF following Eq. 9 in appendix. FF measures the drop from each task’s historical peak accuracy (its  
 852 best accuracy when first learned) to its final accuracy after all tasks, while EMA artificially smooths  
 853 performance drops by reducing the accuracy it is first learned, thus understating true forgetting. The  
 854 Table 7 shows Final Forgetting (FF) of different continual learning methods. The results show that the  
 855 idempotence loss yields a lower FF, indicating improved stability. It is worth noting that compared  
 856 with XDER, there are no additional architectures or learnable parameters introduced in our method,  
 857 just forwarding pass the model twice.

## C T-SNE VISUALIZATION OF VARIOUS METHODS

861 In this section, we show more t-SNE visualization of various methods on first task testing data on  
 862 CIFAR-100 with 500 buffer size. The task number is 10. t-SNE figures shows our method has the  
 863 better capability of resisting catastrophic forgetting compared with ER, DER and BFP. We observed  
 that the feature clusters of the 10 classes from the first task become increasingly blurred as the model

864 learns knowledge from new tasks in these methods. However, this phenomenon is alleviated in our  
 865 method.  
 866



881 Figure 9: We perform t-SNE visualization of the features extracted from the first task testing data on CIFAR-100  
 882 across training tasks. The figures show how the feature clusters of the 10 classes from the first task change when  
 883 the model train data from new tasks.

## 884 D STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

885 We hereby declare that large language models (LLMs), specifically GPT-5 , were used during the  
 886 preparation of this manuscript. The use of LLMs was strictly limited to: aiding and polishing writing.  
 887 The LLM was used solely as an assistive tool for prose refinement and did not contribute to the  
 888 intellectual content of the research.

## 889 E LIMITATIONS

890 **Naive Implementation.** As we first introduce idempotence property into continual learning, the  
 891 method should be very simple. In the future, we try to combine our method with more complementary  
 892 techniques to further improve performance. In addition, we also plan to explore the application of the  
 893 idempotence property in data sampling strategies for continual learning.

## 894 F EXTENDED DISCUSSION: RELATED IDEMPOTENCE TO CONTINUAL 895 LEARNING

896 This section presents the theoretical motivation and formulation of the idempotence loss in continual  
 897 learning by revisiting prior applications of idempotence and elaborating how the proposed loss  
 898 improves prediction calibration and mitigates catastrophic forgetting

### 899 Uncertainty Measurement

900 Durasov et al. (2024a) first train the model to satisfy  $f(x, 0) \approx y$  and  $f(x, y) \approx y$  for each pair  
 901  $(x, y)$  by minimizing the following loss:

$$902 L_{\text{train}} = \|f(x, 0) - y\| + \|f(x, y) - y\|. \quad (13)$$

903 Then they define the uncertainty loss as:

$$904 L(x) = \|y_1 - y_0\|, \quad (14)$$

905 where the network is applied recursively:  $y_0 = f(x, 0)$ ,  $y_1 = f(x, y_0)$ .

906 The rationale is as follows:

- 907 1. If  $x$  is in-distribution, then  $y_0 \approx y$ , and since the network is trained so that  $f(x, y) \approx y$ , they  
 908 have  $y_1 \approx y_0$ . Therefore, the loss is small.

918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971

- If  $x$  is OOD, then  $y_0$  is unlikely to approximate the true label. In this case, the pair  $(x, y_0)$  is not a valid input as pretraining, leading  $y_1$  to be unpredictable and significantly different from  $y_0$ , resulting in a large  $\mathcal{L}(x)$ .

Thus, the magnitude of  $\|y_1 - y_0\|$  serves as a proxy for prediction certainty.

### Introducing Idempotence in Continual Learning

In CL, models are often poorly calibrated and over-confident, a problem exacerbated by recency bias toward new tasks. To mitigate this issue, we require the model to maintain stable predictions on data from previous tasks even after parameter updates induced by new knowledge, as self-consistency indicates that the network's output is aligned with the learned in-distribution manifold and can make reliable (well-calibrated) prediction. As before, this condition can be translated into enforcing idempotence. We can formalize the desired idempotence condition as  $f_t(x, f_t(x, 0)) = f_t(x, 0)$ , where  $x$  is from both previous and current tasks and  $f_t$  represents the current model. In practice, as data from previous tasks can't be obtained, the loss can be defined as:

$$\mathcal{L} = \sum_{(x, y) \in \mathcal{T}_{t, M}} \|f_t(x, 0) - f_t(x, f_t(x, 0))\|_2^2, \quad (15)$$

where  $M$  is the buffer memory which stores data from previous tasks.

Minimizing this loss drives the network toward the condition that repeated application of  $f_t(x, \cdot)$  does not change the output, which is needed for model to make reliable predictions in CL.

However, minimizing the idempotence loss in CL is not trivial. First, we propose  $\mathcal{L}_{ice}$  to train model idempotent for sequential tasks. Second, We modify the idempotence distillation loss by using the model checkpoint at the end of the last task for the second application, which can be rewritten as

$$\mathcal{L}_{ide} = \sum_{(x, y) \in \mathcal{T}_{t, M}} \|f_t(x, 0) - f_{t-1}(x, f_t(x, 0))\|_2^2. \quad (16)$$

The modification has two benefits:

- It prevents training collapse and bias error amplification. Consistent with Shocher et al. (2023) and Duranov et al. (2024c), directly optimizing the idempotence loss induces two gradient pathways: 1. A desirable pathway that updates  $f_t(x, 0)$  toward the correct in-distribution manifold. 2. An undesirable pathway that may cause the manifold to expand, thereby including an incorrect  $f_t(x, 0)$ . For example, if  $y_0 = f_t(x, 0)$  is an incorrect prediction, then minimizing  $\|y_0 - y_1\|$  may cause  $y_1 = f_t(x, y_0)$  to be pulled toward the incorrect  $y_0$  and expand the manifold following the wrong gradient pathways, thereby magnifying the error. Another potential problem is to encourage  $f_t(x, \cdot)$  to become the identity function, which is trivially idempotent and may cause training collapse. To counteract the latter gradient pathways, a frozen copy of the network is often used.
- It is designed for enforcing idempotence in CL and can serve as a distillation loss. According to eq 3, under empirical risk minimization, we can assume that:

$$f_t(x, f_t(x, 0)) = f_t(x, 0). \quad (17)$$

Thus, we rewrite the  $\mathcal{L}_{ide}$  as:

$$\mathcal{L}_{ide} = \sum_{(x, y) \in \mathcal{T}_{t, M}} \|f_t(x, f_t(x, 0)) - f_{t-1}(x, f_t(x, 0))\|_2^2. \quad (18)$$

First, according to the same input for  $f_t$  and  $f_{t-1}$  in eq 18, this idempotent distillation loss could serve as a standard regularization loss :

$$\mathcal{L}_{re} = \sum_{(x, y) \in \mathcal{T}_{t, M}} \|f_t(x) - f_{t-1}(x)\|_2^2, \quad (19)$$

which is often used in CL methods (Gu et al., 2023; Sarfraz et al., 2025) to mitigate catastrophic forgetting. Second, when incorporating the second input that conveys logits from  $f_t$ , the loss steers the current model  $f_t$  to update in a direction where the predictions remain correctly interpretable by the previous model  $f_{t-1}$ . Consequently, in sequential tasks,  $f_{t-1}$  and  $f_t$  are driven toward idempotence, feeding back  $f_t$ 's own output does not alter the prediction of  $f_{t-1}$ , yielding more reliable predictions across tasks and improving calibration in continual learning.

972 **G COMPARISON WITH REGULARIZATION-BASED METHODS**  
973974 To further evaluate the broader applicability and robustness of our proposed method, we compare  
975 IDER with state-of-art regularization-based methods. The buffer size is set to 2000 on Split CIFAR-  
976 100 and to 4000 on Split Tiny-ImageNet for IDER. As Table 8 shows, IDER yields significant  
977 improvements, demonstrating strong robustness and effectiveness of our method within the broader  
978 CL field.979  
980 **Table 8: Comparison of Final Average Accuracy(FAA) on CIFAR-100 and Tiny-ImageNet across and IDER.**

| 981 | Method                             | CIFAR-100 | Tiny-ImageNet |
|-----|------------------------------------|-----------|---------------|
| 982 | LwF+NCM (Rebuffi et al., 2017)     | 40.5±2.7  | 28.6±1.1      |
| 983 | LwF+SDC (Yu et al., 2020)          | 40.6±1.8  | 29.5±0.8      |
| 984 | PASS (Zhu et al., 2021)            | 37.8±0.2  | 31.2±0.4      |
| 985 | FeTrIL (Petit et al., 2023)        | 37.0±0.6  | 24.4±0.6      |
| 986 | FeCAM (Goswami et al., 2023)       | 33.1±0.9  | 24.9±0.5      |
| 987 | EFC (Magistri et al., 2024)        | 43.6±0.7  | 34.1±0.8      |
| 988 | LwF+LDC (Gomez-Villa et al., 2024) | 43.6±0.7  | 34.2±0.7      |
| 989 | ER+ID                              | 56.59±0.4 | 43.05±1.4     |
| 990 | BFP+ID                             | 57.74±0.6 | 43.51±0.6     |
| 991 | CLS-ER+ID                          | 56.36±0.8 | 46.17±0.2     |

992  
993 **H ABLATION RESULTS**994 **H.1 HYPERPARAMETER SENSITIVITY**995 We performed ablations on CIFAR-100 with 500 buffer size under CIL setting. We ablate on ER+ID  
996 method, as it consistently yields substantial improvements over ER baseline across all datasets and  
997 does not introduce any additional hyperparameters. Both  $\alpha$  and  $\beta$  are from the set {0.1, 0.2, 0.5, 1}.  
1000 Table 9 demonstrates that IDER is not overly sensitive to specific hyperparameter values, as multiple  
1001 configurations yield consistent performance improvements. This reliability underscores IDER’s  
1002 practicality and suitability for a wide range of continual learning applications  
10031004 **H.2 CONTRIBUTION OF EACH COMPONENT**1005 We conduct a component ablation study to isolate the contributions of each part of the overall  
1006 objective: the Standard Idempotent Module (SIM), the Idempotent Distillation Module (IDM),  
1007 and Experience Replay (ER). We focus on the ER+ID method for this study. The ablation  
1008 study results are shown in Table 10. Using only the Standard Idempotent Module (SIM) or  
1009 combining SIM with ER produces similar performance compared with finetuning or ER baseline,  
1010 indicating that SIM alone trains model to be idempotent  
1011 on the current task, which making it well-suited for sub-  
1012 sequent idempotent distillation and doesn’t mitigate catas-  
1013 trofic forgetting. It also demonstrates that modified archi-  
1014 tecture does not influence performance and the observed  
1015 improvements benefit from idempotent distillation loss.  
1016 What’s more, adding the Idempotent Distillation Module  
1017 (IDM) yields substantial performance gains, which further  
1018 improves accuracy to 44.82%. This validates the effective-  
1019 ness of idempotence distillation loss.  
10201021 **Table 10: Ablation study of different compo-  
1022 nents on Split CIFAR-100.**

| SIM | IDM | ER | FAA   |
|-----|-----|----|-------|
| ✓   | ✗   | ✗  | 8.23  |
| ✓   | ✗   | ✓  | 24.73 |
| ✓   | ✓   | ✓  | 44.82 |

1023 **I MORE ANALYSIS**1024 To evaluate the broader applicability and robustness of our proposed method, we do more analysis  
1025 considering a longer task sequence, different backbone and online continual learning settings.1026 **I.1 RESULTS ON LONGER TASK SEQUENCES**

1026

1027 Table 9: Impact of hyperparameters  $\alpha$  and  $\beta$  on Final Average Accuracy (FAA) on Split CIFAR-100. We use  
1028 learning rate as 0.03, probability as 0.9.

|      | <b>alpha</b> | <b>beta</b> | <b>FAA</b>   |
|------|--------------|-------------|--------------|
| 1031 | 0.1          | 0.1         | 44.77        |
|      |              | 0.2         | 44.41        |
|      |              | 0.5         | 43.82        |
|      |              | 1           | 41.20        |
| 1036 | 0.2          | 0.1         | 44.24        |
|      |              | 0.2         | 44.43        |
|      |              | 0.5         | 44.33        |
|      |              | 1           | 41.58        |
| 1043 | 0.5          | 0.1         | 41.74        |
|      |              | 0.2         | 44.25        |
|      |              | 0.5         | <b>44.82</b> |
|      |              | 1           | 42.72        |
| 1048 | 1            | 0.1         | 40.42        |
|      |              | 0.2         | 43.02        |
|      |              | 0.5         | 43.87        |
|      |              | 1           | 40.93        |

1051 This setting is more challenging as the task number gets larger, which intensifies distribution shifts and  
1052 increases forgetting pressure. We conduct experiments on 20 tasks on Tiny-ImageNet. Table 11 shows  
1053 that our method yields consistent improvements over baselines. This analysis provides empirical  
1054 evidence that underscores the robustness of our approach.

1056 Table 11: Performance comparison on 20 tasks on Split Tiny-ImageNet.

|      | <b>Method</b> | <b>FAA</b>                         |
|------|---------------|------------------------------------|
| 1059 | ICARL         | $22.77 \pm 0.25$                   |
| 1060 | SCoMMER       | $32.69 \pm 0.35$                   |
| 1061 | SARL          | $33.23 \pm 0.98$                   |
| 1062 | BFP           | $39.86 \pm 0.67$                   |
| 1063 | XDER          | $41.75 \pm 0.38$                   |
| 1064 | ER            | $22.39 \pm 0.09$                   |
| 1065 | ER+ID         | $34.86 \pm 0.67$                   |
| 1066 | CLS-ER        | $41.06 \pm 0.23$                   |
| 1067 | CLS-ER+ID     | <b><math>41.82 \pm 0.54</math></b> |

1069  
1070 I.2 RESULTS ON DIFFERENT BACKBONE

1072 To further validate the effectiveness of IDER, we extended our experiments to include a fundamentally  
1073 different backbone: ViT-Small. Vision Transformers (ViT), such as ViT-Small, are known to struggle  
1074 with small datasets due to their architectural design, which demands pretraining on large-scale  
1075 datasets for optimal performance. To maintain a fair comparison, we trained ViT-Small from scratch  
1076 on CIFAR-100 with a buffer size of 2000 under the same CL protocol. Given the architectural  
1077 differences, we modify it to accept the second input in a different way: we first applied a single linear  
1078 layer to project the first-pass output logits to the same embedding dimension as the [CLS] token, and  
1079 then replaced the [CLS] token with this projected vector for the second pass. Despite the inherent  
challenges of ViTs on CIFAR-100 and naive modification, IDER consistently delivers substantial

1080 performance gains over the baseline ER shown in Table 12, reinforcing its effectiveness and broader  
 1081 applicability.  
 1082

1083 Table 12: Comparison on ViT-Small backbone. We perform the experiments On Split-CIFAR100.  
 1084

|       | <b>ViT</b>   | <b>FAA</b>   | <b>FF</b> |
|-------|--------------|--------------|-----------|
| ER    | 13.96        | 51.86        |           |
| ER+ID | <b>20.95</b> | <b>37.22</b> |           |

1088  
 1089 **I.3 RESULTS UNDER ONLINE CONTINUAL LEARNING SETTINGS**  
 1090

1091 Unlike traditional class incremental learning (CIL), which typically allows multiple epochs per  
 1092 task and revisiting buffered samples, online continual learning (Online CL) enforces a single-pass  
 1093 data stream. While our method focuses on batch training on sequential tasks, to validate its general  
 1094 applicability, we conduct experiments on CIFAR-100 under online continual learning following SARL.  
 1095 The results are shown in Table 13. Our method consistently improves both ER and SARL baselines  
 1096 with different batch sizes. The consistent gains indicate robustness and practical applicability of our  
 1097 method in realistic continual learning scenarios.  
 1098

1099 Table 13: Comparison on CIFAR-100 with different buffer sizes under online continual learning.  
 1100

| <b>Method</b> | <b>CIFAR-100</b> |                  |
|---------------|------------------|------------------|
|               | Buffer 1000      | Buffer 2000      |
| ER            | $16.07 \pm 0.88$ | $18.85 \pm 0.27$ |
| ER+ID         | $17.59 \pm 0.91$ | $19.51 \pm 0.45$ |

  

| <b>Method</b> | Buffer 1000      | Buffer 2000      |
|---------------|------------------|------------------|
| ER            | $16.07 \pm 0.88$ | $18.85 \pm 0.27$ |
| ER+ID         | $17.59 \pm 0.91$ | $19.51 \pm 0.45$ |
| SARL          | $24.39 \pm 1.44$ | $26.39 \pm 1.03$ |
| SARL+ID       | $24.87 \pm 0.73$ | $26.72 \pm 1.16$ |

1101  
 1102  
 1103  
 1104  
 1105  
 1106  
 1107  
 1108  
 1109  
 1110  
 1111  
 1112  
 1113  
 1114  
 1115  
 1116  
 1117  
 1118  
 1119  
 1120  
 1121  
 1122  
 1123  
 1124  
 1125  
 1126  
 1127  
 1128  
 1129  
 1130  
 1131  
 1132  
 1133